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Abstract

Light, or electromagnetic radiation in general, is a profound and invaluable resource

to investigate our physical world. For centuries, it was the only and it still is the

main source of information to study the Universe beyond our planet. With high-

resolution spectroscopic imaging, we can identify numerous atoms and molecules,

and can trace their physical and chemical environments in unprecedented detail.

Furthermore, radiation plays an essential role in several physical and chemical

processes, ranging from radiative pressure, heating, and cooling, to chemical photo-

ionisation and photo-dissociation reactions. As a result, almost all astrophysical

simulations require a radiative transfer model. Unfortunately, accurate radiative

transfer is very computationally expensive. Therefore, in this thesis, we aim to

improve the performance of radiative transfer solvers, with a particular emphasis on

line radiative transfer. First, we review the classical work on accelerated lambda

iterations and acceleration of convergence, and we propose a simple but effective

improvement to the ubiquitously used Ng-acceleration scheme. Next, we present the

radiative transfer library, Magritte: a formal solver with a ray-tracer that can handle

structured and unstructured meshes as well as smoothed-particle data. To mitigate

the computational cost, it is optimised to efficiently utilise multi-node and multi-

core parallelism as well as GPU offloading. Furthermore, we demonstrate a heuristic

algorithm that can reduce typical input models for radiative transfer by an order of

magnitude, without significant loss of accuracy. This strongly suggests the existence

of more efficient representations for radiative transfer models. To investigate this, we

present a probabilistic numerical method for radiative transfer that naturally allows

for uncertainty quantification, providing us with a mathematical framework to study
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the trade-off between computational speed and accuracy. Although we cannot yet

construct optimal representations for radiative transfer problems, we point out several

ways in which this method can lead to more rigorous optimisation.



Impact statement

The main goal of this thesis is to optimise the trade-off between computational

speed and accuracy in radiative transfer computations. Radiation transport plays

an undeniably crucial role throughout astrophysics, but also has many applications

outside astronomy, ranging frommedical imaging to nuclear engineering. Therefore,

the impact of the results presented in this thesis can reach far beyond the astrophysical

context in which they were developed. In particular, we identify the following four

main contributions of this work:

• An improved version ofNg-acceleration of convergence for iterative processes,

which is ubiquitously used in radiative transfer applications (see Section 2.3.3).

The proposed improvements are not restricted to radiative transfer applications

and thus can be used to accelerate convergence in any type of iterative process.

• The Magritte open-source software library for radiative transfer modelling

and synthetic observations (see Chapter 3). This library can leverage both

multi-node and multi-core parallelism as well as GPU offloading, and is

among other state-of-the-art solvers currently being used in astrophysical

research (see Chapter 4). Moreover, due to its modular design, if not as a

whole, the individual modules of Magritte, such as e.g. the ray-tracer, can

still readily be used in many other applications dealing with unstructured data.

• The ParAcAbs open-source C++ headers for parallelisation and acceleration

abstractions (see Chapter 3). This interface with corresponding data structures

allows one to implement loop parallelisation and GPU offloading in a portable

way, and can readily be used in any C++ program.
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• A heuristic algorithm that allows to reduce the size of a typical radiative

transfer input model by about an order of magnitude without significant loss

of accuracy on the output, thus reducing the computational cost of radiative

transfer simulations by more than an order of magnitude (see Chapter 5).

Apart from these four main contributions, this thesis, moreover, has much potential

to impact future research, especially in the use of probabilistic numerical methods for

radiative transfer (see Chapter 6). We demonstrated the potential of these methods

for optimisation and uncertainty quantification, and outlined several directions for

future research.
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Chapter 1

Introductory material

What I cannot create, I do not understand.

– Richard P. Feynman

1.1 Prologue
Light, or electromagnetic radiation in general, is a profound and invaluable carrier

of information that allows humans, animals, and machines alike to perceive their

physical environments. From the mundane assessment of the milk fraction in your

tea, based on its colour, to the extraordinary endeavour of determining the chemical

composition of (astrophysical) objects, based on their atomic and molecular spectra,

it is light, through its well-understood interactions with its medium, that allows us

to meticulously study and perhaps even understand most of the world around us.

Moreover, especially in astrophysics and cosmology, electromagnetic radiation is

often the only source of information available. With the noteworthy exceptions of

cosmic rays [1], neutrinos [2], gravitational waves [3], and space missions [4], our

understanding of the Universe is in large part solely based on observations of light.

Given the ever more observations made with ever improving telescopes, one thus

might hope to be assured that one day we might be able to understand the inner

workings of the Universe and our place within it.

Unfortunately, as often, in between dreams and deeds, laws stand in the way,

and practical difficulties1. The laws that govern electromagnetism are currently

not the main problem anymore. Although they eluded scientists for centuries, the

1After Het Huwelijk (1910) by the Belgian writer and poet Willem Elsschot (1882 - 1960).



1.1. Prologue 21

unification of electricity and magnetism by Maxwell [5], followed by the quantum

mechanical description by Planck [6–8], Einstein [9], and contemporaries, finally

culminated in what is now the most accurate and precisely tested scientific theory

ever: quantum electrodynamics [10–12]. What remains, however, are the practical

difficulties. After all, what does it mean to know the physics? A glimpse, for instance,

at the intricate structures that emerge from the simple laws in JohnConway’sGame of

Life2 [13] already demonstrates that even perfect knowledge of the underlying rules

is not enough to understand or even imagine all possible consequences of a system.

It is, however, enough to simulate the system. Hence, despite the more philosophical

questions about the intrinsic value of our understanding of physics, we can at least

aim for the ability to simulate or re-create, thus satisfying Feynman’s necessary

condition for understanding, and also, when done efficiently, even aim for the ability

to anticipate behaviour and make predictions. This (perhaps weakened) form of

understanding through simulation certainly holds powerful promises. However,

simulations also entail new practical difficulties which, without proper care, can

turn into fundamental difficulties, for instance regarding the obtainable accuracy

with practically feasible computation time and resources.

Today in astrophysics and cosmology, but especially in the study of stellar and

planetary atmospheres, we find ourselves fairly confident in our basic understanding

of most of the microscopic physics and chemistry. Nevertheless, we are facing great

challenges with practical difficulties when it comes to identifying the dominant

mechanisms to explain (or postdict), let alone predict, observations. A key difficulty

is that our observations often show the combined result of various different processes

resulting in a convoluted view that is difficult to disentangle and interpret. Moreover,

the situation is further complicated since radiation also plays an active role in

the evolution of the medium, as it can provide pressure, an efficient heating or

cooling mechanism, and affect chemical reactions. This intricate interplay between

electromagnetic radiation and its medium, and the ways in which the underlying

physical and chemical processes are revealed in observations are studied under

2Try it yourself, for instance, at playgameoflife.com.

https://playgameoflife.com
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the denominator: radiative transfer, a field initiated by giants like Schuster [14],

Schwarzschild [15], Eddington [16], and Jeans [17], that evolved from being a highly

mathematical endeavour (see, e.g. the work by Chandrasekhar [18]) to being a pillar

of modern computational physics (see e.g. [19]).

In this thesis, we aim to address some of the practical difficulties encountered

in radiative transfer by leveraging the opportunities provided by modern computing.

1.2 The radiating Universe
Electromagnetic radiation plays a crucial role in our Universe. According to general

relativity and the Big Bang hypothesis, electromagnetic radiation dominated3 the

evolution of our Universe in the first tens of thousands of years after the Big Bang

and the elusive inflationary phase. Then, while electrons and protons (re)combined

about 300 000 years later, radiation decoupled from matter, out of equilibrium, and

became more interesting as the Universe became transparent, since light could now

carry information because its properties correlatedwith the particular path it travelled

through the incipient inhomogeneousmedium. This first light can still be observed as

the cosmic (nowmicrowave) background radiation. In the billions of years of cosmic

evolution that followed, electromagnetic radiation continued its large scale impact

as the light of the first stellar and quasi-stellar objects re-ionised the highly abundant

neutral hydrogen, rendering the Universe opaque again in certain frequency ranges.

Also on smaller scales, radiation remained to have a distinct impact where it can

exert a radiative pressure or act as a very efficient heating or cooling mechanism, for

instance, in the stellar winds that arise from evolved stars (see e.g. [21], the references

therein, and also Chapter 4). Furthermore, various photo-dissociation and photo-

ionisation reactions can have a significant impact on chemistry (see e.g. [22–25]).

Electromagnetic radiation thus actively shaped the evolution of the Universe and its

contents, until at last (at least) also humans discovered its use and started to describe

and decipher the light to study their place as observers.

3Electromagnetic radiation dominated in terms of energy density in approximately equal shares
with neutrinos, and potentially with other relativistic particles (see e.g. [20]).
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1.3 Radiative transfer theory
Light, or electromagnetic radiation in general, can be described in many different yet

compatible ways, ranging fromwaves to particles, or unified as quantized excitations

of the electromagnetic field. In the theory of radiation transport, colloquially referred

to as radiative transfer, electromagnetic radiation is described on an intermediate

level as a directed stream of energy. The radiation field is characterised by the

specific monochromatic intensity, �a (x, n̂), i.e. the energy transported in a certain

direction in a certain frequency bin. This is a function of frequency4,a, position, x,

and direction, n̂, as characterised by a unit vector.

1.3.1 The radiative transfer equation

Every interaction between the radiation field and the medium can be characterised

by a corresponding change in the specific monochromatic intensity, as described by

the radiative transfer equation in the observer frame [18, 26],

n̂ · ∇�a (x, n̂) = [a (x) − ja (x) �a (x, n̂)

+
∮

dΩ′
∫ ∞

0
da′ Φaa′ (x, n̂, n̂′) �a′ (x, n̂′).

(1.1)

This equation relates the change in specific monochromatic intensity, �a (x, n̂), along

a ray in direction, n̂, and indicated by a directional derivative, n̂ · ∇, to the local

emissivity, [a (x), and opacity, ja (x), of the medium. The emissivity quantifies

what is gained in intensity, whereas the opacity quantifies what is lost as a fraction

of the intensity. Scattering introduces an extra contribution, characterised by the

redistribution function, Φaa′ (x, n̂, n̂′), which gives the probability for radiation of

frequency, a′, incoming along direction, n̂′, with a corresponding infinitesimal solid

angle, dΩ′, to be scattered in direction, n̂, and shifted to frequency, a.

The heuristic interpretation of the transfer equation is simple enough, as it

sums the different contributions to the change in intensity. Nevertheless, it can also

be derived more formally from conservation of energy, or as a special case of the

4For historical reasons the dependence on frequency, a, is indicated with a subscript. Throughout
this thesis, we define 5a ≡ 5 (a) and 5a′ ≡ 5 (a′), for any function, 5 , but only for those subscripts.
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Boltzmann transport equation (see e.g. [27]). In general, one could also introduce

a time-dependence in the transfer equation, however, throughout this thesis, we will

assume that length scales are small enough and time scales are large enough, such

that any time-dependence in the radiation field is negligible. Furthermore, we note

that we defined the redistribution function in a slightly different way than in [28],

such that it incorporates the scattering opacity.

The transfer equation was first formulated in its heuristic form in 1905 by

Schuster [14]. However, due to its link with the transport equation its true origin

can be traced further back to 1872, with the work of Boltzmann [29]. The latter

also highlights the link between radiative transfer and neutron transport, which is

of practical interest, for instance, in nuclear engineering. Although this thesis is

mostly concerned with the transport of electromagnetic radiation in astrophysical

applications, many of the techniques and results presented here can also be applied

to other forms of transport. Our formulation and notation here is probably most

akin to that of Cannon [30, 31]. Further background on the history of the theory of

radiation transport can be found, for instance, in the excellent review by Shore [32].

1.3.2 Optical depth

The coupling between the radiation field and themedium, as described by the transfer

equation (1.1), allows for a new and natural measure of distance in radiative transfer.

The optical depth, originally introduced by Schwarzschild [15], is defined as,

ga (x1,x2) ≡
∫ x2

x1

dG′ ja (x′), i.e. such that, mga =
1

ja (x)
(n̂ · ∇). (1.2)

The integral should be interpreted as an integral of the opacity over the light ray

(or null geodesic) connecting x1 and x2. The optical depth quantifies the amount

of material along the line of sight that impedes the propagation of radiation. If

the opacity is strictly positive everywhere, it can be interpreted mathematically as a

metric. However, as we will see in the next chapter, this is not always the case. We

note that, since the opacity is frequency-dependent, also the optical depth, and thus

the relevant measure of distance, depends on the considered frequency range.
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Since the optical depth is the natural distance measure in radiative transfer, it

can be used to elegantly rewrite the transfer equation (1.1) as,

(
1 + mga − Fa

)
�a (x, n̂) = (a (x), (1.3)

which has the form of a linear integro-differential operator acting on the radiation

field. The integral operator accounting for scattering is defined as,

Fa (x, n̂) [·] ≡
1

ja (x)

∮
dΩ′

∫ ∞

0
da′Φaa′ (n̂, n̂′) [·], (1.4)

and the right hand side of equation (1.3), sourcing the differential equation, making

it inhomogeneous, is often referred to as the source function, and defined as,

(a (x) ≡
[a (x)
ja (x)

. (1.5)

The formulation in terms of the optical depth is particularly useful in the absence of

scattering, as it allows us to write a formal solution to the radiative transfer equation.

1.3.3 Formal solution

Consider a domain enclosed by a boundary. Define the path length, B, along a ray

originating on the boundary at B0, such that for some B1, we have that B0 < B < B1
lies in the domain. The radiation field, emissivity, opacity, and optical depth can all

be (re)parametrised using the path length along the ray. In the absence of scattering,

the formal solution to the transfer equation along a ray originating at B0 reads,

�a (B) = �ba 4
−ga (B0, B) +

∫ B

B0

dB′ [a (B′) 4−ga (B
′, B) , (1.6)

in which �ba is the radiation field at the boundary. The formal solution can be

interpreted as the sum (or integral) over all contributions to the radiation field along

the line of sight, each attenuated by a factor 4−ga (B′, B) , accounting for the optical

depth between the source of the contribution at B′ and the observer at B. Equation

(1.6) is only a formal solution, since we still have to evaluate the integral.
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1.3.4 Second-order formulation

There are many different equivalent formulations of the transfer equation (1.1) that

describe the radiation field. For instance, one can take moments of the transfer

equation by integrating out the directional (n̂) dependence. This yields an equation

relating themean intensity and flux, and has a particularly nice physical interpretation

because of its similarity to the equations of fluid dynamics (see e.g. [27]).

A similar, yet numerically more interesting formulation, originally proposed

by Schuster [14] and generalised by Feautrier [33], can by found by describing the

radiation field in terms of another set of variables. Define a mean intensity-like (D)

and a flux-like quantity (E) along a ray with direction, n̂, as,

Da (x, n̂) ≡
1
2

(
�a (x, n̂) + �a (x,−n̂)

)
, (1.7)

Ea (x, n̂) ≡
1
2

(
�a (x, n̂) − �a (x,−n̂)

)
. (1.8)

Equivalently, we also define a new operator to represent the scattering contribution,

P±a (x, n̂) [·] ≡
(
Fa (x, n̂) ± Fa (x,−n̂)

)
[·] . (1.9)

From here onward, we drop all a, x, and n̂-dependencies for simplicity of notation.

We proceed by adding and subtracting the transfer equation (1.1), once for, n̂, and

once for, −n̂. Note that flipping the sign of n̂ also flips the sign of the operator mga .

This yields a coupled set of linear first-order differential equations in, D, and, E,

D + mgE − P+(D + E) = (, (1.10)

E + mgD − P−(D + E) = 0. (1.11)

These equations can neatly be cast into matrix form as,

©­«
1 − P+ mg − P+

mg − P− 1 − P−
ª®¬©­«
D

E

ª®¬ = ©­«
(

0
ª®¬ . (1.12)

In the particular but common case that the scattering redistribution function only
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depends on the angle between the incoming and outgoing radiation, i.e.Φaa′ (n̂, n̂′) =

Φaa′ (n̂ · n̂′), one can show that P+E = P−D = 0, such that the system simplifies to,

©­«
1 − F mg

mg 1 − F
ª®¬©­«
D

E

ª®¬ = ©­«
(

0
ª®¬ . (1.13)

Apart from the obvious coupling betweenD and E, we should note that these equations

also still couple different frequencies, a and a′, and different directions, n̂ and n̂′.

Therefore, in order to solve this system on a ray-by-ray basis, we need to treat

scattering in an iterative way and view it as a contribution to the source function.

Defining new scattering source terms, Ψ± ≡ P± [D + E], equation (1.12) yields,

©­«
1 mg

mg 1
ª®¬©­«
D

E

ª®¬ = ©­«
(

0
ª®¬ + ©­«

Ψ+

Ψ−
ª®¬ . (1.14)

Now the coupling between different rays, i.e. different directions n̂, only comes from

the second term on the right hand side, Ψ±. Solving equations (1.10) and (1.11),

once for D and once for E, yields a set of linear second-order differential equations,

which are the generalised versions of the Schuster-Feautrier equations [14, 33],

©­«
1 − m2

g 0

0 1 − m2
g

ª®¬©­«
D

E

ª®¬ = ©­«
1 −mg
−mg 1

ª®¬©­«
( +Ψ+

Ψ−
ª®¬ . (1.15)

These can be solved for D and E in an iterative way for each ray independently,

assuming for Ψ± the values obtained in the previous iteration.

In the absence of scattering, i.e. Ψ± = 0, the generalised Schuster-Feautrier

equations for D and E effectively decouple, and reduce to,

(
1 − m2

g

)
D = (, (1.16)(

1 − m2
g

)
E = −mg(. (1.17)

Hence, the radiation field can be computed from (1.16) and deriving E using (1.11),

as E = −mgD. The numerical solution of this system is described in Appendix A.
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1.3.5 Lambda iteration

As formulated in (1.1), the radiative transfer equation is an integro-partial differential

equation that is in general notoriously difficult to solve. Its solution is furthermore

complicated by the fact that in many cases the emissivity, [a (x), and opacity, ja (x),

depend on the radiation field (see e.g. Chapter 2). This, usually strongly non-linear,

coupling means that the transfer equation can only be solved numerically in an

iterative way. The resulting iterative process is often referred to as Lambda iteration

(or Λ-iteration), after the corresponding Λ-operator, which is generally defined such

that it yields the radiation field when acting on the state of the medium,

radiation field ≡ Λ [state of the medium] , (1.18)

while the state of the medium itself depends on the radiation field. The precise

definition of the Λ-operator depends on how the state of the medium is described

and which form of the radiation field is required. We will give the explicit example

for line radiative transfer in Section 2.3.1.

Simple as equation (1.18) may be, it can already illustrate two fronts at which

we will battle the radiative transfer problem in this thesis. The radiation field is

computed by repeatedly solving (1.18) until convergence, where convergence can

be defined, for instance, such that the change in the radiation field between two

consecutive solutions must be below a certain threshold. The time it takes to solve

the problem is thus proportional to: (I) the time it takes to compute the radiation

field given the medium, and (II) the number of iterations it takes for the radiation

field to converge. Most of this thesis is concerned with reducing contribution (I),

whereas, in Section 2.3, we specifically attempt to improve on (II).

1.3.6 Moving media & the co-moving frame

So far, we only considered the radiative transfer equation in the observer frame (1.1),

i.e. when solving the transfer equation, all frequency-dependent quantities have to

be considered in the same (observer) frame. In static media, this is trivial, since all

observers anywhere in the medium will share the same reference frame. In moving
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media, however, if two observers are moving with respect to each other, and if they

observe light propagating along the direction in which they are moving, they will

not agree on its frequency, due to the Doppler shift between their frames.

When solving the radiative transfer equation on a ray-by-ray basis for each point

individually (as we will do in Chapter 3), the difference in reference frame can be

accounted for by Doppler shifting all frequency-dependent quantities into the frame

of the point under consideration. In particular, light being emitted at a frequency, a,

in a point that is moving with a velocity, Δv, with respect to the observer, looking

in direction, n̂, will be received at a frequency, a0, such that,

a

a0
=

1 + Δv · n̂/2√
1 − Δv ·Δv/22

≈
Δv�2

1 + Δv · n̂
2

. (1.19)

Throughout this thesis, we will assume non-relativistic speeds, v� 2, such that the

approximation above is always valid, and can be used to cast all frames into the

observer frame.

When solving the radiative transfer equation globally for all points, rays, and

frequencies (as we will do in Chapter 6), we cannot shift all frames individually and

have to account for the Doppler shifts explicitly in the radiative transfer equation.

This can be derived, for instance, from a covariant formulation of the transfer

equation (see e.g. [26]) and yields the radiative transfer equation in the co-moving

frame. In the non-relativistic limit, accounting only for Doppler shifts and neglecting

aberration effects (as we implicitly did before), the co-moving frame version of the

transfer equation can be obtained by replacing the directional derivative with,

n̂ · ∇ → n̂ · ∇ −
(
n̂ · ∇

(
n̂ ·v(x)/2

) )
a ma, (1.20)

in which, v(x), is the velocity field of the medium. The additional term can be

interpreted as the change in monochromatic intensity, due to the Doppler shift that

is caused by the local gradient in the velocity of the medium.
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1.4 Simulating radiation transport
Over the years, several different methods have been devised to solve the radiative

transfer problem, from the semi-analytic methods by Chandrasekhar [18] to the

computer simulations of today (see e.g. [19]). These simulations can be subdivided

into two main categories, based on their solution strategy: Monte Carlo solvers on

the one hand, and formal solvers on the other.

1.4.1 Monte Carlo solvers

Monte Carlo solvers mimic the physical photon transport by propagating a large

number of virtual photon packets through a model of the medium (see e.g. the

review by Noebauer & Sim [34]). The interactions with the medium are determined

by a stochastic process sampling from the appropriate probability distributions, while

the intensity of the radiation field can be determined by averaging the number of

photon packets propagating in a certain direction in a certain frequency bin. Some

examples of Monte Carlo solvers that are used in astrophysical applications are:

RadMC-3D [35], Skirt [36], CMacIonize [37], and some components of Torus

[38]. The main issue with this approach is that the trajectories of these photon

packets are randomly determined by the properties of the medium. This implies that

they can get trapped in opaque regions, impeding them from contributing much to

the overall radiation field. Hence, a large number of packets need to be propagated,

which can significantly increase the required computation time. Although many

techniques have been devised to avoid the trapping of photon packets (see e.g. [39]),

it remains challenging for Monte Carlo solvers to efficiently obtain accurate results,

especially at medium to high optical depths [40]. Nevertheless, these solvers remain

popular for their ease of implementation and their evocative physical interpretation.

1.4.2 Formal solvers

Formal solvers compute the radiation field by directly solving the radiative transfer

equation, given a model of the medium. This can be done in several different ways.

A particularly popular way is to use ray-tracing, i.e. by tracing rays through a model

of the medium and solving the transfer equation along each of those rays, such as e.g.
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in SPHray [41], 3D-pdr [42], and Lampray [43]. Alternatively, also finite element

methods have been applied to discretise the transfer equation on the computational

domain, such as e.g. in [44–46]. Finite element solvers are especially useful when

scattering is important, since they can naturally couple the radiation field along

different directions, whereas ray-tracing solvers only couple the radiation field along

individual rays, and thus require an iterative solution scheme to allow for scattering.

1.4.3 Hybrids
Furthermore, there are also hybrid solvers that combine both Monte Carlo and

formal methods, such as Ratran [47] and its 3D successor Lime [48]. The latter

has been widely used to model atomic and molecular lines in 3D models of various

astrophysical objects (see e.g. [49–56]). Both Ratran and Lime will be considered

state-of-the-art solvers in terms of their accuracy and will be used to benchmark

against in this thesis.

The evolution from (semi-)analytic models to computer simulations introduced

a dependency on the available computing resources. As a result, when building a

model, considerations about ease of calculation were replaced with considerations

about the ease of implementation as a computer program, and the ability to leverage

the numerous processing units and accelerators distributed over the various nodes in

modern (super)computers. Therefore it is key to view any development in radiative

transfer simulation in the context of the landscape of modern computing.

1.5 The landscape of modern computing
While, in the last century, our mathematical and physical understanding of radiation

transport problems has grown quite steadily, the power, variety, and availability of

the computational tools to solve them has been and still is drastically growing. This

rapid growth bears several opportunities but challenges too, also for radiative transfer

research. We distinguish here between paradigm shifts in hardware and software.

1.5.1 Hardware
The evolution of modern computer hardware can be characterised by the increasing

amount of layers upon layers of parallelism and the increasing heterogeneity in
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the available processing units (see e.g. [57]). Parallelism refers to the simultaneous

execution of computations to increase the computational throughput, for instance, by

dividing a computation over the different compute nodes in a system or the different

cores inside a processor. Heterogeneity refers to the use of specialised hardware

specifically optimised to perform certain types of computations, such as graphics

processing units (GPUs), or field programmable gate arrays (FPGAs).

Up until 2004, the steady increase in processing power was mainly due to the

steady increase in the clock speed of processors, commonly referred to as frequency

scaling. In each clock cycle a certain number of instructions can be executed,

such that an increase in clock speed implies an increase in computing power. The

steady increase in clock speed was powered both by Moore’s law [58] and Dennard

scaling [59]. Moore’s law states the observation that the transistor density in dense

integrated circuits doubles about every two years5. Smaller components result in

reduced circuit delays, which in turn allow a higher frequency of operation. Dennard

scaling states the observation that smaller components also allow for a decrease in

operating voltage, such that the overall power use per surface area remains constant,

which is important to guarantee sufficient heat dissipation within the processor.

Nevertheless, in 2004 Intel had to cancel development of two new processors

code-named Tejas and Jayhawk due to heat and power consumption problems in

their attempt to further increase the clock speed [61]. Consequently, Intel pivoted

its focus to the development of dual-core processors, which ushered in the era

of multi-core parallel processing. Although frequency scaling had come to an

end, single-core performance still improved for certain types of computations, for

instance by cleverly interleaving the execution of several instructions (pipelining), or

with the use of (ever larger) vector instructions that can act with a single instruction

on multiple data items (SIMD). The latter are ideally suited to accelerate the linear

algebra required in variousmulti-media or scientific applications. With the rise of the

digital multi-media and gaming industry, vector processors in the form of graphics

processing units (GPUs) became mainstream. Moving specialised functionality into

5It should be noted that this doubling rate has been revised a few times, from doubling every year
in 1965 [58], to doubling every two years after 1980 [60], and about every three years now.



1.5. The landscape of modern computing 33

a separate processor while reserving the main processor for more general-purpose

computations allows for more aggressive optimisation in the GPU, resulting in more

cores with much wider vector lengths.

Although, computer performance steadily keeps increasing through continued

innovation, it has become much more difficult to efficiently utilise the different

features of a system and reach its peak performance. In the era of frequency scaling,

any program would automatically run faster with any increase in clock speed. Now,

in order to leverage their power, a program must explicitly be designed to use, for

instance, the different cores inside a processor, or to offload computations to a GPU.

This highlights the importance of proper software design, and puts a lot of the

responsibility to deliver computational performance on the software engineer.

In recent years, several initiatives have emerged that are trying to alleviate this

burden and are working towards a more unified programming model, such as for

instance, OpenMP6, Kokkos7 [62], RAJA8 [63], and SYCL9, as implemented e.g. in

OneAPI [64]. Currently, there is, unfortunately, not yet much convergence towards

a single best programming model or implementation, leaving research software

engineers with a plethora of possibilities and trade-offs to consider (see e.g. [65]).

As a result, for the time being, portability and in particular performance portability,

is not a given, and building computationally intensive software still requires careful

design as we will discuss in Section 3.2.

Finally, we note that with the proliferation and increasing bandwidth of the

internet, it has become increasingly less important where the computer hardware

is hosted, resulting in an increased and much wider availability, and the possibility

to concentrate many computing resources into large (academic or commercial) data

centres. On the one hand, software engineers could argue that this justifies a

specialisation of their work towards a certain class of system, say e.g. clusters of

commodity many-core CPUs, since any user will almost always be able to obtain

those resources. Furthermore, the availability of newer hardware can decrease the

6See also www.openmp.org.
7See also github.com/kokkos/kokkos.
8See also github.com/LLNL/RAJA.
9See also www.khronos.org/sycl.

https://www.openmp.org/
https://github.com/kokkos/kokkos
https://github.com/LLNL/RAJA
https://www.khronos.org/sycl/
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demand for the older commodity hardware, thus further increasing their availability,

while newer hardware might be more scarce due to the high demand. Hence, it

is not always necessary to follow the latest hardware trends, and targeting a single

simple architecture is certainly a valid strategy for applications that already perform

well on those resources. On the other hand, however, in order to keep up with the

rapidly evolving state-of-the-art in computer hardware, and to be able to achieve

peak performance, as required for instance in large-scale astrophysical simulations,

it is necessary to evolve the software along with the available hardware.

1.5.1.1 Layers of parallelism & heterogeneity

Below we describe the different levels of parallelism and heterogeneity that can be

found in a modern computing cluster and that will be considered later in this thesis.

