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Abstract 

The high demand for low-cost multi-sensor integrated kinematic positioning and 

navigation systems, for example as the core of direct-georeferencing technique in mobile 

mapping, is continuously driving more and more research and development activities. 

The effective and sufficient utilization of cameras as navigation sensors is among the 

most recent scientific research and high-tech industry development subjects. Cameras are 

relatively inexpensive, easy to interface with, and can provide very precise angular 

resolution. The research is motivated by the requirement of (a) calibrating off-the-shelf 

camera(s) prior to navigation and (b) the fusion of imaging and inertial sensors in poor 

global navigation satellite system (GNSS) or GNSS denied environments. The three 

major contributions of this dissertation are: 

 The development and analysis of a camera auto-calibration and system calibration 

algorithm for a GNSS, IMU and stereo camera system that is based on the scale-

restraint equation. The camera auto-calibration is first performed to obtain the 

lens distortion parameters, up-to-scale baseline length and the relative orientation 

between the stereo cameras. Then, the system calibration is introduced to recover 

the camera lever-arms, and the bore-sight angles with respect to the IMU, and the 

absolute scale of the camera using the GNSS-aided inertial navigation solution. 

The auto-calibration bundle adjustment utilizes the scale restraint equation, which 

is free of object coordinates. Such a method is often called structureless bundle 

adjustment. The number of parameters to be estimated is significantly reduced in 

comparison with the ones in a self-calibrating bundle adjustment based on the 
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collinearity equations. Therefore, the proposed method is computationally more 

efficient. Test results showed that the scale-restraint equation required 

approximately 4 times more measurements than the collinearity equations to 

achieve comparable calibration accuracy while using only 0.1% of the 

computational resources.  

 The development of a loosely-coupled visual odometry aided inertial navigation 

algorithm. The pose changes are pairwise time-correlated, i.e. the measurement 

noise vector at the current epoch is only correlated with the one from the previous 

epoch. The fusion of the two sensors is usually performed using a Kalman filter. 

The standard Kalman filter runs under the assumption that the process noise 

vector and measurement noise vector are white, i.e. independent and normally 

distributed with zero means. However, this assumption does not hold when fusing 

visual odometry and IMU measurements. It is well-known that the solution of the 

standard Kalman filter becomes suboptimal if the measurements are colored or 

time-correlated. Time-correlated errors are usually modelled by a shaping filter. 

The shaping filter developed in this dissertation uses Cholesky factors as 

coefficients derived from the variance and covariance matrices of the 

measurement noise vectors. The test results with real data showed that the 

proposed algorithm reduced the position drifts by 20% and 8% when compared to 

the standard Kalman filter and the Kalman filter with the conventional shaping 

filter respectively. Furthermore, the method can seamlessly be blended into an 

existing  state-of-the-art GNSS aided-IMU system.  
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 The development of a tightly-coupled stereo multi-frame aided inertial navigation 

algorithm for reducing position and orientation drifts. Usually, the image aiding 

based on the visual odometry uses the tracked features only from a pair of the 

consecutive image frames. The proposed method integrates the features tracked 

from multiple overlapped image frames for reducing the position and orientation 

drifts. Hence, the proposed method is referred as multi-frame visual odometry 

(MFVO). Previous multi-frame methods, which are sometimes referred as sliding 

window methods, use batch estimators that jointly estimate the vehicle’s pose and 

feature positions. However, the size of the parameter vector can become 

impractically large when the number of features is view is high. Furthermore, it is 

difficult to integrate these methods optimally into an existing GNSS/INS 

integration architecture. In the proposed MFVO method, the measurement 

equation system is derived from Simultaneous Localization and Mapping 

(SLAM) measurement equation system where the landmark positions in SLAM 

are algebraically eliminated by time-differencing the measurements at two 

consecutive epochs. However, the resulting time-differenced measurements are 

time-correlated. Through a sequential de-correlation, the Kalman filter 

measurement update can be performed sequentially and optimally. The main 

advantages of the proposed algorithm are (a) the reduction of computational 

requirements when compared to SLAM and (b) a seamless integration into an 

existing GNSS aided-IMU system. 
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1. Introduction 

This chapter provides an introduction to this dissertation. Section 1.1 contains a 

background which is followed by the research objectives in Section 1.2. And finally 

Section 1.3 outlines the dissertation.   

 Background 1.1.

The high demand for direct-georeferencing technology with low-cost multisensor 

integrated kinematic positioning and navigation systems in mobile mapping and direct 

georeferencing is continuously driving more research and development activities. Mobile 

mapping involves the collection of data to produce maps while in continuous motion. 

GNSS aided-inertial navigation systems are widely used for making maps efficiently on 

mobile platforms through direct georeferencing, The direct georeferencing method uses 

the position and orientation information to geo-code each pixel or point collected by a 

camera or LiDAR system, respectively, without the use of extensive ground control 

points. The position accuracy of the georeferenced pixels or points depends on the 

accuracy of navigation solution.    

GNSS provides long term high accuracy of absolute position and velocity solution but 

does not work in indoor or urban-canyon environments. INS, on the other hand, works in 

all environments but its solution accuracy deteriorates with time. An integrated GNSS-

INS system can take their advantages to determine the trajectory of a moving platform in 

position, velocity and attitude and so on. During any GNSS outage the accuracy of the 

navigation solution depends solely on the quality of inertial navigation sensors. 

Navigation and tactical grade of inertial measurement units (IMUs) exhibit low solution 
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drift rate but are very expensive and not easily accessible to the public in civilian 

applications. Hence, more and more low-cost IMUs have been made available during the 

past decade. Low grade of MEMS IMUs are considerably cheaper and easily available 

but accumulate large errors over a relatively short period of time. To reduce the INS 

errors in poor GNSS or GNSS denied environments, other sensors can be added to the 

navigation system, for example Wi-Fi positioning, barometer, odometer and 

magnetometer to name a few [Aggarwal et al, 2010]. In the past decade, image-aiding has 

become a hot topic in multisensor integrated navigation. Cameras are inherently high-

bandwidth and therefore have the high potential for very precise angular resolution and 

are readily available and easy to interface with [Miller et al, 2011]. Furthermore, it is 

inexpensive in comparison with other self-contained electro-optical sensors such as laser 

ranging (LIDAR) [Shen and Liu, 2005].  

In order to use cameras as navigation sensors, they have to be calibrated first, which 

refers to the determination of the focal length, the principal point offset and the image 

distortion parameters. Furthermore, the determination of the translational offsets and the 

orientation (boresight) angles between the individual sensors in a multi-sensor system are 

also part of the calibration. Usually, the traditional camera calibration consists of 

capturing images containing an array of the reference targets with their coordinates 

accurately known in a laboratory [Wolf and Dewitt, 2000]. However, such methods 

require the setup of enough reference points and the calibrated parameters can become 

invalid during field operations, e.g., due to camera assembly/disassembly, replacement 

and/or bumps [Teller et al, 2010].  
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Alternative to the traditional calibration techniques are the auto-calibration (or self-

calibration) methods. An auto-calibration refers to the determination of the camera 

parameters from a sequence of the overlapped images without setting up ground control 

points (GCPs) or specific calibration targets. The main advantages are: (a) the procedure 

can be fully automated, (b) the calibration can be performed in-field, and (c) the accuracy 

of the estimated calibration parameters can be improved by the applied information from 

other sensors in the system. Typically, an auto-calibration is performed in a bundle 

adjustment based on the extended collinearity equations where the interior orientation 

parameters (IOPs), the exterior orientation parameters (EOPs) and the object coordinates 

(a.k.a. landmark coordinates) are estimated. However, they are computationally 

expensive due to the very large number of object position parameters.  

Another way of performing the auto-calibration is through structureless bundle 

adjustment methods [Faig, 1975; Cefalu et al, 2016]. These methods are based on the 

epipolar and scale consistency constraints and are free from object coordinates. The 

number of unknown parameters in the bundle adjustment is drastically reduced. Hence, 

this PhD research developed a camera calibration method that could precisely calibrate 

camera parameters in a GNSS/IMU/Stereo cameras integrated system exclusive of the 

object coordinate parameters. It applies the three-view scale-restraint equation [Bethel, 

2003; Ghosh, 2005], with which the measurements are processed exclusively in the 

image space. Therefore, it does not allocate large memory and computing resources. 

Once the cameras are calibrated, they are ready for navigation. There are two main 

analytical approaches to extract navigation information from image measurements, 

namely visual Simultaneous Localization and Mapping (SLAM) and visual odometry 
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(VO) [Murcott et al, 2011]. The former simultaneously determines the motion and the 

map while the latter only focuses on the motion of consecutive frames. The advantage of 

SLAM is that the navigation accuracy can be increased by detecting and applying loop-

closures in scenarios when the same locations are visited more than once [Liu and Zhang, 

2012]. However, this benefit does not hold when the same locations are not revisited and 

absolute positioning information, such as GNSS or position fixes, are available. The main 

drawback with the SLAM is the increase of the computational requirement as more and 

more landmarks are added to the map. The VO, on the other hand, can maintain a 

constant dimensionality in system parameterization since the output is only the pose 

changes of a moving object and does not take up a large memory.  

The fusion of imaging and inertial sensors can be performed using batch processing 

methods [Indelman et al, 2013b; Leutenegger et al, 2015; Forster et al, 2017] or using a 

Kalman filter [Veth et al, 2006; Mourikis et al, 2009; Sazdovski et al, 2011; Bloesch et al, 

2015; Liu et al, 2016]. The Kalman filter is generally preferred since the data processing 

is conducted sequentially epoch after epoch. Furthermore, GNSS-aided inertial 

navigation via a Kalman filter is well-known so that it is natural to employ Kalman 

filtering for image-aiding in the GNSS/IMU/stereo cameras integrated kinematic 

positioning and navigation. The SLAM-based image-aiding method [Sazdovski et al, 

2011] uses the standard form of the extended Kalman filter and does not require any 

modification to the current GNSS-aided INS architectures. The VO-based image-aiding 

methods, however, require special attention to the following two specifics with the pose 

changes: (a) they are relative in nature and (b) pairwise correlated in terms of time. The 

relative measurements can be processed using the stochastic cloning Kalman filter 



5 

 

[Roumeliotis et al, 2002], which relates the positions and attitudes of a moving vehicle 

between two consecutive image frames. A shaping filter, which is a differential or 

difference equation with white noise input and output of a certain correlation function 

[Grewal, 2001], is usually used to model time-correlated measurements. The state vector 

is then augmented with the state vector components of the shaping filter and the resulting 

system model is in the form of a linear dynamic system driven by white noise [Grewal, 

2001]. However, the conventional shaping filter for time-correlated measurements in 

[Bryson and Henrikson, 1968; Gelb, 1974] does not adequately model the pairwise time-

correlated case and is therefore suboptimal with its application in the VO aided inertial 

navigation.  

Similar to any dead-reckoning navigation technique, the incremental VO estimates 

accumulate errors and drifts over time. The drifts in the VO estimates can be reduced by 

utilizing image measurements from more than two consecutive frames; specifically, the 

last m frames (m > 2). This approach has been employed in [Mourikis and Roumeliotis 

2007; Fraundorfer et al, 2010; Clement et al, 2015; Wen et al, 2016], where the pose and 

feature positions are jointly estimated at the local level. However, the number of 

parameters in these methods increases as more features are observed and could become 

impractical when the dimension of the parameter vector is too high. Furthermore, the 

optimal integration of multi-frame image measurements in the current state-of-the-art 

GNSS aided inertial navigation is not so obvious. 

This dissertation is focused on developments of theoretical and practical techniques 

for image and IMU integration. Two image-IMU integration algorithms were developed: 

(a) loosely-coupled visual odometry aided inertial navigation (LC VO aided-INS) and (b) 
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tightly-coupled multi-frame visual odometry aided inertial navigation (TC MFVO aided-

INS).  

The LC VO aided-INS employs a Kalman filter algorithm that models the pairwise 

time correlated VO measurements. The shaping filter for this type correlation uses 

Cholesky factors as the coefficients derived from the variance and covariance matrices of 

the measurement noise vectors. The state vector is then augmented with the de-correlated 

measurement noise vector which results in the form of the standard Kalman filter. The 

test results showed that the proposed algorithm performs better than the existing Kalman 

filter algorithms and provides more realistic covariance estimates.  

The TC MFVO aided-INS algorithm integrates image data from multiple stereo 

frames without involving feature positions in the state vector. The measurement equation 

system in this MFVO is derived from the SLAM measurement equation system where the 

landmark position parameters are algebraically eliminated by time-differencing the 

measurements at two consecutive epochs. However, the resulting time-differenced 

measurements are time-correlated. Through a sequential de-correlation algorithm, the 

Kalman filter measurement update can be performed sequentially and optimally. The 

proposed MFVO algorithm uses far less computation resources while producing identical 

navigation solution in comparison with the SLAM method.  

The derived system and measurement equations for both the LC VO aided-INS and 

the TC MFVO aided-INS algorithms are in the form of the standard Kalman filter. 

Therefore, they can be easily integrated into the current state-of-the-art GNSS aided-INS 

architectures.  



7 

 

 Research objectives  1.2.

The objectives of the dissertation are to: 

 Design, implement and evaluate a structureless camera auto-calibration and 

system calibration for a GNSS/IMU/Stereo camera integrated system based on the 

scale-restraint equation. Compare (a) the accuracy of the estimated calibration 

parameters and (b) the computational complexity of the proposed method with the 

auto-calibration algorithm based on the collinearity equations.  

 Develop Kalman filter algorithm for processing pairwise time-correlated 

measurements. Then, implement the algorithm in a loosely coupled stereo VO 

aided-INS. Finally, evaluate and compare the accuracy of the proposed algorithm 

with the standard Kalman filter and the Kalman filter with the conventional time-

correlated measurements.  

 Develop and implement an optimal technique for fusing the multi-frame visual 

odometry and IMU measurements. Then, evaluate and compare the performance 

of proposed method to visual SLAM aided-INS.  

 Dissertation outline 1.3.

The remainder of the dissertation is structured as follows: Chapter 2 gives a literature 

review of multisensor fusion and integration navigation, camera calibration and image-

aided inertial integrated navigation while Chapter 3 summarizes the fundamentals of 

estimation theory, GNSS, inertial navigation and image-based navigation. Right after, the 

structureless camera auto-calibration and system calibration algorithms for a 

GNSS/IMU/Stereo camera integrated are developed in Chapter 4. Chapter 5 presents the 
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loosely-coupled visual odometry aided inertial navigation. Then, the tightly-coupled 

Kalman filter is presented for fusing multi-frame visual odometry and INS tightly 

coupled stereo multi-frame aided inertial navigation algorithm in Chapter 6. Chapter 7 

further gives the test results and conducts performance analysis of the proposed 

algorithms developed in Chapters 4, 5 and 6 using data collected from YUMIS system by 

the EOL lab of York University. At the end, Chapter 8 summarizes the dissertation with 

the conclusions of the research and recommendations for future work.  
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2. Literature review 

This chapter contains a literature review. Section 2.1 focuses on camera calibration 

while Section 2.2 focuses on reviewing image-aided inertial integrated navigation. 

 Camera auto-calibration and system calibration 2.1.

Image-based navigation (IBN) algorithms assume that the camera system is 

geometrically calibrated prior to its use and the calibration parameters do not change over 

time. There are many definitions of camera calibration in the literature. In general, 

regardless of the various definitions, a camera is considered as calibrated if its focal 

length, principal point offset and image distortion parameters are known [Remondino and 

Fraser, 2006]. The determination process of these parameters is referred to as camera 

calibration. In photogrammetry, the mathematical model for camera calibration involves 

the extension of the collinearity equations through additional parameters that model the 

distortions. The distortion model generally requires five or more point correspondences 

from multiple overlapping images and is fit through a least-squares bundle adjustment 

[Remondino and Fraser, 2006].  

In multisensor integrated system consisting of a stereo camera system, the 

translational offsets and the orientation angles between the individual sensors are 

unknown after assembly. In a GNSS, IMU and stereo cameras integrated system, these 

geometric parameters are the 3D baseline vector and the relative orientations between 

two cameras [Prokos et al, 2012], the lever-arms and bore-sight angles [Bender et al, 

2013] of the reference camera with respect to a specific reference point of the system.  

The determination of these unknowns is referred as system calibration.  
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There are different camera and system calibration techniques that solve some or all the 

parameters and can be categorized as follows:   

Laboratory calibration: determines the focal length and principal point offset using 

goniometers, compactors, collimators or other optical alignment instruments in a 

laboratory setting [Clarke and Fryer, 1998, Wolf and Dewitt, 2000, Ghosh, 2005]. This 

type of the methods is usually employed in high accuracy metric cameras and almost 

never in low- cost off-the-shelf cameras.   

Traditional calibration: consists of capturing images containing an array of the 3D 

reference targets, whose coordinates are accurately known i.e., pre-surveyed [Wolf and 

Dewitt, 2000]. The reference targets can be in two or three planes orthogonal to each 

other [Zhang, 2004] or in a calibration cage [Moe et al, 2010]. These methods provide a 

very accurate calibration results but are expensive to setup and maintain. An easier setup 

is to employ planar grid, such as checkerboard [Zhang, 2000]. It is reasonably accurate, 

simple to produce and more practical to use. The parameters are usually estimated 

through a bundle adjustment or the Levenberg-Marquardt algorithm [Remondino and 

Fraser, 2006]. However, these parameters are calibrated in such an environment that may 

not necessarily be the same as the real working environment. 

Auto (or self) -calibration: performs the calibration by using a sequence of the 

overlapping images without the use of any reference target and does not require an 

elaborate setup. The calibration can be performed in any environment with texture and 

close-range objects. The methods in this category are therefore more flexible and 

practical than the traditional methods. However, they may not be able to achieve the 

same accuracy level as traditional methods. Besides, the absolute scale of the camera 
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system cannot be known without additional information. Similar to the Traditional 

calibration methods, the calibration parameters are estimated through a bundle 

adjustment (BA) or the Levenberg-Marquardt algorithm.  

System calibration: involves the determination of lever-arms [Bender et al, 2013], 

boresight angles [Mostafa, 2001] and the absolute scale of the camera system [Kelly el al, 

2011] in a multisensor integrated system. These parameters can only be obtained via 

external information.  For example, lever-arms can be measured using survey equipment, 

boresight angles can be recovered with GCPs and the absolute scale can be estimated 

using GNSS measurements as the reference.  

In-field (or in-flight) calibration: can be considered as a combination of the traditional, 

auto and system calibration methods. This is performed when system calibration 

parameters are not available or become invalidated during in-field operations, e.g., due to 

camera assembly/disassembly, replacement, or bumps [Teller et al, 2010].     

2.1.1. Auto-calibration 

 The most widely used mathematical model for camera auto-calibration is the well-

known extended collinearity, which consists of the collinearity equations and the image 

distortion model [Fraser, 2012]. The auto-calibration procedure can be categorized into 

block-invariant [Kenefick et al, 1972; Ghosh, 1988] and photo-variant [Moniwa, 1980] 

approaches. The former assumes that the distortion is constant in a set of images, while 

the latter assumes that the distortion changes between images. Most auto-calibration 

approaches involving digital cameras are block-invariant.  

The calibration parameters can be determined in a bundle adjustment (BA) [Ghosh, 

1988; Triggs et al, 2000] or in the SLAM framework [Civera et al, 2009; Kelly and 
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Sukhatme, 2009; Kelly et al, 2011; Keivan and Sibley, 2014]. This process involves the 

simultaneous estimation of the calibration parameters, the exterior orientation and the 

positions of the stationary objects. In photogrammetry, BA is the preferred method for 

this purpose. The parameters are usually estimated by using least-squares (LS) [Triggs et 

al, 2000] or the Levenberg-Marquardt (LM) algorithm [Levenberg, 1944; Hartley and 

Zisserrnan, 2003]. The size of the computed Jacobian matrix and normal equation system 

can be large. Solving this linearized system can be inefficient in terms of the memory and 

computation loading and can be impractical especially when the number of the involved 

exterior orientation parameters and the involved objects is large [Jeong et al, 2012]. 

There are several methods proposed to reduce the computation and memory load in 

the BA by exploiting the sparsity of the Jabobian matrix and normal equation. Lourakis 

and Argyros [2009] presented the Sparse Bundle Adjustment (SBA) by constructing a 

dense normal matrix from the non-zero Jacobian blocks, in which the Cholesky 

decomposition and back-substitution method were used to solve the parameters. Konolige 

[2010] improved the efficiency of the SBA with the Sparse Sparse Bundle Adjustment 

(sSBA) by employing a highly-optimized Cholesky decomposition solver. The efficient 

Incremental Smoothing and Mapping (iSAM) algorithm was developed by Kaess et al 

[2008], where the parameters were updated by a QR factorization of the naturally sparse 

normal matrix and by only re-computing matrix entries that actually changed. Kaess et al 

[2011] further improved variable reordering and re-linearization in iSAM2 by 

implementing a Bayes tree data structure. Although these have methods have improved 

the computationally efficiency of solving the BA problem, the number of estimated 

parameters can still be large. As an example, consider a set 100 stereo images viewing 
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10000 objects.  The total number of parameters the being estimated in the BA is 30625 

(see Table 2.1) and 98% of them are the position vector of the objects. The object 

coordinates are not particularly in need since the goal is to obtain the calibration 

parameters.  If they can be removed or omitted from the system of equations, then the 

memory and computational usage for solving the BA problem can be drastically reduced. 

 

Table 2.1 The components of the parameter vector and the  

corresponding size in a stereo camera auto-calibration bundle adjustment 

Number of stereo images 100 

Number of observed objects 10000 

Parameter Size 

Focal length error, principal point error 2×3 

Image distortion (10 parameter model) 2×10 

Stereo baseline and relative orientation (one 

baseline component is fixed) 
2+3 

Exterior Orientation (one EO parameter is fixed)
 

6×(100-1) 

Object position parameters 3×10000 

Total parameter vector size 30625 

 

Several approaches have been proposed to reduce the order of the BA. Dang et al 

[2009] introduced a BA with the reduced order for their stereo self-calibration algorithm. 

The x and y components of the object positions were algebraically eliminated from the 

equation system, only the depth (z) component of the objects remains in the parameter 

vector, which reduced the parameter dimension by almost 2/3. The Schur complement 

trick was used in [Triggs et al., 2000, Jeong et al, 2012] where the dimension of the linear 

equation system was reduced such that only exterior orientation (EO) parameters were 

estimated. These methods are useful for cases where only the EO parameters are required 

by the user. However, the Jabobian matrix requires a good approximation of the object 

positions which can be difficult to obtain if the camera system is not calibrated.  
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Calibration methods that are free of object coordinates are referred as structureless BA 

or light BA. They typically employ two-view constraints, e.g. the coplanarity equations, 

or three view constraints, e.g. the trifocal tensor [Hartley, 1997], or both. Faig [1975] 

developed an auto-calibration method which employed the coplanarity equation. 

Furthermore, a control restraint condition was included to recover the absolute orientation 

of the images. More recently, Rodriguez et al. [2011a, 2011b] developed the Global 

Epipolar Adjustment (GEA) using the two-view coplanarity constraint in their bundle 

adjustment. Cefalu et al [2016] implemented a similar approach as in [Rodriguez et al., 

2011b], which included the image distortion model into the measurement equation by 

Brown [1971]. It has shown that the GEA required less number of iterations than the 

SBA using the LM algorithm. Furthermore, the number of parameters is fixed per image 

pair. However, the estimated translation vectors between the images are ambiguous and 

do not have physical meaning since coplanarity constraint does not ensure that all images 

are with the same scale. Scale consistency is important in a multisensor integrated 

navigation system and for general applications. Three view constraints can be used to 

ensure the scale consistency between the views. Steffen et al. [2012] proposed a 

structureless relative BA which combined the epipolar and trifocal constraints between 

images. The relative representation of the camera positions improved the numerical 

condition of the equation system and is also statistically equivalent to the classical bundle 

adjustment. Indelman [2012] implemented the incremental light bundle adjustment 

(iLBA) and derived a three-view constraint system involving three equations, i.e., two 

epipolar equations and a third three-view constraint equation, for the scale consistency. 

Indelman et al. [2013a] integrated the iLBA with IMU measurements for robotic 
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navigation. Both Steffen et al. [2012] and Indelman [2012] used monocular vision and 

chained the entire image set by constraining images {1, 2, 3}, then images {2, 3, 4}, and 

so forth. This chaining ensures that all images operate on the same scale. However, they 

assumed that the cameras have been calibrated.   

