46 research outputs found

    UAV photogrammetry ground control reductions using GNSS

    Get PDF
    Ph. D. Thesis.Unmanned aerial vehicles (UAVs) are now well-established as platforms for photogrammetric data acquisition. Their advantages, particularly over conventional manned aerial platforms, relate to their low cost, ease of use, rapid deployability and low-level flying for the collection of centimetre-level spatial resolution imagery. Coupled with recent innovations in photogrammetry and computer vision, UAVs equipped with consumer grade digital cameras are now frequently used to generate centimetre-resolution and accuracy mapping products, such as dense point clouds, digital elevation models and orthomosaics. Despite the efficiency of UAV data acquisition, the continued need for ground control implementation for photogrammetric image orientation remains a substantial workflow constraint. In addition to the associated costs, ground control must be implemented strategically, and usually extensively, to ensure photogrammetric products meet the accuracy requirements of large scale mapping, which may or may not be possible given constraints of the intended application. This research uses high precision, UAV-based GNSS (Global Navigation Satellite System) positioning techniques to substantially reduce ground control requirements by directly determining UAV image positions with centimetre-level accuracy and precision. The Precise Point Positioning (PPP) technique is applied and can yield centimetre-level planimetric and decimetre height accuracy photogrammetric mapping without GCPs, whilst the height accuracy can be improved to the centimetre-level using a single GCP. Unlike the standard relative GNSS positioning technique, PPP alleviates all spatial operating constraints associated with the installation and use of a local ground-based GNSS reference station, or the need to operate within the bounds of a permanent GNSS reference station network. Such a workflow simplifies operational logistics, and enables large-scale photogrammetric mapping from UAVs in even the most remote and challenging geographic locations globally. The approach was tested on 11 fixed wing UAV datasets, acquired at two sites in Northumberland, north-east England, which had varying ground control configurations. UAV flight durations, meaning time between launch and landing, were 12-42 minutes. It is shown that the main limitation of UAV-based PPP application is the inherent possibility of GNSS cycle slips and limited observation spans that inhibit the convergence of float ambiguity estimates. Although PPP camera position estimates were biased in such cases, GCPs were still minimised due to the retained precision of the PPP camera position estimates and constraints on the image block.EPSR

    Optimal Image-Aided Inertial Navigation

    Get PDF
    The utilization of cameras in integrated navigation systems is among the most recent scientific research and high-tech industry development. The research is motivated by the requirement of calibrating off-the-shelf cameras and the fusion of imaging and inertial sensors in poor GNSS environments. The three major contributions of this dissertation are The development of a structureless camera auto-calibration and system calibration algorithm for a GNSS, IMU and stereo camera system. The auto-calibration bundle adjustment utilizes the scale restraint equation, which is free of object coordinates. The number of parameters to be estimated is significantly reduced in comparison with the ones in a self-calibrating bundle adjustment based on the collinearity equations. Therefore, the proposed method is computationally more efficient. The development of a loosely-coupled visual odometry aided inertial navigation algorithm. The fusion of the two sensors is usually performed using a Kalman filter. The pose changes are pairwise time-correlated, i.e. the measurement noise vector at the current epoch is only correlated with the one from the previous epoch. Time-correlated errors are usually modelled by a shaping filter. The shaping filter developed in this dissertation uses Cholesky factors as coefficients derived from the variance and covariance matrices of the measurement noise vectors. Test results with showed that the proposed algorithm performs better than the existing ones and provides more realistic covariance estimates. The development of a tightly-coupled stereo multi-frame aided inertial navigation algorithm for reducing position and orientation drifts. Usually, the image aiding based on the visual odometry uses the tracked features only from a pair of the consecutive image frames. The proposed method integrates the features tracked from multiple overlapped image frames for reducing the position and orientation drifts. The measurement equation is derived from SLAM measurement equation system where the landmark positions in SLAM are algebraically by time-differencing. However, the derived measurements are time-correlated. Through a sequential de-correlation, the Kalman filter measurement update can be performed sequentially and optimally. The main advantages of the proposed algorithm are the reduction of computational requirements when compared to SLAM and a seamless integration into an existing GNSS aided-IMU system

    Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems

    Full text link
    This paper proposes the cooperative use of zero velocity update (ZU) in a decentralized extended Kalman filter (DEKF) based localization algorithm for multi-robot systems. The filter utilizes inertial measurement unit (IMU), ultra-wideband (UWB), and odometry velocity measurements to improve the localization performance of the system in the presence of a GNSS-denied environment. The contribution of this work is to evaluate the benefits of using ZU in a DEKF-based localization algorithm. The algorithm is tested with real hardware in a video motion capture facility and a Robot Operating System (ROS) based simulation environment for unmanned ground vehicles (UGV). Both simulation and real-world experiments are performed to show the effectiveness of using ZU in one robot to reinstate the localization of other robots in a multi-robot system. Experimental results from GNSS-denied simulation and real-world environments show that using ZU with simple heuristics in the DEKF significantly improves the 3D localization accuracy.Comment: 18 pages, preprint version, the manuscript is accepted for publication in NAVIGATION, the Journal of the Institute of Navigation. Submitted:10-11-2022, Revised: 21-04-2023, Accepted:23-06-202

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Development and Validation of an IMU/GPS/Galileo Integration Navigation System for UAV

    Get PDF
    Several and distinct Unmanned Aircraft Vehicle (UAV) applications are emerging, demanding steps to be taken in order to allow those platforms to operate in an un-segregated airspace. The key risk component, hindering the widespread integration of UAV in an un-segregated airspace, is the autonomous component: the need for a high level of autonomy in the UAV that guarantees a safe and secure integration in an un-segregated airspace. At this point, the UAV accurate state estimation plays a fundamental role for autonomous UAV, being one of the main responsibilities of the onboard autopilot. Given the 21st century global economic paradigm, academic projects based on inexpensive UAV platforms but on expensive commercial autopilots start to become a non-economic solution. Consequently, there is a pressing need to overcome this problem through, on one hand, the development of navigation systems using the high availability of low cost, low power consumption, and small size navigation sensors offered in the market, and, on the other hand, using Global Navigation Satellite Systems Software Receivers (GNSS SR). Since the performance that is required for several applications in order to allow UAV to fly in an un-segregated airspace is not yet defined, for most UAV academic applications, the navigation system accuracy required should be at least the same as the one provided by the available commercial autopilots. This research focuses on the investigation of the performance of an integrated navigation system composed by a low performance inertial measurement unit (IMU) and a GNSS SR. A strapdown mechanization algorithm, to transform raw inertial data into navigation solution, was developed, implemented and evaluated. To fuse the data provided by the strapdown algorithm with the one provided by the GNSS SR, an Extended Kalman Filter (EKF) was implemented in loose coupled closed-loop architecture, and then evaluated. Moreover, in order to improve the performance of the IMU raw data, the Allan variance and denoise techniques were considered for both studying the IMU error model and improving inertial sensors raw measurements. In order to carry out the study, a starting question was made and then, based on it, eight questions were derived. These eight secondary questions led to five hypotheses, which have been successfully tested along the thesis. This research provides a deliverable to the Project of Research and Technologies on Unmanned Air Vehicles (PITVANT) Group, consisting of a well-documented UAV Development and Validation of an IMU/GPS/Galileo Integration Navigation System for UAV II navigation algorithm, an implemented and evaluated navigation algorithm in the MatLab environment, and Allan variance and denoising algorithms to improve inertial raw data, enabling its full implementation in the existent Portuguese Air Force Academy (PAFA) UAV. The derivable provided by this thesis is the answer to the main research question, in such a way that it implements a step by step procedure on how the Strapdown IMU (SIMU)/GNSS SR should be developed and implemented in order to replace the commercial autopilot. The developed integrated SIMU/GNSS SR solution evaluated, in post-processing mode, through van-test scenario, using real data signals, at the Galileo Test and Development Environment (GATE) test area in Berchtesgaden, Germany, when confronted with the solution provided by the commercial autopilot, proved to be of better quality. Although no centimetre-level of accuracy was obtained for the position and velocity, the results confirm that the integration strategy outperforms the Piccolo system performance, being this the ultimate goal of this research work

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application
    corecore