Message passing on distributed memory The most obvious form of parallelism

can be achieved by connecting multiple processors over a network and distribute

the computational workload over them. There are several different programming

models to manage the work between the different processors, such as e.g. message

passing, which is particularly popular in scientific computing. In message passing,

as specified e.g. by the message passing interface (MPI) standard [66], the processes

communicate with each other by sending messages over the network.

Multi-threading on shared memory Having multiple processing cores allows a

machine to process multiple threads of execution (often just referred to as threads)

in parallel with a single processor, thus increasing its computational throughput. A

key aspect of this programming model is that all threads have access to the same,

hence shared, memory. Therefore, they can share data and there is no need for

explicit communication between the threads. A popular way in scientific computing

to implement multi-threading is, for instance, using OpenMP, which provides a set

of compiler directives and standardised functions to create threads and share work

between them. It should be noted that also the message passing strategy can be

applied on shared memory systems. In fact, many MPI implementations provide

optimisations to detect and exploit sharedmemory, avoiding explicit communication.
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Vector instructions Single-core performance can also be improved by parallel

design, for instance, by using special instructions that can act onmultiple10 data items

(SIMD or vector instructions). These are especially useful in scientific computing as

they provide intrinsic instructions for vector, matrix or tensor operations. Usually,

vectorisation can be left to the compiler, which will attempt to use vector instructions

from a certain level of optimisation, orwhen explicitly specified in the compiler flags.

However, one can also explicitly use vector instructions in code by directly calling

the intrinsic functions. Most (mathematics) libraries, however, already provide

optimised (and vectorised) operations on their objects (see e.g. [67, 68]).

Heterogeneity Many modern computers host, apart from the general-purpose

central processing unit (CPU), also other processing units, often referred to as

accelerators, for instance, in the form of a graphics processing unit (GPU), tensor

processing unit (TPU), or in some specialised cases even field programmable gate

arrays (FPGAs). Since these devices have an entirely different architecture, they

require additional software layers to provide access to the instruction set and compute

elements. A popular example specifically for Nvidia GPUs is CUDA [69].

1.5.2 Software

The evolution of modern software is clearly characterised by a transition towards

data-driven or learned algorithms, often broadly labelled as machine learning (ML)

or so-called Software 2.0 (see e.g. [70]). Although certainly not every type of

computation can be performed (better) in this way, machine learning techniques

also increasingly emerge outside the data-intensive and in the compute-intensive

industries, for instance, by emulating simulations, or in novel solution methods such

as physics-informed neural networks (see also Sections 1.5.2.1 and 1.5.2.2 below).

In a sense, this is just the compute-intensive industries following the developments in

hardware, since hardware vendors and system designers are increasingly designing

and optimising their products specifically targeting machine learning applications.

Instead of competing with the hype, they become the hype.

10For example, the AVX-512 extensions from the x86 instruction set architecture can act on 512
bits simultaneously, i.e. 16 single-precision or 8 double-precision floating-point numbers.
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As examples of machine learning techniques appearing in compute-intensive

industries, we briefly discuss emulation and physics-informed neural networks.

1.5.2.1 Emulation instead of simulation

The idea of an emulator is to create a function that (1) can estimate the output of

a simulation, and (2) is fast to evaluate. Once the emulator is created, it can then

be used to replace the original simulation to obtain results at a lower computational

cost. The crux is to find a way to create an emulator that can balance the trade-off

between accuracy and evaluation speed. Originally, it was envisioned to do this by

simple linear interpolation between a set of known simulation outputs, see e.g. the

classic 1989 paper by Sacks et al. [71]. Nowadays, however, impressive results are

obtained by interpolating with a neural network, i.e. by training a neural network on

a set of input-output pairs generated by the simulation. This has been successfully

applied in various compute-intensive applications ranging from chemistry to climate

modelling, reporting speed-ups of several orders of magnitude (see e.g. [72–74]).

1.5.2.2 Physics-informed neural networks

Physics-informed neural networks (PINNs) work similarly to emulation, but bypass

the need for computationally expensive simulation input-output pairs by directly

training the output of the network to satisfy the relevant physical laws [75–77]. For

instance, for a radiative transfer simulation with as output the radiation field, the

neural network is trained to satisfy the radiative transfer equation in every point,

direction, and frequency bin in the model. Practically, this can be enforced by

minimising the difference between the left and right hand sides of the transfer

equation (see e.g. [78]). This is related to finite element methods in the sense that

instead of approximating the desired function with a linear combination of basis

functions, it is approximated by a neural network (see also Section 6.5.3).

1.6 Overview of this thesis
This thesis is structured as follows: In the next chapter, Chapter 2, we introduce

the theory of atomic and molecular line radiative transfer, and review the classical

solution methods. In particular, we introduce the accelerated Lambda iteration
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scheme by Rybicki & Hummer, and we propose an improved Ng-acceleration of

convergence scheme. In Chapter 3, we present Magritte, our newly developed

software library for 3D radiative transfer simulation, and review its design and

performance. Next, in Chapter 4, we present some applications of Magritte

in stellar wind research. In Chapter 5, we study the particular importance of

discretisation for the numerical solution of radiative transfer problems, and present

a heuristic algorithm to reduce the size of typical input models, thus significantly

reducing the computational cost for radiative transfer simulations. In Chapter 6, we

introduce a probabilistic view on solving partial differential equations, in particular

the radiative transfer equation, and put our heuristic reductionmethod of the previous

chapter on a stronger mathematical footing. Finally, a summary and conclusions of

this thesis are formulated in Chapter 7.

The work in this thesis also partially appears in the following three publications:

I F. De Ceuster, J. Yates, P. Boyle, L. Decin, and J. Hetherington. Magritte:
a new multidimensional accelerated general-purpose radiative transfer
code. Proceedings of the International Astronomical Union, vol. 14, no.
S343, p. 381, 2018. (Reference [79].)

II F. De Ceuster, W. Homan, J. Yates, L. Decin, P. Boyle, and J. Hetherington.
Magritte, a modern software library for 3D radiative transfer – I. Non-
LTE atomic and molecular line modelling. Monthly Notices of the Royal
Astronomical Society, vol. 492, no. 2, p. 1812, 2019. (Reference [28].)

III F. De Ceuster, J. Bolte, W. Homan, S. Maes, J. Malfait, L. Decin, J. Yates,
P. Boyle, and J. Hetherington. Magritte, a modern software library for
3D radiative transfer – II. Adaptive ray-tracing, mesh construction, and
reduction. Monthly Notices of the Royal Astronomical Society, vol. 499, no.
4. p. 5194, 2020. (Reference [80].)

Although there is no strict correspondence between the chapters in this thesis and

these papers, roughly, Chapters 2 and 3 are based on Papers I and II, and Chapter 5

is mainly based on Paper III.



Chapter 2

Atomic & molecular line transfer

Lines are very difficult to learn.

– Benedict Cumberbatch

2.1 Introduction
Atomic and molecular lines are the characteristically narrow emission or absorption

features that appear in the spectra of atoms and molecules. They are caused by

electronic, rotational, or vibrational transitions between the quantized energy levels.

The energy difference in these line transitions can be emitted or absorbed as a

photon. Since each state, 8, has a strictly defined energy, �8, and since the energy

of a photon is related to its frequency, the line transitions have a characteristic

frequency, a8 9 ≡ |�8 −� 9 |/ℎ, in which, ℎ ≈ 6,626×10−34 J s, is the Planck constant.

Spectral lines played an absolutely crucial role in the development of modern

physics and astronomy. Their theoretical interpretation was key in the development

of quantum mechanics and the discovery of the atomic structure (see e.g. the work

by Bohr [81]). Since the configuration of energy levels is unique for each atom or

molecule, they all have a characteristic set of possible transitions with corresponding

photon frequencies. This makes them an exquisite diagnostic tool that allows us to

identify atoms and molecules for various applications on Earth, but also in particular

in space. See, for instance, the heroic PhD thesis by Payne [82] reporting the

detection of various elements in stellar atmospheres in 1925, and the first detections

of molecules in space by Douglas & Herzberg [83], and Weinreb et al. [84]. In

addition to merely identifying atoms and molecules, lines can also trace the physical
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and chemical conditions of the medium they pass through. Their narrow extent in

frequency space makes them particularly sensitive to Doppler shifts, which allows us

to extract the velocity structure of the medium along the line of sight. Furthermore,

the width of the lines is determined by the thermal and turbulent motions of the

medium, and the combined information about the abundances of several species

hints at the possible chemistry taking place. All this made spectroscopic analysis

one of the most fruitful topics in modern astronomy.

However, since such a wealth of information is encoded in spectral lines, line

formation is a very intricate process. It is furthermore complicated by the relatively

large speed of light (2 ≈ 299 792 458 m/s), causing almost instantaneous coupling

between the radiative processes over large parts of themedium that, hence, all require

a self-consistent solution.

In this chapter, we describe the different contributions to the coupling between

radiation field and medium, and the different ways to self-consistently solve it.

2.2 Physical problem
In the following, we outline themathematical description of line radiative transfer and

indicate the various assumptions we make. This is far from a complete description

of the subject, but gives the minimal ingredients required to study the critical issues

in line radiative transfer that we aim to address in this thesis, and the models that we

apply them to. A comprehensive description with derivations from first principles

can be found, for instance, in Hubeny & Mihalas [26].

2.2.1 Line emissivity & opacity

The emissivity and opacity resulting from a line transition between a higher energy

level, 8, and a lower level, 9 , are given in terms of the Einstein �8 9 , � 98, and �8 9

coefficients, and the populations, =8 (x), of the quantized energy levels, such that,

[
8 9
a (x) =

ℎa

4c
q
8 9
a (x) =8 (x) �8 9 , (2.1)

j
8 9
a (x) =

ℎa

4c
q
8 9
a (x)

(
= 9 (x) � 98 − =8 (x) �8 9

)
, (2.2)
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where, �8 9 , and, �8 9 , account, respectively, for spontaneous and stimulated emission

and, � 98, accounts for absorption. The function, q8 9a (x), describes the line profile (see

Section 2.2.2). Note that, since the resulting stimulated emission is proportional to

the intensity, just like an opacity, it is treated here as negative absorption. Equations

(2.1) and (2.2) thus couple the state of the quantized energy levels of the atoms and

molecules in the medium to the radiation field, through the emissivity and opacity

that appear in the radiative transfer equation (1.1).

2.2.2 Line profile function

Both line emissivity and opacity are proportional to the line profile function, q8 9a (x),

which describes the distribution of the line in frequency space. Note that in equations

(2.1) and (2.2), we assumed complete frequency redistribution, such that the emission

and absorption line profile are equal. This common assumption is valid as long as

the considered densities and temperatures are high enough such that sufficiently

frequent collisions can de-correlate emission and absorption events.

There are several physical mechanisms that can cause the line profile to deviate

from an idealised delta distribution, q8 9a = X(a− a8 9 ). There is natural broadening,

caused by the quantum mechanical uncertainty in the energy of the transition, ℎa8 9 ,

which is related to its lifetime, and results in a Lorentzian profile. In addition,

there is pressure broadening, caused by the effects of other particles perturbing the

transition process, for instance, by interrupting it by a collision, or by collectively

affecting the configuration of energy levels. Depending on the exact mechanism,

this can cause a variety of different profile shapes. Furthermore, there is Doppler

broadening due to the Doppler shifts caused by the motions in the gas, which results

in a Gaussian line profile. In principle, the combined effect of all these broadening

mechanisms should be considered, using the convolution of the profile functions.

For instance, combining a Lorentzian and a Gaussian profile would result in what is

called a Voigt profile. However, for the applications that we consider in this thesis,

i.e. the outflows of evolved stars, Doppler broadening will be the dominant effect

(see e.g. [85]), and thus we can limit ourselves to Gaussian line profiles1.

1However, all our methods can also readily be applied to all other types of line profile functions.
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In particular, throughout this thesis, we assume Gaussian line profile functions,

q
8 9
a (x) =

1
Xa8 9 (x)

√
c

exp

[
−

(
a− a8 9
Xa8 9 (x)

)2
]
, (2.3)

resulting from the Doppler shifts caused by the thermal and turbulent motions of

the atoms and molecules in the medium. Note that we normalised the integral over

frequency. The characteristic line width,

Xa8 9 (x) ≡
a8 9

2

√
vtherm(x)2 + vturb(x)2, (2.4)

is determined by the local mean thermal and turbulent velocities of the medium.

The thermal component will be determined below, while the turbulent component

will be estimated for each model independently, based on the hydrodynamics.

2.2.3 Non local thermodynamic equilibrium

Many early line radiative transfer models assumed the state of the medium and

the radiation field to be in local thermodynamic equilibrium (LTE), i.e. particle

velocities, level populations, and radiation field are all completely determined by

one value: the local gas temperature, ) (x). This greatly simplified calculations, but

turned out to be inaccurate, even in some very common situations (see e.g. [86]).

The weakened alternative for LTE is to instead only assume kinetic equilibrium,

i.e. to only assume a Maxwell-Boltzmann distribution for the particle velocities.

Models that only make the assumption of kinetic equilibrium are often referred to as

non-LTE, to emphasise the contrast with the earlier more common LTE models. As

a result, the mean local velocity of the gas particles, that appears in equation (2.4)

for instance, can be characterised by,

vtherm(x) =
√

2:B) (x)
<spec

, (2.5)

where,<spec, is the atomic or molecular mass of the gas species under consideration,

and :B ≈ 1.381×10−23 J/K is the Boltzmann constant. Assuming non-LTE, the level
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populations are not only determined by the local gas temperature, but instead, their

dynamics has to be computed consistently with the radiation field. This dynamics

is governed by a system of kinetic rate equations.

2.2.4 Kinetic rate equations

The kinetic rate equations describe the evolution of the populations, =8 (x), of the

quantized energy levels, 8. They are given by a master equation, which, in the

co-moving frame, can be written as,

m=8 (x)
mC

=

#∑
9 =1

= 9 (x) % 98 (x) − =8 (x)
#∑
9 =1

%8 9 (x). (2.6)

The components of the matrix, %8 9 (x), denote the transition rates from level, 8, to

level, 9 . Hence, for each level, 8, we have that, %88 (x) = 0. As such, the positive term

in equation (2.6) sums all transitions into level, 8, while the negative term sums all

transitions away from that level. The transition rates are composed of a radiative

part, '8 9 (x), and a collisional part, �8 9 (x), such that,

%8 9 (x) = '8 9 (x) + �8 9 (x). (2.7)

The radiative part can be expanded further in terms of the Einstein coefficients and

the average radiation intensity in the line,

'8 9 (x) =

�8 9 + �8 9 �8 9 (x), for 8 > 9

� 98 �8 9 (x), for 8 < 9
(2.8)

where, �8 9 (x), is the local mean intensity in the spectral range of the transition, 8 9 .

It is computed by averaging the specific monochromatic intensity, �a (x, n̂), over all

directions, n̂, and integrating it over the line profile, q8 9a (x), such that,

�8 9 (x) ≡
∮

dΩ
4c

∫ ∞

0
da q8 9a (x) �a (x, n̂). (2.9)
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The collisional part of the transition rates is composed of the collisional rates,  ?

8 9
,

for each collision partner, ?, weighted by their respective abundances, =? (x),

�8 9 (x) =
∑
? ∈C

 
?

8 9
(x) =? (x), (2.10)

in which C is the set of collision partners. The position dependence in the collisional

rates,  ?

8 9
(x), stems from their dependence on the local gas temperature of the species

under consideration. Their values can be determined experimentally and we will

assume them as a given (see also Section 2.2.5).

Finally, we assume that all radiative time scales are much smaller than any other

relevant time scale in the system. This is known as the assumption of statistical

equilibrium. As a result, we can approximate equation (2.6) in the static limit, i.e.

assuming for all levels, 8, that, mC=8 (x) = 0. This renders the system of differential

equations (2.6) into a linear system of equations in terms of the level populations.

2.2.5 Atomic & molecular line data

The atomic andmolecular line data, such as: energy levels, Einstein coefficients, and

collisional rates, can, in theory, all be calculated from first principles. In practice,

however, this turns out to be very challenging. Therefore, in many cases, we have

to resort to experimental values to complement the theoretical (or “ab initio”) data.

This data is conveniently stored in online databases, such as the Leiden Atomic and

Molecular Database2 (LAMDA, [87]). However, one crucial remark is that both

the theoretical and experimental values have (sometimes very large) uncertainties

associated with them. In Chapter 6, we present a way to take these into account,

but, for now, we assume them to be exact.

There are several relations between the atomic and molecular line data. Hence,

usually only a sufficient subset of the data is given from which the other values can

be derived. For instance, the Einstein, �8 9 , and, �8 9 , coefficients are related as,

�8 9 =
2ℎa3

8 9

22 �8 9 , (2.11)

2The database can be found at home.strw.leidenuniv.nl/~moldata.

https://home.strw.leidenuniv.nl/~moldata/
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whereas the Einstein, � 98, and, �8 9 , can be related as,

6 9� 98 = 68�8 9 , (2.12)

in which, 68, denotes the statistical weight of level, 8. Both relations can be derived

from the condition of detailed balance in thermodynamic equilibrium (see e.g. [27]).

Similarly, the collisional excitation rates can be related to the de-excitation rates as,

 
?

98
(x) =  

?

8 9
(x) 68

6 9
exp

(
ℎa8 9

:B) (x)

)
, (2.13)

which also can be derived assuming detailed balance in thermodynamic equilibrium.

Now all the necessary physics, data, and corresponding underlying assumptions

are in place, we are finally in the position to solve the line radiative transfer problem.

2.3 Solution methods
The goal is to solve the radiative transfer equation (1.1), with the emissivity and

opacity given by (2.1) and (2.2). This is complicated because the level populations

that appear in the emissivity and opacity have to be determined from the kinetic

rate equations (2.6), in which the transition rates (2.8) depend on the radiation field.

Although the radiative transfer equation is linear in the radiation field and the kinetic

rate equations are linear in the level populations, they are coupled in a non-linear

way. The resulting system thus requires an iterative solution method.

2.3.1 Lambda iteration

Dropping the position dependence on all variables, the kinetic rate equations (2.6)

for each level, 8, assuming statistical equilibrium (mC=8 (x) = 0), can be written as,∑
9 , 9 < 8

{
=8�8 9 −

(
= 9� 98 − =8�8 9

)
�8 9

}
−

∑
9 , 9 > 8

{
= 9 � 98 −

(
=8�8 9 − = 9� 98

)
�8 9

}
+

#∑
9 =1

{
=8�8 9 − = 9� 98

}
= 0.

(2.14)
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It is important to remember that the radiation field, and thus, �8 9 , depends on the

level populations through the line contributions to the emissivity and opacity (see

equations 2.1 and 2.2). This dependence can be expressed with a Lambda operator

(see also Section 1.3.5). We define this operator such that it yields the mean intensity

in the line when acting on the set of all level populations,N≡ {=8 (x), for all x and 8},

�8 9 = Λ8 9
[
N(�8 9 )

]
, (2.15)

where we explicitly denoted the dependence of,N, on, �8 9 . In most practical cases, it

is unfeasible to explicitly invert the Lambda operator, i.e. directly solve the radiative

transfer equation (1.1) and substitute the result in terms of the level populations into

the kinetic rate equations (2.14). Instead, we solve equation (2.15, and thus 2.14) in

an iterative way, by evaluating �8 9 using the values from the previous iteration, i.e.,

�
(=+1)
8 9

= Λ8 9

[
N

(
�
(=)
8 9

) ]
, (2.16)

where, =, indicates the iteration number. Unfortunately, this method, often referred

to as Lambda iteration, converges notoriously slowly towards the true solution (see

e.g. [88]), and additional action is required to make it practically feasible.

2.3.2 Accelerated Lambda iteration

Over the years, various methods have been devised to accelerate the convergence of

Lambda iterations (for an overview, see e.g. [26] and the references therein). We

use the operator splitting method, originally introduced in the context of radiative

transfer by Cannon [89, 90], in a similar way to Rybicki & Hummer [91]. The idea

is to split the Lambda operator into an approximated part, Λ∗
8 9
, that can easily be

evaluated and inverted for the current level populations, and a residual part,Λ8 9 −Λ∗8 9 ,

that can easily be evaluated for the populations of the previous iteration. Hence,

�8 9 = Λ∗8 9 [N] +
(
Λ8 9 − Λ∗8 9

)
[N†], (2.17)
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where the dagger (†) indicates that the quantity is evaluated using the previous

iteration. In this way, the contribution of the level populations of the previous

iteration is minimised. The kinetic rate equations (2.14) can thus be rewritten as,∑
9 , 9 < 8

{
=8�8 9 −

(
= 9� 98 − =8�8 9

) (
Λ∗8 9 [N] + �eff8 9

) }
−

∑
9 , 9 > 8

{
= 9 � 98 −

(
=8�8 9 − = 9� 98

) (
Λ∗8 9 [N] + �eff8 9

) }
+

#∑
9 =1

{
=8�8 9 − = 9� 98

}
= 0,

(2.18)

where we introduced the effective mean intensity in the line, defined as,

�eff8 9 ≡
(
Λ8 9 − Λ∗8 9

)
[N†] . (2.19)

Note that the effective mean intensity is now the only quantity in (2.18) that still

depends on the level populations of the previous iteration.

Clearly, the choice of approximatedLambda operator (ALO; i.e.Λ∗
8 9
) is essential

for the success of this acceleration scheme. In some cases, the diagonal part of the

true Lambda operator already suffices [92], however, in 3Dmodels, a non-local ALO

is often preferred. We follow the construction proposed by Rybicki & Hummer [91].

From the first equation in (1.15), we can identify the Lambda operator, as

defined in (2.15), for the Schuster-Feautrier form of the radiative transfer equation,

Λ8 9 [N] = L8 9
[
( + Ψ+ − mgΨ−

]
, (2.20)

where we used the auxiliary linear operator, L8 9 , defined as,

L8 9 [ · ] ≡
1
2

∮
dΩ
4c

∫ ∞

0
da q8 9a

(
1 − m2

ga

)−1 [ · ] . (2.21)

Following [91], we can construct an approximation to the Lambda operator by

considering only the diagonal band of a certain width, F, of thematrix representation

of the auxiliary operator, L8 9 . We call this operator, L∗
8 9
. The operator, L∗

8 9
, is easy
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enough to invert, due to its band diagonal structure. However, using it as the ALO

would render (2.18) into a system of non-linear equations for the level populations,

which would still be hard to solve. In order to retain linearity in equation (2.18), we

instead define our ALO as,

Λ∗8 9 [N] ≡
=
†
9
� 98 − =†8 �8 9

= 9� 98 − =8�8 9
L∗8 9

[
[8 9 (N)
j(N†)

]
, (2.22)

in which we only evaluate the line emissivity in the argument of L∗
8 9

with the

new level populations, and add an extra factor, which goes to unity as the level

populations converge. Since the line emissivity is linear in the level populations (see

equation 2.1), the statistical equilibrium equation will remain linear in the new level

populations, and can be written as,∑
9 , 9 < 8

{
=8�8 9 − Λ̃∗8 9 [=8] −

(
= 9� 98 − =8�8 9

)
� eff8 9

}
−

∑
9 , 9 > 8

{
= 9 � 98 − Λ̃∗98 [= 9 ] −

(
=8�8 9 − = 9� 98

)
� eff8 9

}
+

#∑
9 =1

{
=8�8 9 − = 9� 98

}
= 0,

(2.23)

in which the effective mean intensity, defined in (2.17), is now explicitly given by,

�eff8 9 = �8 9 (N†) − L∗8 9
[
[8 9 (N†)
j(N†)

]
, (2.24)

and we introduced another auxiliary approximated operator,

Λ̃∗8 9 [=8] ≡
ℎ

4c

(
=
†
9
� 98 − =†8 �8 9

)
L∗8 9

[
�8 9 a q

8 9
a =8

j(N†)

]
. (2.25)

Note that this operator is linear in the new level populations and not symmetric in the

level indices 8 and 9 . However, since our ALO (2.22) is symmetric in these indices,

it can be implemented in the transition matrix. Furthermore, although we started in

equation (2.14) with an (#lev×#lev)-matrix equation, with #lev the number of energy

levels in the species, we now, in case of a non-local ALO in equation (2.23), have
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Figure 2.1: Convergence behaviour, represented by the maximum absolute relative change
between consecutive iterations, for several band-diagonal ALOs with different
widths, F, computed with Magritte for problem 1a of the van Zadelhoff
benchmark [93] (see also Section 3.4).

an (#p#lev×#p#lev)-matrix equation, with #p the number of points, since the ALO

couples between different spatial points. In case of a local ALO, the resulting system

still decouples for each spatial point. Fortunately, since for reasonable bandwidths

the ALO is very sparse, also the resulting system of equations (2.23) will be sparse.

In summary, using operator splitting, the convergence of Lambda iterations is

improved, since the better the approximation, Λ∗
8 9
, for the Lambda operator, Λ8 9 , the

smaller the values for �eff
8 9

will be, and hence, the smaller the dependence in (2.23)

on the previous (less accurate) approximation to the level populations, which makes

solving (2.23) more like solving the full problem than like solving the iterative one.

Figure 2.1 shows the convergence behaviour over 100 iterations for several

band-diagonal approximated Lambda operators with different widths, F, such that,

for instance, F = 1, implies a diagonal matrix, F = 3, is a tridiagonal matrix, and

so on. The vertical axis shows the maximum of the absolute change between two

consecutive iterations divided by their average. Initially, we see indeed that the wider

the band-diagonal of the ALO, the better the convergence. However, for widths,

F ≥ 7, there is an elbow point at which convergence significantly slows down, and it

slows downmore and earlier in the iteration process the wider the band-diagonal. By
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investigating the level populations throughout the iteration process, we can identify

that for all bandwidths the steepest convergence occurs when for the entire model the

iterative solution is either an overestimate or underestimate for the true solution, i.e.

when the change in level populations between consecutive iterations has the same

sign everywhere. This is what happens in the first few iterations. Once the iterative

solution is close enough to the true solution that for some points it is an overestimate

and for others an underestimate, i.e. when the change in level populations between

consecutive iterations has a different sign for different points, then convergence

significantly slows. This is what happens at the elbow. Currently, we do not have

a satisfying explanation as to why this happens. We also did not find any reference

to this phenomenon in literature. It should be noted, however, that in practice the

convergence criterion is often already defined at amaximum absolute relative change

of 10−4, and thus outside the regime where this phenomenon occurs, see e.g. [94]3.

Therefore, practically, it is probably only of little significance. Furthermore, since

(at least empirically) we can signal the issue by monitoring the sign of the changes

between consecutive iterations, it can easily be cured by lowering the bandwidth, F.

2.3.3 Acceleration of convergence

Accelerated Lambda iterations are often combined with acceleration of convergence

methods to further reduce the required number of iterations. One popular technique

is Ng-acceleration [95], named after Kin-Chue Ng, who proposed it in 1974. Later,

it was introduced in the context of Lambda iterations by Buchler & Auer [92, 96].

However, in mathematics and computer science literature, the same method goes

under many different names, such as e.g. Anderson-acceleration, after [97], or more

generally: non-linear acceleration [98]. The main reason for its popularity is its

general ease of implementation and the fact that it can be applied to any iterative

scheme. We find, however, that in radiative transfer literature [26, 92, 95], this

method is often presented in quite a restrictive way. Therefore, we present here the

non-linear acceleration scheme, more in line with mathematics literature [98].

3More precisely, [94] quote a relative accuracy of 10−4 in the mean intensity, which indeed also
roughly corresponds to a maximum absolute relative change of 10−4 in the level populations.
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We start by approximating the Λ8 9 [N(·)]-operator from equation (2.16) with a

linear operator, L, such that the resulting (linearised) iteration process is given by,

� (=+1) = L
[
� (=)

]
. (2.26)

Finding the limit of this iteration process corresponds to finding the fixed point,

�FP, of the L-operator. After # −1 iterations, we can attempt to make a fixed-point

estimate, �FPE, with a linear combination (or average) of the, " , previous iterates,

�FPE ≡
"∑
==1

2= �
(#−=) , with the condition that,

"∑
==1

2= = 1. (2.27)

The necessity for the additional condition on the sum of the coefficients will become

clear below. For now, it can be viewed as a requirement to interpret the fixed-point

estimate as an average of the previous iterates. The desired coefficients, 2=, that

would provide a good estimate for the fixed point, can be obtained, for instance, by

minimising the error in the (linearised) fixed-point condition, i.e. �FPE = L
[
�FPE

]
,

with respect to some norm. In that case, c ≡ [28], is given by,

c ≡ argmin
c: cT1=1

{

�FPE − L
[
�FPE

]

2 + _2
"∑
==1

22
=

}
, (2.28)

where we added a regularisation term, governed by the regularisation constant, _,

that penalises large numerical values of the coefficients, 2=. Using equation (2.26),

and leveraging the assumed linearity of the L-operator, we can rewrite (2.28) as,

c = argmin
c: cT1=1







 "∑
==1

2= '=






2

+ _2
"∑
==1

22
=

 , (2.29)

where we defined the residuals, '8, the difference between consecutive iterates as,

'= ≡ � ("−=) − � ("−=+1) . (2.30)

From equation (2.29) it is clear that we had to add the constraint, cT1 = 1, since
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otherwise only the trivial solution, c = 0, could be obtained. Note that, in practice,

each � (=) corresponds to a vector in parameter space, for instance, given by the

different points in the model geometry, and thus ‖.‖ is a norm on this parameter

space. If this space is �-dimensional, then each '= is a �-dimensional vector, and,

' ≡ ['=], can be thought of as an (" ×�)-dimensional matrix. The minimisation

problem in (2.29), given the constraint on the normalisation of c, can be solved using

the Karush-Kuhn-Tucker (KKT) theorem [99, 100], and yields,

c = z / (1Tz), in which z is defined by,
(
'T(T(' + _21

)
z = 1, (2.31)

where, 1, is an "-dimensional vector of ones and ( is the (� ×�)-dimensional

matrix that relates the norm in parameter space ‖.‖ to the Euclidean norm ‖.‖� via

the relation ‖.‖ = ‖( .‖� . To get a better idea of this system that has to be solved

(2.31), one can rewrite it as,

"∑
1=1

(
'0 · '1 + _2X01

)
I1 = 1, for each 0 ∈ {1, . . . , "}, (2.32)

where the dot indicates the inner product corresponding to the norm in the parameter

space. For a typical radiative transfer application the dimension of the parameter

space will be much larger than the number of iterations, � � " . Therefore, the

computational cost of solving for the coefficients, c, will be dominated by the

evaluation of the inner products over the parameter space rather than solving the

system (2.32). As a result, this acceleration scheme is computationally relatively

cheap and usually only limited by the memory required to store the previous iterates.