Auto-calibration algorithms have a rank deficiency of order seven (i.e. 3D position, 

3D orientation and scale). Hence, they require the minimal constraints to define the 

network datum, which can be done by applying the minimum constraint free-network 

adjustment, or through explicit minimal control point [Remondino and Fraser, 2006]. In 

free-network adjustment one can fix one camera position and one orientation. Then one 

coordinate component of a second position or the distance between the two cameras can 

be fixed [Cefalu et al, 2016]. If stereo cameras are used, then the length of the stereo 

baseline is treated as a free parameter [Hartley and Zisserman, 2003].  In order to recover 

the absolute scale, certain external information is needed.  

2.1.2. System calibration 

The boresight angles between an IMU and a camera system can be determined with or 

without ground control points (GCPs). In the first case, the camera orientation is first 

computed using GCPs. Then the IMU body-to-mapping frame direction cosine matrix 

(DCM) is determined at the time of exposure. Finally, the boresight angles are recovered 

by comparing the two sets of orientations [Škaloud et al, 1996, Mostafa, 2001]. In the 

second case, the boresight angles are treated as constant parameters in a bundle 

adjustment [Pinto, 2002, Heipke et al, 2002, Mostafa, 2002, Bender et al, 2013]. These 

two methods are typically applied in calibrating aerial photogrammetric survey systems 

with the known IO parameters.  
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Camera-IMU lever-arms can be measured using survey equipment or estimated in the 

BA. Bender et al [2013] presented an in-flight graph based the BA approach for system 

calibration between a rigidly mounted camera and an IMU. Image point features together 

with the solution of the GNSS aided-inertial navigation position and orientation were 

used as measurements. This method simultaneously computed the IOPs as well as the 

lever arms and boresight angles between the two systems. However, it also required one 

GCP at least in-order to recover the z-component of the lever-arm vector. Kelly and 

Sukhatme [2009] proposed a camera-IMU self-calibration method within the SLAM 

framework implemented by an unscented Kalman filter. The lever-arms and mounting 

angles, the IMU gyroscope and accelerometer biases, the local gravity vector and 

landmarks could all be recovered from camera and IMU measurements alone. However, 

they assumed that the internal camera parameters were known beforehand. Mirzaei and 

Roumeliotis [2008] presented a similar tightly-coupled approach using an iterative 

extended Kalman filter, but, in need of known landmark position. 

Auto-calibration algorithms in free-network adjustment mode require external 

information to compute absolute scale of the camera system. Kelly el al [2011] focused 

on determining the absolute scale of both the scene and the baseline in a stereo rig using 

GNSS measurements. Their approach was similar to the photogrammetric BA and the 

structure from motion algorithms. They could recover the baseline and the relative 

orientation between the two cameras and the lever-arms between the GNSS antenna and 

the reference camera. 

Accordingly, this dissertation develops a camera auto-calibration algorithm using a 

structureless bundle adjustment for a stereo camera system. Furthermore, system 
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calibration is performed using GNSS/IMU data to recover the boresight angles, lever-

arms and absolute scale of the camera system. Both camera auto-calibration and system 

calibration parameters are estimated simultaneously using the least square method.    

 Image aided-INS integration 2.2.

In an image aided-INS (IA-INS), the performance of the inertial navigation system can 

be improved by fusing the measurements derived from images taken by an on-board 

camera system. Typically, point features are extracted and matched from consecutive 

overlapping image frames using image processing techniques. Then the IA-INS 

algorithm uses these point features as measurements to estimate the navigation states via 

batch processing [Indelman et al, 2013b; Leutenegger et al, 2015; Forster et al, 2017] or a 

Kalman filter [Veth et al, 2006; Mourikis et al, 2009; Sazdovski et al, 2011; Bloesch et al, 

2015; Liu et al, 2016].  

The camera system can consist of a single or stereo camera. Monocular vision can 

only estimate the trajectory only up to an unknown scale. Stereo vision, on the other 

hand,  avoids the scale ambiquity inherent in monocular vision when the stereo baseline 

is known. Furthermore, monocular vision requires three consecutive frames in order to 

transfer the relative scale and this tends to reduce the stability of the system [Scaramuzza 

and Fraundorfer, 2011].  

Since the early 1980s, IA-INS research has been conducted. Moravec [1980] 

introduced one of the first image-only motion estimation using stereo cameras. Merhav 

and Bresler [1986] developed an online image-based velocity-to-height ratio estimation 

algorithm and its integration with on board navigation sensors. With the availability of 

digital cameras in the 1990s, the typical data process of modern IA-INS consists of three 
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main steps (a) point feature detection (b) point feature matching and (c) pose (or pose 

change) estimation and navigation state update.  Figure 2.1 overviews a typical modern 

IA-INS. 

 
Figure 2.1 Overview of a typical IA-INS system 

 

In the feature-detection step, stable points, such as corners and blobs, are located on 

the images. For navigation applications, the detector must be repeatable, i.e. it should 

ideally be able to find the same point features in multiple frames. Many feature detectors 

have been developed, for example, Harris [Harris et al., 1988], SIFT [Lowe, 1999] and 

SURF [Bay et al., 2008]. Once the features have been identified in each frame, they are 

matched across multiple frames. This is achieved by first constructing a feature descriptor 

using pixels around the point. The descriptor vectors on an image are then matched 

against descriptors from other images in order to obtain correspondences. Constrained 

matching techniques can be employed to reduce the number of potential matching 

candidates and there can reduce the search time. In the case of stereo vision, the search 

can be performed along the epipolar lines between the stereo pairs [Bin Rais, et al, 2003]. 

Between consecutive frames, the locations of the features on the next frame can be 
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predicted using a motion model [Scaramuzza and Fraundorfer, 2011] or using the motion 

estimate from the inertial navigation solution [Veth et al, 2006]. This can effectively 

reduce the search radius, increase the efficiency and help to prevent aliasing. Figure 2.2 

shows point features extracted and matched from a stereo pair. 

 

 
Figure 2.2 Matching of point features from a pair of stereo frames 

 

The pose estimation and navigation state update are typically based on visual SLAM 

[Davison, 2003; Konolige, K and Agrawal, 2008; Alcantarilla et al, 2012] or visual 

odometry (VO) [Nister et al, 2004; Konolige, et al 2007; Gopaul et al, 2017].  The former 

applies the well-established SLAM algorithms, while the latter tracks common features 

from the consecutive image frames [Murcott et al, 2011]. 

The SLAM technique incrementally builds a consistent map of landmarks in an 

unknown environment whilst the simultaneous determination of the location of the 

mobile system is being conducted [Dissanayake et al, 2006; Durrant-Whyte and T. 

Bailey, 2006a; Thrun et al. 2008]. The state vector consists of the navigation states 

(position, velocity and/or orientation) and the landmark positions. The SLAM algorithm 

requires map maintenance where newly visible landmarks observed from the 
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environment are added to the map and landmarks that are no longer visible or to be 

revisited are removed from the map.  

Visual SLAM tends to be more accurate than VO, since the map retains the memory 

of the measurements over multiple frames while VO only employs measurements from 

two latest consecutive image frames [Scaramuzza and Fraundorfer, 2011]. Furthermore, 

the accuracy of visual SLAM can be increased by detecting and applying any loop-

closure in scenarios when any location is visited more than once [Liu and Zhang, 2012]. 

However, the application of loop-closures may be irrelevant in cases where past locations 

are not revisited and when absolute position measurements, such as GNSS position or 

position fixes, become available. Furthermore, the main drawback with the SLAM is the 

computational load increases in the order of )( 2nO , wherein n is the number of 

landmarks in the map.  

The computation complexity can be reduced though approximate and suboptimal 

methods. Guivant and Nebot [2001] introduced a suboptimal EKF-SLAM method where 

only a subset of the landmarks’ variance-covariance (VCV) matrix is considered during 

the measurement update. The VCV estimate then becomes more conservative. Julier 

[2001] used the Schmidt-Kalman filter, in which only the camera pose and a limited 

subset of the landmarks are updated. The computational costs become linear in relation to 

the number of the landmarks in the state vector. Even though suboptimal methods trade 

optimality for computation and memory usage, they can also degrade or even cause the 

KF estimates to diverge. Since VO concerns only in determining the trajectory and does 

not have to deal with landmark positions, it is computationally more efficient than visual 

SLAM and can work in constant state vector size [Williams and Reid, 2010].  
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The image-aided inertial integrated navigation can be achieved using a batch 

processing (e.g. bundle adjustment [Indelman et al, 2013b] and non-linear least-squares 

[Leutenegger et al, 2015] and graph-based optimization [Forster et al, 2017]) or a Kalman 

filter [Veth et al, 2006; Mourikis et al, 2009; Sazdovski et al, 2011; Bloesch et al, 2015; 

Liu et al, 2016]. Batch processing methods process all measurements simultaneously to 

compute all the parameters. However, these methods can be impractical when the 

dimension of the parameter vector becomes large. The Kalman filter, on the other hand, 

is a recursive process, more computationally efficient and more practical. Furthermore, it 

is preferred since the state-of-the-art GNSS-aided inertial integrated navigation typically 

employs a Kalman filter.  

Similar to multisensor integrated navigation systems in general, the integration 

schemes of vision-aided inertial navigation can be divided into loosely- and tightly-

coupled approaches [Corke el al, 2007]. A loosely-coupled system consists of two 

parallel estimation processes that run at different rates and exchange information.  The 

first filter processes the image measurements to obtain the pose or pose change. Then a 

second filter performs the visual-inertial integration using the output of the first one as 

measurements. The tightly-coupled approach directly combines image measurements (2D 

or 3D) and inertial measurements in a single and optimal filter. A loosely-coupled system 

integrates two well-known subsystems and tends to be computationally more efficient 

[Leutenegger et al, 2015]. However, the estimation of the camera biases is almost 

impossible [Li and Mourikis, 2013]. The state vector in tightly coupled systems can 

include camera biases. However, this requires extensive filter model tuning and increases 

the computational loading [Corke el al, 2007]. 
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In a VO aided INS [Roumeliotis et al, 2002; Tardif et al, 2010, Sırtkaya et al, 2013], 

the VO measurement are relative in nature, that is, they are the differences of the 

positions and attitudes of a moving vehicle between two image frames, from which the 

VO estimates were derived [Roumeliotis et al, 2002]. The measurement equation is a 

function of the state vector at the current epoch k  and the previous epoch 1k  (or some 

epoch in the past).  Equation (2.1) illustrates this model:  

kkkk vxxhz   ),( 1       (2.1) 

where kz  is the measurement vector, kx  and 1kx  are the state vectors, kv  is the 

measurement noise vector, and (.)h  is the nonlinear measurement model. The current 

systems augment the state equations to accommodate the relative measurements 

[Roumeliotis et al, 2002, Konolige et al, 2007, Tardif et al, 2010]. The augmented state 

vector contains two copies of the original one. The first copy kx  evolves with time, 

while the second copy 1kx  remains stationary. They are then related to each other 

through the measurement model in (2.1). This approach increases the accuracy of the 

estimated states and improves the robustness of the system [Roumeliotis et al, 2002]. 

Another issue with VO is that two consecutive VO estimates are time correlated.  The 

position and attitude change at epoch k  is derived from the tracked features at epochs k  

and 1k . Some of the common features at epoch 1k  are also used to derive the relative 

position and attitude change between epochs 1k  and 2k . Since there are no common 

feature points are shared at epochs k  and 2k , only two consecutive VO measurements 

(i.e. at epochs k and 1k ) are correlated. Hence, they are pairwise time-correlated, 

which was first coined by Bierman [2006]. The Kalman filter in the standard form 
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assumes that the process noise vector and the measurement noise vector are white and 

conform to normal distributions with their expectations of zero. However, this 

assumption is not satisfied with the VO measurements. If the aiding is performed with the 

standard Kalman filter and the measurement noise vector is colored or time-correlated, 

the solution of the states will become suboptimal. Neglecting significant time-correlated 

errors can degrade the performance of the filter.  In this case, the Kalman filter is usually 

augmented with a shaping filter that handles the time-correlated measurements [Bryson 

and Henrikson, 1968; Gelb, 1974]. However, the commonly used shaping filter as in 

[Bryson and Henrikson, 1968; Gelb, 1974] not only assumes that the measurement noise 

are correlated with the ones from the previous epoch, but also with the ones before them, 

i.e., from epochs 2k , 3k  and so on.  Hence, it cannot appropriately model the 

pairwise time-correlated measurements. If it is employed in VO-aided inertial integrated 

navigation, the Kalman filter solution will not produce optimal results. Bierman [2006] 

introduced a sequential method for whitening pairwise time-correlated measurements for 

a time series, which uses the Cholesky factors derived from the measurement variances 

and covariances. The algorithm is efficient, since it is recursive and does not require all 

the measurements simultaneously available for computation. Mourikis et al [2007] 

developed the Stochastic Cloning-Kalman filtering equations to deal with pairwise 

correlated measurements, which involved augmenting the state vector with the feature 

observations and then estimated camera pose in the following epoch. Although the 

position and orientation estimates were optimal, the size of the state vector and variance-

covariance matrix increases as more observations are made available. This obviously 

requires more computation and memory resources.  
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This dissertation proposes a novel method for processing pairwise time-correlated 

measurements in a Kalman filter. The corresponding shaping filter uses Cholesky factors 

as coefficients that are derived from the measurement noise variance and covariance 

matrices. The state vector is augmented with the de-correlated measurement noise vector 

which results in the form of the standard Kalman filter. The advantages of the proposed 

algorithm can be summarized as follows: (a) the shaping filter models the VO 

measurement noise characteristics correctly (b) the Kalman filter can provide a more 

realistic covariance estimates (c) the size of the state vector is constant and (d) can be 

easily integrated into an existing GNSS aided-INS architecture.  

The drift of VO pose estimates can be reduced by utilizing image measurements from 

more than two consecutive frames, specifically, the last m frames (m > 2). These 

approaches, which are often referred as sliding window filter or windowed bundle 

adjustment, employ batch processing estimators and jointly estimates the vehicle’s pose 

and feature positions at the local level [Fraundorfer et al, 2010; Clement et al, 2015; Wen 

et al, 2016]. They have also been implemented in integrated visual-INS systems 

[Leutenegger et al, 2015; Qin et al, 2017]. Leutenegger et al [2015] employed a non-

linear least-squares estimator where the cost function combined the weighted reprojection 

errors for visual landmarks and inertial error terms for a stereo system. Qin et al [2017] 

proposed a non-linear optimization-based estimator for a monocular-IMU system using 

pre-integrated IMU factors. Moreover, they included a procedure for relocalization and 

loop closure. The number of parameters in these sliding window methods increases as 

more features are observed and can become impractical when the dimension of the 

parameter vector becomes too high. Furthermore, it is difficult to integrate these methods 
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optimally with the current GNSS/INS integration architecture since they do not employ a 

Kalman filter. Mourikis and Roumeliotis [2007] developed the Multi-state Constraint 

Kalman Filter (MSCKF), in which the state vector contained vehicle poses in a variable 

window and did not contain feature positions as the feature positions were handled 

separately in a batch processor. This method computes 3D feature position in the global 

frame, which can be problematic if the position errors are too large and they require all 

measurements related to a feature from the last m poses to have been observed before the 

update is performed.  

This dissertation proposes MFVO aided inertial navigation algorithm that integrates 

image data from multiple frames without involving feature or landmark positions in the 

state vector. This is accomplished by algebraically eliminating the landmark position 

vector in the SLAM measurement equation at two consecutive epochs. However, the 

derived measurements are time-correlated. Through a sequential de-correlation algorithm, 

the system and measurement equations take form of the standard Kalman filter. Thus the 

Kalman filter measurement update can be performed sequentially and optimally. The 

advantages of the MFVO algorithm aided inertial navigation can be summarized as 

follows: (a) the integration of image measurements from multiple frames without 

involving landmark positions (b) the reduction of computational requirements when 

compared to SLAM and (c) a seamless integration into an existing state-of-the-art GNSS 

aided-INS architecture. 
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3. Estimation theory and navigation sensor overview 

This chapter provides the fundamentals and background that will be required for the 

development in Chapters 4, 5 and 6. The relevant mathematical techniques are reviewed 

in Section 3.1. Section 3.2 overviews least-squares and Kalman filter techniques. Section 

3.3 defines the coordinate systems and the transformation between coordinate systems 

used in the research. Sections 3.4, 3.5 and 3.6 present the fundamental concepts of GNSS, 

INS and image-based navigation (IBN) respectively.    

 Mathematical preliminaries  3.1.

The section reviews the mathematical techniques and operations that are used in this 

dissertation. The following topics are presented: direction cosines matrices and 

mathematics of the rotation vector.  

3.1.1. Direction cosine matrix 

Direction cosine matrix (DCM) is an essential element in multisensor integrated 

navigation, which transforms a 3D vector from one coordinate frame to another and is 

also called the transformation matrix.  

3.1.1.1. DCM and Euler angles 

The DCM can be expressed by three successive rotations about any three axes and the 

angles of rotation are called Euler angles. There is no unique sequence to apply the 

successive rotations.  The most commonly used sequence rotations, called the Tait-Bryan 

angles, performs the rotations about three distinct axes. For example, the Tait-Bryan 

angles between the navigation frame (see Section 3.3.3) and the body frame (see Section 

3.3.5) are the roll ( ), pitch ( ) and heading ( ) angles. The first rotation is performed 
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about the z-axis by the heading angle, the second rotation about the y-axis by the pitch 

angle and the final rotation is performed about the x-axis by the roll angle [Bekir, 2007; 

Rogers, 2007].  The sequential transformation from the navigation frame to the body can 

be expressed as 
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with aca cos  and asa sin  for a ,  or  . Combining the sequential rotations in 

Equation (3.1), the DCM (transposed) becomes as 
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where 
Tn

b ),,( θ . Given the DCM, the Euler angles can be recovered by 
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3.1.1.2. DCM and the rotation vector 

Instead of performing three sequential rotations to transform between two coordinate 

systems, one can use the rotation vector φ  to perform one rotation around a single fixed 

axis. The DCM can be expressed in terms of the rotation vector by the Rodrigues formula 

[Roger, 2007, p 30] 

Ty
x csc uuφuφIφC )1()(       (3.4) 
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where φ  is the rotation angle and u  is the rotation unit vector. If the rotation angle is 

small, then Equation (3.4) can be approximately written as 

 φIuφIC )(y
x       (3.5) 

Given the DCM 
y
xC , the magnitude of the rotation vector can be computed with [Bekir, 

2007, pp45] 
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(3.6) 

3.1.1.3. DCM differential equation 

The DCM differential equation is given as [Rogers, 2007, p29] 
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where x
yxΩ  is the skew-symmetric form of the angular rate vector x

yxω . In the linearized 

form, (3.7) can be written as [Rogers, 2007] 
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3.1.1.4. Rotation vector differential equation 

Rotation vector differential equation can be written as [Salyshev, 2004, p30] 
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where ω  is the angular rate vector between frames. For small angle φ , Equation (3.9) 

can be rewritten as 
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3.1.1.5. Quaternion 

The Quaternion is a four-dimensional vector that can be used to represent rotations 

and attitude. Quaternions are useful in avoiding singularity problems in attitude 

representation when the pitch and roll angles are close to 90 degrees. However, this is not 

expected in the research presented in the dissertation. Therefore, it will not be used. 

Readers interested in this topic can refer to [Salychev, 2004; Rogers, 2007, etc.].  

 Estimation theory 3.2.

This section summarizes least-squares estimation, Kalman filtering and outlier 

detection with the help of statistic tests. Least squares method and Kalman filter were 

originally developed based on linear systems and then extended to non-linear ones. Most 

systems are inevitably non-linear in nature. Therefore, the concepts presented here starts 

with non-linear and linearized counterparts. 

3.2.1. Least squares estimation 

The least squares (LS) algorithm is a method for estimating unknown parameters in a 

measurement model by minimizing the weighted sum of measurement residuals squared. 

Consider the following non-linear implicit measurement equation system: 

),(~,),,( R0v0vzxh N       (3.11) 

wherein x  is the 1n  unknown parameter vector; z  is the 1p  measurement vector; v  

is the 1p  measurement noise vector; and (.)h  is the 1m  vector of the measurement 

functional model. v  is generally assumed to be normally distributed with its zero-mean 

and positive definite variance-covariance (VCV) matrix R   

12
0

 WR         (3.12) 
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where 
2
0  is the variance of unit weight and W  is the measurement weight matrix. To 

estimate the unknown parameters using least-squares method, the measurement model 

needs to be usually linearized about the measurement vector z and an given approximate 

)0(
x of x . The first order Taylor series expansion gives: 
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where x  is the correction vector of 
)0(

x , ),( )0(
zxh  is the misclosure vector, xH  is the 

nm  Jacobian matrix of (.)h  at 
)0(

x  and vector zH  is the pm  Jacobian matrix of (.)h  

at z .  

The most probable value of the parameter correction vector x  is the vector x̂  that 

minimizes the weighted sum of squares of the measurement residuals v̂  (i.e. the 

difference between the measurement vector and the model).  This is achieved by 

computing x̂  such that the following the cost function J  is minimized 

vRv ˆˆ 1 TJ .       (3.14) 

The LS solution for the parameter correction vector and its variance-covariance matrix 

is given by (derivations omitted here): 
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wherein  

 N  is the coefficient matrix of the normal equation system,  
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P̂  is the variance-covariance matrix of the estimated parameters, and  
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  is the a-posteriori variance of unit weight. 

The trace of the P̂  matrix can be interpreted as a measure of the overall accuracy of 

the estimated parameters [Caspary, 2000].  The measurement residual vector and the 

corresponding VCV 
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In the case where a-priori information of some or all of the parameters are known 

with VCV xxP , the solution then can be expressed as   
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The formulation in (3.17) can be useful for processing the measurements sequentially.  

For more discussion of least-squares techniques, refer to [Gelb, 1974, Bierman, 2006, 

Simon, 2006, etc.].   

3.2.1.1. RANSAC 

The random sample consensus (RANSAC) [Fischler et al, 1981] algorithm is an 

iterative parameter estimation of a mathematical model from a set of measurements 

which contains large number of the outliers. RANSAC first estimates candidate solutions 

using minimum number of measurements that are randomly selected. Then a consensus 

set of measurements created with consistent inliers. This process is performed iteratively 

and the best consensus set is used to estimate the parameters. There are many variations 
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of this algorithm, for example, the MSAC (M-estimator SAC), the MLESAC (Maximum 

Likelihood SAC) and the R-RANSAC (speeded RANSAC), etc. Performance analysis 

and comparisons between different algorithms and applications can be found in 

[Subbarao et al, 2006, Chum et al, 2008, Choi et al, 2009]. The basic RANSAC algorithm 

can be summarized as follows: 

1. Randomly select the minimum number of measurements to solve the 

parameters 

2. Solve the parameters with the minimum measurement set 

3. With the remaining measurements, determine those that fit the model in step 2 

within a predefined tolerance and add them to a consensus set 

4. If the fraction number of inliers measurements is greater than a predefined 

threshold, then solve the parameters with the consensus set 

5. Repeat steps 1 to 4 until the best consensus set is obtained within N iterations 

The theoretical number of iterations ( N ) can be determined based on the probability (

p ) that the RANSAC algorithm in some iteration in step 1 selects only inliers.  If u  is 

the fraction of inliers in the entire measurement set and minm  is the minimum number of 

measurements required for solving the parameters, then minm
u  is the probability that all 

minm  points are inliers. This implies that min1
m

u  is the probability that at least one of 

minm points is an outlier. The probability that RANSAC only selects outliers is  

Nm
u )1( min  and therefore 

)1()1( minm
up         (3.18) 

Solving for N  one obtains 
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Typically, the probability p is usually set to 0.99 and u can be an approximation or 

obtained empirically. Depending on the scenario, both methods of determining the value 

of u were employed in this dissertation.   

3.2.2. Kalman filter in discrete time 

The Kalman filter, developed by Kalman [1960], is a set of mathematical equations 

that implement a predictor-corrector type estimator that is optimal in the sense that it 

minimizes the covariance.  Consider the following discrete system at epoch k :  
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wherein kx  is the 1n  state vector, (.)1kf  is 1n  vector of the system functional model, 

1kw  the 1q  process noise vector, kz is the 1m  measurement vector; (.)kh  is the 

1m  vector of the measurement functional model and kv  is the 1m  measurement 

noise vector.  1kw  and kv  are assumed to be ),(~ 11  kk N Q0w  and ),(~ kk N R0v  with 

the positive definite variance matrices 1kQ  and kR , respectively. Furthermore, 
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jiE  for ji  , Oww ][ T

jiE  for ji   and Owv ][ T
jiE  for all i  and j  are 

assumed. The time update of the state vector is given as follows [Simon, 2006]: 
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wherein 
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and kK  is the Kalman gain matrix. The minus (-) and plus (+) 

superscripts indicate the time-update and measurement update estimates, respectively.  