The effects of different regularisation parameters on the fixed-point estimates

are shown in Figure 2.2. A larger regularisation parameter clearly results in a

more stable convergence behaviour, however, ultimately, it also leads to slower

convergence. This can be understood, since, although regularisation improves the

conditioning of the resulting linear system (2.31), it also drives the solution away

from its optimal value, as it perturbs the optimisation problem. As a result, we see

in Figure 2.2 that, the higher the regularisation parameter is, the lower convergence
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Figure 2.2: Convergence behaviour, represented by the maximum absolute relative change
between consecutive iterations and the corresponding fixed-point estimates with
different regularisation parameters, _, computed with Magritte for problem
1b of the van Zadelhoff benchmark [93] (see also Section 3.4).

is after 100 iterations. Therefore, a dynamic regularisation parameter should be

preferred, for instance, defined in terms of the minimum absolute value in the matrix

'T(T('. However, although regularisation might help improve convergence in

some applications and allows us to prove rigorous bounds (see e.g. [98]), we did not

find significantly improved convergence in any of our radiative transfer applications.

Classical Ng-acceleration corresponds to the case where " is fixed and _ = 0.

Figure 2.3 shows the convergence behaviour over 100 iterations with classical Ng-

acceleration for several orders, " , which were recorded for problem 1b in the

van Zadelhoff benchmark [93] (see also Section 3.4). Often Ng-acceleration is

only applied after a certain level of convergence is already reached. This can be

justified, since we assumed that the Λ8 9 [N(·)]-operator can be approximated by

a linear operator, which is only guaranteed close to the fixed-point. Hence, in

the first few iterations, when iterates can still be far away from the fixed-point,

the proposed fixed-point estimate is not guaranteed to be any good. After this,

acceleration steps are usually applied periodically after a fixed number, " , of

regular Lambda iterations. The dotted lines in Figure 2.3 show the effect of waiting

for 20 iterations before applying Ng-acceleration. Nevertheless, this results in very
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Figure 2.3: Convergence behaviour, represented by the maximum absolute relative change
between consecutive iterations with classical Ng-acceleration for several orders,
" , computed with Magritte for problem 1b of the van Zadelhoff benchmark
[93] (see also Section 3.4). The dotted lines show the minor effect of waiting
for 20 iterations before turning on Ng-acceleration.

similar convergence behaviour. For this particular model, the best convergence is

observed for " = 8, however, this is not in general optimal. The more iterates, the

better the approximation, but the smaller the gain in accuracy over computational

cost. Furthermore, the order, " , is mainly limited by the memory available to store

the previous iterates. Since it is hard to express the desired effects in terms of what

to do after how many iterations, we propose a dynamic acceleration approach.

Dynamic non-linear acceleration We propose to run the acceleration steps in

parallel with the regular iteration scheme, i.e. perform regular iterations and compute

every time the corresponding fixed-point estimate based on all available regular

iterations, while checking the convergence of both the regular iterations and the

resulting series of fixed-point estimates. The number of available iterations, <, is

predefined by the memory capacity of the system and the model under consideration.

When either the fixed-point estimates show better convergence than the regular

Lambda iteration, or the maximum number of stored regular iterations is reached,

the last estimate is injected into the regular iteration scheme. Then, the previous

iterates are deleted, and starting from this fixed point estimate, the regular iterations

are continued, again with the acceleration steps in parallel, storing the previous
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Figure 2.4: Convergence behaviour, represented by the maximum absolute relative change
between consecutive iterations, with our new dynamic non-linear acceleration,
for several storage maxima, <, computed with Magritte for problem 1a of the
van Zadelhoff benchmark [93] (see also Section 3.4). The grey lines show the
previous results with Ng-acceleration from Figure 2.3.

regular iterates, and checking convergence. This allows us to use the fixed-point

estimates whenever they show better convergence than the current regular iteration,

hence allowing us to directly capitalise on any potential benefits.

Figure 2.4, shows the convergence behaviour of the new dynamic acceleration

technique for several storage maxima, <. Most schemes show significantly better

performance than their classical counterparts (shown in grey). Only for < = 4, the

advantage is very minor. This can be understood, since, when only 4 previous

iterates are available, it turns out that for this particular problem the convergence

rate of the fixed-point estimates almost never drops below the convergence rate

of the regular estimate, such that acceleration is just applied after every 4 regular

iterations, effectively rendering this into classical Ng-acceleration of order " = 4.

The other schemes (< = 8,16,32) all show very similar good convergence. Hence,

we eliminated the need to tweak any parameters (e.g. number of iterations before

acceleration, order of the acceleration scheme). The dynamic scheme automatically

balances the regular and accelerated iterations in away that outperforms any classical

scheme with the same storage capacity. The only remaining parameter is, <, which

should be maximised, given the memory constraints.
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Finally, it should be emphasised that a small value for the maximum absolute

relative difference between consecutive iterations, which we used as a proxy for

convergence, does not guarantee that the iteration process has converged towards

the true solution of the system. Therefore, it is always advised to check whether the

obtained solution is indeed the true solution. Although there is no single method that

can guarantee this, one can always gain more confidence in a solution, for instance,

by starting the iteration process at different initial conditions and checking whether

they always converge to the same solution. This is the method that we used to check

the convergence for the examples in this thesis.

Throughout this chapter, we presented the mathematical ingredients that are

required to model line radiative transfer. In the next chapter, we will demonstrate

how these are implemented in our software library: Magritte. In other words, we

will present the lines of code, to decode what spectral lines encode.



Chapter 3

Magritte: design & performance

The best code is the code that is never(theless) written.

– after Edsger W. Dijkstra

3.1 Introduction
The computational difficulties encountered in line radiative transfer, as discussed in

Chapter 2, require a highly efficient solution method. In this chapter, we present the

design and evaluate the performance of Magritte, a modern software library for

radiative transfer. This library was developed to test the ideas presented in this thesis,

but also as a practical tool for astrophysics, in particular, for stellar wind research

(see e.g. Chapter 4). The goal was to work towards a solver that can provide fast and

reliable on-the-fly radiative transfer in hydro-chemical simulations. Since the main

obstacle is the computational cost, there is a strong emphasis on performance.

But why did we build yet another radiative transfer solver? Admittedly, five

years ago, there were already several 3D radiative transfer solvers available, see for

instance [35–38, 41–43, 45, 48]. First of all, we wanted to go back to the classical

formal methods and avoid Monte Carlo methods to maximise our control over the

solver. The idea was that modern computer hardware had evolved enough to be able

to benefit from the robustness of classical formal methods. We thus wanted a library

that could leverage vector instructions, multi-core and multi-node parallelism, as

well as accelerators. To achieve this in any existing code base usually requires a

complete rewrite of all internal data structures, which encouraged us to develop our

own with parallelisation and acceleration already in mind.
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In retrospect, however, it probably would have been better to start from an

existing radiative transfer library that already had a good front-end (i.e. data input,

model setup, output), such as e.g. the recent Lightweaver [101], such that we could

concentrate on the back-end. Furthermore, it probably also would have been better

to rely more on existing back-end libraries, for instance for linear algebra, so we

could focus our efforts on the problems specific to radiative transfer, adhering more

to the advice of E. W. Dijkstra at the beginning of this chapter (see also Chapter 7).

Nevertheless, we developed a new software library for 3D radiative transfer,

named Magritte, for which the source code of the latest version can be found on

GitHub at github.com/Magritte-code/Magritte.

3.2 Design strategy
In the following, we describe the overall a posteriori design strategy for Magritte.

It should be noted that in the past five years the entire code base has been rewritten

completely at least seven times. The design principles presented below should thus

be read as the lessons learned throughout this design process, rather than as a set of

predetermined principles used in its design.

3.2.1 Parallelisation & acceleration abstractions

One of the key motivations to build a new radiative transfer library was to be able

to tailor its data structures such that they could leverage multi-core and multi-node

parallelism, as well as different types of accelerators from several different vendors.

The challenge, however, is to do this in a maintainable way, and avoid having to

write an entire separate implementation for each programming model. The goal is

thus to have a single source code that is portable between the different programming

models. However, portability alone is not enough, since the resulting program

should, of course, also still perform well within each programming model.

Following the example of the data-parallel mathematical object library Grid1

by Boyle et al. [68], we identify two key steps to achieve (performance) portability:

(1) abstract away all programming model-specific and vendor-specific interfaces

1See also github.com/paboyle/Grid.

https://github.com/Magritte-code/Magritte
https://github.com/paboyle/Grid
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behind a single internal interface, and (2) abstract away the memory layout of all

data structures such that they can be tuned for each specific implementation. In this

way, portability is achieved since the application can be written entirely in terms

of the abstractions, and only the abstractions have to be implemented separately for

each programming model.

In Magritte, we collected all parallelisation and acceleration abstractions in a

separate header-only C++ library, that we named: ParAcAbs2. As such, they can

readily be reused in other projects. ParAcAbs mainly consists of a set of custom

data types and (C++) preprocessor macros for parallel for-loops.

ParAcAbs data types The data types include a Vector, Matrix, and Tensor

structure, and their thread-private counterparts named: VectorTP, MatrixTP, and

TensorTP. Furthermore, there is a special Vector3D structure with some additional

functionality for geometric computations. All ParAcAbs data types can also be set

and accessed in Python via PyBind113 [102]. Themain idea behind the ParAcAbs

data types is best illustrated with a (simplified) version of the Vector structure.

template <typename type >

struct Vector

{

std::vector <type > vec;

type* dat;

type* ptr;

...

void set_dat ()

{

if (contextAccel ()) dat = ptr;

else dat = vec.data ();

}

type operator []( size_t id) {return dat[id];}

};

This is just a wrapper around the C++ standard library container std::vector,

containing two extra pointers dat and ptr. From the definition of the operator[],

we see that the pointer, dat, points to the data that will be accessed when indexing

the Vector. If there is another device, such as e.g. a GPU, the pointer, ptr, points

2See also github.com/Magritte-code/Paracabs.
3See also github.com/pybind/pybind11.

https://github.com/Magritte-code/Paracabs
https://github.com/pybind/pybind11


3.2. Design strategy 59

to the same data on that other device. The set_dat function sets the pointer, dat,

either equal to the pointer of the std::vector or to the pointer ptr, depending on

the context. The context is determined with the function contextAccel(), which

returns true if the program is in a context which is to be executed on the accelerator,

and false otherwise. Note that, to avoid overhead, the context is not checked at

every data access, i.e. not in the operator[]. Instead, every time the context might

switch, the set_dat function must be called to make sure the right pointers are used

internally. The other functions, not included in the listing above, are mainly memory

management functions, for instance, to allocate, de-allocate, and copy memory both

for the host and the device.

The Matrix and Tensor structures both derive from the Vector structure and

differ only in the number of indices. The corresponding thread-private structures

have an additional internal index, representing the thread identifier, and provide the

same functionality, with the only difference that, within the context of a parallel

loop, each points to its own thread-private memory location. For example, a thread-

private Vector, defined as VectorTP, is the same as a Matrix, but with one index

indicating the thread identifier.

ParAcAbs macros Parallel for-loops are implemented in ParAcAbs as variadic

macros in which the loop body is substituted in a capturing lambda. To illustrate how

this works, we present below a (simplified) version of the accelerated_for-loop,

as implemented in CUDA [69].

namespace pa = paracabs :: accelerator;

#define accelerated_for(i, total , ... ) \

{ \

contextAccel () = true; \

auto l = [=, *this] __device__ (size_t i) mutable \

{ \

__VA_ARGS__; \

}; \

decltype(l)* l_ptr = (decltype(l)*) pa:: malloc(sizeof(l));\

pa:: memcpy_to_accelerator(l_ptr , &l, sizeof(l)); \

dim3 nblocks = pa:: nblocks (); \

dim3 nthreads = pa:: nthreads (); \

apply_l <<<nblocks , nthreads >>> (total , l_ptr); \

contextAccel () = false; \

}
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template <typename Lambda >

__global__ void apply_l (size_t stop , Lambda* l)

{

size_t start = blockIdx.x * blockDim.x + threadIdx.x;

size_t stride = gridDim.x * blockDim.x;

for (size_t i = start; i < stop; i += stride)

{

lambda ->operator ()(i);

}

}

The accelerated_for-loop has two named arguments, the first, i, representing the

index that is looped over, and the second, total, represents the range of the index,

such that i ∈ {0, . . . ,total−1}. When entering and leaving the accelerated_for-

loop, we notice that the context is explicitly switched by setting contextAccel().

Furthermore, the remaining arguments of the variadic macro (indicated with ...)

are substituted (indicated as __VA_ARGS__) into the capturing lambda, named: l.

All variables are captured by copy. The version given above is meant to be used

within a class, since *this indicates to capture also the enclosing object by copy.

The resulting lambda expression, l, thus yields a function that contains the body of

the accelerated_for-loop. Sincemany variables can be contained in these objects,

the lambda expression can become large and cannot be transferred to the device in

a function argument, but rather has to be copied explicitly. Finally, the (pointer to

the) lambda expression is passed to the CUDA-kernel, named apply_l, in which

the lambda is iterated over in a strided loop. In the absence of an accelerator, the

accelerated_for-loop is redefined as a simple multi-threaded loop in OpenMP,

and in the absence of OpenMP, this is again redefined as a simple serial for-loop.

In this way, by abstracting the behaviour of an accelerated for-loop, and falling back

on other options depending on the available hardware or the preferred programming

model, we can obtain portable code with minimal duplication. In ParAcAbs, a

similar implementation is also available for SYCL.

Finally, we should note that the ParAcAbs abstraction layer presented above

should only be regarded as a temporary design solution for performance portability.

Hopefully, it can soon be replaced by a standard unified programming model.
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3.2.2 Parallelisation & acceleration strategy

In the previous section, we demonstrated how parallelisation and acceleration can

be implemented in a portable and yet maintainable way, by abstracting away all

specifics behind an interface. The question remains, however, where which type of

parallelism should be used in radiative transfer computations.

Magritte is a formal solver (see also Section 1.4) that solves the radiative

transfer equation (1.1) on a ray-by-ray basis, i.e. the radiation field is computed

for each ray, through each point, and that for each frequency bin. The resulting

computation of the radiation field can thus schematically be written as follows:

for (direction: directions)

{

for (point: points)

{

Ray_pair ray_pair = trace (direction , point);

for (frequency: frequencies)

{

solve_radiative_transfer (ray_pair , frequency );

}

}

}

The trace function traces an antipodal ray_pair, i.e. a straight line, through

the model, originating from the given point, in the given direction and its

antipode. Then, the solve_radiative_transfer function solves the radiative

transfer equation along the given ray_pair, and for the given frequency. There

are several possible strategies to parallelise and accelerate the above computation.

We will first outline our entire strategy and then justify our particular choices.

The simplest yet effective parallelisation strategy for this computation assigns

one type of parallelism (multi-node, multi-core, and vectorisation respectively) to

each of the for-loops: The outer loop over the different directions is parallelised

using MPI to be distributed over the multiple nodes in the system, the middle loop

over the different points is parallelised using OpenMP to be split over the different

cores inside each processing unit, and the inner loop over the different frequencies

is vectorised.
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Multi-node The reason to distribute the outer loop over the nodes in the system

is twofold: On the one hand, simply to increase the computational throughput by

executing the calculations concurrently, but, on the other hand, also to distribute the

memory cost over the different nodes in the system. The radiation field is by far the

largest data structure in this simulation. It is stored as one double-precision floating-

point number for each direction, point, and frequency bin in the model. Every

node has its own memory and can be made to store the radiation field only in the

directions it is concerned with. As such, the memory cost per node can roughly be

divided by the number of nodes. Furthermore, since the transfer equation is solved

on a ray-by-ray basis, no communication is required between the nodes during an

iteration, such that the communication overhead can be kept to a minimum. Only

at the end of an iteration, reductions are required, for instance, to integrate over

the different directions and compute the mean intensity. Finally, since a typical

3D model requires to take into account hundreds of directions, this strategy can (in

principle) be scaled up to hundreds of nodes. The multi-node scaling of Magritte

is discussed in Section 3.4.3.

Multi-core Given the distribution over the nodes as described above, the next level

of parallelism in the software should be split over the next level of parallelism in

the hardware, i.e. the different cores within each node. Before the rays are traced,

there is no way to know which points in the geometry will be needed where in the

computation. Therefore, it is favourable to have them all in the shared memory of

each node, and not distributed, as we did with the directions. The multi-core scaling

of Magritte is discussed in Section 3.4.3.

Vectorisation Solving the radiative transfer equation along a given ray pair requires

the execution of exactly the same instructions for each frequency bin. The only thing

that is different are the values for the radiative properties at each frequency. As a

result, the computations for different frequencies are ideally suited for vectorisation,

i.e. by grouping the operations for multiple frequency bins into vector (or SIMD)

instructions. When the loop over the frequencies is written out explicitly, as done in

the code sample above, it will be hard for any compiler to recognise this optimisation
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opportunity. Therefore, it is better to ensure that the frequency index is laid out

contiguously in memory, and then abstract away the frequency index of each variable

behind a vector type, such that operations between objects of this type, for instance,

vectorType <double > a, b, c;

a = b + c;

automatically translate to a loop over the frequencies, i.e.,

for (int f = 0; f < frequencies.size (); f++)

{

a[f] = b[f] + c[f];

}

The latter will most likely be vectorised by the compiler, given the right compiler

flags. To ensure this, one can also explicitly define the operators on vectorType

variables in terms of the corresponding intrinsic vector instructions, such as done

for instance in Grid [68]. In Magritte, although we successfully implemented the

explicit vectorisation from Grid in an earlier version, we dropped it later on for

compatibility reasons, and rely now on the compiler for automatic vectorisation. In

the future, it could conveniently be reintroduced by implementing it, for instance, in

the data types provided in ParAcAbs.

GPU acceleration Since GPUs are in essence large vector processors, i.e. able

to execute vector instructions but on much larger vectors, the above considerations

about vectorising over the frequencies can also be used to implement a GPU version

of the solver. The most straightforward way to do this, is to offload the entire

solve_radiation_field function to the GPU, and use the (now larger) vector

instructions again to act on the frequency index4. The simplest way to target

multiple GPUs per node, is to create multiple processes per node, each targeting a

single GPU. It should be noted that, in this case, the performance of the node is most

likely bounded by the data transfer between the CPU and GPU, and the number of

available GPUs in the node. Performance can thus be enhanced by streamlining the

data transfer, and by grouping computations to create more vector parallelism. We

4Following the CUDA nomenclature, this means taking the data that is meant for the different
SIMD-lanes in the CPU and map it to the different SIMT-lanes in the GPU.
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tried to do this in several ways, from grouping the computations for different rays,

to offloading the entire for-loop over the different points. The main difficulty in

creating additional vector parallelism that is not inherent to the computation is that

it requires quite some orchestration of the computations on the GPU. Unfortunately,

we did not yet manage do this in a way that significantly improves performance.

3.2.3 Test strategy

Proving the correctness of (scientific) software is in general very hard, since the

resulting output usually depends on an extremely large number of parameters. Some

of these parameters, such as the input data and the source code, we can control and

test, as we describe below. However, we cannot strictly control every parameter,

since, for instance, the source code is not written in machine code, but rather in a

higher level language (such as Python or C++) that is then translated (or compiled)

into machine code. This translation often involves an optimisation step, which can

change the order or form of the machine instructions. Although these optimisations

are obviously restricted to guarantee the accuracy of the result up to some level, any

change in the order or form of the instructions can still cause a numerical difference

in the results, which furthermore might be amplified in the rest of the code. A single

source code compiled at different levels of optimisation can thus yield different

results, which makes it hard to strictly control the accuracy.

In an attempt to validate the correctness of our software, we therefore require a

testing strategy. In Magritte, we have three layers of tests to do that: sanity checks,

unit tests, and integration or system tests, which we discuss in more detail below.

3.2.3.1 Sanity checks

Sanity checks are small checks throughout the code of properties that we assume

to be true. They are performed on every execution of the relevant portion of code

and can be implemented as simple if-statements, conditionally throwing an error

or warning. In Magritte, the model setup is usually provided by the user through

a Python script, which is quite error prone, since we make various assumptions,

for instance, about the way in which the points, neighbours, and rays are stored.

Therefore, when loading the input, we explicitly test these assumptions, to ensure
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the validity of the input. This type of test is often overlooked in discussions on

testing strategies, but rightfully deserves its place here, since it has been by far the

most helpful type of test in the development and use of Magritte.

Unfortunately, this type of tests is usually unacceptable in performance critical

parts of the code. However, in Magritte, given the complexity of the part of the

code that computes the Lambda operator, there is the option to store and perform

sanity checks on the Lambda operator. However, this is not available in production

versions of the code because of the resulting performance penalty.

3.2.3.2 Unit tests

Unit tests verify the validity of a small portion of code and typically concern just a

single function. They are usually implemented as separate test programs that can

be executed individually to test specific functionality. There are several frameworks

that provide useful tools to facilitate the construction of unit tests, such as Catch25

and GoogleTest6, the latter of which is currently used in Magritte.

A comment on test-driven development Test-driven development (TDD) is a

software development process in which the requirements for the software are first

formulated as a set of tests that the software should pass, before the actual code

is written (see e.g. [103]). This is often already implemented on the lowest level

of unit tests, such that the validity of the code is strictly controlled, even before it

is written. This approach has many advantages, as tests are created concurrently

with the code, resulting in a wide test coverage and hence justifiable confidence

in the code. If the tests are designed properly, most bugs can be caught very

early on in the development process, reducing the need for complex debugging of

large portions of code. Nevertheless, despite the major benefits and its success in

certain industries, test-driven development has proven to be more difficult to adopt,

especially in scientific software engineering (see e.g. [104]). At least part of this can

be attributed to a certain reluctance from the developers’ side, since it usually requires

quite a large change in workflow and indeed mentality. Moreover, a lot of scientific

software is written by scientists, rather than trained software engineers, who are

5See also github.com/catchorg/Catch2.
6See also github.com/google/googletest.

https://github.com/catchorg/Catch2
https://github.com/google/googletest
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often less aware of the available tools and development strategies. In addition, most

of the examples and best practices are tailored to large projects involving multiple

developers in an industrial setting, which is often quite different from the academic

setting (although recently guidance for best practices has appeared, see e.g. [105]).

Although we heavily endorse the test-driven development strategy, this is not

the way inwhichMagrittewas developed. As a result, the (unit) test coverage of the

code is also rather poor. Despite several attempts to reinstate a test-driven approach

at each major rewrite of the code base, it was never consistently maintained. Only

in the later developed ParAcAbs library (see Section 3.2.1), tests were developed

simultaneously with the code, but their utility was somehow limited, since any real

test would require a variety of different hardware to run on. In retrospect, the reason

why this worked for ParAcAbs and not for Magritte can be attributed to the fact

that for ParAcAbs there was a clear predefined interface that the library had to

adhere to, e.g. the vector, matrix, and tensor operations, and the parallel for-loops.

As a result, tests could be written based on that predefined and fixed expected

behaviour. In contrast, at every major rewrite of Magritte the internal structure

of the code changed so dramatically that all tests had to be rewritten entirely, such

that test-driven development implied a major development overhead. Hence, for

instance here, it would have helped to have started development on top of a library

that already had a good front-end, and using more existing libraries for the back-end,

since this would have fixed the internal behaviour more. The inability to maintain

a test-driven development strategy can thus in a sense be traced back to the tension

in the dual raison d’être of Magritte, namely: on the one hand being a framework

to prototype new radiative transfer methods, while on the other hand being a useful

tool for astrophysics. A test-driven development strategy only works well with the

latter, whereas in the former the strategy is usually to develop and either succeed or

fail as fast as possible.

To avoid these difficulties in the future development of Magritte, apart from

defining a clear interface for the front and back-end, we propose to have a much

clearer separation between prototype and production code. This can be achieved



3.2. Design strategy 67

with proper version control, e.g. with Git, by having a single strictly controlled

production branch, which is fully tested, and using different less controlled branches

for each prototype. Since this setup still bears the temptation of pushing untested

code into production, it might be advised to separate real prototyping and production

even more, for instance, by having a completely separate prototyping environment

(or separate language), such as, for instance, in a Jupyter notebook [106].

3.2.3.3 Integration & system tests

Integration tests verify the validity of a combination of several smaller pieces of code,

usually concerning the interplay of several functions, and thus test the aggregate of

what would be covered by unit tests. System tests verify still bigger portions of code,

for instance, testing the behaviour of an entire application. We combined integration

and system tests here, since the function call trees in Magritte are not that deep,

and therefore integration tests can also be considered system tests.

For the integration or system tests in Magritte we considered several semi-

analytical and numerical problems. The details of these models and the performance

of Magritte compared to other solvers is discussed in Section 3.4. Both models and

results of these benchmarks are provided together with the source code of Magritte,

such that its validity can be checked before it is used. Note, however, that it should

be the responsibility of the developer, and not the user, to check their software before

release. Therefore, we also employ continuous integration and deployment tools.

3.2.4 Continuous integration & deployment

Continuous integration (CI) and continuous deployment (CD) are modern practices

in software development that aim to keep the integration and deployment cycle as

short as possible, for instance, by integrating new code into the main source at

least daily (see e.g. [107]). This avoids large conflicts between different versions

of the code, simplifying and speeding up the development process. Although these

practices are mostly aimed at large development teams, also smaller scale projects,

such as Magritte, can benefit from their practices and tools. Below, we list some

best practices, that can be found for instance in [107], that are typical for CI and CD,

and we explain how we apply them in the development of Magritte.
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Version control Proper version control, for instance using Git, is an indispensable

tool for any modern software project. It structures the development process and

allows you to see or even revert back to previous versions when things go wrong.

For Magritte, we use a Git repository, hosted online on GitHub.

Automated builds The build process, i.e. the process of turning the source code

into an executable, has a significant impact on the resulting application. For instance,

the choice of compiler, compiler flags, linking libraries, etc., can all significantly

affect the exact output and performance of the application. Furthermore, tests and

documentation are often linked to a specific version of the source code, and thus

should be rebuilt together with the source. Therefore, it is advised to have a single

command that can build the entire application with the preferred settings together

with the tests and documentation. In Magritte, we use CMake7 to orchestrate the

build of the C++ library, the Python library, and the tests. Optionally, this can also

be used to trigger a build of the inline documentation with Doxygen8.

Test on build Once the application is built, it must be tested. Using CMake, the

test suite can easily be incorporated to execute at the end of the build process.

Build on commit To ensure the validity of the repository, it is important to build

(and hence also test, see the previous point) the application each time a change is

committed to the code repository. Locally, on the developer’s machine, this can

be automated, for instance, using Git-hooks, which can trigger the execution of

a command at each commit. For remote versions, for instance on GitHub, one

can use a service, such as Jenkins9 or Travis CI10 that allows you to trigger a

build and run tests on a server for each commit to a repository and get notified

about their status. The latter is currently used in Magritte. Furthermore, we

also automatically update the online documentation, hosted on ReadTheDocs11,

at magritte.readthedocs.io. The documentation is part of the source code

7See also cmake.org.
8See also www.doxygen.nl.
9See also www.jenkins.io.
10See also travis-ci.org.
11See also readthedocs.org.

https://magritte.readthedocs.io/
https://cmake.org/
https://www.doxygen.nl/index.html
https://www.jenkins.io/
https://travis-ci.org/
https://readthedocs.org/
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and written as ReStructuredText, which is built with Sphinx12. To incorporate

the Doxygen-style C++ inline documentation into the online Sphinx-generated

documentation, we used the convenient conversion package Breathe13.

Now we have established how we designed and implemented the different parts

of Magritte, we can focus on the particular methods that we implemented.

3.3 Methods
In this section, we highlight some of the methods used in Magritte. It is not an

exhaustive list, but rather some highlights of important and perhaps peculiar aspects.

3.3.1 Discretisation

Discretisation is a key step in the numerical solution of any problemwith continuous

variables. It is crucial, since it puts a hard upper bound on the maximum achievable

accuracy and largely determines the computational cost. In fact, proper discretisation

is so important that we will discuss it in detail in a dedicated chapter: Chapter 5.

Here, we only discuss the minimalist design choices that were made on how to

represent the geometry of a model in Magritte.

Radiative transfer solvers aremore often than not used in combinationwith other

simulations, for instance, for making synthetic observations of a model. As a result,

most of the discretisation is usually inherited from a previous simulation step, which

is usually some sort of hydrodynamics model. There are various widely different

discretisation schemes used in hydrodynamics, ranging form regular Cartesian to

hierarchically refined grids, all the way to smoothed-particle and finite element

methods. In order to accommodate for all of these types of input, we reduced the

number of assumptions we make about the geometry to an absolute minimum. As a

result, in Magritte, we only assume to know the locations of the points or cells in

the geometry and their nearest neighbours. This is just enough information to trace

a path through the model (see also Section 3.3.2 on ray-tracing). Furthermore, those

two properties can easily be derived from any type of discretisation scheme. We

12See also www.sphinx-doc.org.
13See also breathe.readthedocs.io.

https://www.sphinx-doc.org/en/master/
https://breathe.readthedocs.io
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should note that our choice of representation of the model does not fully determine

the geometric discretisation of the radiative transfer equation in Magritte. This is

further determined by the ray-tracing algorithm, as described in Section 3.3.2.

In retrospect, this might not be the optimal choice, since model geometries

can often be converted quite easily (and cheaply) form one format into another.

Furthermore, as we will see in Chapter 5, a pre-processing step is often required

anyway to optimise the geometry for radiative transfer computations. Therefore, a

better approach would be to search for an optimal solver design and adapt the model

geometry to that (see also Chapter 7). Nevertheless, although perhaps not optimal,

the current design has already resulted in a useful tool that lead to interesting insights.

3.3.2 Ray-tracing

In order to solve the radiative transfer equation along a certain ray, the emissivity

and opacity of the points that are encountered along that ray are required. Moreover,

the path length that the ray traces through the neighbourhood of each point must

be computed. Since we aimed to keep the ray-tracing algorithm as general and

discretisation agnostic as possible, we choose to only assume the locations of points

and their nearest neighbours (see also Section 3.3.1).

The ray-tracing algorithm inMagrittewas originally inspired by 3D-PDR [42],

but was significantly simplified and optimised, especially since the latter assumed

that all ray paths could be stored in memory, an assumption that impeded scaling

beyond geometries with more than 105 points. The idea behind the ray-tracing

algorithm in Magritte is to walk along the ray from one point to the next and

determine the path length through the neighbourhood of each point by projecting

the points onto the ray. To determine which point is next, the set of all nearest

neighbours of the current point is considered. From this set, the neighbour is chosen

which is closest to the ray and whose projection on the ray lies farther than that of

the current point. This procedure is then repeated until a point on the boundary

is reached. Figure 3.1 shows a visual example of this algorithm. Once a pair of

antipodal rays is traced, a straight line through the entire model can be formed along

which the radiative transfer equation can be solved.
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Figure 3.1: A visual representation of the ray tracing algorithm in Magritte for a ray, ',
originating from a point$. The neighbourhood of each point is visualised by the
corresponding Voronoi cell. The goal is to find which points are encountered
along the ray. Clearly, the point $ itself lies on the ray. The next point
encountered is the neighbour of $ that lies closest to the ray. We call this point
%1. Now the next point to be projected is the neighbour of %1 that lies closest
to the ray and is farther away from $ than %1. The last condition is there to
ensure that one proceeds along the ray towards the boundary. This process is
repeated until a boundary point is reached.

Especially in line radiative transfer, it is crucial to properly sample the velocity

field, since too large a step in velocity from one point to the next can Doppler-shift

a line directly from one wing to the other without capturing the effect of the core of

the line. Therefore, in each step from one point to the next, the change in velocity

along the ray is computed and checked for large variations. If the velocity field, and

thus the resulting Doppler shift, changes too much the emissivity and opacity are

interpolated between the points, such that the velocity steps are only a certain (user

defined) fraction of the local line width. In this way, we avoid losing or improperly

accounting for line contributions due to an inadequate sampling of the velocity field.

Ray-tracing in 1D (spherically symmetric) models The ray-tracing algorithm

described above can also be adapted to work in 1D (spherical symmetric) models.

The main complication is the way in which the geometry for these models is usually

stored. Because of the spherical symmetry, it suffices to define spatial points in the

interval, ['in, 'out], with 'in and 'out, respectively defined as the inner and outer

radius of the model. A ray through this geometry will thus either move up from one
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layer to the next layer above until 'out is reached, or it will move down form one layer

to the next layer below. This later case, however, is slightly more complicated, since

the ray will travel down until a certain layer is reached corresponding to the impact

parameter of the ray, after which the ray will travel up again (in terms of the distance

from the centre) until again 'out is reached. Apart form this slight complication that

is not encountered in the general 3D case, ray-tracing can go on exactly as before.

3.3.3 Solvers

As described in Chapter 2, there are two main equations that alternately need to

be solved in the Lambda iteration approach to line radiative transfer: the radiative

transfer equation (1.1), and the equation of statistical equilibrium (2.23). Next, we

briefly describe the solvers that are used for each of these equations in Magritte.

Radiative transfer Once a ray is traced (as described in Section 3.3.2), the radiative

transfer equation has to be solved along that ray. In Magritte, this is done in the

second-order Schuster-Feautrier form that was introduced in Section 1.3.4. The

Schuster-Feautrier equation is solved using an improved version of the tridiagonal

matrix algorithm (or Thomas algorithm), as proposed by Rybicki & Hummer [91].

In addition, we use the improved boundary conditions, as proposed by Auer [108].

This is used as the default solver in Magritte. Optionally, we also provide a

fourth-order (or Hermitian) solver, based on an improved version of the discretised

Schuster-Feautrier euqation by Auer [109]. The derivations and details about our

particular optimised implementation of these solvers can be found in Appendix A.

Statistical equilibrium The statistical equilibrium equation (2.23) is a sparse

linear system that can readily be solved with any standard (optionally sparse) linear

equation solver. In Magritte, we use the sparse LU-solver provided in the Eigen14

library [67]. Since solving the radiative transfer equation is orders of magnitude

more computationally expensive than solving the statistical equilibrium equation,

we did not optimise the latter.

14See also eigen.tuxfamily.org.

https://eigen.tuxfamily.org/index.php?title=Main_Page
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3.3.4 Imaging

Once the state of the medium and the corresponding radiation field are known, one

can infer how the model would appear in observations, by making synthetic images.

In Magritte, a synthetic observation viewed from a certain direction is constructed

by considering the outgoing intensities at the endpoints of all rays in that direction.

The positions of these endpoints are then projected on the plane orthogonal to the

viewing direction. This results in a 2D point cloud in the image plane, each with

a corresponding intensity. Finally, an image can be obtained by interpolating the

intensities form the 2D point cloud onto a regular grid with the desired resolution.

This interpolation can easily be achieved, for instance, with the griddatamethod in

Scipy [110]. Since we use the data from every ray, the 2D point cloud usually highly

over-samples the image, such that a simple (and fast) nearest neighbour interpolation

often already suffices. Examples of the resulting synthetic observations created with

Magritte can be found in Chapter 4.

3.4 Tests & benchmarks
To demonstrate the validity of our methods and to better understand their limitations,

we have conducted a series of comparisons with analytical models and benchmarked

against established radiative transfer solvers.

3.4.1 Semi-analytical tests

To assess the accuracy of the ray tracer and radiative transfer solver in Magritte,

we first reproduce some semi-analytically solvable line radiative transfer models.

This will help us later to better assess the uncertainties associated with the results of

our simulations. We cannot overemphasise the importance of these analytical tests

as they are the only way to obtain absolute measures of the accuracy (in contrast to

the estimates for the uncertainty presented in Chapter 6).

3.4.1.1 Homogeneous Hubble-Lemaître models

As a first test, consider the transfer of a single line, 8↔ 9 , on a uniformly spaced grid

with constant molecular abundance, temperature distribution, and velocity gradient.



3.4. Tests & benchmarks 74

The velocity distribution is thus given by the Hubble-Lemaître law,

E(A) = 2ΔV A, (3.1)

where we scaled the velocity, within the velocity gradientΔV, with the speed of light,

2. The boundary condition is given by incoming cosmic microwave background

(CMB) radiation, i.e a black-body spectrum, �a, of temperature )CMB = 2.725 K. If

we assume LTE level populations, the line source function, (a8 9 , is spatially constant

(since the temperature was assumed to be constant). In that case, one can find the

mean intensity by directly integrating the transfer equation,

�a (x) = (a8 9 +
(
�a − (a8 9

) ∮
dΩ
4c

4−ga (x,n̂) , (3.2)

in which the optical depth, ga, assuming Gaussian line profiles centred around, a8 9 ,

and with a line profile width, Xa8 9 , is given by,

ga (ℓ) =
j8 9

2aΔV

{
Erf

[
a− a8 9
Xa8 9

]
− Erf

[
a (1−ΔVℓ) − a8 9

Xa8 9

]}
, (3.3)

where Erf is the error function, and ℓ(x, n̂) is the distance from point x to the

boundary, as measured along the ray in direction n̂. Since the Hubble-Lemaître

velocity law is both translation and rotation invariant, only the total distance to the

boundary appears in the expression for the optical depth. We consider two different

cases: first, a truly one-dimensional case, considering the mean intensity flowing

up and down a single ray, and second, the mean intensity in the full (spatially)

three-dimensional yet spherically symmetric model.

Considering only a single ray in the interval, [0, '], the mean intensity at a

point A ∈ [0, '], as expressed in equation (3.2), reads,

�a (A) = (a8 9 +
1
2

(
�a − (a8 9

) [
4−ga (A) + 4−ga ('−A)

]
, (3.4)

in which the averaging integral over all directions reduces to the half sum of the

intensity flowing up and down the ray.
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In three dimensions, assuming a spherical boundary with radius, ', the mean

intensity expressed in equation (3.2) reduces to,

�a (A) = (a8 9 +
1
2

(
�a − (a8 9

) ∫ c

0
d\ sin\ 4−ga (ℓ(A,\)) , (3.5)

in which the distance to the boundary, ℓ(A, \), is given by,

ℓ(A, \) = A cos\ +
√
'2− A2 sin2 \. (3.6)

There is no analytic expression for the \-integral in themean intensity (3.5), however,

it can easily be computed numerically.

Note that introducing the spherical boundary breaks the translation invariance

of the problem. As a result, both solutions (3.5) and (3.4) depend on the radial

distance from the centre of the boundary.

Although these are simple models, they can demonstrate some key issues in

numerical radiative transfer modelling. In particular, both models can be used to

directly assess the accuracy of the radiative transfer solver, and to test the sampling in

velocity space. Especially in line radiative transfer it is crucial to properly sample the

velocity field. This can be tested by adjusting the velocity gradient. By considering

both the single ray and the full 3Dmodel, we can also assess the quality of the spatial

interpolations onto the rays.

In our test setup, we used a fictitious two-level species in a (radially) uniformly

spaced grid, [0, '], with ' = 495 km, and a velocity gradient 2ΔV = 0.01 s−1.

The line data for the fictitious two-level species are summarised in Table 3.1. We

assume a constant H2 number density =H2 = 1.0×1012 m−3, and a constant fractional

abundance of the fictitious two-level species - ≡ =fict/=H2 = 10−4. For the level

populations, we assume LTE with a constant temperature distribution ) = 45 K.

Moreover, we assume the gas has no turbulent velocity component, Eturb = 0 m/s.

The corresponding 3D model is obtained from the 1D model by mapping each 1D

grid point to a shell of 3D grid points uniformly distributed over a sphere. The

model parameters for Magritte can be found in Table 3.2.
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Figure 3.2: Comparison between Magritte and the semi-analytical solution of the mean
intensity as a function of frequency, evaluated at different radii in the Hubble-
Lemaître model. The dots indicate results obtained with Magritte and the
lines represent the analytic results. Frequencies are expressed with respect
to the line centre, a21 ≈ 179.88 GHz, as a fraction of the line profile width,
Xa21 ≈ 519.03 kHz. The relative error of two values is measured as twice the
absolute difference over their sum.

Table 3.1: Line data of the fictitious two-level species. This is the same fictitious two-level
species as used in problem 1 in the van Zadelhoff benchmark [93].

�2−�1 [cm−1] 62/61 �21 [ s−1]  
H2
21 [cm3/s]

6.0 3.0 1.0×10−4 2.0×10−10

Figure 3.2 shows a comparison between the solution of Magritte and the semi-

analytical solutions (3.4 and 3.5) of the Hubble-Lemaître models. The numerical

results obtained with Magritte clearly agree with the analytic solution with a

relative error well below 10−4 almost everywhere, where the relative error of two

values is measured as twice the absolute difference over their sum.
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3.4.1.2 Simple power-law density distribution

As a second test, consider the transfer of a single line, 8↔ 9 , on a logarithmically

spaced grid, with a constant temperature distribution, with no velocity field, and a

density distribution corresponding to the singular isothermal sphere, given by,

=H2 (A) =


0 for A < 'in

=H2 ('in)
(
'in
A

)2
for A ≥ 'in

(3.7)

where 'in is the inner radius of the model. The boundary condition is given by

incoming CMB radiation, i.e. a black-body spectrum, �a, of temperature )CMB =

2.725 K. If we again assume LTE level populations, the line source function, (a8 9 ,

is spatially constant. As a result the mean intensity is again given by equation (3.2).

To compute the optical depth, one needs to integrate the density distribution along

every ray. Assuming a spherical boundary with radius, ', the optical depth reads,

ga (A, \) =
j8 9 q

8 9
a A

sin\

(
c

2
− \ + arccos

(
A sin\
'

)
− 5 (A, \)

)
, (3.8)

where 5 (A, \) accounts for rays going through the empty core (A < 'in), and reads,

5 (A, \) ≡


2arccos

(
A sin\
'in

)
for \ < \core,

0 for \ ≥ \core.
(3.9)

Whether or not a ray passes through the empty core is determined by the direction

of the ray at each radius, \core = arcsin ('in/A). We consider again both a truly

one-dimensional single ray model and a full three-dimensional solution.

Considering only a single ray in the interval [−', '], the mean intensity reads,

�a (A) = (a8 9 +
1
2

(
�a − (a8 9

) [
4−ga (A,0) + 4−ga (A,c)

]
, (3.10)

where the average over all directions reduces to half the sum of the intensity flowing

up and down the ray. Note that both limits, \→ 0, and, \→ c, are well-defined.
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In three dimensions, one can simply integrate over the entire solid angle to

obtain the mean intensity,

�a (A) = (a8 9 +
1
2

(
�a − (a8 9

) ∫ c

0
d\ sin\ 4−ga (A,\) . (3.11)

However, one should be careful in distinguishing between rays that do and rays that

do not pass through the empty core of the model.

For this test, we used the same fictitious two-level species as before (Table

3.1) in a radially logarithmically spaced grid, ['in, '], with, 'in = 1.0× 1013 m,

and ' = 7.8× 1016 m. The H2 number density just outside the empty core is

=H2 ('in) = 2.0× 1013 m−3, and a constant fractional abundance of the fictitious

two-level species - ≡ =fict/=H2 = 10−6 is used. To obtain the level populations, we

assume LTE with a constant temperature distribution ) = 20 K. Furthermore, the

gas has a turbulent velocity component, Eturb = 150 m/s. The 3D model is obtained

from the 1D model by mapping each 1D grid point to a shell of 3D grid points

uniformly distributed over a sphere. The model parameters for Magritte can be

found in Table 3.2. This model setup is identical to problem 1b in [93]. However,

here we are only interested in the resulting radiation field when the levels are in LTE

(see also Section 3.4.2).

Figure 3.3 shows a comparison between the solution of Magritte and the

semi-analytical solutions (3.10 and 3.11) of the simple models with a power-law

density distribution. The numerical results obtained with Magritte clearly agree

with the analytic solution. Only at the steep edges of the line, there is a larger relative

error (∼ 0.4), which can be attributed to the steepness of the model solution that is

not properly resolved by the discrete grid.

3.4.2 Cross-code benchmarks

There are no analytic solutions for the full non-LTE line radiative transfer problem,

so the only way to fully test the line radiative transfer module in Magritte is with

benchmarks against established solvers. Although this does not prove the validity

of our code, it is already reassuring to find the same results in different ways.
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Figure 3.3: Comparison between Magritte and the semi-analytical solution of the mean
intensity as a function of frequency in a model with a simple power-law density
distribution, evaluated at different radii. The dots indicate results obtained
with Magritte and the lines represent the analytic results. Frequencies are
expressed with respect to the line centre, a21 ≈ 179.88 GHz, as a fraction of
the line profile width, Xa21 ≈ 357.53 kHz. The relative error of two values is
measured as twice the absolute difference over their sum.

Table 3.2: Magritte parameters for the semi-analytic test models.

model (#shells) #points #rays #q

Hubble-Lemaître 1D 50 100 2 100
3D 50 12 528 192 100

density distribution 1D 50 100 2 100
3D 50 12 528 192 100
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Table 3.3: Magritte parameters for the benchmark models.

model (#shells) #cells #rays #q

Problem 1 a/b/c/d 50 23 280 192 24
Problem 2 a/b 50 23 280 192 24

For the benchmarks we used the problems presented by van Zadelhoff et al.

in [93], and compared our results with the publicly available version of the 1D

Monte Carlo radiative transfer code Ratran15 [47]. Since Magritte is intrinsically

multidimensional, the 1D models were mapped to their 3D equivalents by mapping

each 1D grid point to a shell of 3D grid points uniformly distributed over a sphere.

The Magritte parameters of these models can be found in Table 3.3.

3.4.2.1 Van Zadelhoff problem 1 a/b

The first test, referred to as problem 1 a/b in [93], considers a fictitious two-level

species in a spherically symmetric cloud, without velocity field, with a constant

temperature distribution, and a density distribution given by a power law. The entire

model is thus defined analytically. This setup is essentially equivalent to the simple

power-law density distribution model in Section 3.4.1.2. The only difference is that

in problem 1a the relative molecular abundance, - = 10−8, results in a low optical

depth, whereas in problem 1b, - = 10−6, yields a relatively high optical depth.

Figure 3.4 shows a comparison between the level populations for problem 1a/b

obtained with Magritte and Ratran. Both are clearly in good agreement with

each other, with relative errors well below 0.05, which can be attributed to the fact

that Magritte uses a 3D model instead of a manifestly spherically symmetric 1D

model as used in Ratran.

3.4.2.2 Van Zadelhoff problem 1 c/d

Since line radiative transfer critically depends on a proper sampling of the velocity

field along the line of sight of each ray, it is worthwhile to test if this is properly

accounted for. Therefore, we consider again benchmark problem 1 a/b from the

previous paragraph, but this time with a non-zero velocity field. Although this test

15The source code can be found at personal.sron.nl/∼vdtak/ratran/frames.html.

https://personal.sron.nl/~vdtak/ratran/frames.html
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Figure 3.4: Comparison of the results for problem 1 a/b of the van Zadelhoff benchmark
[93] obtained withMagritte (dots) and Ratran (lines). The relative difference
of two values is measured as twice the absolute difference over their sum.

was not part of the van Zadelhoff benchmark [93], we can still compare our results

with Ratran. We consider a velocity field that is pointing radially outward,

v(A) = E∞

(
A −'in
'−'in

)W
r̂. (3.12)

In the benchmarks below we used W = 0.5, and since it is the same model setup as

in Sections 3.4.1.2 and 3.4.2.1, the inner radius is 'in = 1.0×1013 m. Furthermore,

we consider two different terminal velocities, E∞ = 10 km/s, and E∞ = 50 km/s.

Figure 3.5 shows a comparison between the level populations for problem 1

c/d obtained with Magritte and Ratran. Both are clearly in good agreement

with each other. However, in order to obtain this result, we needed to increase the

number of grid points in Ratran by a factor of 10 (resulting in 500 logarithmically

spaced grid points). For any lower number of grid points, Ratran had difficulty

properly sampling the velocity field and produced significantly different results from
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Figure 3.5: Comparison of the results for problem 1 c/d obtained with Magritte (dots)
and Ratran (lines). The indicated velocities are the E∞ for each model. The
relative difference of two values is measured as twice the absolute difference
over their sum.

Magritte. This clearly demonstrates the power of the automatic interpolation along

a ray for large velocity gradients, as implemented in Magritte (see Section 3.3.2).

3.4.2.3 Van Zadelhoff problem 2 a/b

The third test has amore realistic setup and considers the lines of HCO+ in a snapshot

of an inside-out collapse model by Shu [111]. This is referred to as problem 2 a/b in

[93]. The parameters describing the input model were taken from the website of the

benchmark16. The model consists of 50 logarithmically spaced grid points. In each

grid point the radial velocity, gas temperature, micro-turbulence, and both HCO+

and H2 abundances are given. Again there are two cases, one with a relatively low

optical depth where the fractional HCO+ abundance is, - = 10−9, and one with a

higher optical depth where the relative molecular abundance is, - = 10−8.

16Benchmark website: www.strw.leidenuniv.nl/astrochem/radtrans/.

http://www.strw.leidenuniv.nl/astrochem/radtrans/
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Figure 3.6: Comparison of the results of the first 5 levels (of 41) for problem 2 a/b of the
van Zadelhoff benchmark [93] obtained with Magritte (dots) and Ratran
(lines). The relative difference of two values is measured as twice the absolute
difference over their sum.

Figure 3.6 shows a comparison between the results for problem 2 a/b obtained

withMagritte andRatran. Overall, both codes agreewell with relative differences

below 0.3 for the first five levels. These differences can again be attributed to the

fact that Magritte uses a 3D model instead of a manifestly spherically symmetric

1D model, as used in Ratran. Furthermore, these results are comparable to what

Brinch & Hogerheijde find in their Figure 10 for Lime [48], and what Rundle et al.

find in their Figures 2 and 3 for Torus [112]. Furthermore, Rundle et al. report for

; = 0 a relative deviation from the benchmark [93] of less than 5% [112], which is

also comparable to what we find.

3.4.3 Performance scaling

Parallelising a program to distribute computations over # compute nodes or #

processor cores, does not necessarily imply an #-fold speed-up. In fact, it only
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Figure 3.7: Strong scaling plot for the multi-node parallelism in Magritte.

implies an upper bound on the achievable speed-up, since usually not every part of

the program can be parallelised and there is overhead, since the work sharing has

to be managed between the parallel components. Therefore, in order to understand

the gains from parallelising a program, and gauge how efficiently it can utilise given

computational resources, the scaling of the execution time has to be measured.

3.4.3.1 Multi-node

Figure 3.7 shows the scaling of the computation time of Magritte for problem 1a

in the van Zadelhoff benchmark [93], when using different numbers of compute

nodes in a system. The scaling strongly depends on the load balancing, in this

case, i.e. the balance between the computational cost of solving the transfer equation

along the ray pairs, as they are distributed over the nodes. Since the model from

problem 1a is spherically symmetric, load balancing should be almost perfect and

cannot be the reason for the deviation from perfect scaling, observed in Figure 3.7.

Here, the deviation is largely due to the work-load per node becoming too small

for larger numbers of nodes, such that the relative contribution of the overhead

increases. Remember that to measure strong scaling, one requires a model that can

run decently on a single node, as well as on the maximum number of nodes. As a

result, one often ends up with a rather artificial setup that would normally not be

executed on such a large number of nodes.
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Figure 3.8: Strong scaling plot for the multi-core parallelism in Magritte.

3.4.3.2 Multi-core

Figure 3.8 shows the almost perfect scaling of the computation time of Magritte for

problem 1a in the van Zadelhoff benchmark [93], when using different numbers of

cores in a processor. Since the number of points will always be orders of magnitude

larger than the number of cores in a processor, the load balancing will almost always

be ideal. Since, furthermore, no communication is required, the overhead isminimal,

resulting in almost perfect scaling.

Throughout this chapter, we described the design of Magritte, its practical

implementation, and demonstrated its excellent performance on classical benchmark

problems. In the next chapter, we take this further and consider some examples of

real scientific applications.



Chapter 4

Astrophysical applications

Everything we see hides another thing.
We always want to see, what is hidden by what we see.

– René Magritte

4.1 Introduction
The scientific method in astronomy is somewhat peculiar, since most theoretical

models cannot be verified by direct experiments, but rather have to be inferred

indirectly from observations. As a result, for any theoretical model, a key question is:

how does it appear in observations? For observations of electromagnetic radiation,

this is a question about radiative transfer, in particular, about how much radiation is

emitted (or how much background radiation is absorbed) towards the observer.

With the advent of high-resolution spectroscopic imaging, for instance, using

the Atacama Large (sub-)Millimetre Array (ALMA), we can make observations in

unprecedented detail. The detailed images show us complexities that cannot longer

be ignored in models, such as, the distinct non-spherical morphologies recently

observed in the stellar winds around evolved stars by Decin et al. [113]. These

complexities make it very difficult to interpret the data. For the observations in [113]

alone, already tens of thousands of 3D hydro-chemical models are being created to

interpret the data (see e.g. [114–116], and several forthcoming papers). To be able to

compare thesemodels with the data, in order to understand the observed phenomena,

and to draw scientific conclusions, for instance, about the origins of these complex

stellar winds, we need to know how they would appear in (synthetic) observations.
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This can be done with Magritte, presented in Chapter 3. As other radiative transfer

solvers were deemed insufficiently accurate and too computationally expensive for

this task (see e.g. [28]), Magritte was especially designed to efficiently handle this

dauntingly large and diverse set of models (see also Chapter 5).

In this chapter, we demonstrate how, Magritte can be applied, in particular, to

create synthetic observations of these intricate hydro-chemical stellar wind models.

4.2 Synthetic observations
There is a hierarchy of several levels of detail that can be incorporated in synthetic

observations, see e.g. [117]. At themost basic level, they can be just a simple estimate

for the emission, based on some physical parameters of the model, whereas, on the

most advanced level, they are the result of a full radiative transfer model, possibly

even including instrumental effects. Here, we define a synthetic observation as an

image for each frequency bin, of all the radiation that escapes the model in a certain

direction, against the cosmic microwave background (see also Section 3.3.4). We

do not include any re-scaling based on distance or possible instrumental effects.

In the following, we consider snapshots of hydrodynamics models of the stellar

outflow produced by a mass-losing asymptotic giant branch (AGB) star, as it is

perturbed by a companion. A detailed discussion of how these models with different

discretisation schemes can be represented in Magritte will be given in Chapter 5.

4.2.1 AMR models

As a first example, we consider an MPI-AMRVAC [118] hydro-chemical model1 of

a mass-losing AGB star, that was kindly provided by Jan Bolte [119]. The AGB

star has a mass of 1 M�, an effective temperature of 2900 K, a radius of 0.9 AU,

and a pulsation period of 1 year. The companion has a mass of 0.5 M�, and follows

a circular orbit around the AGB star, with a (constant) separation of 10 AU. The

model uses a hierarchically refined Cartesian mesh, of which the cell centres (and

their nearest neighbour lists) are used as input geometry for Magritte.

1The same model is used as an example in Figure 8 in [21]. For a movie of the hydrodynamics
model and the synthetic observations, see youtu.be/DQ3tj1EwMmM.

https://youtu.be/DQ3tj1EwMmM
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Figure 4.1: Channel maps for the CO(E = 0, � = 1−0)-transition in an edge-on Magritte
synthetic observation of a companion-perturbed AGB wind model, simulated
with MPI-AMRVAC.
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Figure 4.2: Channel maps for the CO(E = 0, � = 1− 0)-transition in a face-on Magritte
synthetic observation of a companion-perturbed AGB wind model, simulated
with MPI-AMRVAC.



4.2. Synthetic observations 90

−50 0 50

Velocity [km/s]

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
in

te
n

si
ty

Edge-on

−50 0 50

Velocity [km/s]

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
in

te
n

si
ty

Face-on

Figure 4.3: Spectral line for the CO(E = 0, � = 1−0)-transition, obtained by integrating over
the corresponding channel maps for the edge-on (left; Figure 4.1) and face-on
(right; Figure 4.2) synthetic observations. The vertical grey lines indicate the
velocities of the corresponding channel maps.

Figures 4.1 and 4.2 show the channel maps, created with Magritte, for the

CO(E = 0, � = 1− 0)-transition in respectively an edge-on and a face-on view on

the companion-perturbed AGB wind model. The synthetic observations are taken

at time step, C = 33.3 years, in the hydro-chemical model. Figure 4.3 shows the

corresponding spectral lines for these channel maps. These lines are obtained by

integrating over the channel maps, without including any beam effects.