The system innovation vector kd  and system innovation matrix is given by 
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For more discussion of Kalman filtering technique refer to [Gelb, 1974, Bierman, 2006, 

Grewal and Andrews, 2001, Simon, 2006, etc]. For the sake of simplicity and illustration 

of Kalman filter concepts, the remaining part of the dissertation shall use the linear 

model, i.e. 
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3.2.2.1. Kalman filter with time-correlated noise 

The standard Kalman filter presented in the previous section assumed that the 

measurement noise vector kv  is not timely correlated, i.e., Ovv ][ T
jiE . Now consider 

the case where the vector kv  is time-correlated (a.k.a. colored measurement noise), i.e. 
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Ovv ][ T
jiE . The correlation is typically modeled by a shaping filter driven by the white 

Gaussian noise of zero mean [Gelb, 1974; Grewal and Andrews, 2001; Simon, 2006]. 

Accordingly, the system and measurement equations become  
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wherein 1kψ  is the mm  transition matrix of the time-correlated measurement errors, 

1kη  is the 1m  white driving noise vector with zero mean and the associated positive 

definite variance matrix 
1kη

Q . The covariance matrix of the time-correlated 

measurements between two consecutive epochs k and 1k  is given as [Simon, 2006]: 
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Two main approaches used to deal with the time-correlated measurements are the 

measurement differencing and the state vector augmentation [Bryson and Henrikson, 

1968; Gelb, 1974; Simon, 2006].  The first approach removes the time-correlated part of 

the measurement noise by time-differencing the measurement equations. However, this 

method introduces a time latency in the updated state vector since measurements up to 

epoch k  are used to estimate the state vector at epoch 1k  [Petovello et al, 2009]. More 

details on the measurement differencing method can be found in [Bryson and Henrikson, 

1968; Simon, 2006].  The state vector augmentation method extends the system and 

measurement models to 
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In short form, the above equations can be written as   
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wherein the symbol ~  denotes the augmented vectors and matrices. With the above 

formulation, the standard Kalman filter equations can be employed. The variance-

covariance matrices of the new process noise and measurement noise vectors are  
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Notice that the measurement covariance is now zero. Theoretically, it is possible to run 