One can clearly distinguish the different spiral components in the synthetic

observations. There is one clear spiral emanating behind the companion, caused by

its gravity wake, and one fainter spiral emerging behind the AGB star, caused by

its reflex motion. Furthermore, in the higher-velocity channel maps of the face-on

view, one can neatly see the wind material glancing off the companion.

4.2.2 SPH models

As the next example, we consider two Phantom [120] hydrodynamics models of

mass-losing stars, kindly provided by Silke Maes [115] and Jolien Malfait [116].

First, we consider the regular spiral outflow created by an AGB star of mass

1.5 M�, an effective temperature of 3000 K, an effective radius of 1.267 AU, and a

wind initiated at 20 km/s, with a mass-loss rate of 10−4 M�/yr. The companion has



4.2. Synthetic observations 91

a mass of 1 M�, and resides on a circular orbit with a (constant) separation of 9 AU.

This model is referred to as S90fast in [115]. The model uses smoothed-particle

hydrodynamics, of which the particles (and their nearest neighbour lists) can directly

be used as input geometry in Magritte. Since no chemistry is included, we derive

the H2 density from the mass density (assuming H2 accounts for all the mass), and

assume a constant fractional abundance, =CO/=H2 = 10−4, for the CO number density.

Figures 4.4 and 4.5 show the channel maps, created with Magritte, for the

CO(E = 0, � = 1− 0)-transition in respectively an edge-on and a face-on view on

the companion-perturbed AGB wind model. The synthetic observations are taken

after 5 orbits of the companion in the hydrodynamics model. Figure 4.6 shows the

corresponding spectral lines for these channel maps.

We can clearly see the regular spiral structure emerging in both synthetic

observations. One distinct difference with the MPI-AMRVAC model from Section

4.2.1 is the symmetry along the line centre in frequency space. This is partially due

to the much larger length-scale at which we are observing, and partially due to the

much more radial nature of the velocity field in the model, see also [115].

The previous two examples show the applicability of Magritte for models

that exhibit a morphology that can relatively easily be interpreted. To demonstrate

the level of geometric complexity that can be modelled with Magritte, we present

a final hydrodynamics model of a mass-losing AGB star with a companion in an

eccentric orbit, modelled with Phantom. The AGB star has a mass of 1.5 M�,

an effective temperature of 3000 K, an effective radius of 1.267 AU, and a wind

initiated at 10 km/s, with a mass-loss rate of 2× 10−6 M�/yr. The companion has

a mass of 1 M�, and resides on an elliptical orbit with a semi-major axis of 6 AU,

and an eccentricity of 0.5. This model is referred to as v10e50 in [116]. Since

no chemistry was included, the CO number density is again derived assuming a

constant fractional abundance, =CO/=H2 = 10−4, and assuming that H2 is responsible

for all the mass density.

Figures 4.7 and 4.8 show the channel maps, created with Magritte, for the

CO(E = 0, � = 1−0)-transition in respectively an edge-on and a face-on view on the



4.2. Synthetic observations 92

Figure 4.4: Channel maps for the CO(E = 0, � = 1−0)-transition in an edge-on Magritte
synthetic observation of a companion-perturbed AGB wind model, simulated
with Phantom.
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Figure 4.5: Channel maps for the CO(E = 0, � = 1− 0)-transition in a face-on Magritte
synthetic observation of a companion-perturbed AGB wind model, simulated
with Phantom.
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Figure 4.6: Spectral line for the CO(E = 0, � = 1−0)-transition, obtained by integrating over
the corresponding channel maps for the edge-on (left; Figure 4.4) and face-on
(right; Figure 4.5) synthetic observations. The vertical grey lines indicate the
velocities of the corresponding channel maps.

eccentric companion-perturbed AGB wind model. The synthetic observations are

taken at time step, C = 55.7 years, in the hydrodynamics model. Figure 4.9 shows

the corresponding spectral lines for these channel maps.

The frequency dependence is again very symmetric around the line centre, due

to the radial nature of the velocity field, see also [116]. Nevertheless, the channel

maps neatly demonstrate the amount of complexity and morphological richness that

can be resolved with the more than one million particles in the model.

Synthetic observations for AGB wind models are a beautiful demonstration of

the complexity that can be modelled with Magritte. However, they are only one of

the many (astrophysical) applications in which Magritte can be applied.

4.3 Other applications
Radiative transfer models are an essential part of many astrophysical simulations.

For instance, Lime [48], which is in a sense a predecessor of Magritte (see e.g. [28]),

has been used for creating synthetic observations in a wide range of astrophysical

contexts: ranging from stellar environments [51, 55, 121, 122], to the accretion disk

around an active galactic nucleus [123], aiding with the discovery of giant water
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Figure 4.7: Channel maps for the CO(E = 0, � = 1−0)-transition in an edge-on Magritte
synthetic observation of the eccentric companion-perturbed AGB wind model,
simulated with Phantom.
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Figure 4.8: Channel maps for the CO(E = 0, � = 1− 0)-transition in a face-on Magritte
synthetic observation of the eccentric companion-perturbed AGB wind model,
simulated with Phantom.
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Figure 4.9: Spectral line for the CO(E = 0, � = 1−0)-transition, obtained by integrating over
the corresponding channel maps for the edge-on (left; Figure 4.7) and face-on
(right; Figure 4.8) synthetic observations. The vertical grey lines indicate the
velocities of the corresponding channel maps.

reservoirs in a forming planetary system [124], and complex organic molecules in a

protoplanetary disk [125]. Since Magritte provides very similar functionality and

improved performance (see e.g. [28]), one can easily envision its use in an equally

broad array of astrophysical research.

Furthermore, although currently full 3D radiative transfer is often still highly

approximated in most simulations, given the current performance of Magritte, it is

starting to become feasible to incorporate on-the-fly radiative transfer, for example,

in the heating, cooling, or photo-chemistry of hydro-chemical models. However,

this is still work in progress, and would, currently, only be practical for a very

limited number of models (see also Chapter 7). Meanwhile, reliable solvers, such as

Magritte, also can be used to devise better approximations for the radiative transfer

in these models, for instance, by emulation (see also Sections 1.5.2.1 and 7.2).

In this chapter, we established that Magritte can be a useful tool in a broad

range of astrophysical research, and explicitly demonstrated this bymaking synthetic

observations for several hydro-chemical AGB wind models. In the next chapter, we

look in more detail at how these and other models are represented in Magritte.



Chapter 5

Discretisation

Triangles are my favourite shape.
Three points where two lines meet.

Toe to toe, back to back let’s go, my love, it’s very late.
‘Til morning comes, ooh, let’s tessellate.

– alt-j (Δ), Tessellate

5.1 Introduction
The first step in building a simulation is finding a proper representation for the

simulated objects. Often, this comes down to finding an appropriate discretisation

for all physical quantities. This is an essential step, since the number of elements

in the discretisation will not only determine the direct memory cost of the model

but also its computational cost and ultimately the maximal achievable accuracy of

the simulation. Finding an appropriate discretisation scheme is thus a question of

optimising the trade-off between accuracy and computational cost.

Well-established solvers for radiation transport, for instance, OpenMC1 [126],

Tripoli-42 [127], and MCNP3 [128], which are used in industrial applications such

as nuclear engineering and medical imaging, use surface-based or combinatorial

representations as underlying geometrical models. These are constructed using

computer-aided design (CAD) software and consist of combinations of well-defined

shapes (e.g. cuboids, cylinders, spheres), of certain materials, with well-defined

boundary surfaces. As a result, the radiation transport can be considered through

1See also openmc.org.
2See also www.cea.fr/nucleaire/tripoli-4.
3See also laws.lanl.gov/vhosts/mcnp.lanl.gov.

https://openmc.org/
http://www.cea.fr/nucleaire/tripoli-4/
https://laws.lanl.gov/vhosts/mcnp.lanl.gov/index.shtml
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one material at a time and rays can be traced from one surface to the next, similar

to the rendering techniques used in modern computer graphics, see e.g. [129]. The

resulting highly accurate representations of the models allow for the highly accurate

solutions that are required in these types of applications.

In contrast, in astrophysical and cosmological simulations, one is interested

in the radiation field in fluids with continuously varying properties throughout the

model. Therefore, the geometries of these models always have to be discretised

before they can be numerically solved, leading to a first inescapable source of

numerical error. The geometries that are used are often inherited from a previous

simulation step. Typically, these radiative transfer solvers are used on top of a

hydrodynamics solver to compute for instance the radiative pressure, or they are

used to post-process snapshots of hydrodynamics simulations to produce synthetic

observations. In those cases, the radiative transfer solver uses the same geometric

model mesh as the hydrodynamics solver, although those meshes are usually only

optimised for the latter.

Over the years, the spatial discretisation schemes used in hydrodynamics solvers

have evolved from static structured meshes, to hierarchical meshes resulting from

adaptive mesh refinement (AMR, [130]), to unstructured and dynamically evolving

meshes [131]. Additionally, there are mesh-less smoothed-particle hydrodynamics

(SPH) solvers that do not rely on a mesh, but rather evolve a set of particles with

appropriate smoothing kernels [132, 133]. The spatial discretisation schemes used

in radiative transfer simulations evolved accordingly from structured to unstructured

meshes [134], and further to mesh-less schemes [28, 42]. For an assessment of

the use of unstructured Voronoi meshes in (Monte Carlo) radiative transfer, see e.g.

[135], and for the use of hierarchical octree and the more general :-d tree meshes

see e.g. the work by Saftly et al. [136, 137].

In further contrast to the more industrial radiative transfer applications, in

astrophysics and cosmology, we are almost never interested in a highly accurate

solution of a specific model, but rather in understanding, for instance, the more

general driving mechanisms that govern a set of models. For example, where in
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nuclear engineering it is crucial to be able to accurately describe the effect of adding

a single fuel rod in a reactor, it is far less important in cosmology, for instance, to be

able to describe the effect of one additional filament in the cosmic web. This allows

us to optimise our models more aggressively, retaining only the essential features

under investigation.

In this chapter, we will have a closer look at the discretisation of models in

the Magritte software library (see also Chapter 3), and we propose some heuristic

methods to optimise the discretisation for radiative transfer computations.

5.2 Discretisation
The radiation field is a function of position, direction, and frequency. Therefore, in

the following sections, we distinguish between the spatial, spectral, and directional

discretisations in Magritte.

5.2.1 Spatial discretisation

There aremany different types of spatial discretisation schemes, each tailored to their

specific use cases. Over the years, there has been a clear evolution from structured

schemes, like e.g. regular Cartesian grids, to unstructured schemes, like e.g. Voronoi

grids or smoothed particle hydrodynamics (SPH) discretisations.

Since we aimed to build a general-purpose library that can easily be integrated

with other codes, we did not want to tie Magritte to a certain discretisation scheme.

Instead, we designed our algorithms such that they only require data that can easily

be deduced from any discretisation scheme, and yet allow us to efficiently trace

rays and solve the transfer equation. As a result, the ray-tracing algorithm used

in Magritte, presented in Section 3.3.2, only requires the positions of the cell

centres4 (or equivalently the positions of the particles in an SPH scheme) and the

nearest neighbours lists for each cell (or particle). Hence, the input is effectively a

point cloud complemented with nearest neighbour information. The boundary of

the model can then be defined as the convex hull of the point cloud.

4We do not require a strict definition of the cell centre. If we define a cell as a unit in the
discretisation of the spatial volume, then the cell centre may be any point in that volume. (We only
use the cell centre to locate the cell.)
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In principle, one could use a separate spatial discretisation to sample the density,

velocity and temperature distributions of the model. In practice, however, one

usually samples all three on the same discretisation. This is the case, especially for

hydrodynamics computations, where all these parameters should be sampled equally

well. However, for radiative transfer computations, especially when considering

lines, it is essential to properly sample any changes in the velocity field along a

certain line of sight. Since this effect depends on the velocity field in a certain

direction it is difficult to fully take this into account in the spatial discretisation.

In Magritte, when detecting large changes in the velocity field along a ray, we

make an appropriate interpolation on-the-fly during ray-tracing, without adjusting

the mesh (see also Section 3.3.2). Therefore, the effective discretisation that is used

by the solver in Magritte is ultimately determined by the ray-tracer.

5.2.2 Spectral discretisation

The requirements for the spectral discretisation vary for different stages of the

radiative transfer simulation. For instance, when determining the level populations,

we are only interested in the radiation in the lines, whereas when computing spectra

we require a proper frequency sampling over the full spectrum. To accommodate

this, Magritte can change its spectral discretisation throughout a simulation.

At the stage where the level populations are obtained, the frequency bins are

distributed to suit the integration of the radiation field over the line. In Magritte,

these integrals are evaluated using quadrature formulae. Assuming a Gaussian line

profile, the corresponding Gauss-Hermite quadrature for any frequency dependent

function, H(a), is given by,

∫ ∞

0
da q8 9a (x) Ha →

#q∑
==1

F= H
(
a8 9 + A=Xa8 9

)
, (5.1)

where #q is the number of quadrature points and the quadrature weights read,

F= =
2#q−1#q!(

#q�#q−1(G=)
)2 , (5.2)
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in which�#q−1 is the physicists’ version of the Hermite polynomial and the A= are the

roots of the physicists’ version of the Hermite polynomial �#q (G) (see e.g. [138]).

To be able to easily evaluate these quadratures in Magritte, we define a separate

set of frequency bins for each point in the model, given by,

{
a8 9 + A= Xa8 9 (x), for each transition 8 9 and root A=

}
, (5.3)

possibly appended with additional frequency bins. Note that this set has to be

different for each point, since it depends on the local line profile width, Xa8 9 (x).

At the stage where spectra or images are created, extra frequency bins can be

appended to the list above to improve the sampling of the spectrum.

5.2.3 Directional discretisation

Magritte is a ray-tracing code, i.e. the radiation field is determined by solving the

radiative transfer equation along a set of rays (straight lines) originating from each

point in the model. A ray can be defined by a point and a direction. The directions of

the rays determine the solid-angular resolution, which is critical, for instance, in the

computation of the mean intensity, and, when considering scattering, it implicitly

discretises the possible scattering angles.

In general, there are no preferred directions. Therefore, initially, we discretise

the directions uniformly. In 1D and 2D models this is trivial. In 3D, we determine

the direction of a ray using the HEALPix5 discretisation of the sphere [139]. Given

a level of refinement, ;, it discretises a unit sphere in #rays = 12× 4; uniformly

distributed pixels of equal area. For each pixel, there is an associated unit vector

pointing from the origin of the sphere to the pixel centre. These unit vectors

determine the directions of the rays in Magritte for 3D simulations. Hence, a

directional average for a quantity, H(n̂), can be translated into an average over rays,

1
4c

∮
dΩ H(n̂) → 1

#rays

#rays∑
A =1

HA . (5.4)

5See also healpix.sourceforge.net.

http://healpix.sourceforge.net
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It should also be noted this does not correspond to any exact quadrature scheme, in

contrast to the spectral discretisation. The uniform sampling also bears the danger

of missing the contributions of very localised sources of emissivity or opacity.

Furthermore, there might be situations in which there is one or more preferred

directions, and onemight better consider a non-uniformdistribution of ray directions.

Therefore, in Section 5.3.3, we investigate an adaptive directional weighting scheme,

which is part of our more generally adaptive approach to ray-tracing.

5.3 Adaptive ray-tracing
Various methods have been devised to compute the radiation field in a given medium

by solving the radiative transfer equation. Magritte employs a ray-tracer and formal

solver and thus solves the radiative transfer equation along a set of predefined rays

through the model. The ray-tracer follows a straight line through the model and

gathers the emissivities and opacities along that ray, which are then used to solve

the radiative transfer equation. By stepping from one point to the next it indirectly

determines the optical depth increments, and thus the step size, in the discretised

transfer equation used by the solver. The first version of Magritte employed a

second-order radiative transfer solver [28, 33], but the current version also provides

the more accurate (Hermitian) fourth-order scheme by Auer [109], with second and

third-order boundary conditions respectively [108] (see also Appendix A). In the

following sections, we describe three ways in which the rays can be adapted to a

particular model to further improve the accuracy of the solver.

5.3.1 Adaptive velocity sampling

Since Doppler shifts can cause significant variations in emissivity and opacity within

a frequency bin, it is crucial to properly sample the velocities encountered along

a ray. This is even more important for line radiative transfer, where significant

changes occur in particularly narrow frequency ranges. In Section 3.3.2, it was

already discussed how Magritte accounts for this by interpolating the velocity

along a ray between two points if its change is too large. As we will see below, this

can be extended by applying a similar approach to the optical depth increments.
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5.3.2 Adaptive optical depth increments

InMagritte, the radiative transfer equation is solved in its second-order or Schuster-

Feautrier form (Equation 1.16; see also Section 3.3.3 and Appendix A). The optical

depth (within each frequency bin) is thus the relevant dependent variable. Assuming

a proper sampling of the emissivity and opacity, the discretisation error will thus

be determined mainly by the size of the optical depth increments. This means that

a model mesh can perfectly sample the relevant radiative data, but nevertheless

produce a large discretisation error. To resolve this, we adapt the optical depth

increments as they are computed. In particular, we divide the interval on the

ray between the (projected) points, = and = + 1, in =inter equal parts and linearly

interpolate the emissivities and opacities on the sub-intervals. By defining the

number of interpolations as,

=inter ≡
⌈
max {j=, j=+1}ΔB=

Δgmax

⌉
, (5.5)

in which j= and j=+1 denote the maximum opacities of the two consecutive points,

and ΔB= is the distance increment along the ray, we can ensure that the optical depth

increments along the ray are always smaller than a predefined value, Δgmax.

It is important to note that the adaptive velocity sampling is still a separate

process that happens before the adaptive optical depth increments are computed and

that the former cannot be included in or replaced by the latter. For example, a large

change in velocity along a ray which Doppler shifts a line from one wing to the other

will not result in a particularly large optical depth increment, but will leave the line

unaccounted for, increasing the error on the computed radiation field.

5.3.3 Adaptive directional discretisation

Many applications of radiative transfer computations require directional integrals

over the radiation field to compute, for instance, the radiative heating or cooling, or

to compute the radiative pressure. In those cases also the directions of the rays need
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to be discretised. Given a function, H (x, n̂), the directional integral is discretised as,∮
dΩ H (x, n̂) →

∑
A ∈R8

F8A H8A , (5.6)

where the 8 and A indicate the point and ray index respectively, and R8 is the set of

rays originating from point 8. The main difficulty is to determine an appropriate set

of rays, R8, for each point. Once these are known, the corresponding weights, F8A ,

can readily be computed.

Assuming that the points in the mesh properly sample the relevant distributions

in the model, for each point in the mesh, the directions of the other points with

respect to that point will properly sample the relevant directions for that point.

Therefore, ideally, the discretisation of the directions for a point in the mesh would

follow the distribution of the directions of the other points with respect to that

point. Furthermore, since this discretisation has to be generated for every point

in the mesh, the procedure cannot be too computationally demanding. Therefore,

we propose a structured adaptively refining scheme based on HEALPix [139]. In

Section 5.2.3, we already showed how HEALPix can be used to produce uniform

directional discretisations. Now, by stitching together parts of the uniformHEALPix

discretisations with different levels of refinement, we can obtain a locally refined

directional discretisation adapted to the point density in the mesh.

Starting from a HEALPix discretisation with a minimal level of refinement,

;min, we can refine the pixels according to the distribution of the directions of the

other points, until a predefined maximal level of refinement, say ;max, is reached.

Figure 5.1 shows a Cartesian projection of an example of the resulting discretisation

of the unit sphere. Since Magritte considers pairs of antipodal rays, there is an

antipodal symmetry in the directional discretisation.

To obtain the distribution of the directions of the other points with respect to

the point under consideration, we draw a uniformly distributed sample of 10 000

points from the mesh and record the HEALPix pixels they belong to for each level

of refinement from ;min up to and including ;max. In practice, we only need to
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Figure 5.1: Example of the adaptive hierarchical discretisation of directions around a point,
in Cartesian projection, using four different orders of the HEALPix scheme
(from ;min = 1 to ;max = 4). More rays are traced in the directions with a higher
mesh point density. The blue dots indicate the centres of the direction vectors
and the grey lines delimit the HEALPix pixels.

compute the distribution at the highest level of refinement. The results for the other

levels can be obtained by downgrading the resulting map, leveraging the nested

ordering scheme in HEALPix [139]. To decide which pixels to refine, we order

them according to the number of directions of other points belonging to them, and

only refine the top half. To ensure that the same number of rays is traced for each

point we fix the number of pixels that is refined at each level ; to be 6× 2; . This

implies that at each level (except ;max), half of the pixels is further refined.

Since HEALPix partitions the unit sphere in pixels of equal area, the weight

corresponding to a pixel obtained with a level of refinement, ; (8, A), is the inverse of

the number of pixels at that level,

F8A =
1

12×4; (8,A)
, (5.7)

where the level of refinement depends on the originating point, 8, and the direction

of the ray, A. This adaptive refinement scheme allows us to obtain a more efficient

sampling for the directional dependence in the radiation field.
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5.3.4 Other forms of adaptive ray-tracing

We should point out that our approach is quite different from the one proposed by

Abel & Wandelt [140], who originally coined the term “adaptive ray-tracing” in the

context of radiative transfer for cosmological simulations. Their idea, to split rays as

they reach further away from their origin to obtain a more constant volume coverage,

is ideal for direct solvers or short-characteristics methods but would be difficult to

implement in our second-order solver. In contrast, our approach is more related to

adaptive mesh refinement (AMR) methods, but applied on-the-fly along the ray and

in the directional discretisation.

We were certainly not the first to propose a multi-resolution discretisation

of the sphere using HEALPix. For instance, in [141] an hierarchical progressive

survey (HiPS) schemewas proposed to represent astronomical data, using HEALPix

tessellations of different orders. Moreover, in [142], an improved version of the

HEALPix data structure was proposed, specifically tailored for a multi-resolution

representation of large and sparse data sets. In our work, as our discretisation scheme

is relatively simple, we only used the classical HEALPix scheme [139].

5.4 Spatial mesh construction & reduction
Over the years, many different algorithms have been devised to partition a given

volume for use in a computer, see for instance the classic book by Thomson [143],

the more recent treatment by George & Frey [144], and the references therein.

Many of these algorithms have furthermore been implemented in various software

libraries. For all models in this thesis we have used the open-source meshing library,

called Gmsh6, by Geuzaine & Remacle [145]. Gmsh provides various methods to

generate a tetrahedral Delaunay mesh for a domain given a desired local element size

distribution. Since the local element size is directly related to the local edge lengths

of the tetrahedra, it allows us to control the step sizes along the rays traced through the

domain. Although Magritte does not require a complete and fully consistent mesh

(it only requires a point cloud and nearest neighbour information), the Delaunay

6See also gmsh.info.

https://gmsh.info/
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Figure 5.2: A ray traced through the Voronoi mesh (top) and its topologically dual Delaunay
mesh (bottom). Note that every distance increment along the ray is the projection
of the edge of the Delaunay triangle connecting the traversed Voronoi cell
centres. Hence, the lengths of the edges are a local upper limit for the step size
encountered along the ray.

meshes, or their topologically dual Voronoi meshes, provide an excellent means

to capture the complex morphologies typically encountered in radiative transfer

simulations. Figure 5.2 shows a ray traced through a domain of Voronoi cells

and the corresponding dual Delaunay tetrahedralisation. To use these meshes in

Magritte, the Delaunay vertices (or Voronoi centres) can be used as the points and

the nearest neighbours can be extracted from the edge list of the mesh, since every

pair of nearest neighbours always shares an edge.
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5.4.1 Meshing analytic models

Although many astrophysical objects are characterised by irregular structures that

are difficult to describe with analytic models, it is nevertheless useful to study these

analytic approximations, since they often make it easier to disentangle the effects

of the various processes taking place. When discretising such a model, the key

objective is to properly sample the functions that describe the model parameters.

For simplicity we will restrict ourselves to one function, say 5 (x), for which we

want to optimise the mesh. We call this the tracer function and we assume it to be

positive, i.e. 5 (x) ≥ 0. In radiative transfer computations the density distribution

is often used for this purpose. Properly sampling a function for use in a differential

equation solvermeans properly tracking its changes through the domain. Amesh that

properly samples the tracer function will have small elements whenever the change

in the tracer is large and vice versa. Therefore, in order to quantify the desired local

element size distribution, we need to quantify the maximal local relative change in

the tracer function. This is given by the norm of the gradient of its logarithm, which

we will denote as,

� 5 (x) ≡ max
n̂∈ (2

{
n̂ · ∇ 5 (x) / 5 (x)

}
= ‖∇ log 5 (x)‖. (5.8)

This can be used in a map to obtain the desired element size distribution, ℓ(x), of

the model mesh. We thus look for a continuous mapping that (at least roughly) maps

max{� 5 (x)} to min{ℓ(x)}, and maps min{� 5 (x)} to max{ℓ(x)}.

Given the form of the radiative transfer equation one could argue that when

constructing the mesh, one should strive to keep the optical depth increments as

small as possible. However, this is not strictly required here, since Magritte

will automatically limit the size of the optical depth increments by interpolating

the optical properties where necessary. Furthermore, it was already shown, in the

context of subdivision stopping criteria for adaptively refined meshes in [137], that it

is far more important that a mesh allows us to accurately sample the model functions

than to limit the encountered optical depth increments. Therefore, we use a linear

mapping from [max{� 5 (x)},min{� 5 (x)}] to [min{ℓ(x)},max{ℓ(x)}]. Any other
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mappingwould have a larger local gradient in the desired local element size function,

and would therefore make it harder to mesh.

Although Gmsh has the option to construct meshes from an analytically defined

element size distribution, it is often much simpler to provide the element size

distribution evaluated on a background mesh. Therefore, we consider a regular

Cartesian mesh that will be used as a background mesh. The resolution of the

background mesh is determined by the smallest scales of the tracer function that

we want to resolve, say ℓmin. This is also the lower bound for the desired element

size distribution. Similarly, we define an upper bound for the desired element size

distribution, ℓmax, which can be defined as a fraction of the size of the domain.

Once an appropriate background mesh is created with the desired element size

distribution evaluated on it, Gmsh can accordingly generate a mesh for a given

domain. We demonstrate this method with an example in Section 5.5.1.

5.4.2 Re-meshing existing models

Since radiative transfer simulations are often only one of the many components in a

larger simulation pipeline, the spatial discretisations that are used are often inherited

from previous simulation steps. Therefore, the corresponding meshes are usually

not tailored to the radiative transfer solvers, and, as a result, contain an exceedingly

large number of elements. In this section, we present a simple heuristic algorithm

to reduce the number elements in a given mesh, while preserving a proper sampling

of a given tracer function or variable in the model, typically the density.

When re-meshing a given model, we need to know where the resolution of the

original mesh is essential for the accurate representation of the model and where

it (potentially) could be coarsened. This can again be quantified by the maximum

relative change of a tracer function (or variable) at a point with respect to its

neighbours, which can be expressed as an operator acting on the tracer function,

� 58 ≡ max
{���� 58 − 5=58 + 5=

���� , for each neighbour = of point 8} . (5.9)

By definition, � 58 ∈ [0,1], so we can define a simple threshold value, � thres, above
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Table 5.1: Empirically determined parameters for the reduction algorithm.

Model type 5small 5large � thres

AMR 0.90 2.10 0.10
SPH 1.00 2.15 0.21

which the original local element size is deemed essential. We can now assign a

desired local element size, ℓ(x), as a fraction of the original local element sizes,

! (x), where the fraction is determined by the local change in the tracer function,

ℓ(x) = ! (x)


5small if � 5 (x) ≥ � thres

5large otherwise
(5.10)

in which the local element sizes of the original mesh are given by,

!8 ≡ mean
{
‖x8 −x=‖ , for each neighbour = of point 8

}
. (5.11)

The algorithm thus depends on three predefined parameters: 5small, 5large, and� thres,

for which the empirically determined values used for the applications in this thesis

can be found in Table 5.1. Examples of this method are given in Section 5.5.2.

We should note that several variations are possible on the mapping to obtain the

desired local element size distribution. However, due to the stochastic nature of the

mesh construction process, the differences quickly blur, resulting in similar meshes.

The particular map presented in (5.10) was chosen because it is a direct expression

of our objective to coarsen the mesh where possible and retain the original mesh

size where it is deemed essential for a proper representation of the model.

5.5 Applications
In this section we apply the mesh construction and reduction methods to a set of

models inspired by analytic and numeric models of spiral-shaped stellar outflows

(see also Chapter 4). These types of models are currently being developed to

investigate the effect of companions on the shapes of the dust-driven winds of cool

evolved stars, which have been found to deviate substantially from the originally
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assumed spherically symmetric wind model [113]. Understanding the origin of

these features could help explain the morphological evolution towards the highly

aspherical planetary nebula phase.

5.5.1 Meshing analytic models

As an example of an analytically definedmodel, we consider a stellar wind described

by an Archimedean spiral with generic parameters, following the setup in [121].

Figure 5.3 shows two slices through the model, showing the density distribution as

well as the underlying mesh generated with Gmsh using the method described in

Section 5.4.1. In this example, the density was used as a tracer function to determine

the desired local element size distribution, with a minimum desired element size of

ℓmin = 15 AU and a maximum desired element size of ℓmax = 50 AU. The regular

Cartesian background mesh is defined in a cubic box of size (1200 AU)3 and a

resolution of 1003 elements. The resulting mesh consists of 49 347 points, a modest

number considering the relatively complex morphology. One can easily obtain even

sparser meshes, either by increasing the minimum or maximum desired element

sizes, or by applying the reduction method presented in Section 5.4.2. The latter

technique will be demonstrated in the next section.

5.5.2 Re-meshing existing models

In the following, we consider four examples of how hydrodynamics models can

be reduced, i.e. coarsened, before they are used as input in a radiative transfer

solver. We consider two models based on an hierarchical octree mesh resulting from

adaptive mesh refinement (AMR), and two models based on smoothed-particle

hydrodynamics (SPH) simulation data.

5.5.2.1 AMR models

The basic idea of an octree discretisation of a 3D space is to locally subdivide an

initial cubic cell into eight sub-cells until the desired local mesh size is achieved.

Hydrodynamics solvers using adaptive mesh refinement often use an octree as the

underlying geometric data structure. We consider late snapshots of two different

hydrodynamics models of the intricate stellar outflow produced by a mass-losing
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Figure 5.3: Model mesh for the analytic stellar wind model described by an Archimedean
spiral. The top row shows slices through the centre along the GH-plane and the
bottom row shows slices along the GI-plane.

asymptotic giant branch (AGB) star as it is perturbed by a companion, modelled using

MPI-AMRVAC7 [118]. We used the code with a Cartesian mesh and allowed for 8

levels of adaptive refinement. The hydrodynamic simulations were kindly provided

by Jan Bolte. More details about the models and their astrophysical interpretation

can be found in [119] (see also Chapter 4).

The first example, shown in Figure 5.4, contains a relatively regular spiral

outflow. Reducing the model using the algorithm described in Section 5.4.2, the

resulting reduced mesh contains about 10.2 times fewer points than the original one.

This results in a speedup factor of 18.3 for the computation of the radiation field. In

the second example, shown in Figure 5.5, we consider a more erratic spiral outflow.

7See also amrvac.org.

https://amrvac.org/
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Table 5.2: Properties of the original and reduced meshes and the resulting speedup that is
achieved in computing the radiation field.

Model #original #reduced reduction speedup
AMR regular 642 048 62 984 10.2 18.3
AMR erratic 627 712 75 137 8.4 12.6
SPH regular 916 601 82 554 11.1 35.0
SPH erratic 820 471 76 660 10.7 34.1

This leads to a reduced mesh containing 8.4 times fewer points than the original one,

which results in a 12.6-fold speedup. The parameters of the reduction algorithm

can be found in Table 5.1 and the properties of the original and reduced meshes are

summarised in Table 5.2.

In both examples, one can see in the reduced meshes some artefacts of the

levels of refinement in the original meshes. This is due to the fact that the desired

element sizes in the algorithm are determined by the original element sizes.

To quantify the quality of the reduced meshes we compute the radiation field

for both the original and reduced models using Magritte and calculate the absolute

relative difference between the results. The solution on the reduced mesh can be

mapped to the original by barycentric interpolation on the reducedmesh to each point

in the original mesh. This can readily be done using the LinearNDInteprolator

in Scipy [110]. The absolute relative difference between the results can then be

computed by point-wise dividing the absolute difference by the result on the original

mesh. In order to gauge the overall distribution of the errors, Figure 5.6 presents

the cumulative density distribution of the relative errors. The more than 10% of

points with an error below 10−3 in the AMR erratic model are due to the fact that

the reduced mesh at small resolutions still closely resembles the original one.

Since the internal geometric data structure in Magritte consists of a point

cloud with nearest neighbour information, the hierarchical octree mesh produced by

MPI-AMRVAC cannot be used directly as input for Magritte. However, a natural

way to map the octree mesh to a point cloud is to associate all cell data with the

cell centre, then use the cell centres as points in Magritte, and extract the nearest

neighbour information from the hierarchical octree.
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Figure 5.6: Cumulative distribution function of the relative errorswith respect to the original
meshes for the different models, computed for 1000 bins. The properties of the
different meshes can be found in Table 5.2.

Figures 5.7 and 5.8 show a comparison between a dense regular directional

discretisation containing 12× 28 = 3072 rays and our adaptive scheme containing

only 552 rays for a point half way along the I-axis looking down on the GH-plane

of the AMR models. The adaptive scheme allows for 3 levels of refinement, from

;min = 1 up until ;max = 4. Although the results on the coarser adaptive discretisation

clearly shows some differences with the finer regular one, the overall relative errors

are limited, as can be seen from the cumulative distribution of the relative errors

between the dense regular and adaptive models, shown in Figure 5.9. More than

60% of all the rays originating from all the points show a relative error below 10%,

and more than 80% show a relative error below 20%. Note that about 20% of the

points have a relative error below 10−3. This is due to the fact that the maximally

refined directions in the adaptive scheme have the same order, and hence exactly the

same rays, as in the dense regular scheme, yielding exactly the same results.

5.5.2.2 SPH models

In smoothed-particle hydrodynamics (SPH) simulations, rather than defining the

physical quantities on a mesh, the model is described by a number of particles with

definite properties and smoothing kernels describing their proliferation. We again
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Figure 5.9: Cumulative distribution function of the relative errors of the adaptively ray-
traced models with respect to the regular ones, computed for 1000 bins. The
reduced meshes (see Table 5.2) were used as spatial discretisation.

consider late snapshots of two hydrodynamics models of the intricate stellar outflow

produced by a mass-losing asymptotic giant branch (AGB) star as it is perturbed by

a companion, this time modelled using the smoothed-particle hydrodynamics code

Phantom8 [120]. The hydrodynamics simulations were kindly provided by Silke

Maes and Jolien Malfait. More details about these models and their astrophysical

interpretation can be found in [115, 116]. These are the same models that we used

to create synthetic observations of in Chapter 4.

The first example, shown in Figure 5.10, describes a very regular spiral outflow.

Reducing the model using the algorithm described in Section 5.4.2, the resulting

reduced mesh contains 11.1 times fewer points than the original. This results in

a speedup factor of 35.0 for the computation of the radiation field. In the second

example, shown in Figure 5.11, we consider a much more erratic spiral outflow.

Despite the complex morphology, the reduced mesh still contains 10.7 times fewer

points than the original, resulting in a 34.1-fold speedup. The parameters of the

reduction algorithm can be found in Table 5.1 and the properties of the original and

reduced meshes are summarised in Table 5.2.

8See also phantomsph.bitbucket.io.

https://phantomsph.bitbucket.io/
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The quality of the meshes can again be quantified by comparing the results of

a radiative transfer computation using Magritte between the original and reduced

meshes. The results of the reduced mesh can be mapped to the original one in the

same way as with the AMR models. Figure 5.6 shows the cumulative distribution

of the relative errors between the original and reduced meshes. The SPH erratic

model shows a relative error below 10% for about 90% of its points. This can be

attributed to the fact that the original SPH model already had a higher sampling that

follows the morphology more closely. Since the desired element sizes are based on

this sampling, the resulting meshes are of a higher quality, explaining the observed

lower relative errors.

The point cloud structure of an SPH data set maps naturally to the internal

geometric data structure of Magritte, and thus can be used as such. However, it

should be noted that in this way we do not account for the SPH smoothing kernels

in the radiative transfer computations.

Figures 5.12 and 5.13 show a comparison between a dense regular directional

discretisation containing 12× 28 = 3072 rays and our adaptive scheme containing

552 rays for a point half way along the I-axis looking down on the GH-plane of the

SPHmodels. The adaptive scheme allows for 3 levels of refinement from ;min = 1 up

until ;max = 4. In accordance with the results for the AMRmodels, the results for the

SPH models on the coarser adaptive discretisation clearly shows some differences

with the finer regular one, while the overall relative errors are again limited, as can

be seen from the cumulative distribution of the relative errors between the dense

regular and adaptive models shown in Figure 5.9. More than 60% of all the rays

originating from all the points show a relative error below 10%, and more than 80%

show a relative error below 20%. Note also here that about 20% of the points have

a relative error below 10−3, which can be attributed to the fact that the maximally

refined directions in the adaptive scheme have the same order and hence exactly the

same rays as in the dense regular scheme, yielding again exactly the same results.

In this chapter, we demonstrated how typical input models for radiative transfer

simulations can successfully be reduced to speed up computations by more than an
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order of magnitude with only limited loss in accuracy. However, the methods are

rather heuristic and we cannot provide any guarantees for their success. Therefore,

in the next chapter, we present a probabilistic framework to put these methods on a

stronger mathematical footing.



Chapter 6

Probabilistic solution methods

Some men went fishing in the sea with a net, and upon examining what they caught,
they concluded that there was a minimum size to the fish in the sea.

– Arthur S. Eddington

6.1 Introduction
Throughout this thesis, we already discussed several methods to accelerate radiative

transfer computations. Some of them should (at least in principle) not affect the

accuracy of the results, such as e.g. acceleration of convergence, parallellisation,

and GPU offloading, while others, such as e.g. the particular choice of solver and

the mesh reduction methods involve a trade-off between computational speed and

accuracy. In this chapter, we present a probabilistic mathematical framework to

study and optimise this trade-off between computational speed and accuracy.

Considering the mesh reduction techniques presented Chapter 5, one can argue

that they are wasteful, since they discard most of the data that is contained in the

original model. One of the goals of this chapter will be to present a method in which

all data can be taken into account, while still effectively reducing the size of the

radiative transfer problem that needs to be solved. At the same time, this method

will provide a measure for the uncertainty that is introduced by reducing the system,

as a measure of the information lost due to compressing the model. Furthermore,

we will attempt to relate this measure of uncertainty to the absolute uncertainty

on radiative transfer computations, to become, unlike the fishermen in Eddington’s

parable, aware of the effects of our solution methods on our results.
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6.2 Probabilistic methods
We present a probabilistic numerical approach to radiative transfer simulation by

formulating the solution of the radiative transfer equation as a linear regression

problem. We start at the very beginning to gradually introduce the concepts and

ideas in our notation. For a more comprehensive introduction, see e.g. [146, 147].

6.2.1 Linear regression

The aim of a linear regression model is to approximate (or fit) a function, 5 , with

a linear combination of basis functions, q8, based on data in the form of function

evaluations, i.e. pairs of the form (G8, H8 ≡ 5 (G8)). Given a set of #b basis functions,

{q8}, and a set of #d data points, {(G3 , H3)}, the approximation can either be

expanded in terms of the basis function or in terms of the data, resulting respectively

in a primal and dual formulation.

6.2.1.1 Primal formulation

In the primal formulation, the function approximation, 5̃ (G), is modelled as a linear

combination of the basis functions,

5̃ (G) =
#b∑
8=1

F8 q8 (G) ≡ wT5(G), (6.1)

where we defined the weight vector, w, and basis function vector, 5. The appropriate

weights, F8, can be found, for instance, by minimising the regularised and weighted

mean squared error between the model and the data,

RMSE(w) ≡
#d∑
3=1

1
f2
3

(
wT5(G3) − H3

)2
+

#b∑
8=1

(
F8

_8

)2
. (6.2)

The factors, f−2
3
, weight the contributions of the different data points to the mean

error, and are summarised in the diagonal matrix 2 ≡ diag(f3). We also added a

regularisation term, characterised by the diagonalmatrix , ≡ diag(_8), penalising the

size of the components of the weight vectors, which will guarantee the existence of a

unique solution, as we will see below. If we define the design matrix, Φ38 ≡ q8 (G3),
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and the data vector pair, (x, y), equation (6.2) can conveniently be rewritten as,

RMSE(w) ≡
(
2−1 (�w− y)

)2
+

(
,−1w

)2
, (6.3)

in which the square of a vector, a, is defined as (a)2 ≡ aTa. Minimising this error

function by demanding a vanishing gradient with respect to the weights, w, yields,

(
�T2−2� + ,−2

)
wmin = �T2−2 y, (6.4)

such that the resulting function approximation reads,

5̃ (G) = yT2−2�
(
�T2−2� + ,−2

)−1
5(G). (6.5)

The inverse is guaranteed to exist as long as the regularisation term is non-zero, i.e.

_8 ≠ 0,∀8 ∈ {1, . . . , #b}1. Note that a (#b×#b)-dimensional linear system must be

solved to obtain the approximate solution, and hence the computational cost of the

primal formulation is mainly determined by the number of basis functions, #b.

6.2.1.2 Dual formulation

In the dual formulation, the function approximation, 5̃ (G), is modelled as a linear

combination of (evaluations of a kernel function on) the data,

5̃ (G) =
#d∑
3=1

E3 : (G3 , G) ≡ vT: (x, G), (6.6)

in which the kernel is defined in terms of the basis functions,

: (G, G′) ≡
#b∑
8=1
q8 (G)_2

8 q8 (G′) = 5(G)T,25(G′). (6.7)

In case of an uncountably infinite set of basis functions this can readily be rewritten

in an integral form. From this definition of the kernel, it can be seen that the

weights of the primal and dual formulation are related as, w = ,2�Tv. Also here,

1This can be seen e.g. from the singular value decomposition of the matrix that is to be inverted.
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the appropriate weights can be obtained by minimising the regularised and weighted

mean squared error. In terms of the new weights, v, this error reads,

RMSE(v) ≡
(
2−1

(
�,2�Tv − y

))2
+

(
,�Tv

)2
. (6.8)

Minimising this error function by demanding a vanishing gradient with respect to

the new weights, v, then gives,

(
�,2�T2−2�,2�T + �,2�T

)
vmin = �,2�T2−2 y. (6.9)

Note that �,2�T might not be invertible and thus equation (6.9) might not have

a unique solution. However, we can always pick the uniquely solvable system that

will also minimise (6.8), by ignoring the extra factor, �,2�T2−2, yielding,

(
�,2�T + 22

)
vmin = y. (6.10)

The resulting function approximation then reads,

5̃ (G) = yT
(
�,2�T + 22

)−1
: (x, G). (6.11)

Note that the inverse is guaranteed to exist as long as f8 ≠ 0,∀8 ∈ {1, . . . , #d}. In this

case, a (#d×#d)-dimensional linear systemmust be solved to obtain the approximate

solution, and thus, in contrast to the primal formulation, the computational cost of

the dual formulation is determined mainly by the number of data points, #d.

It should be noted that the dual formulation can also be constructed directly

from a given kernel without any link to a set of basis functions. In particular,

since the design matrix always appears in the combination,�,2�T = : (x,x), it can

always be replaced by its equivalent kernel expression.

6.2.1.3 Primal versus dual formulation

One can show that the primal (6.5) and dual (6.11) solutions are equal. This requires,

2−2�
(
�T2−2� + ,−2

)−1
=

(
�,2�T + 22

)−1
�,2, (6.12)
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as proved in Appendix B.1. The only, yet key, difference between both formulations

is thus the size of the linear system that needs to be solved to obtain the solution.

In particular, if there are more data points than basis functions, then the primal

formulation will result in the smallest linear system, whereas if there are more basis

functions than data points, then the dual formulation is preferred.

6.2.1.4 Solving linear PDEs as linear regression

Numerically solving linear operator equations, such as, for instance, linear partial

differential equations (PDEs), can be viewed as a linear regression problem. Say we

want to numerically solve a PDE,

ℒ 5 (G) = 6(G), G ∈ �

ℬ 5 (G) = ℎ(G), G ∈ m�
(6.13)

on a domain, �, with boundary, m�, where the PDE and boundary conditions are

determined respectively by the linear operators ℒ and ℬ. Suppose that for the

numerical solution the domain is discretised to �̃, and that a is a vector containing

the points in �̃. Furthermore, suppose that the boundary is discretised to m�̃, and

that b is a vector containing the points in m�̃. The data can then be split as,

(x, y) = ©­«©­«
a

b

ª®¬ , ©­«
6(a)

ℎ(b)
ª®¬ª®¬ ≡ ©­«©­«

a

b

ª®¬ , ©­«
g

h

ª®¬ª®¬ . (6.14)

Similarly, the design matrix,�, which has evaluations at different data points on its

rows, can correspondingly be split as,

� =
©­«
ℒ5 (a)

ℬ5 (b)
ª®¬ ≡ ©­«

�L

�B

ª®¬ . (6.15)

In this new notation, the key matrices appearing in the primal and dual formulation

can conveniently be rewritten. In the primal formulation this yields,

�T2−2�+,−2 = �T
L2
−2�L + �T

B2
−2�B + ,−2, (6.16)
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while in the dual formulation this results in,

�,2�T + 22 =
©­«
�L,

2�T
L + 22 �L,

2�T
B

�B,
2�T

L �B,
2�T

B + 22

ª®®¬ . (6.17)

Equivalently, in terms of the kernel, equation (6.17) can be written as,

: (x,x) + 22 =
©­«
ℒ1ℒ2: (a, a) + 22

L ℒ1ℬ2: (a, b)

ℬ1ℒ2: (b, a) ℬ1ℬ2: (b, b) + 22
B

ª®¬ , (6.18)

which elegantly separates the bulk, the boundary, and their cross-correlations.

As with linear regression, numerically solving the PDE can now be formulated

as aminimisation problem and can be solved both in the primal and dual formulation.

This is in close analogy with the Galerkin or finite element method, see e.g. [148].

6.2.2 Bayesian linear regression

The framework of linear regression can also be derived in a Bayesian or probabilistic

setting. Here we consider a stochastic function, � (G), and are interested in the

distribution of this function as it is conditioned on observations of evaluations,

(x, y), of that function, i.e. our goal is to find ?(� (G) | y). To simplify notation, we

write, |y, to denote conditioning on the data, whereas we actually mean, | (x, y).

6.2.2.1 Bayesian primal formulation

Given a linear model in the primal formulation with corresponding weights, w,

a zero-mean Gaussian error on the observed function evaluations, denoted by the

stochastic variable, Y, results in a Gaussian likelihood given by,

? (Y |w) = N
(
wT5(x), 22

)
= N

(
�w, 22

)
. (6.19)

Note that we reused the variable 22 and reinterpreted it as the variance on the data,

allowing for deviations from the mean value, �w, predicted by the model, given

the weights, w. We will see below that both interpretations are indeed compatible.
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Furthermore, we assume a zero-mean Gaussian prior on the stochastic weights,W,

? (W) = N
(
0, ,2

)
. (6.20)

Note that we reused the variable ,2 and reinterpreted it as the variance of the prior

on the weights. Using the relations given in Appendix B.2, we can infer the implied

distribution of the weights conditioned on the data,

?(W | y) = N
(
-w |y, �w |y

)
, (6.21)

in which the mean vector, -w |y, and covariance matrix, �w |y, are defined as,

-w |y ≡ �w |y�
T2−2y, (6.22)

�w |y ≡
(
,−2 + �T2−2�

)−1
. (6.23)

Since the stochastic function, � (G), is a linear mapping of the weights, that is,

� (G) =W
T5(G), the corresponding conditioned distribution reads,

?
(
� (G) | y

)
= N

(
`primal(G), f2

primal(G)
)
, (6.24)

in which the mean, `primal(G), and variance, f2
primal(G), are defined as,

`primal(G) ≡ -T
w |y5(G), (6.25)

f2
primal(G) ≡ 5(G)T�w |y5(G). (6.26)

Substituting equation (6.22), we rediscover the primal solution (6.5) as the mean of

the resulting conditioned primal distribution,

`primal(G) = yT2−2�
(
�T2−2� + ,−2

)−1
5(G). (6.27)
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Furthermore, we now also have a measure for the spread in possible approximations,

which can be derived from the variance of the conditioned distribution,

f2
primal(G) = 5(G)T

(
�T2−2� + ,−2

)−1
5(G). (6.28)

This allows us to predict an approximation for the function, 5 , which we aim to fit,

based on the data, (x, y), and moreover provide a confidence level for the result.

6.2.2.2 Bayesian dual formulation

A similar argument can bemade for the dual formulation and is typically encountered

in the context of Gaussian processes, see e.g. [147]. Since we assumed both the

weights and errors in the data to follow a (multivariate) Gaussian distribution, we

know that the function values and the data follow a joint Gaussian distribution,

?
©­«

� (G)

y

ª®¬ = N ©­«

0

0

 ,

: (G, G) : (G,x)

: (x, G) : (x,x) + 22

ª®¬ , (6.29)

where we reused the definition of the kernel (6.7). Using the relations given in

Appendix B.3, the posterior distribution can be obtained by conditioning on the

data, (x, y), yielding,

?
(
� (G) | y

)
= N

(
`dual(G), f2

dual(G)
)
, (6.30)

in which the mean, `dual(G), and variance, f2
dual(G), are respectively defined as,

`dual(G) ≡ : (G,x)
(
: (x,x) + 22

)−1
y, (6.31)

f2
dual(G) ≡ : (G, G) − : (G,x)

(
: (x,x) + 22

)−1
: (x, G). (6.32)

Rewriting this in terms of the design matrix, we rediscover the dual solution (6.11)

as expectation value of the conditioned distribution,

`dual(G) = 5(G)T,2�T
(
�,2�T + 22

)−1
y. (6.33)
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Similarly, we can also obtain a measure for the spread in possible approximations,

which can be derived from the variance of the conditioned distribution,

f2
dual(G) = 5(G)T

(
,2 − ,2�T

(
�,2�T + 22

)−1
�,2

)
5(G). (6.34)

Again, we can predict an approximation for the function, 5 , which we aim to fit,

based on the data, (x, y), and moreover provide a confidence level for the result.

6.2.2.3 Bayesian primal versus Bayesian dual formulation

As in the non-probabilistic case, we notice that in the primal formulation a (#b×#b)-

dimensional linear system needs to be solved, while in the dual formulation it is a

(#d×#d)-dimensional linear system, both to for the mean and for the variance.

We already showed in the non-probabilistic case (see Appendix B.1) that the

primal and dual solutions are equal. Using the Woodburry matrix identity, we can

now also verify that the variances in the primal and dual formulation are equal, since,

(
,−2 + �T2−2�

)−1
= ,2 − ,2�T

(
�,2�T + 22

)−1
�,2. (6.35)

Therefore, we can conclude that the duality also holds in the probabilistic sense, i.e.,

N
(
`primal(G), f2

primal(G)
)
= N

(
`dual(G), f2

dual(G)
)
, (6.36)

and thus that both formulations are equivalent and can be used interchangeably.

It should be noted that our choice of Gaussian priors in this description was

only motivated by computational convenience, and that it is not ideal. For instance,

the Gaussian distribution always assigns a non-zero probability, also to negative

values of a variable. For many physical quantities that are only positive, such as

density or temperature, this is not desirable as it can lead to non-physical results.

However, bearing in mind these dangers, the Gaussian distribution is a good first

approximation for the uncertainties in our variables. For a similar treatment using

student-C distributed priors, see e.g. [149].



6.2. Probabilistic methods 136

6.2.3 Uncertainty quantification

Quantifying uncertainties is itself an approximate endeavour. After all, the exact

solution, 5 , is required in order to determine the error, Y, that is made in an

approximation, 5̃ , since,

5 (G) = 5̃ (G) + Y(G). (6.37)

Although it is possible to obtain highly accurate estimates for the errors in particular

models (see e.g. [150]), it is crucial to note that any form of practical on-the-fly

uncertainty quantification will always only be an approximation of the true error.

Just as the quality of the approximation strongly depends on the estimation method,

so does the quality of the error.

6.2.3.1 Probabilistic numerical paradigm

Following the probabilistic numerical paradigm [151, 152], we aim to quantify

uncertainties by modelling the distribution over all possible functions conditioned

on the data. In particular, we will use the expectation of the conditioned distribution

as our function approximation,

5̃ (G) ≡ E [� (G) | y] . (6.38)

As a result, we can estimate the expected squared error in this approximation with

the variance of the conditioned distribution,

Ỹ2(G) ≡ V [� (G) | y] , (6.39)

where we used that fact that the stochastic function, � (G), and the corresponding

stochastic error, E(G), ought to be related as,

� (G) = 5̃ (G) + E(G), (6.40)

and the definition of the variance, which implies that,

V [� (G) | y] = E
[ (
� (G) − 5̃ (G)

)2 | y
]
= E

[
E(G)2 | y

]
. (6.41)
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Assuming that the probabilistic model, � (G) | y, is an adequate model for the actual

function, 5 (G), the variance thus quantifies the expected squared error in the function

approximation. Note that in our particular case, where the posterior is a Gaussian,

the variance does not depend on the function values, y, in the data but only on the

locations, x, at which the function was evaluated.

Based on the variance in the dual formulation (6.32), one can derive an upper

and lower bound on the squared error,

0 ≤ Ỹ2(G) ≤ : (G, G), (6.42)

where, in the left inequality, we used the fact that the variance has to be positive,

and in the right inequality that : (x,x) +22 is a positive definite matrix, such that

the second term in (6.32) is negative. It might seem odd to have an error measure

that is bounded from above. However, one should note that it is not an upper bound

on the actual error, but only an upper bound on the variance of the distribution of

possible solutions. Furthermore, we should note that the upper bound can always

be scaled using the prior covariance, ,.

This probabilistic interpretation of numerical methods has a long and rich

history (see e.g. [153]) that can be traced all the way back to 1896 with the work of

Poincaré [154]. With some noteworthy exceptions in the eighties (see e.g. [155]),

these ideas only rather recently gained more traction, see e.g. [151, 152, 156–158].

Our goal will be to tailor these ideas to radiative transfer simulations and apply them

in a practical setting. First, however, we need to properly understand the approximate

error measure (6.39), and identify what exactly it measures.

6.2.3.2 The limit of perfect data: 2→ 0

In order to isolate the effects of the numerical scheme from the errors in the data,

consider the limit of perfect data, i.e. 2→ 0. The primal and dual solutions in this
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limit are respectively given by,

`primal(G) → yT�
(
�T�

)−1
5(G), (6.43)

`dual(G) → yT
(
�,2�T

)−1
�,25(G). (6.44)

Note, however, that the inverses above do not necessarily exist. In particular, if

#d > #b, the singular value decomposition shows that�,2�T must be singular and

thus only the primal formulation remains, whereas if #d < #b, it follows that �T�

must be singular and thus only the dual formulation remains2. As a result, in the limit

of perfect data, 2→ 0, if #d ≠ #b, the duality between the two formulations ceases

to exist and only the formulation with the smallest corresponding linear system will

have a unique solution.

Moreover, note that in this limit the variance of the primal formulation always

vanishes, such that there is no probabilistic interpretation when #d > #b, i.e. when

only the primal formulation remains. In the dual formulation, the variance in this

limit is given by,

f2
dual(G) = 5(G)T

(
,2 − ,2�T

(
�,2�T

)−1
�,2

)
5(G), (6.45)

which evidently only makes sense if the inverse of�,2�T exists, which requires that

#d ≤ #b. In the particular case that #d = #b, demanding that �,2�T is invertible

implies that� is invertible, such that also in this case the variance vanishes. Hence,

in the limit of perfect data, there is only a probabilistic interpretation if #d < #b,

assuming that the inverse for �,2�T exists.

Intuitively this can be understood form the fact that we model the variance with

the same basis functions as we use to model the function approximation. If we

assume the data to be exact and if #d ≥ #b, the contributions of all basis functions

are fixed by the data and there are no undetermined degrees of freedom that can

cause a spread in the resulting distribution conditioned on the data.

2Note, however, that the existence of the inverses of�,2�T and�T� still depends on the choice
of basis functions and the positions of the data points.
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These considerations seem to imply that in order to learn about the true error,

neglecting the error induced by the data, we should use as many basis functions as

possible to capture the remaining freedom in the result. However, as the following

example will show, indefinitely adding basis functions is also not advisable.

6.2.3.3 Example: Fourier basis

As an example, consider the set of the first #b = 2# +1 real Fourier basis functions,

{1} ∪ {sin(l=G)}#==1 ∪ {cos(l=G)}#==1, where we defined l= ≡ 2c=/!, with ! the

size of the domain that we are interested in. Given these basis functions, the primal

representation of the function approximation (6.5) corresponds to the (truncated)

Fourier series of the function that we are looking for. If we denote the entry in ,

corresponding to the constant with _, the entries corresponding to the sines with _=,

and the entries corresponding to the cosines with _′=, the resulting kernel reads,

: (G, G′) = _2 +
#∑
==1

(
_2
= +_

′2
=

2

)
cos

(
l= (G− G′)

)
+

#∑
==1

(
_2
=−_

′2
=

2

)
cos

(
l= (G + G′)

)
.

(6.46)

Typically, one would expect that modes corresponding to the same length scale,

i.e. same =, would have similar weights, such that _= ≈ _′=, and hence the second

summation in (6.46) vanishes. This approximately renders the kernel into a radial

basis function, : (G, G′) ≈  (G− G′).

Now consider the simplest case, when all _= = _′= = _. The kernel is then a

radial basis function and can be computed explicitly,

: (G, G′) = _2

2

(
1+

sin
(
c(2# +1) (G− G′)/!