the Kalman filter with zero measurement errors [Simon, 2006]. Practically, the 

covariance matrix of the system innovation vector 
T
kkkk

T
kkkk HPHRHPHS

~~~~~~~~    has to 

be invertible [Grewal and Andrews, 2001]. However, the VCV matrix of the augmented 

state vector can become singular, especially when the transition matrix is close to identity 

[Bryson and Henrikson, 1968; Gelb, 1974]. To mitigate these numerical problems, 

[Wang et al, 2012] proposed two algorithms, the Tikhonov KF and the Perturbed-P. The 

former regularizes the gain matrix K so that the VCV matrix of the augmented state 

vector becomes invertible. The later adds a small quantity to the diagonal elements of the 
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singular VCV matrix so that it is made positive definite. However, these two methods are 

not optimal. 

The formulation of the time correlated measurement noise model in Equation (3.25), 

111   kkkk ηvψv        (3.30) 

assumes that measurement noise vector kv  at epoch k  is not only correlated with the 

measurement noise vector 1kv  at epoch 1k but also with the measurement noise 

vectors before the epoch 1k .  For example, the correlation between kv  and 2kv  can be 

derived as  

ORψψ

OORψψ

vη

vηψvvψψ

vηηψvψψ

vηηvψψ

vηvψ

vvR

































221

221

21

2212221

2121221

212221

2111

22,

][

][][

])[(

]))([(

])[(

][

kkk

kkk

T
kk

T
kkk

T
kkkk

T
kkkkkkk

T
kkkkkk

T
kkkk

T
kkkk

E

EE

E

E

E

E

    (3.31) 

If vector kv  is pairwise time-correlated (i.e. kv  is not correlated with jv for 1 kj ) 

and the shaping filter in (3.25) is used, then the state estimates will not be optimal. 

Furthermore, the solution performance can be degraded. Accordingly, Section 5.2.2 

develops a method to process measurements that are pairwise time correlated.  

3.2.3. Outlier detection via statistic tests  

Outlier detection is important for quality assurance and quality control of the estimates 

from both least squares and Kalman filter. Assuming that the system and measurement 

models are correct, measurement outliers can be identified by performing statistic tests on 
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the measurement residuals and the system innovations [Wang, 1997, 2008].  The statistic 

test procedure can be summarized as follows [Caspary, 2000]: (a) formulate a null 

hypothesis 0H  against its alternative aH , (b) construct a suitable statistic based the 

known distribution of the random variable or vector for which 0H is true, and (c) select 

the risk level (a.k.a. significance level)   to accept or reject 0H .   

Consider the statistic tests on the individual measurement residuals. The null 

hypothesis is 0:0 ivH  and the alternative is 0: ia vH  where iv  is the i
th

 measurement 

residual of the residual vector v . For the case where the a-priori variance factor 2
0  is 

known, the test statistic follows the standardized normal distribution [Caspary, 2000]: 
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.      (3.32) 

If 2/1),1,0(||   Ny , 2/1),1,0(  N is the corresponding two-tails critical value, the null 

hypothesis 0H will be accepted. For the case where the a-priori variance factor 
2
0  is 

unknown or unreliable and the a-posteriori variance factor 
2
0̂  is available, then the test 

statistic follows the   distribution [Caspary, 2000]: 
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If 2/1,,||   uy , u is the d.o.f. and 2/1,,  u  is the corresponding two-tails critical value, 

the null hypothesis 0H will be accepted. The  statistic is derived from the Student’s t  

statistic as follows [Pope. 1976]: 
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Consider the statistic tests on the system innovation vector kd  as a global test at 

epoch k   [Wang, 2008].  The null hypothesis is 0d kH :0  and the alternative is 

0d kaH : . The test statistics is  
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If 
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y , where u is the d.o.f. and 
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
1,,2 u

 is the corresponding critical value, then 

the null hypothesis will be accepted. The individual elements of kd  can also be tested by 

the following normal test statistics:  
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where ikd , is the i
th

 element in kd . The null hypothesis 0H will be accepted if 

2/1),1,0(||   Ny .  The t - and F - tests can also be applied to the system innovation. 

However, these tests are not common [Wang, 2008].  Details and discussion on statistic 

test in least squares and Kalman filtering can be found in [Caspary, 2000] and [Wang, 

1997,  2008] respectively.   

 Coordinate frames and transformations 3.3.

In navigation and surveying applications, the positioning solution is typically 

expressed in geodetic coordinates and in roll, pitch and heading for attitude. The 

measurements from the sensors in a navigation system are usually given in their own 

specific coordinates forms. These measurements should be modeled as the functions of 
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the selected navigation parameters that are relevant to the application and readable to 

users. Therefore, it is important to define all coordinates that are involved in the 

development of a navigation system. This section overviews the definition of such 

coordinates systems applied in this dissertation and their transformations. 

3.3.1. Inertial frame 

An inertial frame is a frame which does not rotate or accelerate [Salyshev, 2004. p9]. 

However, it is impossible to realize. Instead a right ascension system as an approximation 

to the ‘true’ inertial frame is employed which is more suitable for surveying and 

navigation. The inertial frame (i-frame) defined here is a stationary frame with respect to 

the distant stars. It has its origin at the Earth’s center of mass, the x-axis points towards 

the mean vernal equinox, z-axis points toward to the North-pole and y-axis is 

perpendicular to the z-axis forming a right-hand orthogonal coordinate system.  

3.3.2. Earth frame 

The Earth-centered and Earth-fixed (e-frame) shares the same origin as the inertial 

frame i.e. the center of mass of the Earth. The x-axis points towards the Greenwich 

meridian in the equatorial plane. The z-axis points toward to the North-pole. The y-axis is 

perpendicular to the z-axis forming a right-hand coordinate system. The e-frame can be 

transformed to the i-frame by a negative rotation about the z-axis by the amount of the 

Greenwich Mean Sidereal Time (GMST) [Salyshev, 2004, p11]. The rotation rate vector 

of the e-frame with respect to the i-frame projected on to the e-frame is 

  Te
e
ie 00ω       (3.37) 
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where e is the magnitude of the rotation rate of the Earth (7.2921158×10
-5

 rad/s). The 

relationship between the e-frame position vector e
X [m] and the geodetic coordinates is as 

follows 
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where   is the geodetic latitude,   is the geodetic longitude, h is the geodetic height, 

NR is the curvature radius in the prime vertical and e  is the first eccentricity of the 

reference ellipsoid. The WGS84 reference ellipsoid is used in this dissertation. 

3.3.3. Navigation frame 

The navigation frame (n-frame) is a local level frame that moves with the vehicle with 

its origin located at a predefined point on the vehicle. Its z-axis is normal to the reference 

ellipsoid and points downwards while its x and y axes point towards the geodetic North 

and East, respectively, to complete a right-handed Cartesian coordinate system.  The 

DCM matrix from the n-frame to the e-frame is  
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The Earth’s rotation rate vector in the n-frame can described as 

  Tee
e
ie

e
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n
ie sc   0ωCω     (3.40) 

The transport rate vector 
n
enω  is the rotation rate vector of the n-frame with respect to the 

e-frame 
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where 
n
Nv  and 

n
Ev  are the North and East velocity components in [m/s], respectively, and 

ER  is the curvature radius of the meridian [m]. 

3.3.4. Computer frame  

The computer frame (n
c
-frame) is local level frame that has the origin at the computed 

inertial navigation position. Its z-axis is normal to the reference ellipsoid and points 

downwards while its x and y axes point towards the geodetic North and East, 

respectively, forming a right-handed Cartesian coordinate system. The misalignment 

vector of the n
c
-frame w.r.t the n-frame is given by (Benson, 1975): 

 Tsc  θ       (3.42) 

where   and   are the latitude and longitude errors, respectively. The DCM matrix 

from the n-frame to the n
c
-frame can be written as 

  θIC 
cn

n        (3.43) 

3.3.5. Body frame 

The body frame (b-frame) shares the same origin with the n-frame. Its x-axis points 

along the vehicle’s longitudinal axis and the z-axis points down while its y-axis forms a 

right-handed coordinate system. The DCM matrix from the b-frame to the n-frame is  
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where   is the roll,   is the pitch and   is the heading.  
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3.3.6. Camera frame 

The camera frame (c-frame) is the frame in which the image measurements are taken. 

Its origin is at the perspective center of the reference camera. Its x-axis and y-axis are 

parallel to the columns and rows of the CCD sensor while its z-axis points away from the 

CCD sensor to form a right-handed coordinate system. The camera system is assumed to 

be rigidly mounted on the vehicle. Hereafter, the left camera is set as the reference 

camera in the stereo system. The transformation from the c-frame to the b-frame via the 

known lever arms and boresight angles is given by  

b
bc

cb
c

b
lXCX          (3.45) 

where 
b

X  and 
c

X  are the position vectors in the b-frame and the c-frame respectively, 

b
bcl  is the lever-arm vector of the reference camera in the body frame and b

cC  is the DCM 

between the c-frame to the b-frame. The DCM b
cC  can be defined by the boresight angle 

vector 
b
cθ . 

3.3.7. n'-frame 

The (n’-frame) has the same origin as the n-frame, but has an arbitrary fixed 

orientation with respect to the n-frame. The DCM matrix from the n’-frame to the n-

frame is  

)( ''
n
n

n
n θC          (3.46) 

where 
n
n 'θ  is the vector of Euler angles defining 

n
n 'C .  This frame is used when the roll, 

pitch and heading angles are not available.  For example, when navigating with camera-
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only systems, the object space can be defined in the n’-frame and the 'n
cC  DCM  

parameterizes the orientation angles.      

3.3.8. Summary 

Figure 3.1 illustrates i-, e-, n-, n
c
-, b-, c-  and n’- frames. 

 
Figure 3.1 The i-, e-, n-, n

c
-, b-,  c-  and n’- frames. 

 

 Global Navigation Satellite System  3.4.

This section introduces the basic concepts of GNSS. A GNSS is a radio-based satellite 

system that is used to determine accurate position, velocity, attitude and time estimates 

worldwide under all weather conditions.  As of May 2018 only two GNSS systems are 

fully operational: Global Positioning System (GPS) and Global Orbiting Navigation 

Satellite System (GLONASS). Europe's Galileo and China’s Beidou satellite systems are 

currently in development and are expected to be fully operational by 2020.  More details 

on GNSS can be found in [Parkinson and Spilker, 1996; Hofmann-Wellenhof et al., 

2008]. 
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3.4.1. GNSS position 

A GNSS receiver computes the user’s position by simple trilateration process using 

ranges or range differences measured to satellites [Hofmann-Wellenhof et al., 2008]. The 

basic principles of GNSS positioning is as follows. First the satellite ECEF position 

vector is computed from the ephemerides broadcast by the satellite. Secondly, the range 

to each satellite is measured by recording the time-of-flight of the coded satellite signal to 

reach the receiver. GNSS receivers typically use an inexpensive crystal clock and are not 

synchronized to the true system time. The synchronization error causes an offset in a 

measured distance. The measured distance is called the code pseudorange, which can be 

modelled as 

 r
e
r

e
j

j tcP  XX        (3.47) 

where 
jP [m] is the pseudorange to satellite j , e

jX [m] is the known satellite position 

vector, 
e
rX [m] is the position vector of the unknown receiver, c [ms

-1
] is the speed of 

light and rt [s] is the receiver clock offset. Figure 3.2 illustrates the standard point 

positioning using pseudoranges. 

 
Figure 3.2 GNSS Pseudorange positioning 
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Finally, at least four simultaneous pseudoranges are required to solve for the four 

unknowns, i.e. the three components of receiver position and the clock offset.  Typically 

these are unknowns are estimated via least-squares or a Kalman filter algorithm. The 

accuracy of the position solution mainly depends on  

(a) the accuracy of each satellite position and clock error,  

(b) the accuracy of the pseudoranges,  

(c) the accuracy of the corrected ionosphere and troposphere delays, and  

(d) the geometry of the observed satellites.  

The accuracy in autonomous standard point positioning (SPP) is within a few meters. 

The most accurate GNSS position can be achieved through relative positioning. This 

involves simultaneous observation from two receivers to same satellites. Differencing the 

code pseudoranges and carrier phases from the two locations to form a baseline, reduce 

or eliminate systematic errors when the baseline length is relatively short (typically less 

than 20 km). In this setup, the relative positioning accuracy between the two receivers 

can reach centimeter level once the phase ambiguities, inherent in the phase pseudorange 

measurements, are resolved to an integer [Hofmann-Wellenhof et al., 2008].  

Other GNSS position positioning modes including network RTK [Vollath et al, 2000; 

Wübbena, 2001] and precise point positioning [Zumberge et al., 1997; Gao and Shen, 

2002] will not be necessarily summarized here.  

3.4.2. Velocity and track angle 

GNSS can determine the instantaneous velocity of a moving vehicle using the Doppler 

principle of radio signals. Because of the relative motion of the satellites with respect to a 

moving vehicle, the frequency of a signal broadcasted by the satellites is shifted when it 
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is received at the vehicle. This measurable Doppler shift is proportional to the relative 

radial velocity or range rate and can be expressed as [Hofmann-Wellenhof et al., 2008]  
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where e
jv  [ms

-1
] is the known satellite velocity vector, 

e
rv  [ms

-1
] is the unknown 

receiver velocity vector and rt [unitless] is the change rate of the clock error.  In case, 

the position vector of a receiver is known, a minimum of four Doppler measurements is 

required to solve for the receiver’s velocity vector and the change rate of the clock error. 

The Doppler measurements can also be derived from carrier phases by computing first 

order central difference, which is given at epoch k  as follows [Serrano et al, 2004] 
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where 
j
k 1  and 

j
k 1  are the phase measurements in meters at epochs 1k  and 1k  

respectively, and t  is the data sampling interval. It is simple to implement and can 

achieve an accuracy of 0.005 ms
-1 

[Serrano et al, 2004].  

The track angle of a moving receiver can be derived from the velocity vector as 

follows [Grewal et al, 2001] 

 
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This model can deliver a valid heading when the absolute velocity is more significant 

than its uncertainty.  
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3.4.3. GNSS compass 

The heading of a moving platform can be determined from a moving baseline [Graas 

and Braasch, 1991; Li, 1996]. This method requires two receivers whose baseline vector 

b
X [m] in the body frame is known and fixed. Using the relative positioning method, the 

baseline vector n
X [m] between the two GNSS receivers can be determined within an 

accuracy of a few centimeters. Then the heading angle in a longitudinal setup can be 

computed by [Reis et al, 2010]: 


















 

n

n

N

E1tan .        (3.51) 

An accuracy of 1mm in the relative positioning of the dual antennas corresponds to 0.057 

degrees in heading for a baseline length of 1m [Hofmann-Wellenhof et al., 2008]. The 

longer the baseline is, the higher the heading accuracy. GNSS can also be used to 

determine all the three attitude angles [McMillan, 1994; Giorgi, 2010], which requires a 

minimum of two independent baselines from at least three receivers. However this is 

beyond the scope of the research in this dissertation.  

3.4.4. Summary 

In this dissertation, the following GNSS positioning solution shall be applied: position 

derived from the relative positioning (b) velocity from carrier phase measurements (c) 

heading derived from the velocity vector and (d) DGNSS heading from a baseline 

between two antennas mounted on the moving platform. By the way, only the GNSS 

measurements have been applied in order to avoid any potential complication and under 

the considering of our time limit and the available GNSS receivers without loss of the 

generality with possibility of applying other GNSS measurements at large.  
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 Inertial Navigation 3.5.

This section introduces the fundamental concepts of inertial navigation. The inertial 

navigation system (INS) is a self-contained dead-reckoning navigation system that uses 

accelerometers, gyroscopes and a computer to obtain the position, velocity and attitude of 

a moving object. The strapdown inertial navigation is widely used on vehicles such 

aircrafts, space crafts, land vehicles, marine vehicles and so on. The accelerometers and 

gyroscopes are mounted in orthogonal triad clusters and enclosed within an inertial 

measurement unit (IMU) to provide three components of sensed acceleration and angular 

rate outputs, respectively [Rogers, 2007].  Typically, an IMU is rigidly mounted on the 

vehicle such that the IMU body axes are coincident with the axes of the moving body 

frame. The initial position, velocity and heading information are transferred to the low-

cost INS from an external source, for example GNSS and GNSS compass. A computer 

then performs the numerical integration of the IMU outputs to yield the navigation 

solution, i.e., the position, velocity and attitude.   

3.5.1. Navigation equations 

The navigation equations with the outputs of the inertial sensors describe the dynamics 

of a vehicle in the specified coordinate frame. In a strap-down INS, the IMU 

measurements are resolved in the body frame. In order to navigate on or near Earth, the 

navigation solution expressed in the navigation frame is more convenient and meaningful 

to the user [Bekir, 2007]. The navigation equations in the navigation frame are given the 

following differential equations [Farrell and Barth, 1999; Bekir, 2007]: 
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where r  is the geodetic position vector with latitude   [rad], longitude   [rad] and 

height h  [m], 

nv  is the velocity vector [m], 

n
bC  is the body frame to navigation frame DCM defined by attitude angles roll  , 

pitch   and heading  , 

b
f is the accelerometer measurement vector [ms

-2
], 
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NR  is the radius of curvature of prime Meridian, 

ER  is the radius of curvature of the prime vertical, 

n
enω  is the transport rate vector [rads

-1
], 

n
ieω  is the Earth rotation rate vector [rads

-1
], 

ng  is the gravity vector [ms
-2

], 

b
ibΩ  is the skew-symmetric form of the angular rate measurement vector 

b
ibω  

[rads
-1

] , and  

n
inΩ  is the skew-symmetric form of rotation rate vector 

n
inω  [rads

-1
] which is the 

sum of the transport rate and Earth rotation rate vectors [rad] i.e. 
n
en

n
ie

n
in ωωω  . 
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In (3.52) 
b

f and 
b
ibω  are the sensed specific force vector and angular rate vector of the 

IMU, respectively, in the body frame. The navigation solution is the position vector 
n

r , 

velocity vector nv  and the roll, pitch and heading that define 
n
bC . The transport rate 

vector n
enω  is the vehicle’s angular rate as it moves about a spherical Earth. The Earth 

rotation rate vector 
n
ieω  is known. The gravity vector 

ng  is normal to the Geoid and 

obtained from a gravity model. The derivation of these equations can be found in [Bekir, 

2007; Rogers, 2007].  The navigation equation in (3.52) requires the heading to be 

known. For scenarios where the heading is not available, the navigation equation 

involving the wander frame and wander angle can be used. The wander frame is a local 

level frame where its x-axis is not slaved to the North. The wander angle is the angle 

between the x-axis of the wander frame and the North. Details on the wander frame and 

wander angle can be found in [Salyshev, 2004; Rogers, 2007].  

3.5.2. INS error models   

The INS error models are employed to analyze the systematic errors of the IMU and 

are used in the implementation of aided-INS data fusion. The navigation equations, which 

are used to generate the navigation solution, are non-linear. When the INS is aided with 

independent measurements via a Kalman filter algorithm, the algorithm requires a 

linearized error formulation of the navigation equations [Rogers, 2007].  The two 

common error models are the phi angle approach and the psi angle approach. The phi-

error model and psi-error model are resolved the n-frame and n
c
-frame respectively. The 

phi-error model can be written as [Scherzinger, 1994]: 
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wherein φ  is the misalignment vector of 
n
bC , 

nX is the position error vector in meters, 

bf is the accelerometer sensor error vector and 
b
ibω  is the gyroscope sensor error 

vector. The geodetic position error vector can be express as   

n
r

n XDr          (3.54) 

and the gravity perturbation 
ng can be written as [Rogers, 2007]  

 Tn

R

gn Z )00(
2
 g       (3.55) 

where g  is the local gravity [ms
-2

] and R is the radius [m] of a spherical Earth.  The psi-

error model is given by [Scherzinger, 1994]: 
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wherein ψ  is the misalignment vector of 
cn

bC and θggg   nnnc

 [Rogers, 2007]. 

Both error models are equivalent [Benson, 1975].  As the position error becomes smaller, 

the psi-error model converges to the phi-error model.  In this dissertation the psi-error 

model is employed since the position errors are expected to be small due the availability 

of GNSS position information. Furthermore, the psi-error equations contain fewer terms 

than the phi-error equations and therefore it is easier to be implemented in a Kalman 

filter. 
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3.5.3. Sensor errors and sensor error model 

The accelerometer and gyroscope outputs are corrupted by a number of systematic 

errors, for example, biases, scale factor errors, nonlinearities, non-orthogonality of sensor 

axes, temperature variations and random measurement noises [Naranjo, 2008]. The biases 

and scale factor errors are the dominant ones in general. A bias is an additive error to the 

sensor output. It consists of a constant offset, a bias instability which is random in nature 

and temperature varying part. A scale factor is the ratio of the change in output to the 

input and is also contaminated by an offset, the drift rate and the temperature dependent 

part. The constant offsets and temperature varying part can be obtained through 

laboratory calibrations.  The stochastic properties of the bias instability and measurement 

noises can be identified by two popular methods, namely the power spectral density [Yi, 

2007] and the Allan variance [Allan, 1966; El-Sheimy et al, 2008].  The latter method is 

preferred due to its simplicity and efficiency.  

Considering only the bias and scale factor, the accelerometer and gyroscope sensor 

errors can be modelled as [Roger et al, 2007]: 

gg
b
ibg

b
ib

ab
b

a
b

diag

diag

wsωbω

wsfbf





)(

)(




     (3.57) 

where b  is the bias vector, s  is the scale factor error vector, w  is the measurement noise 

vector, a  denotes the accelerometers and g  denotes the gyroscopes. The biases and scale 

factors can be modelled as random constant or Gaussian-Markov processes. The 

measurement noise can be considered to be white with zero mean.  
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3.5.4. Mechanization Equations  

The inertial navigation mechanization equations generate the position, velocity and 

attitude navigation states by the numerical integration of the outputs of the inertial 

sensors. The INS mechanization can be performed in the coordinate system required by 

the user, for instance, in the i-frame, e-frame or n-frame. The n-frame mechanization is 

commonly employed and is more meaningful to the user when navigating on or near the 

surface of the Earth [Titterton and Weston, 2004; Bekir, 2007]. The mechanization 

equation in the n-frame can be summarized in Figure 3.3. First the sensor biases and scale 

factor errors are compensated from the IMU raw measurements. These errors can be 

obtained from laboratory calibrations and/or estimated by a Kalman filter. The attitude is 

then updated followed by the transformation of the sensed accelerations (specific forces) 

from the body frame to the navigation frame. The accelerations due to gravity and 

Coriolis force are removed from the transformed sensed accelerations to obtain the total 

body accelerations with respect to the Earth. Finally the velocity and position vectors are 

computed by single and double integration of the total body acceleration vector, 

respectively.  

 



55 

 

 
Figure 3.3 Inertial navigation mechanization [Grewal et al, 2013] 

 

Details on the mechanization equations can be found in [Salyshev, 2004; Titterton and 

Weston, 2004]. 

3.5.5. Alignment  

Alignment is the process of determining the initial attitude parameters. The alignment 

procedure typically consists of three stages (a) coarse horizontal alignment (a.k.a. coarse 

leveling), (b) coarse heading alignment, and (c) fine alignment [Salyshev, 2004].  

In the coarse leveling stage, roll and pitch angles are obtained by accelerometer 

leveling while the vehicle is stationary [Bekir, 2007]: 
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where Tb
z

b
y

b
x

b fff ),,(f  and 
n
zg  is the gravity in downward direction. 
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In practice, the accelerometer measurements from multiple epochs in stationary mode 

are averaged to reduce the measurement noise. However, the roll and pitch estimates are 

corrupted due to the biases in the accelerometer measurements.   

In the coarse heading alignment stage, the heading can be obtained by gyro-

compassing. Gyro-compassing uses the rotation rate of the Earth sensed by the 

gyroscopes to determine the heading. However, low-cost IMUs cannot observe the 

Earth’s rotation rate due to large biases and noise in the angular rate measurements. The 

heading must be transferred from other sensors such as from a GNSS compass, GNSS 

track angle or a magnetic compass. 

The fine alignment phase is performed using a Kalman filter. In this stage the attitude 

angles and together with the sensor error estimates are refined [Roger, 2007].   

3.5.6. GNSS aided-inertial navigation 

The Kalman filter is widely used for fusing GNSS and IMU data. There are two 

popular integration architectures, namely loosely-coupled integration and tightly-coupled 

integration [Scherzinger, 2000; Salyshev, 2004; Rogers, 2007]. The former consists of 

two parallel estimation processes. One filter processes the GNSS measurements to deliver 

the GNSS position, velocity and/or heading solutions, while the other Kalman filter 

integrates the GNSS navigation solution of the first filter as the aiding measurements and 

the inertial navigation solution from the inertial mechanization (Figure 3.4).  
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Figure 3.4 Loosely coupled GNSS/IMU integration architecture 

 

The tightly-coupled integration architecture, described in Figure 3.5, directly 

integrates the GNSS raw observables to aid the inertial navigation solution [Scherzinger, 

2000].  

 
Figure 3.5 Tightly coupled GNSS/IMU integration architecture 

 

The loosely-coupled method is simpler to implement and can easily integrate GNSS-

only software in the system. It yields accurate navigation solution under full satellite 

coverage and low multipath environments. The tightly-coupled method is more difficult 
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to implement. Unlike the loosely-coupled method, however, it can still operate when 

fewer than four satellites are available [Moon, 2000].  

There are two strategies to integrate IMU with an aiding sensor, namely the direct 

(total state) and indirect (error state) approaches.  The state vector in the direct approach 

consists of the state variables and the measurements are the IMU outputs and the aiding 

sensor. In the indirect approach, the state vector consists of the errors of estimated 

variables and the measurements are the differences between the computed INS solution 

and the aiding sensor.  For instance, the measurement equation for the indirect loosely-

coupled GNSS-aided inertial navigation is:  
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In this dissertation, the indirect method is employed because (a) it works well with 

linear/linearized models (b) it can be modified to work with multiple types of 

measurements e.g. visual odometry and GNSS, and (c) uses less computation resources 

than the direct approach.     

Actually, a generic multisensor integration strategy (GMIS) has also been developed 

[Wang and Sternberg, 2000; Qian et al, 2015, 2016; Wang et al, 2015 and Qian, 2017] 

where the kinematics of a rigid body was considered in integration GNSS and IMU 

measurements. The GMIS method uses a kinematic trajectory model as the system model 

in the navigation Kalman filter and the measurements from all of the individual sensors, 

including IMU measurements, are directly involved in the estimation of the navigation 

states. The advantages are: (a) the IMU measurements are directly applied through the 

measurement updates in Kalman filter instead of their application in inertial 
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mechanization and error measurements, (b) the system observation redundancy is 

increased due to angular rate and acceleration of a rigid body model, (c) the novel filter 

structure allows the easier fusion of multiple inertial sensors and all types of 

measurements, e.g., relative measurements, and (d) direct error analysis can be performed 

on raw sensor data and virtual zero-mean process noise measurements. The GMIS has 

shown its high potential to work with low-cost IMUs in particular [Wang et al, 2015 and 

Qian, 2017]. Readers may have noticed that the comprehensive research activities with 

the mentioned GMIS, however, have been run in parallel with my PhD studies so that it 

has not been adapted for my research due to the time limit of my PhD studies.  

 Photogrammetry and image-based navigation 3.6.

Photogrammetry is the science of making measurements from photographs and images 

for making inferences about the size, shape, and spatial attributes of the objects in images 

[Bethel, 2003]. Image-based navigation (IBN), on the other hand, refers to the 

determination of the navigation parameters of a camera system derived from a successive 

sequence of images. IBN employs the theories and techniques in computer vision and in 

photogrammetry to convert off-the-shelf digital cameras to a navigation sensor. This 

section presents the relevant background of IBN that will be used in the later 

development.  

3.6.1. Mathematical photogrammetry 

The equations in photogrammetry relate the coordinates of 3D objects to the 2D 

coordinates of the objects in images. The equations employed in the research are (a) the 
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collinearity equations, (b) the coplanarity equation, and (c) the scale-restraint equation. 

The choice of condition equations depends on the particular problem to be solved. 

3.6.1.1. Collinearity equations 

The fundamental characteristic of a perfect perspective camera model is that the object 

point, its corresponding image point, and the lens perspective center all lie on a line in 

space. The collinearity equations describe the perspective transformation between the 

image space  and  the object space  [Bethel, 2003; Ghosh, 2005]:  
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wherein ),( ii yx [px] is the coordinates of an image point, ),( oo yx [px] is the 

coordinates of the principal point and f [px] is the focal length, s  is the scale factor,  
n
cC

is the DCM from the camera frame to the navigation frame, 
n
iX  [m] are the 3D object 

coordinates and 
n

X [m]  the perspective center coordinates in the navigation frame, 

respectively.  The elimination of the scale factor s  yields the following equations 
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Figure 3.6 The collinearity condition 
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where 
n
cθ [rad] is the vector of Euler angles, 
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If the coordinates of the object and the perspective center are relatively close (i.e. a 

few hundred meters) and are not near the polar regions, then position difference between 

the object and the perspective center 
n

X  can be written as [Gade, 2010]  

)(1
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ir
nn

i
n

       (3.65) 

where ir  and r  are the geodetic coordinates of the object and the perspective center 

respectively. 
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3.6.1.2. Coplanarity equation  

The coplanarity condition, as shown in Figure 3.7, implies that the two perspective 

centers, any object point and the corresponding conjugate image points on a pair of 

images, must all lie in a common plane [Ghosh, 2005].  

 
Figure 3.7 Two view geometry 

 

Since the baseline vector 
n
12b  between the two perspective centers and the position 

vectors cn
c

n
11,1 xCx  [px] and cn

c
n

22,2 xCx  [px] are coplanar, their scalar triple product is 

zero:  

02112  nnn
xxb        (3.66) 

The coplanarity equation is mainly used in determining the relative orientation 

between two views.  

3.6.1.3. Scale restraint equation 

The scale-restraint equation is a three-view constraint equation.  Consider image point 

vectors cn
c

n
11,1 xCx  [px], cn

c
n

22,2 xCx  [px] and 
cn

c
n

33,3 xCx  [px] shown in Figure 3.8: 
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Figure 3.8 Three view geometry 

 

wherein 
n
12b  and 

n
23b  are the baselines between images 1 and 2, and between images 2 

and 3, respectively. 1s and 2s are the scale factors in stereomodel 1-2. Similarly, 2s and 3s  

are the scale factors in stereomodel 2-3. The three image point vectors 
n
1x , 

n
2x  and 

n
3x  

may fail to intersect at a common point due to scale variations [Ghosh, 2005]. The 

‘mismatch’ vector 
n
12d  is perpendicular to both of 

n
1x and 

n
2x . It is computed as 

nnn
2112 xxd  , while the other ‘mismatch’ vector is given as 

n
23d

nn
32 xx  . 12s  and 23s are 

the scale factors of the vectors 
n
12d  and 

n
23d  respectively.  For the stereomodels 1-2 and 

2-3 to intersect at the same point, the scale factors 2s and 2s  must be equal in magnitude 

and opposite in sign, i.e.  