)
sin

(
c(G− G′)/!

) )
, (6.47)

which is commonly known as (one half plus) the Dirichlet kernel. The kernel attains

its maximum on the diagonal, : (G, G) = _2(# + 1), and oscillates and decays away

from there. The dual solution (6.11) is a linear combination of these radial basis

functions centred (and thus peaking) around the data points.

Note that, as the number of basis functions increases, # → ∞, the kernel
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becomes more narrow and peaked, and in the limit tends towards a delta distribution.

Since the kernel centred around a data point represents the influence of that data

point on the solution, this implies that with increasing # , the effect of each individual

data point on the solution decreases and becomes ever more confined to a shrinking

region around each data point. Similarly, with increasing # , the variance (or error

estimate) in between data points will increase. Increasing the number of basis

functions, while keeping the number of data points fixed, will imply that the basis

functions are ever less constrained by the data, a problem commonly known as

over-fitting.

One possible solution is regularisation, for instance by damping the higher

modes in the kernel with ,, making it less peaked in the limit of large # . Note

that the entries of the regularisation vector, ,, appear as the Fourier coefficients

of the kernel (6.46). This shows the crucial interplay between the choice of basis

functions and regularisation. However, note that by re-scaling the basis functions,

q8→ _8q8/2, the regularisation vector can always be cast into the form , = [_8] → 21.

This example clearly illustrates that indefinitely adding basis functions without

proper regularisation will not allow us to have a better error estimate, as it will

always at the same time worsen the fit, thus artificially increasing the error (6.39).

6.2.3.4 Interpretation in terms of data-(de)compression

From a function approximation point of view, we are essentially approximating the

true error function, Y(G), in the space spanned by the same basis functions as we use

for the original function approximation, 5̃ (G), whereas one would expect the true

error to live in the orthogonal complement of that space. Therefore, although the

probabilistic error estimate (6.39) is some measure of the uncertainty in the model,

it is far from exact. So what does it quantify? In Appendix B.6, we show that

the probabilistic error estimate (6.39) can be obtained as the minimum of a (rather

contrived) error measure, thus providing a framework to view it as a true error.

However, it can be easier, and somehow more accurate, to think of the probabilistic

error estimate, Ỹ(G), as a measure of the (de)compression of the data, (x, y), when

it is represented by the model, as defined by the basis functions, {q8}.
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This point of view, allows us to use the probabilistic framework to formalise

the model reductions presented in Chapter 5. However, first, we demonstrate how

the probabilistic methods can be applied to radiative transfer computations.

6.3 Probabilistic radiative transfer
We can now apply the probabilistic numerical approach to the particular case of

radiative transfer and show how the classical solution schemes arise as particular

instances of the general probabilistic method. For a comprehensive overview of the

different classical solution schemes, see e.g. [26].

6.3.1 Method of characteristics

For simplicity, consider the radiative transfer equation (1.1), in the absence of

scattering and neglecting any frequency dependency3, so it can then be written as,

ℒ� (B) = [(B), (6.48)

with, B, the position on the ray, and the linear differential operator,ℒ, defined as,

ℒ ≡ j(B) + mB . (6.49)

The Green’s function for this linear operator,ℒ, is given by,

� (I, B) = Θ(B− I) 4−g(I, B) , (6.50)

in whichΘ is the Heaviside function (which is 1 for positive arguments, 0 otherwise),

and g is the optical depth, as defined in (3.3). Remember that, by definition of the

Green’s function, we have that,

ℒB� (I, B) = X(B− I). (6.51)

3This is a significant simplification, since a frequency dependency in movingmedia would require
us to consider the transfer equation in the co-moving frame (see Section 1.3.6). Although this can
also perfectly be captured in this formalism, we omit it here for simplicity.
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Using this Green’s function one can (at least formally) solve the radiative transfer

equation, as in the method of characteristics.

6.3.1.1 Classical method of characteristics

The method of characteristics solves the transfer equation from its formal solution

(see Section 1.3.3), which is based on the Green’s function. Given the boundary

condition, � (B0) = �0, at boundary point, B0, one finds, in accordance with (1.6),

� (B) = �0 4
−g(B0,B) +

∫ B

B0

dB′ [(B′) 4−g(B′,B) . (6.52)

The integral is then evaluated using a (local) interpolation for the emissivity, [.

At this point, a distinction is often made between short and long characteristic

methods depending on the location of the point B0 in the underlying discretisation. In

short characteristic methods, B0 is taken to be the previous point in the discretisation,

while for long characteristics, it is the boundary of the computational domain. For

our intents and purposes this distinction does not matter, so we continue with the

general formulation as in (1.6), in which B0 can be any point in the discretisation.

The emissivity is often interpolated using a linear scheme. Using, for instance,

the dual formulation from Section 6.2.1.2, given a kernel, ^, the interpolant (6.11)

for the emissivity, can be written as,

[(B) ≡ (TK−1^(a, B), (6.53)

where we defined the matrix, K ≡ ^(a, a) +f2
L, and a is the vector of positions

at which the values for [ are given. One particularly popular kernel is the one

corresponding to the basis of Lagrange polynomials, since they trivially satisfy the

interpolation property. Substituting (6.53) in the formal solution (6.52) yields,

� (B) = �0 4
−g(B0,B) + (TK−1

∫ B

B0

dB′ ^(a, B′) 4−g(B′,B) (6.54)

such that the integrals can now be evaluated on the (analytically) known kernel

function, ^, thus effectively solving the transfer equation.
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6.3.1.2 Probabilistic method of characteristics

Now we show how the method of characteristics can be derived as a probabilistic

regression problem in the dual formulation by choosing a particular type of kernel,

or equivalently, by choosing a particular set of basis functions.

Given the Green’s function (6.50) for the differential operator (6.49) in the

radiative transfer equation, consider a kernel of the form (see also Appendix B.4),

: (I, B) =
∫ +∞

−∞
dB′

∫ +∞

−∞
dI′ ^(B′, I′) � (I′, I)� (B′, B), (6.55)

in which ^(B′, I′) is another kernel of which we only demand that it does not correlate

the region B > B0 with B < B0. This implies a block diagonal kernel of the form,

^(I, B) ≡ Θ(B0− I)Θ(B0− B) ^(I, B)

+ Θ(I− B0)Θ(B− B0) ^(I, B).
(6.56)

If we now assume that, ∀0 ∈ a : 0 > B0, and we assume no error on the boundary

condition, one can show (see appendix B.5) that the dual solution reads,

5̃dual(B) = �0 4
−g(B0,B) + (TK−1

∫ B

B0

dB′ ^(a, B′) 4−g(B′,B) (6.57)

with the corresponding variance (or error measure) given by,

f̃2
dual(B) =

∫ B

B0

dB′
∫ B

B0

dI′ � (I′, B)� (B′, B)

×
(
^(B′, I′) − ^(a, B′)TK−1 ^(a, I′)

)
.

(6.58)

Note that the probabilistic solution (6.57) is equivalent to the classical solution for

the method of characteristics (6.54). Furthermore, we can identify the expression

between brackets in the variance, i.e.,

^(B′, I′) − ^(a, B′)TK−1 ^(a, I′), (6.59)

as the resulting variance corresponding to the interpolation scheme (6.53) that was
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used for interpolating the emissivity. Hence, the variance (6.58) is the convolution

of the variance in the interpolation of the emissivity (6.59) with the Green’s function.

6.3.2 Second-order method

The classical second-order or Schuster-Feautrier method was already described in

Section 1.3.4, and its numerical implementation is described in Appendix A. To cast

it into a probabilistic method, we identify in (1.16) the linear operator equation,

ℒD(g) = ((g), (6.60)

in which the differential operator, ℒ, is defined as,

ℒ ≡ 1 − m2
g , (6.61)

and, D, the mean intensity up and down the ray is defined as in (1.7). As described

in Appendix A, equation (6.60) is then discretised and solved as a tridiagonal linear

system of equations (see A.6). Calling this tridiagonal matrix, T, we can write,

Tu = Y. (6.62)

The boundary conditions are incorporated by modifyingT and Y, see Section A.1.2.

Considering perfect data (see Section 6.2.3.2), and assuming the resulting design

matrix, �, to be invertible, the probabilistic solution can be written as,

5̃ (G) = 5(G)T�−1y. (6.63)

Comparing equations (6.62) and (6.63), and assuming interpolating basis functions,

i.e. q8 (G3) = X83 , we observe that to reproduce the second-order method, we require,

T =�, and the appropriate basis functions can be derived from (6.62) and (A.6).

Assuming perfect data, there is no probabilistic interpretation for the second-

order method, since the variance will vanish everywhere (see also Section 6.2.3.2).

In fact, this is true in general, whenever the resulting design matrix,�, is invertible.
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As a result, one could conclude that nothing can be gained with the probabilistic

approach for this type of solution methods, and that it is only relevant for the

method of characteristics. However, when reducing models in the spirit of the mesh

reduction techniques presented in Chapter 5, such that the corresponding number of

basis functions becomes smaller than the number of data points, all types of solution

methods can benefit from a probabilistic approach.

6.4 Probabilistic mesh reduction

In order to tie the ideas of mesh reduction presented in Chapter 5 to the probabilistic

framework, we define a set of basis functions that is related to the data points. A

particular choice, that relates to smoothed-particle hydrodynamics, is to pick a radial

basis function, k, and define the set of basis functions as {k (‖G− G3 ‖)}, such that

there is one (radial) basis function for each data point, G3 . Reducing the model can

then be achieved by disregarding the basis functions corresponding to the points one

wants to eliminate. If the resulting system is solved in the primal formulation (6.5),

the data for that point is still taken into account, while the computational cost to

solve the system reduces together with the number of basis functions. Moreover, the

effect of disregarding those basis functions can be captured by the variance (6.39).

Moreover, the variance can be used to identify which points could be disregarded.

This idea that probabilistic methods could be used to optimise the problem design is

not new, andwas already suggested, for instance, in [157]. However, some comments

on the practicality of this approach are in order here.

First of all, when using radial basis functions (RBFs), the resulting solution

method is practically equivalent to the well-established RBF-PDE solution methods,

see e.g. [159] and the references therein. The key difference, however, is the

probabilistic interpretation and the corresponding confidence intervals that now can

be derived. A well-known issue for RBF-PDE solvers is the (ill)conditioning of the

resulting linear system that needs to be solved [160, 161]. This is a challenge for

the practical implementation of probabilistic mesh reduction, but, perhaps, also an

opportunity to study the conditioning issues now also with probabilistic tools.
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Second, as already alluded to in [157], we note that computing the variance

(6.39) is computationally expensive. In particular, computing the variance is more

expensive than computing the approximation (6.38), since the former requires the full

matrix inverse while the latter only requires the solution of the corresponding linear

system. This further complicates a practical implementation of the probabilistic

reduction method in which the variance is used in the reduction criterion.

Finally, it should be noted that, although the probabilistic framework indeed

allows us to formulate the reduction method from Section 5.4.2 in a more rigorous

way, the more interesting question is to not only focus on removing points from the

model, but to optimise the set of basis functions more generally, i.e. given the data,

search for the minimal set of basis functions that still yields acceptable results. This

is a key question that should be addressed in future work.

6.5 Future work
The probabilistic numerical approach promises opportunities for optimisation, while

also providing a rigorous framework for uncertainty quantification. However, many

details still have to be worked out to be able to fully utilise its power in practical

simulations. In the following, we point out interesting directions for future research.

6.5.1 Optimisation

The probabilistic numerical method provides us with a mathematical framework to

describe the trade-off between the computational speed and accuracy of a model,

i.e. the speed can directly be inferred from the size of the corresponding linear

system, while the accuracy can be gauged with the error measure (6.39). Since

radiative transfer models often rely on a previous simulation step, the available

data, (x, y), can be considered as a given. The remaining optimisation question

is to find the minimal set of basis functions, {q8}, that still solves the model to an

acceptably accurate degree. There already exists awealth of research in this direction

generally known as sparse representation (see e.g. [162] and the references therein).

In particular, recently, efficient algorithms have been developed to solve exactly the

type of linear equations encountered in the probabilistic numerical method [163]
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(see also [158]). A key next step towards will be to make the probabilistic numerical

method practically feasible, by applying these new algorithms.

6.5.2 Error estimates for finite element methods

As already pointed out, the probabilistic numerical method is very akin to finite

elementmethods. In a sense, the probabilistic numerical method can be thought of as

a finite element method that is augmented with a probabilistic interpretation. Finite

element methods have already successfully been applied to (astrophysical) radiative

transfer problems, see e.g. [44–46]. Furthermore, there is a wealth of research

on so-called a posteriori error estimates for finite element methods, see e.g. [164,

165] and the references therein, and see [45] for an application to radiative transfer.

Many of these error estimates are much cheaper to compute than the probabilistic

one (6.39), but are more difficult to interpret and use in a statistical setting. For

instance, when comparing models, or when combining the effects of various sources

of uncertainties. It would be interesting to see whether a probabilistic interpretation

could also be given for these cheap error estimates, or conversely, whether these

could be used to define a computationally cheaper probabilistic error estimate.

6.5.3 Non-linear models

In this thesis, we limited ourselves to function approximations that are linear in the

model parameters (weights). This has the clear advantage that it allows for explicit

analytic solutions that can, at least in principle, be obtained by direct computations.

Nevertheless, when the corresponding linear systems become large and sparse, one

must eventually resort to iterative solvers, for instance minimising the mean squared

error functions (6.3) or (6.8). At that point, the methods that are used to solve

the system can equally well be employed to solve non-linear models, making the

requirement of linearity somewhat obsolete4. One particularly interesting type of

non-linear model to consider, is a neural network, i.e. an #-layered function of the

form: y (;+1) = q(;) (A(;) y (;) + b (;)), in which the input and output are respectively

given by: x = y (1) and y = y (#) , the q(;) are non-linear (activation) functions,

4Linearity remains crucial for the probabilistic interpretation, since a non-linear function does
not necessarily preserve the distribution of its input, although approximations are still possible.
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and the superscripts indicate the index of each layer. The matrices, A(;) , and

vectors, b (;) , are the weights that need to be obtained (or learned) by minimising

the error function. Neural networks are often good approximators5 and there exist

efficient algorithms to solve the error minimisation problem, see e.g. [146]. Using a

neural network as an underlying model makes the solution method (Section 6.2.1.4)

equivalent to the one used in physics-informed neural networks (PINNs; see also

Section 1.5.2.2, [75–77]), with the mean squared error as the loss function. PINNs

have already successfully been applied to radiative transfer [78], and recently also

methods have been developed for uncertainty quantification on their results [169].

It would be interesting to see whether these uncertainties can also be interpreted in

a probabilistic context. Furthermore, there exists a wealth of research in optimising

neural network architectures. One particularly interesting direction would be to

explore neural architecture search (NAS; [170]) methods, that search for the optimal

architecture for a given problem. This is closely related to our quest for optimal

basis functions (Section 6.5.1), and might lead to adaptive algorithms to find them.

6.5.4 Error estimates, preconditioning & ALI
As we have seen in Section 1.3.5 and Chapter 2, solving for the radiation field

given the state of the medium is often only one step in an iterative process of

finding a consistent solution for the radiation field and the state of the medium.

Furthermore, in Section 2.3.2, we have seen how approximate solutions for the

radiation field can help accelerate the convergence of this process by preconditioning

the system with an approximated Lambda operator. As recently pointed out in

[171], there is a clear link between finite element methods for error estimation and

preconditioning of the corresponding linear system. Perhaps these finite element

methods or their probabilistic equivalents can be used to obtain cheap but reliable

approximated Lambda operators. Moreover, it should be possible to formulate the

entire Lambda iteration process in a probabilistic setting, which might lead to more

reliable convergence criteria, and hence more reliable results.

5Several neural network architectures can be shown to be universal approximators [166–168],
and from the numerous examples it is clear that good approximation can already be achieved with a
relatively limited number of weights, making them very efficient and thus practical approximators.



Chapter 7

Summary & Conclusions

Challenge Everything!

– The whispering voice from EA games

7.1 Summary
Throughout this thesis, we investigated the computational aspects of simulating the

transport of electromagnetic radiation, with a particular focus on how to optimise

the trade-off between computational speed and accuracy.

In Chapter 1, we introduced the radiative transfer problem, formulated it in

terms of the radiative transfer equation, and discussed the different solutionmethods,

with an emphasis on numerical solvers. Furthermore, we sketched the landscape of

modern computing for which these solvers should be designed. We introduced the

two key features that can be exploited on modern hardware: (1) the several layers

of parallelism, and (2) hardware acceleration, and pointed out the modern evolution

towards learning algorithms in software.

In Chapter 2, we focused on the radiative transfer of atomic andmolecular lines.

This requires an iterative solution method, known as Lambda iteration, to obtain a

consistent coupling between the radiation field and the state of the medium. Lambda

iterations are known for their slow convergence, but there are several methods to

accelerate this. We review the classical scheme for accelerated Lambda iteration by

Rybicki & Hummer [91], and the acceleration of convergence method by Ng [95].

For the latter, we demonstrate an improved dynamic scheme that does not depend

on spurious parameters, but only on the amount of memory available in the system.
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In Chapter 3, we presented the design strategy, tests, and benchmarks for our

newly developed radiative transfer library, Magritte. In particular, we highlighted

the modular way in which we implemented multi-core and multi-node parallelism

as well as GPU acceleration, using the abstraction library ParAcAbs, that we

specifically designed for that purpose. Magritte employs a ray-tracer and a second-

order formal solver that can handle both structured and unstructured meshes as well

as smoothed-particle data, making it a versatile tool for astrophysical modelling.

InChapter 4, we demonstrated the applicability of our newly developed radiative

transfer library, Magritte, by creating synthetic observations for several hydro-

chemical models of stellar outflows arising from mass-losing AGB stars.

In Chapter 5, we focused on the issue of spatial, spectral, and directional

discretisation in radiative transfer simulations. We presented an adaptive ray-tracing

algorithm that can adaptively refine the directional discretisation and interpolate

along the ray where necessary. Furthermore, we demonstrated an algorithm that can

reduce typical input models for radiative transfer by an order of magnitude without

significant loss of accuracy in the results. This strongly suggests the existence of

more efficient representations for radiative transfer models.

In Chapter 6, we introduced a probabilistic numerical method to solve linear

partial differential equations (PDEs) and, in particular, the radiative transfer equation.

Assuming a Gaussian distribution for all input parameters, and a Gaussian prior

over all possible functions, it computes the posterior distribution over the resulting

functions, conditioned on the PDE and the corresponding boundary conditions. This

naturally leads to a local measure of uncertainty on the result, based on the variance

of the posterior distribution. Moreover, it can be used to reformulate the heuristic

reduction algorithm (Chapter 5) in a more rigorous way. Furthermore, it provides a

probabilistic framework to look more generally for more efficient representations of

radiative transfer models. This is still work in progress, and we pointed out several

connections, e.g. withmore established finite elementmethods and physics-informed

neural networks, and suggested possible directions of for future research which can

lead to more rigorous optimisation methods for radiative transfer simulations.
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7.2 Conclusions
This thesis covers several legs of an, as yet unfinished, journey towards optimally fast

and reliable radiative transfer. This quest for optimality is not merely an academic

question, but a sheer necessity to properly include all relevant radiative processes in

astrophysical simulations, such as, for instance, stellar wind models1 (see e.g. [21]).

An optimal solution is still out of reach, but, nevertheless, several milestones have

been reached, and there is a clear map for the road ahead.

Themainmilestone is our newly developed radiative transfer libraryMagritte.

We established it as a state-of-the-art library that can leverage modern computing

hardware in a scalable and portable way, thus ensuring its future place as a useful

tool for both small and large-scale simulations. Furthermore, several advances were

made along the way that can improve the performance of radiative transfer solvers

in general, such as the improved Ng-acceleration method (Section 2.3.3), adaptive

ray-tracing (Section 5.3), and the heuristic mesh reduction algorithm (Section 5.4.2).

All of these advances result in a speed-up, but the latter two, which have the highest

impact on performance, also imply concessions in accuracy. In an attempt to

optimise this trade-off between computational speed and accuracy, we introduced

a probabilistic numerical method in radiative transfer, which naturally allows for

uncertainty quantification (Chapter 6). So far, we only explored the foundations

of this framework, but could not yet provide an optimal solution. Therefore, to

conclude this thesis, we envision three different routes for the journey ahead.

First, the representation for the radiative transfer model should be optimised.

The results of our mesh reduction method (Section 5.5.2) strongly suggest that much

sparser representations exist for typical radiative transfer models. The probabilistic

numerical method, moreover, provides a framework to search for more generally

optimised representations by constructing the optimal set of basis functions, given

the partial differential equation and boundary conditions for the problem at hand.

This optimal representation can be obtained either in a constructiveway, such as, with

1Rough estimates suggest that with the current performance of Magritte, including radiative
transfer in hydro-chemical stellar wind models would slow them down by more than an order of
magnitude, making it in principle feasible, but still highly unpractical to do so.
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operator-adaptedwavelets tailored to a problem (see e.g. [158]), or in a reductiveway,

starting from an highly under-constrained representation, similar to the architecture

optimisation methods for neural networks. A practical implementation of this will

most likely rely on a hybrid scheme that balances between the optimisation of the

representation and the solution of the problem, similar to neural architecture search,

in which the architecture of the network is optimised during training.

Second, it should be noted that most astrophysical models do not require the

full solution of the radiation field, but rather only require derived quantities, such

as, radiative pressure, heating, or cooling. Since these typically do not depend on

direction or frequency, they are of much smaller dimension than the radiation field,

which suggests that they can be well-approximated much faster than the radiation

field can be computed. Such an approximation can be achieved, for instance, by

emulation, which has already proven to be a powerful approximation technique to

replace time-consuming simulations (see also Section 1.5.2.1). However, with great

approximation power comes great responsibility, in particular about the accuracy of

the result. Therefore, these approximations should take into account the uncertainties

in the exact method, as well as the additional uncertainties that are introduced by

the approximation. Also here, the probabilistic numerical method can be employed

to estimate both these uncertainties. Furthermore, an optimised representation for

the radiative transfer model could also greatly improve the approximation power.

Finally, we could reduce the need for large and computationally expensive

radiative transfer models by using them more efficiently and making more targeted

models, for instance, of particular objects. Usually, in astronomy, we are hardly

ever interested in all the details of a particular model, but rather in general trends

in the parameter dependencies over large ensembles of models, unless, of course,

when modelling a specific object. In the case of parameter studies, we can reduce

the need for expensive radiative transfer by employing approximation methods, as

discussed above. Still, when more detail is required, for instance, when modelling

a particular object or particular observations, we often cannot afford to make many

approximations, especially not in the radiative transfer, which determines how the
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model would appear in observations. We can, however, reduce the number of

required models by specifically tailoring them to the observations. This can be

achieved by de-projecting the observation into a model, which is in a sense the

inverse of a synthetic observation. De-projection is a classical problem in astronomy

for which several algorithms have been devised, see e.g. [172–174]. However, their

use is limited by their difficulty to cope with the central fact that de-projection

is an intrinsically under-constrained problem, i.e. not all information about the 3D

distribution of a function can be derived form its 2Dprojection, see e.g. [175]. Recent

advances in 3D-reconstruction with trained algorithms show promising results and

can cope with the under-constrained problem in a probabilistic way [176]. Instead

of generating a single de-projection for an image, they generate a distribution over

all possible de-projections given an image, similar but conversely to the way in

which a probabilistic radiative transfer model would result in a distribution over

the possible synthetic observations. Therefore, we would propose to study the

probabilistic numerical approach to radiative transfer both for the forward and inverse

problem, such that trained algorithms, as in [176], could be employed to de-project

astronomical observations into probabilistic models, thus allowing us to do more

targeted and hence more efficient modelling.

7.3 Epilogue

René Magritte’s most famous painting, The Treachery of Images, depicts a pipe with

the French subscript: “Ceci n’est pas une pipe", translated: “This is not a pipe".

For that reason, we named our radiative transfer library Magritte, as a constant

reminder that any synthetic observation it produces is merely a theoretical model,

not a real observation, and thus the result of our numerous limiting assumptions. In

an idealistic attempt to alleviate this somewhat disparaging connotation, one could

ask: What would it take to raise the status of these models to the same level of

scientific value as real observations? Or phrased more provocatively: What would

it take to turn these simulations into science? To conclude this thesis, I will try to

formulate an answer from my personal point of view.
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The scientific value of a single realisation of a complex simulation is usually

fairly limited2 (see e.g. any single example in Chapter 4). On the other hand, an

ensemble of realisations with varying input parameters can be of great scientific

value, since it can elucidate, for instance, the macroscopic properties emerging

from the microscopic laws implemented in the model (see e.g. [115, 116, 119]).

However, as long as a simulation does not somehow correspond to reality, i.e. as

long as it cannot be compared with observations, it will always remain, at least

up to some level, a “scientist’s impression” of some idealised world. Therefore,

to elevate the status of simulations in science, they should be tied more closely to

reality. This can be done either with hyper-realistic simulations including all relevant

physics, making them as good as reality by construction, or by directly simulating

specific observations with approximate models, thus explicitly introducing the link

with reality. Since we often specifically lack the “relevant physics” required in the

former approach, I see more potential in the latter. Directly simulating specific

observations is exactly what can be achieved with de-projection (see Section 7.2).

The key question is then, given a certain de-projection into an approximate model:

In how far do the model and reality agree? This can be answered with a probabilistic

approach, in which not a single de-projection is made, but rather a distribution over

all possible de-projections is given. I suspect that such a distribution over all possible

de-projections into an approximatemodel can have a similar or perhaps even a higher

level of scientific value than the observation it is based upon. After all, in a sense,

they provide a form of augmented reality, since we can use the probabilistic model

to do experiments and test hypotheses. Ideally, within the probabilistic framework,

we can also combine the data from different observations in the model, to arrive at a

single virtual representation of the physical object, of course within the assumptions

of the underlying model, but nevertheless a representation of a real object that

we can experiment with. This would, at least up to some level, overthrow the

commonly stated truism that in astronomy we cannot perform experiments on our

objects of study, and could indeed further elevate the scientific status of simulations.

2Nevertheless, it can be of great artistic value, as a realisation (picture, movie, or game) of an
idealised world, and, in the case of the black hole in the movie Interstellar, it can even be both [177].
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Unfortunately, we are not there yet, but the probabilistic numerical approach to

radiative transfer, proposed in this thesis, can hopefully be a step in this direction.



Appendix A

Numerical solution schemes

In this appendix, we briefly discuss the different numerical solution schemes that

are implemented in Magritte to solve the radiative transfer equation along a ray.

Although these are widely covered in the literature (see e.g. [26, 27, 178]), we

present them here to introduce our naming conventions, comment on some specific

details of our implementations, and as a reference for the code documentation.

A.1 Second-order Schuster-Feautrier solver
The default solver in Magritte is the improved second-order Schuster-Feautrier

solver, proposed by Rybicki and Hummer in Appendix A of [91]. To appreciate the

improvement in their method, we first introduce the original Feautrier scheme [33].

The second-order form (1.16) of the radiative transfer equation (1.1) was described

in Section 1.3.4. Here, we discuss its numerical implementation.

A.1.1 Discretisation

Equation (1.16) can readily be written in discrete form, yielding,

D= −

D=+1−D=
Δg=+1

− D=−D=−1
Δg=

Δg=+1 + Δg=
2

= (=. (A.1)

The indices, =, denote the location on the ray and are defined for D and ( as,

= ∈ {0, . . . , # −1}, and for Δg as, = ∈ {0, . . . , # −2}, where in the latter there is one

index less because Δg is only defined in-between two consecutive points on the ray.
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The discretised equation (A.1) can be written more schematically as,

− �= D=−1 + �= D= − �= D=+1 = (=, (A.2)

where the coefficients, for = ∈ {1, . . . , # −2}, are defined as,

�= ≡
2

(Δg=−1 +Δg=)Δg=−1
, (A.3)

�= ≡ 1 + �= + �=, (A.4)

�= ≡
2

(Δg=−1 +Δg=)Δg=
. (A.5)

The other coefficients, for = ∈ {0, # −1}, are determined by the boundary conditions

and will be discussed in the next section. Equation (A.2) can be interpreted as a

tridiagonal matrix equation of the form,

©­­­­­­­­­­«

�0 −�0 0 · · · 0

−�1 �1 −�1 · · · 0

0 −�2 �2 · · · 0
...

...
...

. . .
...

0 0 0 · · · �#−1

ª®®®®®®®®®®¬

©­­­­­­­­­­«

D0

D1

D2
...

D#−1

ª®®®®®®®®®®¬
=

©­­­­­­­­­­«

(0

(1

(2
...