022  ss .       (3.67) 

From the principles of vector analysis, any four vectors a, b, c and d in three-

dimensional space can be related to each other through 
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This implies, 
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where the scalar multipliers a, b and d are 
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Consider equating a, b, c and d in (3.69) with 
n
2x ,

n
1x , 

n
12b and 

n
12d , respectively, and also 

with 
n
3x ,

n
2x , 

n
23b and 

n
23d , respectively. One obtains:  
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From (3.70) 2s  and 2s  can be computed as 
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Substitute (3.72) in (3.67) 
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Equation (3.73) is the scale restraint equation [Bethel, 2003; Ghosh, 2005]. It is 

mainly used for solving successive relative orientations and for transferring the scale in a 

sequence of images. 

3.6.2. Camera error sources 

This subsection reviews the systematic and random errors associated with a stereo 

camera system.  

3.6.2.1. Image distortion 

Image distortion is due to the imperfections of the camera hardware system during 

manufacture and causes the image coordinates of a point to deviate from its true location. 

There are five types of image distortions: (a) the focal length error, (b) the principal point 

error, (c) the radial lens distortion, (d) the decentering lens distortion, and (e) the affine 

distortion.  

There have been many variations in modelling of the image distortions [Ebner, 1976, 

El-Hakim and Faig, 1977, Grün, 1978, Tang, 2012]. The model developed by Brown 

[1971] is widely accepted in close range photogrammetry for camera self-calibration.  

The image distortions ( idx , , idy , ) corresponding to a specific point are given by 
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 (3.74)  

where r  is the radial distance from the principal point to the image point (
2r 

22 yx  

2)( oi xx  
2)( oi yy  ), f  is the error of the focal length, ),( 00 yx   is the principal 
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point error, ik  and ip  are the coefficients of the radial and decentering distortions, 

respectively,  and iA  (i = 1, 2) are the coefficients of the affine deformation.  

Other causes of the image distortion are atmospheric refraction and Earth’s curvature. 

The atmospheric refraction bends light rays from the object to the camera and causes the 

image point to be shifted similar to the radial distortions [Wolf and Dewitt, 2000]. The 

collinearity equations assume that the objects are defined in a 3-D Cartesian coordinate 

system [Ghosh, 2005] and do not take account into the Earth’s curvature. The corrections 

for the atmospheric refraction and Earth’s curvature are employed in aerial 

photogrammetry since they can be significant. However, these errors are insignificant in 

close range photogrammetry since the objects are expected to have a range of shorter than 

100 m. 

3.6.2.2. Lever-arms, boresight angles, stereo baseline and relative orientation  

The lever-arms can be the position vector between two sensors or between a sensor 

and a reference point. Once the sensors are assembled on the vehicle, the translational 

offsets between the individual sensors are assumed to be constant. In a stereo image-

aided inertial navigation system, there are two lever-arm vectors as shown in Figure 3.9. 

The first one is the baseline vector 
c
LRb [m] between the perspective centers of two 

cameras. The second lever-arm vector is the vector 
b
Lla  [m] between the reference 

camera (in this example it is the left camera) and a reference point on the vehicle.  For 

practical purposes, 
c
LRb  and 

b
Lla  vectors are expressed in the camera and body frames 

respectively. The lever-arms can be determined directly using a measuring tape or a total 
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station. Alternatively, they can be estimated as part of the states in the data fusion using 

least-squares or a Kalman filter.  

 
Figure 3.9 The geometrical relationship between an IMU and 

a stereo camera system: Lever-arms (
b
Lla ), boresight angles (

b
cθ ), 

stereo baseline (
c
LRb ) and relative orientation  (

c
cRθ ). 

 

The boresight angles b
cθ [rad] are the mounting angles between the reference camera 

system and the body frame. They are also assumed to be fixed after the sensors are 

assembled. Unlike the lever-arms, these angles cannot be measured directly and can only 

be estimated indirectly. In a stereo camera system, the relative orientation 
c
cRθ [rad] of the 

right camera with respect to the left is also unknown and can only be obtained indirectly.  

3.6.2.3. Image Motion Blur 

Image motion is the smearing or blurring of an image due to the vibration and the 

relative movement of a camera with respect to the scene during the opening of its shutter 

(i.e. exposure). This may result in resolution degradation and displacement of the image 

point [Ghosh, 2005] and therefore decrease the accuracy of the image measurements. The 

longer the exposure time, the closer 3D objects, the higher the velocity and/or the higher 

   
     

 

   
    

 



68 

 

the attitude rate, the larger the motion blur will be. To mitigate the motion blur, the 

exposure time needs to be reduced or one needs to avoid high dynamics. The images can 

be deblurred by deconvolution using a blur kernel (or point spread function), which can 

enhance the visual quality of the image so that image features can be easily identified. 

However, these conventional methods do not reverse any image blur in a 

photogrammetrically correct and precise way [Sieberth et al, 2014].  

3.6.2.4. Image noise and filtering 

The visual quality of an image is important for detecting and matching point features. 

Image noise causes random variations in the brightness of each pixel. It degrades the 

quality of the image and appears as grains. The main types of image noise are (a) 

Gaussian noise, (b) speckle noise, (b) salt-and-pepper, and (d) shot noise [Farooque and 

Rohankar, 2013]. Gaussian noise (amplifier noise) is the additive random noise and 

independent between pixels and independent of the signal intensity. Speckle noise is the 

random multiplicative noise of the signal intensity. Salt-and-pepper noise (impulse noise) 

is the dark pixels in bright regions and the bright pixels in dark regions. Shot noise 

(Poisson Noise) is caused by the variation in the number of photons sensed at a given 

exposure level.  

3.6.3. Camera auto-calibration considerations 

The camera auto-calibration is performed via a bundle adjustment.  There are several 

factors to be considered for achieving a successful and accurate auto-calibration. They 

are summarized below [Brown, 1989; Fraser, 2006; Tang, 2012]: 
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 The accuracy and geometric stability of a photogrammetric network increases 

with increasing convergence angles between the images (i.e. the angle between 

two point correspondences to an object). This implies the accuracy increases with 

longer baselines between the images or closer distance of the object or both.  

Furthermore, orthogonal roll angles must be present in order to decouple the IO 

and EO parameters.  

 The accuracy increases with increasing number of image points per object up to a 

maximum of 8 points per object. The accuracy does not significantly improve 

after 8 points per object.  

 The accuracy enhances with the increasing number of image points per image.  

However, the accuracy does not significantly improve after a few tens of points 

per image.    

 The image points should be evenly distributed points throughout the image format 

to avoid degeneracy of a least-squares solution and to obtain reliable image 

distortion estimates. This is can be accomplished by the bucketing technique 

[Zhang et al, 1995] where the image is evenly divided into non-overlapping 

regions (buckets) and constant number of point matches are chosen from each 

bucket.      

 The objects in the scene should be stationary (strictly w.r.t. the e-frame), stable 

and varying in distances (w.r.t. the c-frame). 

The accuracy and repeatability assessment of the calibration parameters is not 

performed in the image space but in the object space since the 3D measurements are most 
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important to the user [Fraser, 2012]. This is done by comparing the computed object 

space coordinates with GCPs.  

The number of the lens distortion terms in the model is important. If it is too small, the 

least-squares solution becomes biased. If it is too large, the solution will be weakened due 

to the over-parameterization [Fraser, 2006]. Most of the radial lens distortion is generally 

accounted by the second term 
4

2rk  [Barazzetti et al, 2011]. The terms with 3k  and even 

with 4k  are typically included in high-accuracy applications and wide-angle lenses. The 

decentering distortion parameters ip  are highly correlated with the principal point offset. 

Furthermore, they are generally small. When they are omitted in the auto-calibration, the 

decentering error gets absorbed by the principal point offset error [Fraser, 2012]. The 

affine distortion parameters iA  were originally included in the self-calibration model by 

Brown [1971] because they could be significant in film cameras. However, this distortion 

is rarely significant in the modern digital cameras [Tang, 2013]. The number of the lens 

distortion terms can be empirically determined by performing the calibration with various 

lens distortion models and the most accurate combination is chosen.  

3.6.4. Image-based navigation 

This section describes image-based navigation (IBN) methods. The modern IBN 

consists of three main steps (a) feature detection, (b) feature matching, and (c) pose or 

pose change estimation. There are two major IBN approaches namely the visual 

odometry (VO) and the visual SLAM. The former uses the tracked features only from the 

consecutive frames while the latter applies the well-established SLAM technique 
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[Murcott et al, 2011]. It is assumed that a stereo camera system is employed and the 

cameras have been calibrated.  

3.6.4.1. Feature detection 

Feature detection is an essential step of many computer vision applications [Szeliski, 

2011]. At this step, the feature detector locates those interesting points such as corners 

and blobs on an image.  A corner is defined as a point at the intersection of two or more 

edges while a blob is an image pattern that differs in properties, such as brightness or 

color and texture in comparison with the surrounding regions [Scaramuzza and 

Fraundorfer, 2011].  

A point feature detector consists of two steps. First, an image is filtered using a mask. 

Figure 3.10 shows an example of a 5x5 blob mask and a 5x5 corner mask. Then non-

maxima suppression is applied on the filtered image where all the local minima (or 

maxima) locations are identified. The resulted outputs are the locations of the detected 

features [Scaramuzza and Fraundorfer, 2011].  

 

 
Figure 3.10 The corner (left) and blob (right) masks 

 

The desirable qualities of a feature detector are its repeatability, localization accuracy, 

computational efficiency, robustness distinctiveness, photometric invariance and 

geometric invariance. Examples of the corner detectors are Harris [Harris et al., 1988], 
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Shi-Tomasi [Tomasi and Shi, 1994] and FAST [Rosten and Drummond. 2006]. And 

examples of the blob detectors include SIFT [Lowe, 1999], PCBR [Deng et al., 2007] and 

SURF [Bay et al., 2008].  

3.6.4.2. Feature description and matching 

In the feature description step, a feature descriptor is constructed using the 

neighboring pixels around the feature points. Then the feature descriptor can be matched 

against descriptors from another image frame in order to obtain the correspondences. The 

simplest method to generate a descriptor is to extract an mm  square patch surrounding 

each feature point, where m  is odd, and then construct an 1mm  descriptor vector 

from the pixels in the window excluding the feature point itself [Howard, 2008]. The next 

step is to construct a score matrix between the feature points of the two frames to be 

matched. This is achieved by computing simple error metrics [Szeliski, 2011] such as the 

sum-of-absolute differences (SAD), sum-of-squared differences (SSD) or normalized 

cross-correlation (NCC) using the descriptor vectors between the two frames. If the 

values in the score matrix for the SAD and SSD are close to 0 or if the NCC value is 

close to 1, it indicates that the features between the frames are similar. The descriptors 

based on the local appearance are not invariant to the orientation, scale and illumination 

changes [Scaramuzza and Fraundorfer, 2011]. On the other hands, the descriptors, such 

as SIFT or SURF, are invariant to the orientation, scaling and illumination changes and 

may improve the matching accuracy. However, they are computationally expensive. In 

IBN, the local appearance of the features is not expected to change between consecutive 

and stereo image frames. This is due to the fact that video cameras can capture images at 

a high rate, the stereo cameras are usually parallel with each other, the stereo baseline 
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length is relatively short (less than 1m) and the camera motion are typically smooth 

[Geiger, 2011]. Hence, the simple SAD, SSD or NCC methods are usually sufficient for 

IBN systems.  

Searching and matching for feature points between two frames can be inefficient since 

all the points are searched for potential matches. This can be time consuming if the 

number of the being detected features is large, for example, in the thousands. In order to 

reduce the searching radius, one can constrain the matching in a region where a potential 

match is expected. Between stereo pairs, the search can be performed along the epipolar 

lines [Bin Rais, et al, 2003]. Between the consecutive frames, the locations of the features 

on the next frame can be predicted using a motion model [Scaramuzza and Fraundorfer, 

2011] or any available external sensor, for example, an IMU [Veth et al, 2006]. To 

increase the robustness of the matching process, one can employ the random sample 

consensus (RANSAC) algorithm [Fischler et al, 1981], which was overviewed in Section 

3.2.1.1.  

3.6.4.3. Stereo Space Intersection 

Stereo space intersection (a.k.a. stereo triangulation) is a technique that is commonly 

used to determine the 3D coordinates of an object from 2D image correspondences based 

on the known interior orientation and exterior orientation parameters. There are two 

methods to determine the 3D object coordinates: (a) the simplified triangulation equation 

and (b) the collinearity equations. The simplified model [Sibley et al, 2005] is 
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where c
il [m] is the 3D position vector of the object w.r.t. the left camera, LRb is the 

baseline length between the two cameras, and iL,x  and iR,x are the image position vectors 

of the i-th object in left and right image, respectively. This model assumes that the stereo 

images have been rectified and has a unique solution (i.e. 3 equations and 3 unknowns). 

The space intersection expressed by collinearity equations is an over-determined system 

(i.e. 4 equations and 3 unknowns) so that the 3D object coordinates are estimated using 

least-squares. The four equations for space intersection by collinearity (corrected for 

image distortion) are given as follows [Bayoud et al, 2004] 
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3.6.4.4. Visual SLAM 

Simultaneous localization and mapping (SLAM) is a navigation technique widely used 

in robotics. It incrementally builds a consistent map of landmarks in an unknown 

environment while simultaneously determining the location of the mobile system within 

this map [Dissanayake et al, 2006; Durrant-Whyte and T. Bailey, 2006a; Thrun et al. 

2008].  The Extended Kalman filter (EKF) can be used to solve the SLAM problem and 

is referred as the EKF-SLAM algorithm. The system and measurement model for EKF-

SLAM at epoch k  is given as [Durrant-Whyte and Bailey, 2006a]: 
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where kx  is the vehicle’s pose state vector, TT
N

T
i

T
k ],,,,[~

1 mmmm  is the map which 

consists of all the landmark position states, 1kw  is the process noise vector that conforms 

to ) ,( 1kN Q0 , ik ,z  is the measurement vector of feature point i , ),(, ikik mxh  is the 

non-linear function of the vehicle pose states and the landmark position states  and ik ,v  is 

measurement noise vector that conforms to ) ,( ,ikN R0 .  

The stereo visual SLAM measurement equation can be formulated based on 2D 

[Bayoud et al, 2004; Lategahn et al, 2011; Sazdovski et al, 2011; Alcantarilla et al, 2012] 

or 3D  [Davison and Kita, 2001; Davison and Murray 2002; Paz et al, 2008] image 

measurements. The stereo visual SLAM with 2D image measurements can use the 

collinearity equations [Bayoud et al, 2004] 
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    (3.78) 

where the navigation frame here is the global frame and 
n
kX  and n

kc )(θ are the position and 

orientation vectors of the camera system, respectively. The stereo visual SLAM 

measurement equation with 3D image measurements can be written as [Paz et al, 2008] 

 c
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kc
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vXmCl  .     (3.79) 

The 2D method can include the camera calibration parameters and is referred as 

simultaneous calibration localization and mapping (SCLAM) [Kümmerle et al, 2011]. 

The 3D method assumes that the cameras are calibrated and is easier to be implemented.  
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3.6.4.5. Visual odometry  

The visual odometry algorithm computes the position and orientation change between 

two consecutive frames. Then by concatenating the successive pose changes, the 

trajectory of the camera system can be obtained. The matched features between the 

current frame k  and the previous frame 1k  yield two sets of 3D object positions. The 

relationship between the pair of the 3D vectors for each object is given by the following 

3D rigid body transformation [Matthies and Shafer, 1987; Kelly et al, 2008]:   

 c
kk
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c
ik 1,,1
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)1(,   XlCl       (3.80) 

where )(
)1(

kc
kc C  and c

kk 1, X  are the DCM and position difference respectively. 

c
kk 1, X  and )(

)1(
kc
kc C  can be estimated using the weighted least squares method. Another 

approach to estimate the pose change is to use the 2D image coordinates [Badino et al, 

2013]. By substituting (3.75) in (3.80) , one obtains: 

c
kkikRikLstereo

kc
kcikRikLstereo hh 1,,,,1,

)(
)1(,,,, ),(),(   XxxCxx   (3.81) 

However, this method only applies to the rectified stereo images. 

3.6.4.6. Accuracy assessment of IBN 

The accuracy of an IBN solution can be evaluated using an absolute reference such as 

the corresponding GNSS-aided inertial navigation solution. The translation and rotation 

drift rates, i.e. the error with respect to distance travelled, are typically used to describe 

the performance. Suppose that ( n
kIBN,X , n

IBNkc ),(C ) and ( n
kREF ,X , n

REFkc ),(C ) are the IBN 

and reference solutions, respectively, at epoch k . Then the percentage translation drift 

rate is computed by 
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and the rotational drift rate  in 1radm  is 
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where REFd  is the total path length, which is computed as shown in Algorithm 3.1. 

Algorithm 3.1 Computation of total path length 
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In practice, the translational and rotational drift rates are computed for multiple 

lengths in the trajectory (e.g. 20m, 40m and so on). Then all the possible translational and 

rotational drift rates are averaged to obtain the global performance metrics.   
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4. Structureless stereo camera auto-calibration and system 

calibration 

This chapter is mainly based on the following publication: 

Gopaul, Nilesh S.; Wang, Jianguo and Hu, Baoxin (2016): Camera auto-calibration in 

GPS/INS/stereo camera integrated kinematic positioning and navigation system, 

Journal of Global Positioning Systems, 2016, 14:3 https:/doi.org/10.1186/s41445-016-

0003-7, Springer, ISSN 1446-3164. 

 Introduction  4.1.

This chapter presents a two-step camera calibration method for multisensor integrated 

kinematic positioning and navigation systems with GNSS receivers, IMU and stereo 

cameras. The stereo camera auto-calibration employs two scale-restraint equations for 

each consecutive and stereo pair [Gopaul et al, 2016]. In comparison with the collinearity 

equations, the proposed method is structureless, i.e., free of the object positions. First, a 

camera auto-calibration is performed to obtain the lens distortion parameters, the up-to-

scale baseline length and the relative orientation between the two cameras. Then, the 

system calibration is introduced to recover the camera lever-arms, and the bore-sight 

angles with respect to the IMU, and the absolute scale of the camera using the GNSS-

aided inertial integrated navigation solution.   

This chapter is organized as follows: Section 4.2 describes the proposed method for 

stereo camera auto-calibration and camera system calibration. The comparison and 

analysis of the computational complexity of the auto-calibration methods using the 

collinearity equations and the scale restraint equation through the simulated data is shown 
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in Section 4.3. Section 4.4 contains the pre-analysis to determine the best scale-restraint 

equations combination and the expected accuracy of the collinearity equations and the 

scale restraint equation using the simulated data. Section 4.5 presents lab test results. The 

chapter ends with a summary and the research contributions in Section 4.6. The field test 

results and analysis are presented in Section 7.3.   

 Camera calibration 4.2.

The assumptions prior to the development are as follows: 

 The object points in the scene are stationary w.r.t. the e-frame, 

 The raw measurements from the sensors are synchronized, 

 The GNSS-aided inertial integrated navigation solution is available, 

 The GNSS-aided inertial integrated navigation solution is referenced at the center 

of the IMU, and 

 The left camera is specified as the reference camera of the stereo camera system.   

4.2.1. Structureless camera auto-calibration  

The algorithmic development of the stereo camera auto-calibration begins with the 

well-known extended collinearity equations (COL). The roll, pitch and heading angles 

are assumed to be unavailable at this point. Therefore, EOPs are resolved in the n’-frame. 

The extended collinearity equations for a stereo system at the current epoch k  is:  
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wherein L and R denote the left and right cameras, respectively, ),( ,, ikik yx  [px] are the 

2D coordinates of the image point i, n
i


X [m] is the position vector of the object point, 

n
kL

,X [m] is the camera’s perspective center of the left camera, n

kc


)(θ [rad]  is the orientation 

vector of the left camera, ),( 00 yx [px] is the position vector of the principal point, f [px] 

is the focal length, ),( .,., ikdikd yx  [px] are the 2D image distortion, ),(
,, ikik yx vv [px] are 

the measurement noises in x and y directions, 
c
LRb  [m] is the baseline vector between two 

cameras, and 
c
cRθ  [rad] is the orientation vector of the right camera w.r.t. the left one. 

Figure 4.1 shows the image points, the object point and the camera EOP in a stereo 

camera system. 

 
Figure 4.1 Stereo Vision 

 

The auto-calibration image distortion model given by Brown [1971] is as follows 
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 (4.2) 

where r  is the radial distance from the principal point to the image point (
2r 

22 yx  

2)( oi xx  +
2)( oi yy  ), f  is the focal length error, Tyx ),( 00   is the error vector of 

the principal point position, ik  and ip  are the coefficients of the radial and decentering 

distortions, respectively, and iA  is the coefficient of the affine deformation (i = 1, 2).  

Given the definition of n’-frame and stationary object points are fixed in the e-frame, 

it is noted that (4.1) does not account for the transport rate 
'
'

n
enω . On the surface of the 

Earth, the transport rate in degrees per meter is approximately 


18011 )(tan 

R
m  

6100.9   [deg/m], where R is the radius of a spherical Earth. It has been demonstrated 

that image-based navigation systems can generate orientation solutions with orientation 

drift rates as low as 0.003[deg/m] [Cvišić et al, 2017]. Given that the transport rate in 

degrees per meter is atleast 2 to 3 orders of magnitude smaller than the orientation drift 

rates of modern image-based navigation systems, it can be ignored.   

Auto-calibration algorithms suffer from a rank deficiency of order seven (i.e. 3D 

position, 3D orientation and scale).  In order to enable a free-network adjustment, one 

component of the baseline vector 
c
LRb  must be free (i.e. 2 d.o.f.), one of the position n

kL

,X  

and one of the orientation parameters in n
kc


)(θ  must be fixed, which resolve the 

deficiencies due to the missing scale and orientation as part of the adjustment datum. 

Practically, one can set 0X 
n

L 1,  and 0θ 
n

c )1(  at the first epoch. The remaining 
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parameters, including the stereo baseline vector, the orientation vector of the right camera 

and the image distortion parameters can be solved in a least-squares bundle-adjustment.   

Now, consider the scale restraint equation (SRE) [Bethel, 2003; Ghosh, 2005], which 

relates the three arbitrary views i , j  and k : 
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n
ij


b  and n
jk


b  are the baselines [m] between images i  and j , and between images j  and 

k , respectively. For the stereo auto-calibration, the proposed algorithm uses point 

features matched from four views which are stereo pairs from two consecutive epochs, 

i.e., c
kL,x , c

kR,x , c
kL 1, x and c

kR 1, x . Figure 4.2 (left) depicts the quad-matches.   

 
Figure 4.2 Four view feature matching (left) and 

translational offsets between the four views (right) 
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Figure 4.2 (right) shows the translational offsets between the four views while the 

parameters are listed in Table 4.1. Since the scale restraint equation constrains three 

views, there are four possible combinations in a four-view configuration. The four 

combinations are listed in Table 4.2.  

Table 4.1 Camera auto-calibration parameters (L and R denote the left and right camera) 

Parameter Description 

Lf , Rf  Correction for focal lengths [px] 

0,Lx , 0,Ly , 0,Rx , 0,Ry  Correction for principal points [px] 

1,Lk , 2,Lk , 3,Lk , 1,Rk , 2,Rk , 3,Rk  
Radial lens distortion parameters   

[px
-2

, px
-4

, px
-6

, px
-2

, px
-4

, px
-6 

] 

1,Lp , 2,Lp , 1,Rp , 2,Rp  
Decentering distortion parameters 

[px
-2

,px
-2

, px
-2

,px
-2 

]  

1,LA , 2,LA , 1,RA , 2,RA  
Affine deformation parameters 

[px
-1

,px
-1

, px
-1

, px
-1

]  
c
LRb  Stereo baseline vector [m]  

c
cRθ  

Orientation vector of the right camera w.r.t. left 

camera [rad] 

n
kkL


 1,,X  

Position difference of the left camera between 

two consecutive frames [m] 

n
kc


)(θ  Orientation vector of the left camera [rad] 

 

Table 4.2 Four combinations of the scale restraint equation in four views 

Combination Image i Image j Image k 

a 
c

kL,x  c
kR,x
 

c
kR 1, x

 

b 
c

kL,x
 

c
kR,x
 

c
kL 1, x

 

c 
c

kL,x
 

c
kL 1, x

 
c

kR 1, x
 

d 
c

kR,x
 

c
kR 1, x

 
c

kL 1, x
 

 

In order to relate all four views, two scale restraint equations are required. This leads 

to the following six possible combinations: (1) {a,b}, (2) {a,c}, (3) {a,d}, (4) {b,c}, 

(5){b,d}, and (6) {c,d} as shown in  Figure 4.3.  
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Figure 4.3 The six possible combinations to constrain four views with two SREs 

 

The combination that outputs the minimum trace of the variance-covariance matrix of 

the parameter vector when performing the auto-calibration can be considered the most 

accurate and therefore the best solution. Simulated data in a typical land vehicle scenario 

were used to determine the best combination. The corresponding test results can be found 

in Section 4.4.1. The test results showed that combination (5) performed the best and the 

corresponding equations can be expressed as 
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 (4.5) 

where  c
kL

n
kc

n
kL ,)(, xCx


 , 

cR
kR

c
cR

n
kc

n
kR ,)(, xCCx


 , and  

c
LR

n
kc

n
kc

n
kkL

n
kkR bCCXX )( )1()(1,,1,,








  . 

In short form, (4.5) can be written as,  

     

        

     

        

     

        

1 2 3

     

        

     

        

     

        

4 5 6
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c
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c
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c
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.  (4.6) 

In order to introduce a free-network adjustment, one component of the baseline vector 

c
LRb   must be free (i.e. 2 d.o.f.) and one of the orientation parameters in n

kc


)(θ  must be 

fixed (ideally 0θ 
n

c )1( ). Since the measurement equation in (4.5) is the implicit form 

(i.e., 0vzxh ),,( ), the parameters can be solved by bundle adjustment with the 

conditional least-squares method with parameters described in Section 3.2.1.  

When the objects are close and the stereo baseline is long or both, the stereo 

overlapping region reduces. To fill the entire image frame, the point features in the non-

overlapping areas can be constrained by one SRE equation if the object point can be 

viewed in 3 images or by the coplanarity equation (CP) between 3 images, which is 

illustrated in Figure 4.4.  

 
Figure 4.4 Two and three overlapping regions. 

 

4.2.2. Camera system calibration 

The camera system calibration is to determine the lever-arm vector 
b
Lla , the absolute 

scale cs  of the camera and the bore-sight angle vector 
b
cθ . The relationship between the 

     

        

     

        

CP
SRE

3 image overlap

2 image overlap
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integrated GNSS aided-INS solution and left camera can be expressed as the following 

seven parameter Helmert transformation:   

b
L

n
GNSSINSkb

n
kL

n
nc

n
kGNSSINS s laCXCX ),(

'
,,       (4.7) 

wherein n
kGNSSINS ,X  and n

GNSSINSkb ),(C  are the integrated GNSS aided-INS position vector 

and attitude DCM respectively. n
nC  is determined by the orientation of the camera 

system with respect to the n-frame at the first epoch  

b
c

n
GNSSINSb

n
c

n
n CCCC ),1()1(        (4.8)  

where b
cC  is the camera-to-body DCM represented by the bore-sight angle vector b

cθ . 

Differencing (4.7) between epoch 1k  and epoch k  gives  

b
L

n
GNSSINSkb

n
GNSSINSkb

n
kkL

n
nc

n
kGNSSINS s laCCXCX )( ),1(),(

'
1,,,        (4.9) 

wherein )( ,1,,
1

,
n

kGNSSINS
n

kGNSSINSr
n

kGNSSINS 
  rrDX . From (4.5), the relationship between 

n
GNSSINSkb ),(C and the camera DCM n

kc


)(C  can be written as 

'
)(),(

n
kc

n
n

b
c

n
GNSSINSkb CCCC  .      (4.10) 

Equations (4.9) and (4.10) equate the GNSS/IMU information ( n
kGNSSINS ,X , 

n
GNSSINSkb ),(C ) and the up-to-scale auto-calibration '

1,,
n

kkL X and '
)(

n
kcC  parameters. All of 7 

system calibration parameters can be solved by using the least-squares.  

4.2.3. Parameter Initialization 

The least-squares method requires good approximation of the parameter vector (i.e. 

)0(
x in (3.15)) when the measurement equations are non-linear. This can reduce the 
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effects of non-linearity and prevent the LS solution from diverging. This section presents 

a practical method for initializing the parameters in the structureless camera auto-

calibration and system calibration. 

The up-to-scale stereo baseline vector 
c
LRb , the orientation vector 

c
cRθ  of the right 

camera w.r.t. the left camera and the coefficients ik  of the radial lens distortions can be 

initialized using the coplanarity equations. The focal length error f , the principal point 

error ),( 00 yx  , the decentering distortion ip  and the affine deformation parameters iA  

are relatively small and can be ignored during the initialization process. The coplanarity 

equation is given by 

0,,,,  cR
ikR

c
cR

c
ikL

c
LR xCxb       (4.11) 

where  









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








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

f

vrkrkrkxyy

vrkrkrkxxx

iaL

ika

yaaaikaaiaL

xaaaikaaika

c
ikRLa ,,

,,

...)(

...)(

6
3,

4
2,

2
1,,,,0,,

6
3,

4
2,

2
1,,,,0,,

,),,(x . (4.12) 

Typically, a stereo system is assembled such that the cameras are near parallel and 

left-right adjacent to each other. Hence, 
c
LRb is approximately equal to 

Tb )0,,0( where b  

is the baseline length. Since (4.11) is rank defect by one, one of the components in 
c
LRb  

must be set free. Here bbc
yLR ,  is set. Therefore, the parameter vector becomes  

T
RRLL

Tc
cR

c
zLR

c
xLR kkkkbb ),,,,,,)(,,( 1,1,2,1,,, θx  .   (4.13) 

It is recommended to run the adjustment at two or three epochs in order to check for 

consistency.   
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As mentioned in the Section 4.2.2, the approximate values of the lever-arm vector 
b
Lla  

can be obtained directly by external means, for example, a measuring tape. However, the 

bore-sight angles b
cθ  can only be obtained indirectly. One way to determine these angles 

is to compare the integrated GNSS/IMU solution and the camera orientation solutions for 

a given time interval. Since only the camera orientation information is required and the 

scale is not important at this stage, the coplanarity equation can be employed.  Consider 

the coplanarity equation for the left (reference) camera at two consecutive epochs 1k  

and  k :  

0,1,
)(

)1(,,1,,  
c

ikL
kc
kc

c
ikL

c
kkL xCxX      (4.14) 

where the image vectors c
ikL ,,x  and c

ikL ,1, x  have been corrected for the radial distortion 

obtained from (4.11). Similar to (4.12), (4.14) is also rank defect by one, thus one of the 

components in c
kkL 1,, X  must be set as a free parameter.  For example, set c

kkLZ 1,,   to 

1. Thus, parameter vector becomes  

TTkc
kc

c
kkL

c
kkL YX ))(,,(

)(
)1(1,,1,,   θx      (4.15) 

Next, '
)(

n
kcC can be obtained by chaining the )(

)1(
kc
kc C solution from (4.14) for epochs up 

to and including k : 

Tkc
kc

n
kc

n
kc )( )(

)1(
'

)1(
'

)(  CCC       (4.16) 

with ICC  '
)1(

'
'

n
c

n
n . Then, compare the GNSS/IMU and the camera orientations to obtain 

the bore-sight angles. The substitution of (4.8) in (4.10) gives  

'
)(),1(),(

n
kc

b
c

n
GNSSINSb

b
c

n
GNSSINSkb CCCCC      (4.17) 
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which relates the GNSS/INS and the reference camera orientation solution. The boresight 

angles b
cθ  in (4.17) can be obtain via the linearized least-squares method.  

 Computational complexity  4.3.

This section compares the number of parameters and the number of floating point 

operations (flops) required in a least squares bundle adjustment between the stereo auto-

calibration algorithms based on collinearity equations (COL) (Equation (4.1)) and the 

scale restraint equations (SRE) (Equation (4.5)).  