(#−1

ª®®®®®®®®®®¬
. (A.6)

One can solve this tridiagonal matrix equation in a two-step process of elimination

and back-substitution. The first element of the solution, D0, can be related to the

second one, D1, using the first line in equation (A.6), yielding,

D0 = (0/�0 + �0/�0D1. (A.7)

Now one can show that it is always possible to write D= in terms of D=+1, i.e.,

D= = I= + �= D=+1, (A.8)
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where we introduced two new coefficients, I= and �=, which will be determined

shortly. Substituting equation (A.8) in the first term of equation (A.2), one obtains,

D= = (�= − �=�=−1)−1 ((= + �= I=−1) + (�= − �=�=−1)−1�= D=+1. (A.9)

The two new coefficients can now be expressed in terms of their previous values,

I= ≡ (�= − �=�=−1)−1 ((= + �= I=−1) , (A.10)

�= ≡ (�= − �=�=−1)−1�=. (A.11)

To find all D=, we first need to calculate all �= and I= (elimination step), and then

substitute these back into equation (A.8) to retrieve the D= (back-substitution).

One should note that the solution scheme presented above is only well-defined

for non-vanishing optical depth increments. In the absence of population inversions,

this can be guaranteed by using a small lower limit on the opacity. Another possible

issue is the loss of significance when �= ≈ �=�=−1, due to numerical cancellation

effects in the subtractions in equations (A.9, A.10, and A.11). This was remedied in

the improved scheme proposed by Rybicki and Hummer in 1991 [91]. The key idea

is to rewrite the recursion scheme (A.9, A.10, and A.11) in terms of a new variable,

�= ≡ �−1
= − 1. (A.12)

This allows us to rewrite the elimination step in equations (A.10 and A.11) as,

�= ≡
(
1 + �= �=−1

1 + �=−1

)
�−1
= , (A.13)

I= ≡
(= + �= I=−1
�= (1 + �=)

. (A.14)

Note the absence of any subtractions, thus resolving the possible loss of significance.

Since each step refers to the previous one, we still need an equation for the first step.
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This can be derived from equation (A.7),

�0 = �0/�0 − 1, (A.15)

I0 = (0/�0. (A.16)

Note that also the last step is well-defined. The mean intensity up and down the ray,

D=, can now again be obtained through back-substitution, using,

D= = I= + (1 + �=)−1 D=+1. (A.17)

Now we defined a solution scheme relating the elements in the bulk of the ray, it

remains to define appropriate boundary conditions on the two endpoints of the ray.

A.1.2 Boundary conditions

The boundary conditions on the two endpoints of the ray can be defined in terms of

the intensities injected into the ray, i.e. �+0 ≡ �0(n̂) and �−# ≡ �# (−n̂), as described

by Auer [108]. Suppose �+0 and �−
#
are known. These boundary conditions can be

used to relate the mean intensity, D, and flux up and down the ray, E, using their

definitions as, E0 = �+0 − D0, and E� = D� − �−
�
. We can use this to formulate

an expression for the first and last row in the matrix equation. One should note that

the first and last row describe a relation between the first and second elements of

D, and between the last and one to last elements of D, respectively. Such a relation

can be obtained by making a Taylor expansion from the boundary inward. For the

boundary at index, = = 0, the Taylor expansion up to second order reads,

D1 = D0 + Δg0
dD
dg

����
0
+ 1

2
Δg2

0
d2D

dg2

����
0
. (A.18)

From equations (1.11, neglecting scattering) and (1.16), together with the above

boundary conditions on their variables, and assuming an isotropic source function

at the boundary, we obtain,

D1 = D0 + Δg0
(
D0 − �+0

)
+ 1

2
Δg2

0 (D0 − (0) . (A.19)
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This can be rewritten as,(
1 + 2

Δg0
+ 2
Δg2

0

)
D0 −

2
Δg2

0
D1 = (0 +

2
Δg0

�+0 , (A.20)

from which we can derive the coefficients for the first row of equation (A.6),

�0 = 1 + 2
Δg0

+ 2
Δg2

0
, (A.21)

�0 =
2
Δg2

0
, (A.22)

and we note that we have to add an extra term to the first element of the source,

(0 → (0 +
2
Δg0

�+0 . (A.23)

Higher order relations can easily be obtained in a similar way. However, it turns out

that second order suffices in most cases [108]. A similar calculation can be done for

the other boundary, resulting in the relations,

�#−1 =
2

Δg2
#−2

, (A.24)

�#−1 = 1 + 2
Δg#−2

+ 2
Δg2

#−2
, (A.25)

and an extra term in the last element of the source,

(#−1 → (#−1 +
2

Δg#−2
�+#−1. (A.26)

Note that the index of Δg only goes up to = = # − 2, since it is only defined in-

between two consecutive points on the ray. This completes the default solution

method to compute the radiation field in Magritte. However, for line radiative

transfer, we often also want to retrieve the approximate Lambda operator from the

solver to accelerate the iterative scheme (see also Section 2.3.2).
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A.1.3 Approximate Lambda operator

In Section 2.3.2, the Lambda operator is defined as the operator that yields the

mean intensity in the line evaluated at a certain point, when acting on the set of all

level populations. Here, we will use the method outlined by Rybicki and Hummer in

Appendix B of [91], to compute it for the numerical second-order Schuster-Feautrier

method outlined above.

As a first step, we want to obtain the matrix, L, that yields the mean intensity

along a ray, when acting on the set of sources,

u = LY. (A.27)

Comparing equations (A.27) and (A.6), it is clear that the matrix L is equal to the

inverse of the tridiagonal matrix in equation (A.6). Using the schematic notation of

equation (A.2), we can thus write,

− �=L=+1,? + �=L=,? − �=L=+1,? = X=,? . (A.28)

Solving this row by row, top to bottom, one can obtain the recursion relations,

L=,? = �=L=+1,? + Z=,?, (A.29)

Z=,? ≡ (�= − �=�=−1)−1 (
X=,? + �=Z=−1,?

)
, (A.30)

�= ≡ (�= − �=�=−1)−1�=. (A.31)

Similarly, by solving row by row, bottom to top, on can obtain,

L=,? = �=L=−1,? + W=,?, (A.32)

W=,? ≡ (�= − �= �=+1)−1 (
X=,? + �=W=+1,?

)
, (A.33)

�= ≡ (�= − �3 �=+1)−1 �=. (A.34)

Using that X=,? = 0, for = ≠ ?, we can find that Z=,? = 0, for = < ?, and that W=,? = 0,
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for = > ?. Using this in equations (A.29, A.30, and A.31), we can obtain,

L=,= = �=L=+1,= + Z=,= (A.35)

L=−1,= = �=−1L=,= (A.36)

Z=,= = (�= − �=�=−1)−1 . (A.37)

Similarly for equations (A.32, A.33, and A.34), this yields,

L=,= = �=L=−1,= + W=,= (A.38)

L=+1,= = �=+1L=,= (A.39)

W=,= = (�= − �= �=+1)−1 . (A.40)

One can now use both equations (A.35, A.36, and A.37) and (A.38, A.39, and A.40)

to obtain the diagonal elements of the matrix, L,

L=,= = (1 − �= �=+1)−1 (�= − �=�=−1)−1 . (A.41)

The off-diagonal elements can furthermore be computed recursively using,

L=,? = �=L=+1,? for = < ?, (A.42)

L=,? = �=L=−1,? for = > ?. (A.43)

Hence, using equations (A.41, A.42, and A.43), the entire matrix, L, can be recon-

structed. However, there are still subtractions which can lead to numerical loss of

significance. This can again be remedied by introducing new variables,

�= ≡ �−1
= − 1, (A.44)

�= ≡ �−1
= − 1. (A.45)

Note that �= is the same variable that was used before. These can be used to rewrite
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the recursion relations as,

�= ≡
(
1 + �= �=−1

1 + �=−1

)
�−1
= , (A.46)

�= ≡
(
1 + �=�=+1

1 + �=+1

)
�−1
= . (A.47)

Since the recursion relation for �= refers to �=−1, and the recursion relation for �=

refers to �=+1, we still need to define the first and last elements respectively. These

can again be derived from the first and last rows in matrix equation (A.28),

�0 = �0/�0 − 1, (A.48)

�# = �#/�# − 1. (A.49)

The diagonal elements of L can then be computed in terms of the new variables as,

L=,= =
(
�= +

�=+1
1 + �=+1

)−1
�−1
= . (A.50)

Furthermore, the off-diagonal elements can be computed as,

L=,? = (1 + �=)−1 L=+1,? for = < ?, (A.51)

L=,? = (1 + �=)−1 L=−1,? for = > ?. (A.52)

Finally, the Lambda operator can be constructed from L, by averaging over all

directions (i.e. rays originating from a point) and integrating over the line profile,

�8 9 = Λ8 9 [N] ≡
∮

dn̂
4c

∫ ∞

0
da q8 9a L Y. (A.53)

Approximations to the Λ-operator can now be constructed using approximations to

the matrix L. Typically, band-diagonal approximations to L are used, which can

conveniently be constructed using equations (A.42 and A.43).
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A.2 Fourth-order Schuster-Feautrier solver

In 1976, Auer proposed a simple scheme [109] to improve the accuracy of the

Schuster-Feautrier scheme that requires minimal modifications and can readily be

combined with the improvements made by Rybicki and Hummer [91]. This scheme

is known as the fourth-order, or Hermitian, Schuster-Feautrier solver.

A.2.1 Discretisation

The key idea is to replace equation (A.2) by an equation of the form,

−U= D=−1 + V= D= − W= D=+1 = 0= (=−1 + 1= (= + 2= (=+1, (A.54)

that also takes into account the source at multiple points along the ray. In order to

find the coefficients, we can eliminate the sources using (1.16), which should hold

at each point, i.e. D= − D′′= = (=, for all =, which yields,

�= D=−1 − �= D= + �= D=+1 = 0= D
′′
=−1 + 1= D

′′
= + 2= D′′=+1, (A.55)

where the primes denote derivatives with respect to the optical depth, and we rather

suggestively defined the three new coefficients,

�= ≡ U= + 0=, (A.56)

�= ≡ V= − 1=, (A.57)

�= ≡ W= + 2=. (A.58)

In order to relate the discretized equation (A.55) back to its continuum equivalent,

we can Taylor expand D and D′′, to relate the neighbouring values,

D=±1 = D= ± D′=Δg± +
1
2
D′′=Δg

2
± ±

1
6
D′′′= Δg

3
± +

1
24
D′′′′= Δg

4
±, (A.59)

D′′=±1 = D′′= ± D′′′= Δg± +
1
2
D′′′′= Δg

2
±, (A.60)
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where, using the indexing conventions, Δg+ ≡ Δg=, and Δg− ≡ Δg=−1. We limit

ourselves to fourth order, since that will impose sufficient constraints to determine

the coefficients. Substituting the expansions in equation (A.55) and collecting the

terms for each order of D yields,

D=

(
�= − �= + �=

)
− D′=

(
�=Δg− − �=Δg+

)
+ D′′=

(
1
2

(
�=Δg

2
− + �=Δg2

+

)
− 0= − 1= − 2=

)
− D′′′=

(
1
6

(
�=Δg

3
− + �=Δg3

+

)
+ 0=Δg− − 2=Δg+

)
+ D′′′′=

(
1
24

(
�=Δg

4
− + �=Δg4

+

)
+ 1

2

(
0=Δg

2
− − 2=Δg2

+

))
= 0.

(A.61)

Enforcing this equality for every order of D results in a set of five equations,



�= + �= = �=

�=Δg− − �=Δg+ = 0

1
2
(
�=Δg

2
− + �=Δg2

+
)

= 0= + 1= + 2=
1
6
(
�=Δg

3
− + �=Δg3

+
)

= 2=Δg+ − 0=Δg−
1
12

(
�=Δg

4
− + �=Δg4

+
)
= 2=Δg

2
+ − 0=Δg2

−

. (A.62)

These five equations are not sufficient to determine the six coefficients. However,

this was to be expected, since the coefficients defined by equation (A.54) are only

determined up to a constant factor. Hence, we can choose the value of one of

the coefficients. Considering the relation between �= and �=, given by the second

equation in (A.62), and considering the values of the coefficients in the original
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second-order scheme, a particularly useful choice is to define,

�= ≡
2

(Δg=−1 +Δg=)Δg=−1
, (A.63)

�= ≡ �= + �=, (A.64)

�= ≡
2

(Δg=−1 +Δg=)Δg=
. (A.65)

Note that these are almost the same definitions as in the original second-order scheme

(A.3, A.4, and A.5), but that they appear in the recursion relation (A.54) in a slightly

different way. This leaves us with a set of three equations and three unknowns,


1 = 0= + 1= + 2=
Δg2
−+Δg2

+
3(Δg=−1+Δg=) = 2=Δg+ − 0=Δg−
Δg3
−+Δg3

+
6(Δg=−1+Δg=) = 2=Δg

2
+ − 0=Δg2

−

, (A.66)

where we again used the old indexing convention (Δg+ ≡ Δg=, and Δg− ≡ Δg=−1).

This set of equations can readily be solved, yielding all coefficients,

�= ≡
2

(Δg=−1 +Δg=)Δg=−1
, (A.67)

�= ≡ �= + �=, (A.68)

�= ≡
2

(Δg=−1 +Δg=)Δg=
, (A.69)

0= ≡
1
12

(
2 − �=Δg

2
=

)
, (A.70)

1= ≡ 1 − 0= − 2=, (A.71)

2= ≡
1
12

(
2 − �=Δg2

=−1

)
. (A.72)
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Hence, the original second-order solver can be turned into a fourth-order solver by

substituting in the original equations,

�= → U= = �= −
1
12

(
2 − �=Δg

2
=

)
, (A.73)

�= → V= = 1 + (�=− 0=) + (�=− 2=), (A.74)

�= → W= = �= −
1
12

(
2 − �=Δg2

=−1

)
, (A.75)

and treating the source function accordingly,

(= → 0= (=−1 + 1= (= + 2= (=+1. (A.76)

Note that the old definition of �= → V= remains valid when substituting the new

definitions of �= and �=. As a result, also the solution methods presented for the

second-order solver remain valid.

A.2.2 Boundary conditions

To obtain the boundary conditions for the fourth-order scheme, we consider the first

and last row in the matrix equation corresponding to (A.54). The first row yields,

V0D0 − W0D1 = 10 (0 + 20 (1 + (+bdy, (A.77)

where we envisioned an additional term in the source, (bdy, similar to the boundary

conditions in the original second-order scheme. We can again eliminate the sources

by demanding that (1.16) holds for both = = 0 and = = 1, yielding,

−�0D0 + �0D1 = 10D
′′
0 + 20D

′′
1 − (

+
bdy, (A.78)

where we again introduced auxiliary variables,

�0 ≡ V0 − 10, (A.79)

�0 ≡ W0 + 20. (A.80)
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To relate the values of D at the two points, we can again perform a Taylor expansion,

D1 = D0 + D′0Δg0 +
1
2
D′′0 Δg

2
0 +

1
6
D′′′0 Δg

3
0 , (A.81)

D′′1 = D′′0 + D
′′′
0 Δg0. (A.82)

We limit ourselves to third order, since that will impose sufficient constraints to

determine the coefficients. Substituting the expansions in (A.78) yields,

D0

(
−�0 + �0

)
− D′0

(
−�0Δg0

)
+ D′′0

(
1
2
�0Δg

2
0 − 10 − 20

)
− D′′′0

(
1
6
�0Δg

3
0 − 20Δg0

)
= −(+bdy.

(A.83)

Now, we still have to impose the boundary condition, given by the intensity injected

into the ray, i.e. �+0 ≡ �0(n̂), this yields,

D′0 = −E0 = D0 − �+0 . (A.84)

Using this in equation (A.83) finally gives,

D0

(
−�0 + �0 + �0Δg0

)
+ D′′0

(
1
2
�0Δg

2
0 − 10 − 20

)
− D′′′0

(
1
6
�0Δg

3
0 − 20Δg0

)
= −(+bdy + �0Δg0 �

+
0 .

(A.85)
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Enforcing this equality for every order of D results in a set of four equations,



�0 = (1 + Δg0)�0

1
2�0Δg

2
1 = 10 + 20

1
6�0Δg

2
0 = 20

(+bdy = �0Δg0 �
+
0

. (A.86)

These four equations are not sufficient to determine the five coefficients, which is

again not surprising, since they are only defined up to a constant factor. Hence, we

can choose one of the coefficients. Considering the values of the original Feautrier

scheme, a particularly useful choice is,

�0 =
2
Δg2

0
, (A.87)

resulting in the complete solution of the system, given by,

�0 =
2
Δg0

+ 2
Δg2

0
, (A.88)

�0 =
2
Δg2

0
, (A.89)

10 =
2
3
, (A.90)

20 =
1
3
, (A.91)

(+bdy =
2
Δg0

�+0 . (A.92)

So we can deduce coefficients accounting for the boundary conditions,

�0 → V0 =
2
3
+ 2
Δg0

+ 2
Δg2

0
, (A.93)

�0 → W0 =
2
Δg2

0
− 1

3
. (A.94)
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Similarly, one can find for the other end of the ray,

�#−1 =
2

Δg2
#−2

, (A.95)

�#−1 =
2

Δg2
#−2
+ 2
Δg#−2

, (A.96)

0#−1 =
1
3
, (A.97)

1#−1 =
2
3
, (A.98)

(−bdy =
2

Δg#−2
�−#−1. (A.99)

resulting in the coefficients,

�#−1 → W#−1 =
2

Δg2
#−2
− 1

3
, (A.100)

�#−1 → V#−1 =
2
3
+ 2
Δg#−2

+ 2
Δg2

#−2
. (A.101)

Note that the index of Δg only goes up to = = # − 2, since it is only defined

in-between two consecutive points on the ray. This completes the fourth-order

(Hermitian) solution scheme for the radiative transfer equation.



Appendix B

Mathematical background

This appendix provides some further mathematical background to support some

claims in the main text of Chapter 6 that were presented without proof.

B.1 Equivalence between primal & dual formulation
To show the equivalence between the primal and dual formulation of the linear

regression problem in Section 6.2.1, we have to prove (6.12), or equivalently, that,

2−2�
(
�T2−2� + ,−2

)−1
−

(
�,2�T + 22

)−1
�,2 = 0. (B.1)

Using the Woodburry matrix identity, the second term can be expanded as,

2−2�,2 − 2−2�
(
,−2 + �T2−2�

)−1
�T2−2�,2. (B.2)

Substituting the result (B.2) in equation (B.1), ignoring the overall factor, 2−2�,

and isolating the terms with the inverse, it remains to show that,

(
�T2−2� + ,−2

)−1 (
1 + �T2−2�,2

)
− ,2 = 0. (B.3)

Rewriting the second factor by extracting the ,2, yields,

(
�T2−2� + ,−2

)−1 (
,−2 + �T2−2�

)
,2 − ,2 = 0. (B.4)

This clearly holds, and thus the primal and dual solutions are indeed equivalent.
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B.2 Marginal & conditional Gaussians
Given a (marginal) Gaussian distribution, ?(x), and a corresponding conditional

Gaussian distribution, ?(y | x), which are both defined as,

?(x) = N
(
-x , �x

)
, (B.5)

?(y | x) = N
(
�x + b, �y |x

)
, (B.6)

the other corresponding marginal distribution, ?(y), and the reverse conditional

distribution, ?(x | y), are given by,

?(y) = N
(
�-x + b, �y |x + ��x�

T
)
, (B.7)

?(x | y) = N
(
�

(
�T�−1

y |x (y− b) + �−1
x -x

)
, �

)
, (B.8)

in which we defined the covariance matrix,

� ≡
(
�−1
x + �T�−1

y |x�
)−1

. (B.9)

These relations can explicitly be derived by the method of “completing the square”

in the distribution function and collecting the relevant terms, as described in detail,

for instance, in [146].

B.3 Conditioning a Gaussian
Consider a stochastic vector variable, y, defined by two separate stochastic vector

variables, a and b, and assume that all their components follow a (multivariate)

Gaussian distribution, i.e.,

y =


a

b

 ∼ N ©­«

-a

-b

 ,

�aa �ab

�bb �bb

ª®¬ , (B.10)

in which, -a and -b are the mean vectors and the matrices �aa, �ab = �T
ba, and �bb,

together form the covariance matrix. Now, we can ask what the resulting distribution

of a would be, given prior knowledge about the value for b. Fixing the value of b
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again yields a multivariate Gaussian distribution,

? (a | b) = N
(
-a |b,�a |b

)
, (B.11)

in which the conditioned mean and variance are given by,

-a |b = -a + �ab�
−1
bb

(
b− -b

)
, (B.12)

�a |b = �aa − �ab�
−1
bb�ba . (B.13)

These relations can explicitly be derived by the method of “completing the square”

in the distribution function and collecting the relevant terms, as described in detail,

for instance, in [146]. Note that without any correlation between a and b, i.e.

�ab = �T
ba = 0, the prior knowledge about b will not affect the distribution of a,

which is in line with what one would expect.

B.4 A kernel based on Green’s functions

Given a linear PDE, and given the corresponding Green’s function, �, for the

differential operator, one can construct a kernel of the form,

: (I, B) =
∫ +∞

−∞
dB′

∫ +∞

−∞
dI′ ^(B′, I′) � (I′, I)� (B′, B), (B.14)

based on another kernel, ^. For later convenience, we define a new function, 6, that,

using the Green’s functions, can be expressed as,

6(B, I) ≡ ℒ2: (I, B) =
∫ +∞

−∞
dI′ ^(B, I′) � (I′, I), (B.15)

6(I, B) ≡ ℒ1: (I, B) =
∫ +∞

−∞
dB′ ^(B′, I) � (B′, B), (B.16)

in which the subscript on the differential operator, ℒ, indicates whether it acts on

the first or second argument. Note that both definitions are indeed consistent, since
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: is symmetric in its arguments. Using the Green’s functions again, one can derive,

ℒ1ℒ2: (I, B) = ℒ16(B, I) = ^(B, I), (B.17)

ℒ2ℒ1: (I, B) = ℒ26(I, B) = ^(B, I). (B.18)

Solving the PDE as a probabilistic regression problem, the corresponding covariance

matrix of the joint distribution, is given by,

©­­­­«
ℒ1ℒ2: (a, a) ℒ1ℬ2: (a, b) ℒ1: (a, B)

ℬ1ℒ2: (b, a) ℬ1ℬ2: (b, b) ℬ1: (b, B)

ℒ2: (B, a) ℬ2: (B, b) : (B, B)

ª®®®®¬
(B.19)

and can be simplified using the definitions above yielding,

©­­­­«
^(a, a) ℬ16(a, b) 6(a, B)

ℬ16(a, b) ℬ1ℬ2: (b, b) ℬ1: (b, B)

6(a, B) ℬ2: (B, b) : (B, B)

ª®®®®¬
. (B.20)

The requirement that this matrix is positive semi-definite for all Green’s functions,

�, can be reduced to the condition that,

^(a, B)T ^(a, a)−1 ^(a, I) ≤ ^(B, I), (B.21)

holds for all B, I ∈ �, which is equivalent to the condition that also the kernel, ^,

from (B.14) is positive semi-definite.

B.5 Equivalent kernel: method of characteristics
In the method of characteristics (Section 6.3.1), we considered the special case

where the second kernel has the additional property that it cannot correlate the

regions B > B0 and B < B0, which can mathematically be expressed as,

^(I, B) ≡ Θ(B0− I)Θ(B0− B) ^(I, B)

+ Θ(I− B0)Θ(B− B0) ^(I, B).
(B.22)
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Using the Green’s function from the radiative transfer equation, this implies for the

kernel in (6.55), and assuming I ≥ 1 and B ≥ 1, that,

: (I, B) =
∫ I

1

dI′
∫ B

1

dB′ ^(I′, B′) 4−g(I′,I) 4−g(B′,B)

+ : (1, 1) 4−g(1,I) 4−g(1,B) .
(B.23)

Similarly, this implies, for I ≥ 1 and B ≥ 1, that,

6(B, I) =
∫ I

1

dI′ ^(B, I′) 4−g(I′,I) , (B.24)

and in particular that for B ≥ 1, we have that 6(B, 1) = 0. As a result, the matrix that

needs to be inverted (6.18) to obtain the approximation (6.11) simplifies to,

©­«
ℒ1ℒ2: (a, a) + 22

L ℒ1ℬ2: (a, 1)

ℬ1ℒ2: (1, a) ℬ1ℬ2: (1, 1) + f2
B

ª®¬
=

©­«
^(a, a) + 22

L 6(a, 1)

6(a, 1)T : (1, 1) + f2
B

ª®¬
=

©­«
^(a, a) + 22

L 0

0T : (1, 1) + f2
B

ª®¬ .
(B.25)

Define the matrix, K ≡ ^(a, a) +22
L, and suppose that there is no uncertainty on the

boundary condition, i.e. fB = 0. The function approximation in the dual formulation

(6.11) then reads,

5̃dual(B) =
©­«
(

�0

ª®¬
T ©­«

K 0

0T : (1, 1)
ª®¬
−1 ©­«

6(a, B)

: (1, B)
ª®¬

= �0 4
−g(1,B) + (TK−1

∫ B

1

dB′ ^(a, B′) 4−g(B′,B) .

(B.26)
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We clearly recognise the result from the method of characteristics (6.54). Similarly,

the corresponding variance (or error measure) reads,

f̃2
dual(B) = : (B, B) − ©­«

6(a, B)

: (1, B)
ª®¬
T ©­«

K 0

0T : (1, 1)
ª®¬
−1 ©­«

6(a, B)

: (1, B)
ª®¬

=

∫ B

1

dB′
∫ B

1

dI′ � (I′, B)� (B′, B)

×
(
^(B′, I′) − ^(a, B′)TK−1^(a, I′)

)
,

(B.27)

where, in the brackets, we can identify the resulting conditioned variance for the

interpolation scheme (6.53) that was used for the emissivity.

B.6 Lambda operator formulation

The error measure defined in Section (6.39) can also be derived in another context.

Alluding to the radiative transfer nomenclature, define an operator, Λ, that maps the

data values, y, to the corresponding approximation function, such that,

5 (G) ≡ Λ[y] (G). (B.28)

Note that the particular form of the Λ-operator will depend on the locations, x,

of the data points. Following the primal formulation, the Λ-operator can now be

approximated by an operator, Λ̃, such that,

5̃ (G) ≡ Λ̃[y] (G) ≡ 5(G)TW y, (B.29)

where we expanded the operator in the set of basis functions, {q8}, by defining the

(#b×#d)-dimensional matrix W. Given the data locations, x, we want to find W

such that for any set of corresponding data values, y, we have that,

y = �Wy. (B.30)
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Since we want this to hold for any data values, y, we require that,

�W = 1, (B.31)

in which 1 is the (#d×#d)-dimensional identity matrix. Since� is not necessarily

invertible, we approximate W by minimising the mean squared error for any set of

data values, y, which reads,

MSE(W) ≡


2−1 (�W−1) y



2 +


,−1Wy



2
, (B.32)

where we weighted the different columns with the variance of the data, 2, and added

a regularisation term characterised by ,. If W is the exact right inverse of �, the

error term vanishes and only the regularisation remains. By construction the error

function (B.32) can thus be interpreted as a measure of how well W approximates

the (right) inverse of �, under the given regularisation. By perturbing the matrix,

W→W+ XW, the minimum of the error function can be found to be attained at,

Wmin =
(
�T2−2� + ,−2

)−1
�T2−2, (B.33)

which corresponds, when substituted in (B.29), to the primal solution (6.5).

A similar derivation can be made in the dual formulation which we omit here

since the duality will again imply the equivalence between both results. We only

note that also in the dual formulation constraints are only given for right inverses.

This raises the question whether there is a relation between W and the left

inverse of �. To investigate this, we search for the approximate left inverse of �,

i.e. the matrixW′ that (approximately) satisfies,

W′� = 1, (B.34)

where 1 is now the (#b×#b)-dimensional identity matrix. We can again solve this

by formulating it as a regularisedminimisation problem. One particularly interesting
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mean squared error function is

MSE′(W′) ≡


,(�TW′T−1)5(G)



2 +


2W′T5(G)

2

, (B.35)

in which we weighted the different rows with the regularisation vector, ,, and added

a regularisation term characterised by the variance of the data 2. By perturbing

the matrix, W′→W′+ XW′, the minimum of the error function can be found to be

attained at,

W′min =
(
�,2�T + 22

)−1
�,2, (B.36)

which corresponds to the dual solution (6.11). Due to the equivalence between the

primal and dual solution (6.12), we can conclude that,

W′min = WT
min. (B.37)

As a result, in the same sense that W is the optimal approximate right inverse of �

with respect to the error function (B.32), we find thatWT is the optimal approximate

left inverse of � with respect to the error function (B.35). Furthermore, the mean

squared error function (B.35) has the interesting property that1,

MSE′(W′min) = Ỹ2(G), (B.39)

so we can interpret the error estimate, Ỹ2(G), defined in (6.39), as a measure of how

wellW′ approximates the left inverse of� with respect to the error function (B.35).

1In contrast, substituting the primal and dual solutions (6.5 and 6.11) in their respective mean
squared error functions (6.3 and 6.8), yields the minimal mean squared error,

MSE(wmin) = MSE(vmin) = yT
(
�,2�T + 22

)−1
y, (B.38)

which can less straightforwardly be related to the error estimate, Ỹ2 (G), than (B.39).
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