Table 4.3 shows the number of parameters based on COL and SRE auto-calibration 

approaches, in which xn  is the number of the stereo image frames and objn  is the number 

of the visible 3D objects. One component in the stereo baseline vector is left free (i.e., 

only two stereo baseline parameters). The number of the camera position and orientation 

parameters is )1(6 xn  in total because the first camera position and orientation is fixed 

(practically they are set to zero). The advantage of employing SRE is to have the number 

of the estimated parameters far less than the one with COL.  

 

Table 4.3 Dimension of the parameter vector (COL vs. SRE) 

 COL SRE 

Number of image frames xn
 xn

 

Number of observed objects objn
 objn

 
Focal length, principal point 2×3 2×3 

Lens distortion ( 1k , 2k , 3k ) 2×3 2×3 

Stereo baseline and relative orientation 2+3 2+3 

Camera position and orientation )1(6 xn
 

)1(6 xn
 

Object parameters objn3
 

0 

Total objx nn 3611   xn611
 

 



90 

 

The flop count is the total number of multiplication and addition operations required to 

obtain a least squares (LS) solution. Table 4.4 shows the flops counts for the common 

matrix operations used in least squares. 

 

Table 4.4 Matrix operations and the corresponding number of flops 

Operation Description Flops 

lnnm  BA
 Matrix-Matrix Product mlmnl 2  

1 nnm bA
 Matrix-Vector Product mmn2  

1
nnA

 
Symmetric Matrix Inversion nnn  23

 






k

i
inm

1
,A

 
Matrix Summation )1( kmn  






k

i
im

1
,1b

 
Vector Summation )1( km  

 

The factors considered in the analysis are the number of the matched stereo points (i.e. 

number of measurements), the number of the image frames, the number of the objects in 

view and the overlapping percentage between the consecutive frames. The overlap 

percentage encompasses the frame rate, the velocity and the attitude rate of the camera 

system. Furthermore, COL system has its measurements as the functions of the unknowns 

in the explicit form (i.e. vxhz  )( ) and is solved by applying the parametric LS 

adjustment method while the SRE system has its measurements as the functions of the 

unknowns in the implicit form (i.e., 0vzxh ),,( ) and is solved by applying the 

conditional LS adjustment with parameters. The flop counts between the two will be 

different under a given number of the measurements and parameters.  

To simplify the analysis, the number of the processed image frames is kept constant 

(here it is set to 92 and the same number is used the simulation tests in Section 4.4). 
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Furthermore, the number of the measurements and objects and the overlapping 

percentage are assumed to have the following predictive relationship 

pn

m
m

obj 


1

1
       (4.18) 

where m  is the average number of the matched stereo pairs per object, m is the total 

number of the matched stereo pairs and p is the average overlapping percentage. For 

instance, if p = 75% then m= 4, which means that, on average, an object is viewed on 4 

images. By keeping the average overlap percentage constant, the number of the objects in 

the system can be predicted with a given number of the stereo points. The number of the 

measurements and parameters in the LS are now known. Therefore, the flop count can be 

predicted. Under the assumption that the measurement variance-covariance matrix R is 

homoscedastic, i.e. IR 2 , the least-squares bundle adjustment solution for COL is 

given as follows 
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       (4.19) 

Since there are 4 equations per stereo pair (Equation (4.1)), the dimension of  ix,H  is 

4×[11+6(1)+3(1)]=4×26. Furthermore, the dimension of x̂  is lmx nnn 3611   (Table 

4.3). The total flops count required for computation in (4.19) is summarized in Table 4.5. 
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Table 4.5 Flops count required for computing COL 

Operation Flops 
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i
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T
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Total 70263183 23  mnn  
 

The least-squares bundle adjustment solution for SRE can be written as 
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     (4.20) 

The dimension of iz  in (4.20) varies as it depends on the number of the matched stereo 

pairs for a specific object. For example, if an object is viewed in three consecutive stereo 

pairs, the SRE equations will be 
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Table 4.6 Flops count required for computing SRE 

Operation Flops 

)( ,,
T
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obj

obj
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If the average number of the matched stereo pairs per object is m , the dimension of 

iz  is m2 , the dimension of iz,H  is ) 44(2  mm , and the dimension of ix,H  is 

) 6(2 calnmm   ) 176(2  mm , where caln corresponds to the number of the 

calibration parameters (the focal length, the principal point, the image distortion 

parameters, the stereo baseline and the relative orientation in Table 4.3). Furthermore, the 

dimension of x̂  is xnn 611  as shown in Table 4.3. The total flops count required to 
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solve (4.20) is summarized in. Figure 4.5 shows the number of flops vs. number of stereo 

points required in COL and SRE with the overlapping percentages of 70%, 80% and 

90%. 

 
Figure 4.5 Flops vs. number of stereo points (m) 

 

As expected, the plot shows that COL uses more flops than SRE does. As the overlap 

percentage increases, the number of the flops in COL decreases because the number of 

the matched stereo pairs per object becomes larger. Therefore, given the same number of 

the measurements, the number of the object parameters becomes smaller. As the overlap 

percentage increases, the number of the flops in SRE increases because more matrix 

inversion operations are needed in the conditional LS adjustment with parameters. 

 Pre-analysis using the simulated data  4.4.

This section presents the results from the pre-analysis of COL and SRE auto-

calibration algorithms via least-squares bundle adjustment. Pre-analysis is typically 

performed in geodetic control network design in order to predict the achievable accuracy 



95 

 

of the estimated parameters and appropriately adjust the network design or so. Here, the 

pre-analysis is applied to (a) determine the best SRE combination described in Figure 4.3 

in Section 4.2.1 and (b) compare the performance of COL and SRE auto-calibration 

algorithms in terms of their accuracy and computation complexity. The simulated data 

were used for the following reasons: (a) they contain no correspondence errors, (b) the 

measurement model is exact and does not contain un-modelled errors, and (c) it provides 

flexibility in terms of number of measurements for the analysis.  

A typical land vehicle trajectory was simulated for the tests, i.e., it consisted of large 

horizontal motion and heading variation. Figure 4.6 (left) shows the vehicle’s trajectory 

and the landmarks. The vehicle’s height and attitude profiles are given in Figure 4.6 

(right).  

 
Figure 4.6 The 2D trajectory, landmarks (left)  

and the height, roll, pitch and heading profiles (right) 

  

The camera resolution and its field of view (FOV) were set to 640x480 pixels and 50 

degrees (equivalent to 686.2 pixels), respectively. The baseline length between the two 

cameras was 0.65m. Algorithm 4.1 below describes the simulation parameters. The 
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number of the epochs is 92. To simulate the urban scenario, the landmarks between the 

ranges 15m and 25m were selected to be in the view of the camera. Furthermore, the 

measurement noise was set to zero mean Gaussian noise with the standard deviation of 

±0.5px. The initial value for each camera calibration parameter was set to zero except the 

baseline component c
yLRb . as the free parameter and equal to 0.65m.  

Algorithm 4.1 Simulation Algorithm 

1.Simulate trajectory (i.e. position & attitude) 

2.Simulate landmark position (i.e. map) 

3. For each position and attitude 

    a. Find landmarks in view  

    b. Find landmarks with ranges [15,25] m 

    c. For each landmark  

        i. Get image coordinates 

        ii. Add lens distortion 

        iii. Add measurement noise (0.0±0.5px) 

 

Figure 4.7 shows a 3D view of the trajectory, landmarks in view and the corresponding 

left and right images at epoch 46.   

 

 
Figure 4.7 3D trajectory, landmarks in view, left image and right image at epoch 46 
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4.4.1. SRE combination test 

This section determines the best SRE combination as described in Figure 4.3. For each 

combination, the least-squares bundle adjustment SRE solution was computed. Table 4.7 

lists the parameters and gives the size of the parameter vector. The number of stereo 

points per frame is shown Figure 4.8, in which the total number of stereo pair 

measurements is 17074 . Then, the trace of the parameter variance-covariance matrix was 

computed for each of the SRE combination. Finally, the results are presented in Table 

4.8, from which the Combination 5 performed the best with the minimum trace.  

 

Table 4.7 SRE stereo auto-calibration parameter 

Parameter Size 

Image distortion  

(6 parameter model: f , 0x , 0y , 1k , 2k , 3k ) 
2×6 

Stereo baseline and relative orientation (one 

baseline component is fixed) 
2+3 

Exterior Orientation (one EO parameter is fixed)
 

6×(92-1) 

Total parameter vector size 563 

 

 
Figure 4.8 Number of stereo points per frame vs. epoch 
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Table 4.8 Square-root of the trace of the parameter variance-covariance  

matrix for each of the SRE combination shown in Figure 4.3 

SRE Combination 

Number 

SRE Equation 1 

Image Points 

SRE Equation 2 

Image Points 
)(Ptr  

1 
c

kL,x
c

kR,x
c

kR 1, x
 

c
kL,x

c
kR,x

c
kL 1, x

 
8.2305 

2 
c

kL,x
c

kR,x
c

kR 1, x
 

c
kL,x

c
kL 1, x

c
kR 1, x

 
7.7353 

3 
c

kL,x
c

kR,x
c

kR 1, x
 

c
kR,x

c
kR 1, x

c
kL 1, x

 
55.211 

4 
c

kL,x
c

kR,x
c

kL 1, x
 

c
kL,x

c
kL 1, x

c
kR 1, x

 
74.896 

5 
c

kL,x
c

kR,x
c

kL 1, x
 

c
kR,x

c
kR 1, x

c
kL 1, x

 
6.1466 

6 
c

kR,x
c

kR 1, x
c

kL 1, x
 

c
kR,x

c
kR 1, x

c
kL 1, x

 
56.589 

 

4.4.2. Comparison of COL and SRE auto-calibration algorithms 

The accuracy analysis on COL and SRE algorithms is presented in this section. Auto-

calibration results, one from COL and two from SRE (as SRE1 and SRE2), are presented 

here. The estimates from COL and SRE1 were obtained using the same number of the 

measurements, i.e., 17074 stereo points (m) as SRE2 used 4.5 times more measurements. 

The average overlap percentage for all three cases was 74%. Figure 4.9 shows the 

number of stereo points per frame and the number of the accumulated stereo points. 
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Figure 4.9 The number of the stereo points per frame (top)  

and the number of the cumulative stereo points (bottom). 

 

Figure 4.10 shows the standard deviations of the estimated focal length and the 

coordinates of the principal point obtained from the three cases w.r.t. the number of the 

epochs.  

 
Figure 4.10 The standard deviations of ∆fL, ∆xL,0, ∆yL,0, kL,1, kL,2 and kL,3  

 for the left camera 
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The results showed that, with the same given number of measurements, SRE1 

performed worse than COL did. However, SRE2 required 4.5 times more measurements 

to reach the equivalent or better performance than the COL algorithm did. Figure 4.11 

shows the standard deviations w.r.t. the number of flops. The results showed that both 

SRE1 and SRE2 required less computation resources to achieve the same level of the 

accuracy as COL did. 

 
Figure 4.11 The standard deviations of ∆fL, ∆xL,0, ∆yL,0, kL,1, kL,2 and kL,3  

for the left camera as the function of flops 

 

The final bundle adjustment solution from COL, SRE1 and SRE2 are presented next. 

Table 4.9, Table 4.10 and Table 4.11 show the true values, estimates and their standard 

deviations for the left, right and relative camera orientation calibration parameters, 

respectively. The results showed that the accuracies of the focal length error from COL 
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and SRE2 were similar and better than the one from SRE1. SRE2 delivered the smallest 

principal point error, but SRE1 behaved the worst. The radial distortion coefficients from 

COL and SRE1 were similar. However, SRE2 delivered the best results.  

 

Table 4.9 Left camera lens distortion parameters 

Parameter 
True 

value 
COL SRE1 SRE2 

  mean stdev mean stdev mean stdev 

∆f (px) -2 -1.825 0.438 -2.713 0.875 -2.318 0.417 

∆x0(px) 2.5 2.393 0.230 2.665 0.309 2.432 0.142 

∆y0(px) -3 -3.232 0.219 -2.851 0.266 -3.061 0.122 

k1 (px
-2

) 5.0e
-7

 5.03e
-07

 6.47e
-09

 5.07e
-07

 6.97e
-09

 5.06e
-07

 3.21e
-09

 

k2 (px
-4

) 4.0e
-13

 7.16e
-14

 1.03e
-13

 6.49e
-13

 1.04e
-13

 3.92e
-13

 4.75e
-14

 

k3 (px
-6

) 4.5e
-19

 1.78e
-18

 4.86e
-19

 4.89e
-18

 4.89e
-19

 3.72e
-18

 2.20e
-19

 
 

Table 4.10 Right camera lens distortion parameters 

Parameter 
True 

value 
COL SRE1 SRE2 

  mean stdev mean stdev mean stdev 

∆f (px) +2 2.082 0.441 2.534 0.884 2.078 0.421 

∆x0(px) -2 -2.003 0.226 -2.250 0.319 -2.029 0.146 

∆y0(px) 1 0.391 0.217 1.217 0.243 1.233 0.112 

k1(px
-2

) 5.0e
-07

 5.08e
-07

 6.72e
-09

 5.04e
-07

 8.02e
-09

 5.06e
-07

 3.76e
-09

 

k2(px
-4

) 4.0e
-13

 2.85e
-13

 1.08e
-13

 2.38e
-13

 1.28e
-13

 3.60e
-13

 6.03e
-14

 

k3(px
-6

) 4.5e
-19

 9.01e
-19

 5.21e
-19

 5.89e
-18

 6.22e
-19

 5.82e
-18

 2.93e
-19

 
 

The relative orientation parameters from SRE2 were the best overall as the ones from 

COL and SRE1 were similar to each other. The total number of the used stereo points, the 

number of parameters and the flop count are shown in Table 4.12 for each of the auto-

calibration algorithms. COL and SRE1 employed the same number of measurements, as 

SRE2 used 4.5 times more measurements. SRE1 and SRE2 estimated the same number 

parameters, but COL estimated 7854 more parameters. Even though, SRE2 processed 

more measurements than COL, it still used 1000 times less flops and achieved a higher 

accuracy. 
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Table 4.11 Relative orientation of right camera w.r.t left camera (†Free parameter) 

Parameter 
True 

value 
COL SRE1 SRE2 

  mean stdev mean stdev mean stdev 
c

xLRb . (m) 0.01 0.011 0.001 0.007 0.002 0.007 0.001 

c
yLRb . (m) †

 
0.65

 
0.650 - 0.650 - 0.650 - 

c
yLRb . (m) -0.01 -0.013 0.004 -0.013 0.004 -0.012 0.002 

c
xcR, (deg) -0.25 -0.257 0.007 -0.266 0.008 -0.260 0.004 

c
ycR, (deg) 0.5 0.504 0.008 0.500 0.014 0.494 0.006 

c
zcR, (deg) 0 0.002 0.002 -0.003 0.002 -0.002 0.001 

 

Table 4.12 Number of points and parameters 

 COL SRE1 SRE2 

Number of stereo points 17074 17074 77945 

Number of parameters 8417 563 563 

log10(flops) 12.4 8.8 9.4 

 

 Laboratory tests and results 4.5.

This section presents the calibration results of a stereo camera system in a laboratory 

setting. The first set of tests determined the number of the image distortion terms through 

trial and error. The second test compared the performance of SRE and COL auto-

calibration algorithms.  

4.5.1. System description 

The stereo camera system consisted of two Point Grey Flea3 cameras separated by a 

baseline of 0.65cm long as shown in Figure 4.12 (left). The camera resolution and the 

FOV were set to 640x480 pixels and 50 degrees (equivalent to 686.2 pixels), 

respectively. The size of each pixel is 4.65 µm [Point Grey Research Inc, 2011]. An 8x12 
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checkerboard with the dimensions of 90x60cm (Figure 4.12 (right)) was used as the 

reference target field.  

 

 
Figure 4.12 Stereo Camera System with IMU (Left). 90x60cm Checkerboard (right) 

 

 

17 stereo pairs of images, 19 left-only images and 20 right-only images were captured. 

The left-only and right-only images were taken to fill the entire image format. The 

corners of the checkerboard were extracted using the Camera Calibration Toolbox in 

Matlab [Bouguet, 2015]. The total number of the extracted points was 5621. Figure 4.13 

shows the extracted image measurements.  

 
Figure 4.13 Image measurements for the calibration 

 

The minimum, average and maximum distances from the mid-point of the stereo 

system to the center of the checkerboard were 1.2m, 1.6m and 2.5m, respectively. In 
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order to obtain a reliable geometry, the image network consisted of orthogonal roll angles 

and highly convergent images. 

4.5.2. Determination of lens distortion parameters 

In this section the significant image distortion terms are determined experimentally. 

The calibration is performed with various sets of image distortion coefficients. Then, the 

most accurate combination is chosen as the correct one. Table 4.13 lists the combinations 

specifically employed in the completed tests.  

Table 4.13 Image distortion coefficients combinations 

Combination ID Combination 

1 
0x , 0y , f , 1k , 2k , 3k , 4k , 5k , 1p , 2p , 1A , 2A  

2 
0x , 0y , f , 1k , 2k , 3k , 4k , 5k , 1A , 2A  

3 
0x , 0y , f , 1k , 2k , 3k , 4k , 5k , 1p , 2p  

4 
0x , 0y , f , 1k , 2k , 3k , 4k , 5k  

5 
0x , 0y , f , 1k , 2k , 3k , 4k  

6 
0x , 0y , f , 1k , 2k , 3k  

7 
0x , 0y , f , 1k , 2k  

8 
0x , 0y , f , 1k  

 

The combinations are chosen for the following reasons: the radial distortion is 

dominant and therefore is included in all the combinations. The decentering distortion 

can be small enough that it can be absorbed by the position error of the principal point 

[Fraser, 2012] and the affine distortion may not exist in the digital cameras [Tang, 2013]. 

Thus, they only appear in combinations 1, 2 and 3. The combinations of the image 

distortion coefficients were computed and the ranging accuracy of the stereo system was 

analyzed. For each combination, the followings were conducted: 
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1. The camera system was calibrated using the traditional calibration method (i.e. 

the checkerboard coordinates were set as constants) so that the exterior orientation 

of the cameras can be obtained.  

2. Auto-calibration was performed using the collinearity equations. 

3. By using the estimated position and orientation of the stereo system from the 

tradition calibration results in Step 1 and the auto calibration results in Step 2, the 

3D position of the corners of the checkerboard were estimated by space 

intersection.    

4. The differences of the estimated 3D positions and the true checkerboard corner 

positions were computed. Then the mean and RMS of the differences was 

determined.  

Figure 4.14 shows the X, Y, Z and the 3D ranging errors for combinations 1 to 8.  

 
Figure 4.14 X, Y, Z and 3D ranging errors for combinations 1 to 8 

 

The results from the combinations 1, 2 and 3 showed that the inclusion of the 

decentering distortion and the affine distortion terms degraded the overall ranging 

accuracy in comparison with the models that contained only the radial distortion terms.  
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The results were degraded due to the high correlation of the decentering distortion and 

the affine distortion with other parameters. Table 4.14 shows the correlation coefficients 

between the focal length error and affine parameters for Combination 2.  

 

Table 4.14 The correlation coefficients of the focal length error  

and affine parameters for Combination 2 

 
Left Camera 

 

Right Camera 

 

f  1A  2A  

 

f  1A  2A  

f  - 0.82 0.17 f  - 0.79 0.39 

1A  

 

- 0.18 1A  

 

- -0.18 

2A  

  

- 2A  

  

- 

 

The correlation coefficients between principal point error and decentring distortion 

parameters for  Combination 3 are shown in Table 4.15. 

Table 4.15 The correlation coefficients of the principal point error  

and decentring distortion parameters for Combination 3 

 

Left Camera 

 

Right Camera 

 

0x  0y  
1p  2p  

 

0x  0y  
1p  2p  

0x  - -0.12 0.92 0.23 0x  - -0.22 0.89 -0.17 

0y  

 

- 0.09 0.89 0y  

 

- 0.21 0.86 

1p  

  

- -0.16 1p  

  

- -0.18 

2p  

   

- 2p  

   

- 

 

Table 4.14 shows that the correlation coefficient between f and the affine parameter 

2A  are 0.82 and 0.79 for the left and right cameras respectively. Furthermore, Table 4.15 

shows that 0x  and 0y  are highly correlated with 1p  and 2p , respectively, with 

correlation coefficients greater than 0.86. A high correlation mathematically implies a 

significant linear relation between two parameters in question and can cause instability in 

the solving the bundle adjustment solution. The presence of these high correlation 
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degraded the overall calibration solution. (Note: the full correlation analysis of all the 

results were omitted; only relevant ones were presented) 

Other than the principal point error and the focal length error, the combinations 4 to 8 

contain only radial distortion terms. The RMSE decreased from the combinations 8 to 6 

and then levels off from 6 to 4. This showed that most of the radial distortion is 

accounted up to the term 3k  and the inclusion of the coefficients 4k and 5k  does not 

improve the overall solution accuracy.  Furthermore, the mean errors slightly increased 

when 4k  and 5k  were included. The test results showed that the combination 6 performed 

the best, i.e. 

)(

)(

6
3

4
2

2
10,

6
3

4
2

2
10,

rkrkrkyfyy

rkrkrkxfxx

f

y
id

f
x

id




    (4.22) 

4.5.3. Comparison between COL and SRE 

The SRE and COL auto-calibration algorithms were tested and their performances 

were compared using the auto-calibration model in (4.22). The calibration results using 

the traditional method via collinearity equations were used as the reference solution. The 

standard deviation of the measurement for the image points was assumed to be ±0.3px.  

Table 4.16, Table 4.17 and Table 4.18 show the estimates and their standard deviations 

for the left, right and relative orientation camera calibration parameters, respectively 
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Table 4.16 Left camera lens distortion parameters 

Parameter 

Collinearity 

Equations 

(Traditional) 

Collinearity 

Equations 

(Auto) 

Scale Restraint 

Equations 

(Auto) 

 mean stdev mean stdev mean stdev 

Lf (px) -1.72 0.40 2.49 0.56 2.50 0.79 

0,Lx (px) -0.49 0.33 -0.24 0.37 0.04 0.57 

0,Ly  (px) 0.47 0.32 -0.17 0.36 0.15 0.73 

1,Lk (px
-2

) -4.80e
-07

 1.35e
-08

 -4.93e
-07

 1.30e
-08

 -4.79e
-07

 1.11e
-08

 

2,Lk  (px
-4

) 1.09e
-12

 2.64e
-13

 4.91e
-13

 2.57e
-13

 4.93e
-13

 2.12e
-13

 

3,Lk (px
-6

) -3.35e
-18

 1.55e
-18

 -5.37e
-20

 1.52e
-18

 7.11e
-19

 1.27e
-18

 

 

Table 4.17 Right camera lens distortion parameters. 

Parameter 

Collinearity 

Equations 

(Traditional) 

Collinearity 

Equations 

(Auto) 

Scale Restraint 

Equations 

(Auto) 

 mean stdev mean stdev mean stdev 

Rf (px) 2.02 0.24 5.60± 0.54 6.58 0.84 

0,Rx (px) 1.02 0.24 -0.63± 0.37 0.49 0.64 

0,Ry  (px) 2.80 0.22 1.77± 0.36 1.88 0.76 

1,Rk (px
-2

) -4.97e
-07

 1.24e
-08

 -4.94e
-07

 1.31e
-08

 -4.88e
-07

 1.10e
-08

 

2,Rk (px
-4

) 9.99e
-13

 2.49e
-13

 3.92e
-13

 2.63e
-13

 6.69e
-13

 2.20e
-13

 

3,Rk (px
-6

) -1.82e
-18

 1.50e
-18

 9.88e
-19

 1.56e
-18

 -3.15e
-19

 1.39e
-18

 

 

Table 4.18 Baseline and relative orientation estimates. †Free parameter. 

Parameter 

Collinearity 

Equations 

(Traditional) 

Collinearity 

Equations 

(Auto) 

Scale Restraint 

Equations 

(Auto) 

 mean stdev mean stdev mean stdev 
c

xLRb . (mm) 3.11 0.43 3.15 0.60 8.36 2.99 

c
yLRb .  (mm) 650.19 0.59 †650.19 - †650.19 - 

c
yLRb . (mm) 2.62 2.34 6.73 3.63 3.81 3.45 

c
xcR, (deg) 0.32 0.06 0.36 0.10 0.29 0.04 

c
ycR, (deg) -0.23 0.07 -0.41 0.12 -0.30 0.05 

c
zcR, (deg) -0.06 0.01 -0.07 0.02 -0.04 0.01 
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Table 4.19 Number of the points and parameters 

 

Collinearity 

Equations 

(Traditional) 

Collinearity 

Equations 

(Auto) 

Scale Restraint 

Equations 

(Auto) 

Number of points 5621 5621 5621 

Number of parameters 354 578 347 

 

Table 4.19 shows the total number of the used feature points and the number of the 

estimated parameters. As expected, the results showed that the estimated standard 

deviations in SRE are worse than the ones in COL with SRE containing less number of 

the estimated parameters. The accuracy of the auto-calibration parameters was evaluated 

as follows   

1. The exterior orientation of the cameras was obtained using the traditional 

calibration method.   

2. Using the estimated position and orientation of the stereo system from the 

tradition calibration results in Step 1 and the auto calibration results of COL and 

SRE, the 3D position of the corners of the checkerboard were estimated by using 

space intersection.  

3. The differences of the estimated 3D positions and the true checkerboard corner 

positions were computed. Then the mean, standard deviations and RMS of the 

differences were determined.   

Table 4.20 shows the mean, the standard deviations and the RMS of the position 

errors. The results showed that the SRE algorithm performed worse than the COL 

algorithm. This is expected since the same measurements were used.  
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Table 4.20 Means, standard deviations and RMS of the deviations between the 

corresponding 3D reference points and estimated points. 

 Collinearity Equations 

(Auto) 

Scale Restraint Equations 

(Auto) 

 dx(mm) dy(mm) dz(mm) dx(mm) dy(mm) dz(mm) 
mean -0.94 1.22 13.76 0.74 1.85 16.94 

std 1.81 3.54 3.71 1.65 4.18 4.83 

rms 2.04 3.75 14.25 1.81 4.57 17.61 

 

Table 4.21 shows the means, the standard deviations and the RMS of the image residuals. 

The residual RMSes are at subpixel levels. This shows a tight fit of the measurement 

models with the measurements.   

Table 4.21 Means, standard deviations and RMS of the image residuals. 

 Collinearity Equations 

(Auto) 

Scale Restraint Equations 

(Auto) 

Camera 
Left Right Left Right 

xv (px) 
yv (px) xv (px) 

yv (px) xv (px) 
yv (px) xv (px) 

yv (px) 

mean -0.003 0.005 -0.005 -0.007 0.002 0.003 -0.004 -0.006 
std 0.140 0.149 0.142 0.156 0.158 0.154 0.177 0.162 

rms 0.140 0.149 0.142 0.157 0.158 0.154 0.177 0.163 

 

 Summary  4.6.

This chapter presented the design and implementation of a structureless camera auto-

calibration method in a GNSS, IMU and Stereo camera integrated kinematic positioning 

and navigation system. The most widely used mathematical model for camera auto-

calibration is the well-known extended collinearity equations. The vast majority of the 

parameters to be solved in the bundle adjustment are the object coordinates. However, 

they are not directly part of the calibration parameters. By removing or omitting these 

parameters from the system of equations, the memory and computational usage can 

drastically be reduced. Structureless auto-calibration methods, which are free of object 
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coordinates, have been proposed. For instance, Faig [1975] and Cefalu et al [2016] 

utilized the two-view coplanarity constraint in their bundle adjustment. However, they 

did not consider the scale-consistency between the image positions in their calibration 

algorithm. Scale-consistency is important when measurements from external sensors, 

such as a direct-georeferencing system with GNSS receivers and IMU, are incorporated 

in an auto-calibration.   

The realized auto-calibration here in this research employs the scale-restraint equation 

and consists of two-stages. The first step determines the lens distortion parameters, the 

up-to-scale baseline length and the relative orientation between the two cameras by 

employing two scale-restraint equations to constrain the matched features from two 

consecutive stereo pairs. Then, the system calibration is introduced to recover the camera 

lever-arms, and the bore-sight angles with respect to the IMU, and the absolute scale of 

the camera using the GNSS-aided inertial navigation solution. The main advantage of the 

proposed method is that it is free of the object positions in the parameters vector and this 

results in computation and memory savings. The contributions of the research in this 

chapter can be summarized as follows: 

 The development of a camera auto-calibration and system calibration algorithm 

for a GNSS, IMU and stereo camera system that is based on the scale-restraint 

equation.  

 The pre-analysis and comparison of the calibration accuracy of a self-calibrating 

bundle adjustment based on the collinearity equations and the proposed method. 

Test results using simulated data for a land vehicle scenario showed (a) the 

collinearity equations performed better than the scale-restraint equations when the 
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same measurements were used and (b) the scale-restraint equation required 

approximately four times more measurements to produce comparable results to 

the collinearity equations. 

 The analysis and comparison of the computational complexity for solving the 

self-calibrating bundle adjustment based on the collinearity equations and the 

scale-restraint equation. The test results with simulated data showed that the 

scale-restraint equation required 4.5 times more measurements than the 

collinearity equations to achieve comparable calibration accuracy while using 

only 0.1% of the computational resources.  

The real road tests and their results will be presented in Section 7.3.  



113 

 

5. Loosely-coupled visual odometry aided inertial navigation 

This chapter is mainly based on the following publication:  

Gopaul, Nilesh S.; Wang, Jianguo and Hu, Baoxin (2017): Loosely coupled visual 

odometry aided inertial navigation system using discrete extended Kalman filter with 

pairwise time correlated measurements, 2017 CPGPS Forum on Cooperative 

Positioning and Service, 19-21 May 2017, Harbin, China, IEEE EI-Indexed Proceedings, 

Electronic ISBN: 978-1-5090-5022-2/172017 IEEE, DOI: 10.1109/CPGPS. 

2017.8075140. 

 Introduction 5.1.

A loosely-coupled (LC) visual odometry (VO) aided-INS implies that pose changes 

estimated from the VO engine are used to aid the inertial navigation system. The Kalman 

filter algorithm is generally preferred for the fusion of the inertial measurements and the 

measurements from other aiding sensors. The Kalman filter in the standard form assumes 

that the process and the measurement noise vectors are white and conform to normal 

distributions with zero means. However, the assumption about white noise is not satisfied 

with the VO measurements since the VO estimates are pairwise time-correlated, i.e. the 

measurements at the current epoch are correlated with the measurements from the 

previous epoch in the stochastic sense. Neglecting significant time-correlated errors can 

degrade the performance of the filter and produce suboptimal solution.   

This chapter develops an algorithm for processing pairwise time-correlated 

measurements in a Kalman filter. Time-correlated errors are usually modelled by a 

shaping filter. The shaping filter presented in this chapter uses Cholesky factors as the 
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coefficients derived from the variance and covariance matrices of the measurement noise 

vectors. The advantage of using Cholesky factors is that they are derived sequentially 

epoch-by-epoch and therefore it is suitable to be implemented in a Kalman filter. The 

results using the simulated data showed that the proposed algorithm performed better 

than the existing Kalman filter algorithms and provided more realistic covariance 

estimates. Furthermore, because VO measurements are relative in nature, the Kalman 

filter formulation for processing relative measurements is also represented.  

This chapter is organized as follows: Section 5.2 constructs the Kalman filter for 

processing the relative measurements and dealing with their pairwise time-correlation. 

Then, the simulation tests results are shown in Section 5.3 to validate the development 

presented in Section 5.2. Section 5.4 presents the system and measurement models for the 

VO-aided inertial navigation in loosely-coupled mode. Finally, a summary is given in 

Section 5.5.  The field test results and analysis are presented in Section 7.4.  

 Design of the Kalman filter 5.2.

The assumptions prior to constructing the Kalman filter are  

 the stereo camera system is calibrated; 

 the visual odometry is derived from two consecutive image frames; 

 the IMU data rate is higher than the one of the camera system;  

 the IMU has a constant output rate; 

 the camera system output rate may not necessarily be constant; 

 the image and IMU measurements are synchronized.  
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5.2.1. Relative measurements 

The VO estimates are relative in nature because they are the differences of the 

positions and attitudes of a moving vehicle between two consecutive image frames. In 

order to process the relative measurements, the equations in the standard Kalman Filter 

have to be modified. This section summarizes the stochastic cloning algorithm for 

processing relative measurements which was developed by [Roumeliotis et al, 2002].  

Consider the following linear/linearized discrete system and measurement model: 

1),,(~,

),(~, 111111
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mN

N
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kkkkkkk

R0vvxHxHz

Q0wwΨxΦx
   (5.1) 

wherein the measurements are the functions of the state vectors at the current epoch k  

and the past epoch mk  . Furthermore, there are no aiding measurements available 

between mk   and k , i.e. only the system model is used to predict the state vectors from 

epoch mk   to epoch k , and conducts the measurement update at epoch k . Figure 5.1 

depicts the relationship between the states and measurements between the epoch mk   

and the epoch k .  

 

 
Figure 5.1 Timeline between epochs k-m and k. 

 

The derivation starts with the estimated state vector 

mkx  at the epoch mk  . The 

augmented state vector and its associated variance-covariance matrix are 
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Where ~  denotes the augmented vectors and matrices, and the subscripts 1 and 2 

differentiate between two copies of the state vector 
mkx . Between two epochs, mk   and 

epoch k , only the first copy of 

kx  is propagated while the second one has to remain in 

stationary. Therefore, the augmented system becomes 

mk
mk

mk

mkmk

mk

mk






























































w

O

Ψ

x

x

IO

OΦ

x

x

,2

,1

1,2

1,1
.   (5.3) 

Now, the propagation of the augmented variance-covariance matrix is discussed. At 

epoch 1mk , the variance-covariance matrix of the predicted augmented state vector 

becomes 
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Similarly, the variance-covariance matrix of the predicted augmented state vector at 

epoch 2mk  is 
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Finally, at epoch k , the variance-covariance matrix of the predicted augmented state 

vector becomes 
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with mkkkmkk   ΦΦΦΦ 21,1 . The variance-covariance matrix of the system 

innovation vector at epoch k  is given by 
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After the measurement update, the variance-covariance matrix of the augmented state 

vector can be obtained as follows  
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The corresponding Kalman gain matrix is given by 
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The solution of the augmented state vector after the measurement update is equal to 

)(
~~~ 


  mkmkkkkkkk xHxHzKxx .    (5.10) 

In summary, the basic equations are: 
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5.2.2. Pairwise time correlated measurements 

This section develops a shaping filter to handle pairwise time-correlated measurement 

noises in a Kalman filter [Gopaul et al, 2014, 2017]. The goal is to derive the optimal 

Kalman filter solution and run the filter sequentially in practice. Since the measurement 

noise vector is independent of whether the measurement type is relative or not, the 

relative measurement states described in Section 5.2.1 are not included in the derivation 

here. They can be added later. The derivation starts with the following measurement 

model 

),(~, kkkkkk N R0vvxHz       (5.12) 

If kR  is positive definite, it can be decomposed using the Cholesky factorization [ 

Grewal and Andrews, 2001; Bierman, 2006, etc.] as follows: 

T
kkk CCR         (5.13) 

wherein the Cholesky factor matrix kC  is unique and real lower triangular with the 

strictly positive diagonal elements.  By multiplying (5.12) with its inverse, i.e. 
1

kC , one 

obtains   

vxHvCxHCzCz  
kkkkkkkkkk

111
    (5.14) 
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wherein the individual components in the derived measurement noise vector kv  are un-

correlated and have the identity matrix as their variance and covariance matrix: 

I
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The substitution of kkk vCv   into (5.12) yields 

),(~,' I0vvCxHz Nkkkkkk
       (5.16) 

Now suppose that the measurement noises are pairwise-time correlated, i.e. 

0zz  ][ 1
T
kkE  and 0zz ][ T

jkE  for 1 kj  and kj  , which are equivalent to 

0vv  ][ 1
T
kkE  and 0vv ][ T

jkE  in terms of their noise vectors. After having 

concatenated all the measurement noise vectors from epoch 1 to epoch N  into a vector v

, one obtains its  corresponding variance-covariance matrix R  
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By applying the Cholesky factorization to the matrix R , one has  
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The original global measurement noise vector v  is related to the de-correlated global 

measurement noise vector 'v  as follows 
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In short form, the measurement noise vector at an arbitrary epoch k  can be written as  

11,, 
 kkkkkkk vCvCv       (5.20) 

with ),(~ I0v Nk
  and OC 0,1 . Based on (5.18), the Cholesky factor matrices 1, kkC

and kk ,C  can be obtained sequentially from epoch to epoch as described in Algorithm 

5.1. 
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Algorithm 5.1: Sequential Cholesky factorization of the  

pairwise time correlated variance-covariance matrix 
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By substituting kv  in (5.20) into (5.12), the measurement model becomes 

),(~,11,, I0vvCvCxHz Nkkkkkkkkkk
     (5.21) 

With OC 0,1 . Based on (3.27), the augmented system and measurement models 

become: 
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Since kv  is now part of the state vector, its corresponding noise is modelled as the 

process noise vector 1kη , 1 kk ηv . Therefore, ),(~1 I0η Nk . In short form, the 

augmented system (5.22) can be written as  
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where  ~   denotes the augmented vectors and matrices.  Notice that (5.23) is in the form 

of the standard Kalman filter with zero measurement variance matrix i.e. OR k

~
. 
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Theoretically, the Kalman filter algorithm can handle measurement noises with zero 

variance-covariance [Simon, 2006] since it only requires the system innovation variance-

covariance matrix T
kkk HPH

~~~   to be non-singular [Grewal and Andrews, 2001]. Since 

(5.23) is in the form of the standard Kalman filter defined in (3.21) and (3.22), any 

smoother associated with the Kalman filter can easily be employed without any 

modifications. Next, (5.23) is simplified. The time update of the augmented state vector 

runs 
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with the associated variance matrix update 
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The gain matrix of the augmented system can be derived as follows  
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wherein  
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The measurement update further runs 
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However, from (5.24), 0v 
k' . So, (5.28) becomes 
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The corresponding variance-covariance matrix of 
kx~  is 
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From (5.24) and (5.25) , the time update of kx  is summarized as 
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From (5.26), (5.29) and (5.30), the corresponding measurement update is further 

summarized 
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Equation (5.32) requires the estimate 




1kv , its variance matrix 
  11, kkk vvP and the 

covariance matrix 
 1, kkk vxP . Based on (5.24) at epoch k  and (5.29) at epoch 1k , 
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can be computed by 
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Similarly, from (5.25) at epoch k  and (5.30) at epoch 1k , 
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further be obtained by 
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In summary, the time update can be written as 
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and so can the measurement update:  
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The final state covariance in Joseph stabilized form [Simon, 2006] is as follows 
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.   (5.38) 

The derivation of the state covariance in Joseph stabilized form can be found in 

Appendix 0. The estimator will run as long as the system innovation variance-covariance 

matrix kS  is invertible [Grewal and Andrews, 2001] and the global measurement noise 

variance-covariance matrix R  in (5.17) is positive definite. To check for correctness, 

assume that the time-correlation is zero, i.e. set OR  kk ,1  in (5.37). The matrix 1, kkC  

becomes zero and the equations will be the same as in the standard Kalman filter. 
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5.2.3. Pairwise time-correlation in stereo visual odometry 

This section derives the pairwise time correlation for the stereo visual odometry and also 

shows that the corresponding global variance-covariance matrix R is always positive 

definite. The visual odometry measurement equation described in (3.80) at epoch k is  

0XlCl  
c

kk
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)1(,      (5.39) 

for Ni ,,2,1  features. In short form (5.39) can be written as 
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kk llll  are the image measurement 

vectors at epochs 1k  and k , respectively. The pose change can be estimated as in 

(3.25) using the conditional LS adjustment with parameters: 
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where 
1,ˆ  kkxP , kz,H , kx,H , k,llR  and )0(

1,  kkx  are the variance-covariance matrix for the 

estimated parameters, the Jacobian matrix associated with the image measurements in 

(5.40), the Jacobian matrix associated with the parameters in (5.40), the variance-

covariance matrix of the image measurements and the initial approximation of the pose 

change vector, respectively. Through error propagation, the parameter variance-

covariance matrix 
1,ˆ  kkxP can also be expressed in the form of 
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where )(,
k

k

kkk l

h
GB
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  and )(
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Consider two consecutive VO estimates at epochs 1k  and k :  
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Notice that the image measurement vector 1kl  in (5.43) appears at both epochs. 

Therefore, 2,1ˆ  kkx and 1,ˆ  kkx  are stochastically correlated due to 1kl . The cross-

covariance matrix between two successive epochs 1k  and k  can be computed as: 
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Furthermore, for all 1 kj and kj  , one has 

OxxR   ]ˆˆ[ 1,1,,
T

kkjjkj E       (5.45) 

The degree of the correlation between two successive epochs 1k  and k  depends on 

the number of the shared image measurements between the estimates 2,1ˆ  kkx and 

1,ˆ  kkx .  This directly depends on the percentage overlap between the image frames 

2k , 1k  and k , as shown in Figure 5.2.  
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Figure 5.2 Overlap of frames k-2, k-1 and k. 

 

If the percentage overlap is zero, then the correlation between the estimates 2,1ˆ  kkx and 

1,ˆ  kkx  is obviously zero. If the overlap is 100% (i.e. when the vehicle is stationary), 

then 2,1ˆ  kkx and 1,ˆ  kkx  share half of the measurements and the correlation 

coefficient is approximately -0.50  (the negative sign comes from the fact that in (5.44), 

I
l

h










1

1

k

k and I
l

h






1k

k  for small orientation change). This correlation coefficient depends 

on multiple factors, such as the velocity of the vehicle, frame rate, texture of the images 

and the number visible features. In really, one can expect the value to be between -0.45 

and -0.25. This is significant and if the correlation is ignored the Kalman filter then 

position and orientation errors can accumulate faster over long distances.  

The global variance-covariance matrix R  is positive definite if and only if 0Ryy T
 

for any non-zero vector y . Another definition of the positive definiteness says that R  is 

positive definite if and only if R  can be expressed as 
T

AAR  , where A  is an pm  

matrix, where pm  , and has independent columns [Strang, 2009]. The substitution of 

(5.42) and (5.44) into the global variance-covariance matrix R  in (5.17) yields  

   
  1
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where 
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Since llR  is diagonal, it can be factorized into two equal diagonal matrices 
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Since the columns in B  are independent and llR  is diagonal, B  also has its columns 

independent. Therefore R always positive definite.   

In summary, the VO estimates can be computed as 
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and the corresponding cross-covariance matrix of the parameters with the one from the 

previous epoch can be obtained by 
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wherein N is the number of the features.  

 Test results with the simulated data 5.3.

A series of simulations were conducted to compare the performance of the standard 

Kalman filter (KF), the Kalman filter with the standard shaping filter for time-correlated 

measurements (KF-TC) and the proposed Kalman filter with pairwise time-correlated 

measurements (KF-PTC). Furthermore, the measurements are relative. The simulated 

data were used for the following reasons: (a) the measurement noise characteristics are 

known (b) the true state errors can be computed and (c) the proposed KF-PTC can be 

validated.  The three models being studied can be summarized as  

1. The standard Kalman filter [Kalman, 1960; Kalman-Bucy, 1961] 
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2. The Kalman filter with the time-correlated measurements [Bryson and Henrikson, 

1968] 
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3. The Kalman filter with the pairwise time-correlated measurements [Gopaul, 2014; 

Gopaul, 2017] 
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 In this example, a 2D planar trajectory shown in Figure 5.3(left) was simulated. 

Figure 5.3 (right) shows the velocity and heading profiles. Furthermore, 2D image 

ranging and IMU measurements were constructed. The 2D n- and b- frames were 

considered here.  

 
Figure 5.3 The top view of the vehicle trajectory with visible landmarks (left)  

and the velocity and heading profiles (right) 

 

The IMU measurements (two accelerometers and one gyroscope) were acquired at 

100Hz. The power spectral density of the process noises of the accelerometers and 

gyroscope were set to 1.0 m/s/√hr and 4.5 deg/√hr, respectively. The data rate of the 
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image measurements was 10Hz and the standard deviation of the 2D feature points in 

(5.41) was set to 0.10m. Both the image and IMU measurements are resolved in the b-

frame. The 2D VO were computed using the visible features in Figure 5.3 (left). The 2D 

VO measurement equation is given by 

 b
mkk
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b
imk

kb
mkb

b
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b
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where b
ik ,l [m] and b

imk ,l [m] are the measurement vectors of object i  in epochs k  and 

mk   respectively, b
ik ,v [m] and b

imk ,v [m] are the measurement noise vectors, )(
)(

kb
mkb C  is 

the DCM between k  and mk  , and b
mkk  ,X  [m] is the position difference. Figure 5.4 

shows the standard deviations of the 2D VO estimates and the number of the used 

features.  

 
Figure 5.4 The 2D VO standard deviations and the numbers of the features 
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where 
Tnn YX ),(   [m], Tn

y
n
x vv ),(   [m] and 

n
z  [rad] are the vehicle’s position, 

velocity and heading error states, respectively, Tn
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n
x aa ),(  [ms
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]  are the accelerations, 

T

aa b
y

b
x

ww ),(  [ms
-2

]  are the accelerometer process noises, b
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] is the gyroscope 

process noise, and 
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Equation (5.56) was derived from (3.56) by (a) setting the 
c
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n
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vectors to zero and (b) removing the 
cnZ , 
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zv , 
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x  and 

cn
y  states from the state 

vector. The measurement model is given by 
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wherein 10m , specifically in this simulation.  

Monte Carlo (MC) simulations were used to compare the performance of the three 

implemented Kalman filters. Each algorithm was run for 100 times. The true position and 

heading errors were computed for each run. Then the root-mean-square errors (RMSE) 

across the 100 runs were computed at every epoch. The resulting error bounds were then 

compared with the estimated standard deviations. Figure 5.5 (left) compares the pose 
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RMS errors computed against the true poses in (a) KF, (b) KF-TC, and (c) the proposed 

KF-PTC.  Clearly the true errors from KF-PTC are smaller than the ones from KF and 

KF-TC. 

 
Figure 5.5 True position and heading RMSE (left)  

and the estimated position and heading standard deviations (right) 

 

Table 5.1 The dimensions of the state vectors in the KF, KF-ST and KF-PTC 

States KF KF-TC KF-PTC 

Navigation  5 5 5 

Relative measurements  3 3 3 

Shaping filter 0 3 6 

Total 8 11 14 

 

The Figure 5.5 (right) shows that the corresponding standard deviations estimated 

from the three filters and can conclude that KF-PTC standard deviations are smaller than 

the ones from KF and KF-ST. Figure 5.5 also shows that the standard deviations of KF 

and KF-TC are larger than the true errors, while the standard deviations of KF-PTC 

closely match the corresponding true errors. Therefore, the solutions from KF and KF-TC 

are optimistic, while KF-PTC solutions are reasonably optimal. Table 5.1 compares the 
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dimensions of the state vectors in three Kalman filters. As expected, the dimension of the 

state vector in KF-PTC is larger than the ones in KF-ST and KF.  

 Loosely-coupled stereo VO-aided inertial navigation  5.4.

This section derives the measurement model for the LC VO-aided inertial navigation.  

Here psi-error model (3.56) is used to model the measurements. It assumed that (a) the 

initial position and velocity are obtained by external means (e.g. GNSS) and (b) the 

alignment procedure has been completed. Furthermore, the VO solution is generated in 

the b-frame. The VO measurement equations are given by 
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The position difference )( ,, mkINSkINS rr  between two consecutive frames is expected 

to be small i.e. less than 3.0 m. Hence, the term )( ,,
1

mkINSkINSr 
 rrD  in (5.60) will be 

negligibly small i.e.,  
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Further, the linearization of the 2
nd

 equation (the orientation change measurement 

equation) in (5.59) gives 
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The system model in discrete time is written as 
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wherein 
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With the formulation of the system and measurement models in (5.65) and (5.66), the 

VO measurements can be easily integrated with an existing GNSS/IMU integration and 

smoothers without any modifications to the architecture. For instance, in a LC GNSS 

(3.59) and  LC VO integrated inertial navigation scheme, the measurement equation can 

be written as:  
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The LC stereo VO aided-inertial navigation with pairwise time correlated 

measurements is outlined in Figure 5.6. 
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Figure 5.6 Loosely-coupled VO aided-inertial navigation with  

pairwise time correlated measurements. 

 

The LC stereo VO-aided inertial navigation field test results and analysis are presented 

in Section 7.4. 

 Summary  5.5.

This chapter presented a novel Kalman filter algorithm for processing pairwise time-

correlated measurements and specifically applied it to the visual odometry-aided inertial 

navigation in a loosely-coupled manner. The coefficients of the constructed shaping filter 

for modeling the time-correlation are Cholesky factors obtained from the measurement 

variance-covariance matrices. Results using a simulated dataset showed that the proposed 

Kalman filter with the pairwise time-correlated measurement noise performed better than 
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the standard Kalman filter and the Kalman filter with the conventional shaping filter. 

Furthermore, the covariance matrix of a state vector provides an accurate description of 

the uncertainty of the state vector. The Kalman filter is in the standard form and therefore 

can easily be adapted in the current GNSS-aided inertial navigation integration 

architecture. This method is primarily designed for the loosely-coupled VO-aided inertial 

navigation. But, it can also be applied to the tightly coupled counterpart. However, the 

dimension of the state vector will be augmented by the measurement noise vector for 

each individual image measurement and become impractically very large. Two problems 

may appear with the algorithm: firstly, its benefit may not be apparent if the correlation 

between the two consecutive pose estimates is weak and secondly, the solution can be 

significantly degraded if the measurement noise is non-Gaussian which can be the case 

with real world applications.  Results with real datasets are presented in Section 7.4.  
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6. Tightly-coupled stereo multi-frame visual odometry aided-

inertial navigation 

This chapter is mainly based on the following publication: 

Gopaul, Nilesh S.; Wang, Jianguo and Hu, Baoxin (2015), Multi-frame Visual Odometry 

in Image-Aided Inertial Navigation System, In: Sun J., Liu J., Fan S., Lu X. (eds) China 

Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III, Lecture Notes in 

Electrical Engineering, vol 342, Springer, Berlin, Heidelberg, pp. 649-658, DOI: 

https://doi.org/10.1007/978-3-662-46632-2_57. 

 Introduction 6.1.

This chapter presents a novel stereo multi-frame aided inertial navigation algorithm 

for reducing drifts in position and orientation in poor GNSS and/or GNSS-denied 

environments. Usually, the image aided inertial navigation based on the visual odometry 

uses the tracked features only from a pair of the consecutive image frames. The proposed 

method integrates the features tracked from multiple overlapping image frames to 

obtainsolution accuracy improvement, which is referred to as stereo Multi-Frame Visual 

Odometry (MFVO) with respect to pairwise VO in previous chapter. Basically, the 

MFVO measurement model is derived from the SLAM measurement equation system. In 

particular, MFVO algebraically eliminates the landmark position parameters included in 

SLAM by timely-differencing the measurements between two consecutive epochs. 

Furthermore, the measurement updates in the Kalman filter can be performed using a 

sequential de-correlation mechanism, since the time-differenced measurements are 

timely-correlated. Monte Carlo simulations show that the pose estimates from the MFVO 
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are identical with the ones from SLAM. In comparison with the SLAM, the proposed 

MFVO method uses less computation resources, especially when the number of features 

in view becomes large. 

This chapter is organized as follows: Section 6.2 develops the system and 

measurement models in a Kalman filter for the proposed MFVO method. Then, the 

results from simulation tests are shown in Section 6.3 to validate the development 

presented in Section 6.2. Section 6.4 presents the system and measurement models for 

MFVO aided-inertial navigation in the tightly coupled integration architecture. At the 

end, Section 6.5 concludes the chapter. The field test results and analysis are presented in 

Section 7.5 . 

 Stereo Multi-frame visual odometry 6.2.

The goal of the proposed MFVO algorithm is to develop a measurement model that 

can be run in the navigation Kalman filter sequentially to obtain optimal solutions. The 

term ‘visual odometry’ is used here because the focus is on image measurements. 

However, the algorithm is a generic one applicable to any EKF (extended Kalman filter) 

based SLAM application.   

The derivation begins with the EKF-SLAM model. The system model for N landmark 

states at epoch k  is given as follows 
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wherein kx  is the vehicle’s position and orientation state vector, im  (i = 1, 2, …, N) are 

the position states of the landmarks and 1kw  is the process noise vector and conforms to 

) ,( 1kN Q0 . The measurement model is given as 
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where ik ,z  is the measurement vector for landmark i, ),(, ikik mxh  is the non-linear 

measurement model of the vehicle’s trajectory states and the landmark states, and ik ,v  is 

the measurement noise vector and conforms to ) ,( ,ikN R0  for i = 1, 2, …, N.  The stereo 

visual SLAM measurement equation (described in Section 3.6.4.4)  is  

ik
n
k

n
i

Tn
kb

b
ik ,)(, )()( vXmCz       (6.3) 

Now consider the measurement model for landmark i at two consecutive epochs 1k  

and k : 
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Next, algebraically cancel the landmark position vector im  in (6.4) to obtain the 

following implicit measurement equation: 

0XXvzCvzC  
n
k

n
kikik

n
kbikik

n
kb 1,1,1)1(,,)( )()( .  (6.5) 

In short form (6.5) can be expressed as 

0vvzzxxh  ),,,,,(
~

,1,,1,1, ikikikikkkik .    (6.6) 

The linearization of (6.6) using first order Taylor series expansion gives:   
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where ikk ,,H , ikk ,1, H , ikk ,,M  and ikk ,1, M  are the Jacobian matrices associated with kx , 

1kx , ik ,v  and ik ,1v , respectively. For simplicity, write kz~    

),,,,,(
~

,1,1 00zzxxh ikikkkk   and ikikkikikkik ,1,1,,,,.
~

 vMvMv . Then, one has the 

linearized measurement model as follows 
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and the variance-covariance matrix of the measurement noise vector ik ,
~v  
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Consider (6.6) at two consecutive epochs 1k and k : 
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which has involved the measurement noise vector ik ,1v in both (.)
~

,1 ikh  and (.)
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,ikh . 
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If the feature i  is first observed at epoch jk  , then all the linearized measurement 

equations up to and including the epoch k  can be written as 
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Now concatenate all the measurement noise vector as time series into a vector iv~  and 

construct its corresponding variance-covariance matrix iR
~

: 
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The standard Kalman filter runs under the assumption that the measurement noise vector 

is white, i.e. normally distributed with zero means, and independent to each other from 

epoch to epoch. However, the measurement noises in (6.13) are pairwise time-correlated 

between two consecutive epochs. One way to de-correlate the measurement noise vector 

is to use the inverse matrix of the Cholesky factors of the variance-covariance matrix. For 

simplicity, all the vectors and matrices in .(6.12) are concatenated to obtain the following 

short-form with dropping out the feature index i :  

)
~

,(~~,~~ R0vvxHz N        (6.14) 
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If R
~

is positive definite, it can be decomposed using the Cholesky factorization [ 

Grewal and Andrews, 2001; Bierman, 2006; etc.]: 

TCCR 
~

        (6.15) 

wherein the Cholesky factor matrix C  is a unique, real lower triangular matrix with its 

diagonal elements strictly positive. By multiplying (6.14) with the matrix L , the inverse 

of C , one obtains   
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wherein the derived measurement vector v  becomes un-correlated and has the identity 

matrix as its variance matrix 
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In this case, the variance-covariance matrix R
~

 in (6.13) is sparse, actually a lower 

bidiagonal block matrix, i.e. only its first lower off-diagonal blocks are non-zero. 

Therefore, the Cholesky factor matrix C  is also in the same lower bidiagonal block 

structure 
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Furthermore, the block factor matrices kk ,C  and 1, kkC  can be obtained sequentially as 

described in Algorithm 6.1. 

 Algorithm 6.1 Sequential Cholesky factorization of R
~

 at epoch k  
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However, the matrix L is a full lower block (triangular) matrix: 
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Since the matrix C  is lower triangular, the block matrices kkjkk ,1, LL   at epoch k  

can be obtained sequentially. Therefore, the process to obtain kkjkk ,1, LL   can be 

simplified. Algorithm 6.2 describes the algorithm for computing kkjkk ,1, LL   

sequentially from R
~

 at epoch k  , whose derivation can be found in Section 0. 

Algorithm 6.2 Inverse of the Cholesky factor matrix C  at epoch k  
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Besides, .(6.12) can be written as 
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where 
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The de-correlation of (6.20) by multiplying by L  goes as follows 
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Thus, the de-correlated measurement vector z  is given as 
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In short form, kz  can be computed as 

)~(
1

,


k

jki
iikk zLz  .      (6.23) 
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The de-correlated output matrix H  is given by 
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(6.24) 

The block matrix ik ,H  for kijki  )(  can be computed by  
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At epoch k , the final measurement equation for feature point i  becomes 

),(~,,11,, I0vvxHxHxHz Nkkjkjkkkkkkkkk
    . (6.26) 

The system model is given by 
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The state augmentation and time update algorithm has been described in Section 5.2.1 

above. 
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6.2.1. Discussions 

The system model in (6.27) and the measurement models in (6.26) are in the form of 

standard Kalman filter and therefore can be easily implemented in the current 

GNSS/IMU integration architecture and smoothers. For the Cholesky factors C  is unique, 

real and strictly positive with its diagonal block submatrices, the variance-covariance 

matrix R
~

must be positive definite. R
~

 is positive definite if it can be written as 
T

AAR 
~

, wherein A  is possibly rectangular with the independent columns [Strang, 2009]. In 

theory, (6.9) and (6.11) satisfy this condition and therefore R
~

 is always positive definite. 

However, in practice, R
~

 can become semi-definite or indefinite if the feature matcher 

finds incorrect correspondences.  

The computational complexity of the SLAM measurement updates is in the order of 

))36()36(( NNO   where N  is the number of landmarks in the map. On the other 

hand, the MFVO computational complexity is in the order of ))66()66(( jjO   where 

jk   is the epoch at which the feature in the current feature list at epoch k  was first 

observed. Because matrix R
~

 is sparse, the computation of L can be simplified as 

described in Algorithm 6.1 and Algorithm 6.2, and does not consume significant 

computational resources. The computational complexity of computing kL , kz  and kH  

is in the order of ))66()3(( jNO  . This shows that MFVO is more efficient than 

SLAM when N  is large and j  is small. The value of j depends on the overlap 

percentage of the image frames which, in turns, depends on the velocity of the camera 

system. Based on (4.18) and under the assumptions in the analysis presented in Section 

4.3, the value j  as a function of the overlap percentage p can be predicted as 
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ceilj .      (6.28) 

wherein )(xceil  is the operator that rounds x  up and returns the smallest integral value, 

which is not less than x . For example, if %30p , a feature can only be observed at 

epochs k  and 1k , but not again at 2k , i.e., 1j .  In case %60p , the overlap 

percentage between k  and 2k  will be 20%, and a feature can be observed at epochs k

, 1k  and 2k , but not further at 3k , now 2j . As the overlap percentage 

increases, the value j  increases as graphically presented in  Figure 6.1.  

 
Figure 6.1  j as a function of overlap percentage 

 

When a vehicle is stationary, the image overlap percentage is 100% and j . This 

implies that the size of the state vector increases without bounds. For practical purposes, 

j  can be limited to a predefined threshold maxj and realized in three ways. Firstly, set an 

appropriate frame distance, i.e., the distance between two consecutive image frames. If 

the distance between the frames are too short, the overlap percentage and j  may become 

too large. If the distance between the frames is too long, there could be too few 

correspondences to compute an odometry solution. Secondly, the extracted feature points 
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can be treated as new landmark when j  exceeds maxj . Thirdly, the measurement vector 

1
~

 jkz  can be omitted in the derivation of kz , once j  exceeds maxj . However, this 

requires the re-computation of the  corresponding matrices C  and L  from )2(  jk  to 

k .  

 Test results with simulated data 6.3.

Monte Carlo (MC) simulations were conducted to illustrate and compare the 

performance of the SLAM and the proposed MFVO. The same 2D trajectory, 

measurements and simulation parameters were employed as in Section 5.3. Figure 6.2 

shows the vehicle’s trajectory with the visible landmarks, velocity and heading profiles.  

 
Figure 6.2 The top view of the vehicle trajectory with the visible landmarks (left)  

and the velocity and heading profiles (right) 

 

The system model in the navigation frame is given by: 
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wherein 
Tnn YX ),(   [m], Tn

y
n
x vv ),(   [m] and 

n
z  [rad] are the error states of the 

vehicle’s position, velocity and heading, respectively, Tn
y

n
x aa ),(  [ms

-2
] are the 

accelerations; T

aa b
y

b
x

ww ),(  [ms
-2

]  are the accelerometer process noises, b
zg

w  [rads
-1

]  is 

the gyroscope process noise, and 
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The 2D SLAM measurement equations for landmark i  are given as 
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where Tb
iky

b
ikx ll ),( ,,,,  [m] is the measurement vector, Tn

iy
n

ix mm ),( ,,  [m] is the landmark 

position vector, and Tb
iky

b
ikx vv ),( ,,,,  is the measurement noise vector. Using the 2D 

SLAM (6.31) at epochs k  and mk   and the landmark position vector Tn
iy

n
ix mm ),( ,, are 

algebraically eliminated in order to derive the following 2D MFVO measurements  
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The SLAM and MFVO were run for 100 times, respectively. The true position and 

heading errors were computed for each run. Then the root-mean-square errors (RMSE) 

across the 100 runs were computed every epoch. The resulting error bounds were then 



154 

 

compared with the estimated standard deviations. The true pose RMS errors from SLAM 

and MFVO are plotted in Figure 6.3 (left) while the corresponding estimated standard 

deviations are plotted in Figure 6.3 (right). Clearly, the position and heading solutions are 

identical.   

 
Figure 6.3 The true position and heading RMS errors (left) 

and the estimated position and heading standard deviations (right) 

 

Figure 6.4 shows the dimensions of the state vectors with SLAM and MFVO, the 

number of features in view and the value j .  With the same number of features, the 

number of the states in MFVO is generally smaller than the one in SLAM, except around 

the 60th second as there were less features in view around that instant.   
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Figure 6.4 The dimensions of the state vectors with SLAM and MFVO,  

the number of features and j  

 

Notice that the dimension of the MFVO state vector and the number j  vary inversely  

with the velocity profile (in Figure 6.2), because the slower a vehicle travels, the more 

time a camera spends to view the same set of landmarks and therefore the value of j  

increases. 

6.3.1. VO KF-PTC versus MFVO 

The performance comparison between the VO with KF-PTC presented in Section 5.3 and 

the MFVO is shown in Figure 6.5, which shows that the MFVO approach performed 

better than the VO/KF-PTC with the same set of measurements. Unsurprisingly, the 

MFVO approach works with more states and requires more computational resources.   
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Figure 6.5 The comparison between the VO/KF-PTC and MFVO approaches 

  

 Tightly-coupled stereo MFVO aided inertial navigation 6.4.

This section derives the measurement model to develop the tightly-coupled MFVO-

aided inertial navigation. The derivation starts with the visual SLAM measurement model 

for feature i at epoch k 
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where b
ik ,l  is the 3D image measurement vector.  Using the visual SLAM as in (6.33)  at 

epochs k  and 1k , 
n
im  can be algebraically eliminated to yield the MFVO model: 
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The linearization of (6.35) gives 
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change between two consecutive frames is expected to be relatively small, i.e. less than 

3.0 m, the term )( 1,,
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  kINSkINSr rrD  will be significantly small and can be omitted in 

(6.36) (see Section 5.4 for more details). kINSr ,
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INSk ,X  and 

(6.36) can further be simplified to 
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The measurement noise vector ik ,
~v  is expressed as follows  
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The coefficient matrices ikk ,,H and ikk ,1, H  of the measurement model are 
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Hence, the discrete system model can be given as follows  
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With the formulation of the system and measurement models as in (6.41) and (6.42), 

respectively, the MFVO measurements can be easily integrated into the current 

GNSS/IMU Kalman filters and smoothers without any further modification to the 

architecture (see Section 5.4 for more details). The tightly coupled MFVO aided-inertial 

navigation algorithm is outlined in Figure 6.6. 
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Figure 6.6 Tightly coupled MFVO aided-inertial navigation 

  

The field test results from the TC stereo MFVO-aided inertial navigation and their 

analysis are presented in Section 7.5 . 

 Summary 6.5.

This chapter presented a novel stereo based MFVO aided inertial navigation which 

integrates features tracked from multiple overlapping image frames sequentially and 

optimally. The existing algorithms such as [Fraundorfer et al, 2010; Clement et al, 2015; 

Wen et al, 2016] employed batch processing estimators and jointly estimated the 

vehicle’s pose and feature positions at the local level and have two major drawbacks: (a) 

the number of parameters in the system quickly increases as more features per frame are 
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being observed and (b) it is impractical to integrate them into the an existing GNSS/INS 

integration architecture since they do not employ a Kalman filter. 

The proposed MFVO method can process features from multiple overlapping frames 

without having to estimate the landmark positions. This is achieved by algebraically 

eliminating the time-invariant landmark position parameters in the SLAM measurement 

equation system at two consecutive epochs. Consequently, the derived measurements is 

timely-correlated. Through a sequential de-correlation algorithm, the measurement 

updates in Kalman filter can strictly be performed sequentially without loss of the 

solution’s optimality. Monte Carlo simulations showed that the solution of the MFVO 

positions and orientations is identical to the one directly solved using the SLAM 

algorithm.   

Although, this method is here specifically developed for the tightly coupled multi-

frame aided-inertial integrated navigation, it can certainly be developed for the loosely-

coupled multi-frame aided-inertial integrated navigation. However, its solution may be 

sub-optimal since the measurement time correlation may not be easily modeled 

appropriately. 

Loop closure techniques can improve the navigation accuracy in image-based 

navigation system. However, these techniques were not applied in the research. Loop 

closure detection algorithms and the measurement update for SLAM application are well 

established. The challenge in applying loop closures in MFVO is how to perform the 

measurement update after a scene has been revisited given that the landmark position has 

been cancelled and the map is non-existent. This requires further research and 
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implementation in order to compare both SLAM and MFVO with loop closures. MFVO 

with loop closures is suggested for the future work. 

The advantages of the proposed algorithm can be summarized as follows.  

 The MFVO measurement updates in Kalman filter can be performed sequentially 

without loss of the optimality under the appropriate consideration of the 

measurement time correlation from epoch to epoch.  

 The Kalman filter is in the standard form and therefore can easily be adapted in an 

existing GNSS-aided inertial navigation integration architecture. 

 The MFVO and SLAM pose accuracy are the similar. MFVO allocates less 

memory and computation resources than SLAM when the number of features in 

view becomes large.  

 MFVO can perform better than VO especially when the number of frames per 

landmark is high i.e. 3 or higher.  

 The algorithm assumes that the landmark position vector can be algebraically 

eliminated. This can be accomplished with other SLAM applications and 

measurement models. For instance, in 2D Lidar SLAM [Wang el al, 2013], 3D 

Lidar SLAM [Hewitt and Marshall, 2016], radar SLAM [Callmer et al, 2011] and 

Sonar SLAM [Siantidis, 2016].  

The disadvantages of MFVO are: 

 Matrix R
~

 can become semi-definite or indefinite if an incorrect match occurs and 

the Cholesky factorization can fail. In this case the measurements should be 

rejected.  
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 Conventional loop closure techniques cannot be applied in the current design 

since the landmark position vector is cancelled.  

The selected results from visual SLAM aided-inertial integrated navigation and 

MFVO aided-inertial integrated navigation with real datasets and their comparison are 

presented in Section 7.5. 
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7. Experiments: road tests and results 

 Introduction 7.1.

This chapter overviews the test results and analysis of the proposed algorithms 

developed in chapters 4, 5 and 6 using the data collected from the York University 

Multisensor Integrated System (YUMIS) [Qian et al, 2012; Qian, 2017]. The algorithms 

were implemented as software utilities in the MATLAB script language and their 

performances were evaluated in post-mission.  

This chapter is organized as follows: Section 7.2 provides the YUMIS hardware 

specification and dataset information. Section 7.3 presents the results and analysis for the 

structureless stereo camera auto-calibration algorithm and system calibration algorithms. 

Then, the loosely-coupled visual odometry aided-inertial navigation analysis and results 

are shown in Section 7.4 followed by the one for the tightly-coupled multi-frame visual 

odometry aided-inertial navigation in Section 7.5.   

 YUMIS system and dataset information 7.2.

The data were collected by the YUMIS navigation system developed at the Earth 

Observation Laboratory of York University on a land vehicle [Qian et al, 2012; Qian, 

2017]. This system provides a low-cost alternative to the expensive commercial 

navigation systems such as the Applanix POS system []. The YUMIS navigation system 

consists of two NovAtel OEM5 GNSS receivers, one Crossbow IMU440CA and two 

PointGrey Flea3 cameras. They are all connected to a central 1.6 GHz Intel Atom N270 

CPU on a Jetway motherboard (NF94-270-LF). The GNSS receivers and the IMU are 

connected to the system via the RS232 serial ports, while cameras use the IEEE firewire 
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1394 interface. The system was built on the Ubuntu Linux (10.04 LTS) with Real Time 

Application Interface (Linux/RTAI) operating system (OS). The OS environment was set 

to hard real-time so that it can handle multiple tasks and to avoid time latency. The 

software system consists of four major components, namely data collectors, time-tagging 

module using GPS time, the data buffers, and data processors. The data collector grabs 

the raw data from the various sensors and loads them into a data buffer that the data 

processors can access. The time-tagging module catches the PPS (pulse per second) pulse 

train from the GNSS receivers to time tag and  synchronize the various data. Figure 7.1 

shows the hardware configuration of YUMIS system during a van test. For more details 

on the design and development of the YUMIS system, refer to [Qian et al, 2012; Qian, 

2017]. 

 

 
Figure 7.1 GPS and IMU, and Controller in YUMIS system [Qian, 2017] 

 

Multiple datasets collected using the YUMIS system have been processed and 

analysed. The results from one of them were selected to demonstrate the relevant research 

for the following reasons: (a) it contains relatively ideal GPS observables, (i.e. open sky 

conditions, no datagaps, minimal cycle slips and low multipath) so that a reliable cm-
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level RTK position solution could be obtained and (b) the images were highly textured 

and therefore many point features could be extracted.    

Two GPS receivers, separated by 1.8m, on the vehicle’s roof were used for the GNSS 

compass to estimate the absolute heading measurements and a third GPS receiver was set 

up as the base station for providing RTK level of positioning solution. The stereo 

baseline was 65cm and the resolution of the images was set to 640x480 pixels with the 

field of view of 50 degrees. The size of each pixel is 4.65 µm [Point Grey Research Inc, 

2011]. The lever arms of the GNSS receivers and the cameras with respect to the IMU 

were measured using a measuring tape at the accuracy of about 0.5cm. The individual 

sensor data rates were set to 5.0Hz, 100Hz and 7.5Hz for GPS receivers, IMU and 

cameras, respectively. The technical specification of Crossbow IMU440CA is 

summarized in Table 7.1 [Crossbow Technology Inc, 2010].   

Table 7.1 Crossbow IMU440CA technical specification (partial) 

Acceleration 
Bias Stability[mg] <1.0 

Velocity Random Walk[m/s/√hr] <1.0 

Angular Rate 
Bias Stability [deg/hour] <10.0 

Angle Random Walk [deg/√hr] < 4.5 

 

The test ran in City of Vaughan, Ontario, on 2 November 2014.  The top view, the 

velocity profile and the attitude profile of the trajectory with the dataset can be 

overviewed in Figure 7.2. As the test was conducted in a residential area, the speed limit 

was 40km/h (11.1m/s).  

Table 7.2 lists the length of the dataset, the traverse length, the maximum velocity and 

the maximum rover-base baseline length.  
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Figure 7.2 The 2D overview of the trajectory with starting point, end point and base 

position (left) and the velocity and attitude profiles (right) 

 

Table 7.2 Dataset properties 

Dataset Property Value 

Dataset length (sec) 2147 

Traverse length (m) 10436 

Maximum velocity (m/s) 12.6 

Maximum baseline length (km) 0.93 

 

7.2.1. Loosely-coupled GNSS aided inertial navigation  

The loosely-coupled GNSS aided inertial navigation solution was generated and used 

as the reference trajectory for the subsequent tests. This sub-section summarizes the 

results.   

The rover position was obtained using the third party POSGNSS (Grafnav) software. 

A MATLAB based GPS compass module was developed to obtain the GPS heading 

measurement. The GPS compass module consists of a sequential least squares estimator 

that processes C1 code and L1 phase measurements, integer ambiguity resolution using 

the LAMBDA method [Teunissen, 1995], a carrier phase cycle-slip detector [Bisnath, 
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2000] and a measurement outlier detector.  Figure 7.3  shows the estimated position 

accuracy (1-σ), estimated heading accuracy (1-σ), the rover-base baseline length and the 

number of satellite used for computing the GPS position and heading. 

 
Figure 7.3 The GPS position standard deviation (1-σ) (top-left).  

The GPS heading accuracy (bottom-left). The baseline length (top-right).  

The number of satellite used for computing the GPS position and heading (bottom-right) 

 

Table 7.3 lists the IMU sensor error parameters. The parameters were obtained using the 

Allan variance technique [Allan, 1966] with 18 hours of static data (the detailed Allan 

variance results are omitted here).    

The loosely-coupled integration was performed next. The psi-error model described in 

Section 3.5.2 was employed and the navigation state vector is 

Tb
g

b
a

nn
k

cc

)( bbψvXx       (7.1) 
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wherein 
cnX , 

cnv , ψ , 
b
ab  and b

gb  are the 3x1 position error vector, 3x1 velocity error 

vector, 3x1 attitude misalignment vector, 3x1 accelerometer bias vector and gyroscope 

bias vector, respectively. 

Table 7.3 IMU440CA sensor error model parameters 

Parameter Component 
Power spectral 

density 

Velocity random walk [m/s/√hr] 

x 0.62 

y 0.46 

z 0.43 

Angle random walk [deg/√hr] 

x 1.73 

y 2.26 

z 1.94 

Accelerometer bias stability [mg] 

x 0.87 

y 0.73 

z 0.74 

Gyroscope bias stability [deg/hour] 

x 8.40 

y 8.70 

z 8.39 

 

Firstly, the horizontal static alignment was performed using (3.58). Then, the GPS 

position and heading measurements were used to initialize the state vector together with 

its covariance matrix. Finally, the Kalman filter was employed in the loosely coupled 

integration architecture. Figure 7.4 shows the overall 1-σ position and orientation 

accuracies. The North, East and down accuracies were about ±0.03m, ±0.02m and 

±0.05m, respectively. The roll, pitch and heading accuracies were approximately 

±0.15deg, ±0.15deg and ±0.20deg, respectively. The position and attitude results are 

accurate enough as the reference solution for the subsequent tests. 
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Figure 7.4 The estimated position accuracy (1-σ) and orientation accuracy (1-σ)  

of the loosely-coupled GNSS aided inertial navigation solution 

 

 
Figure 7.5 The GPS system innovations (left)  

and measurement residuals (right) with the corresponding 1-σ envelope 

 

Figure 7.5 shows the GNSS system innovations and measurement residuals with the 

corresponding 1-σ envelope. The magnitude of the system innovations and measurement 

residuals for the GNSS position (<5cm) and GNSS heading (<0.5 deg) measurements 
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verify the correctness of the computed position and heading accuracy. Figure 7.6 shows 

the estimated accelerometer and gyroscope biases together with 1-σ envelope.    

 
Figure 7.6 The estimated accelerometer and gyroscope biases  

with the corresponding 1-σ envelope. 

 

In summary, the loosely-coupled GNSS aided inertial navigation solution at the 

centimeter level position accuracy can provide an accurate reference trajectory. 

 Structureless stereo camera calibration 7.3.

This section presents the results from the structureless stereo camera auto-calibration 

and system calibration using the algorithms developed in Chapter 4 and also compares 

them with the ones using the algorithm based on the collinearity equations. The analysis 

was conducted as follows: 

 An interval of the trajectory was chosen for the calibration. Furthermore 

feature points within this interval were extracted and matched.  

 The calibration parameters were computed by bundle adjustment using (a) the 

collinearity equations and (b) the scale-restraint equation. Both calibrations 
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were photo block-invariant i.e. the calibration parameters were assumed to be 

constant. 

 The estimated calibration parameters were evaluated and compared.  

This section compares the number of parameters and the number of floating point 

operations (flops) required in a least squares bundle adjustment between the stereo auto-

calibration algorithms based on collinearity equations (COL) (Equation (4.1)) and the 

scale restraint equations (SRE) (Equation (4.5)). 

7.3.1. Calibration interval and measurement information 

One hundred and forty (140) stereo images within the interval shown in red (Figure 

7.7 (left)) were used to test the camera calibration algorithms. This section of the 

trajectory contained turns and this favored the estimation of the lever-arm and bore-sight 

components. Furthermore, the images were highly textured and should be in favor of 

detecting point features.   

 
Figure 7.7 The calibration interval (left) and a stereo pair with the matched points (right) 
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The point features were extracted and matched using the LIBVISO2 library [Geiger et 

al, 2011], which consists of a corner and a blob detector. Its matcher employs the Sum of 

Absolute Differences (SAD) method on an 11x11 window. To improve the matching 

accuracy between stereo pairs, each search was constrained using the coplanarity 

equation. Between the consecutive frames, the feature locations on the following frame 

were predicted by using the GPS-aided inertial navigation solution. The standard 

deviation of the measurement for the extracted point features was assumed to be ±0.3px. 

Figure 7.7 (right) shows the 75
th

  stereo image with the matched feature points.  

Similar to the tests performed in Sections 4.3 and 4.4, the calibration results from one 

COL and two SREs are presented (i.e. still refer to as SRE1 and SRE2). The purpose of 

COL and SRE1 is the compare the performance of the collinearity equations and the 

scale-restraint equation when the same measurements are used. Simulation results in 

Section 4.4 suggests that scale-restraint equation requires approximately 4 times more 

measurements to produce comparable calibration results to the collinearity equations. The 

number of extractable features in the real world depends on the texture of the images. 

With these set of images, SRE2 was able to obtain 3.6 more features than COL and 

SRE1. Figure 7.8 (top) shows the number of the used features and Figure 7.8 (bottom) 

shows the minimum, mean and maximum ranges of the 3D features in the test. The 

average overlapping percentage for all three cases was approximately 72%.   



173 

 

 
Figure 7.8 The number of the features (top), the minimum, mean and maximum ranges of 

the 3D features (bottom) for COL, SRE1 and SRE2. 

 

The EO parameters for each image frame were obtained from the GNSS aided inertial 

navigation solution in Section 7.2.1. Their  standard deviations are shown in Figure 7.9.      

 
Figure 7.9 The standard deviations of the EO parameter for the image frames 

 

 



174 

 

The next subsections present and analyze the auto-calibration results associated with 

COL, SRE1 and SRE2. 

7.3.2. Camera and system calibration results 

The calibration parameters were initialized using the techniques described in Section 

4.2.3. The initial lever-arm vector from the camera system to the IMU was measured 

using a measuring tape. The calibration parameters were then estimated using the least-

squares method.  

The estimated lens distortion parameters together with their a-posteriori standard 

deviations with the left and right cameras are given in Table 7.4 and Table 7.5, 

respectively. The results showed the similar results for the focal length error from COL 

and SRE2, but SRE1 performed the worst. The best estimated principal point errors came 

from SRE2, followed by the ones from COL and SRE1. The results showed that the 

coefficients 1k  and 2k  accounted for most of the radial distortions. More in details, the 

lowest standard deviations for them were achieved by SRE2, whilst they were similar 

with COL and SRE1.      

Table 7.4 The lens distortion parameters with the left camera 

Parameter COL SRE1 SRE2 

 mean stdev mean stdev mean stdev 

Lf  (px) 0.393 0.592 -0.694 0.967 0.393 0.549 

0,Lx  (px) -0.787 0.193 -0.938 0.323 -0.787 0.169 

0,Ly  (px) 0.068 0.730 -0.326 0.923 0.068 0.501 

1,Lk (px
-2

) -4.81e
-07 

9.32e
-09

 -4.84e
-07 

9.41e
-09

 -4.77e
-07 

4.92e
-09

 

2,Lk  (px
-4

) 6.89e
-13 

1.26e
-13

 6.92e
-13 

1.45e
-13

 4.92e
-13 

7.40e
-14

 

3,Lk (px
-6

) -0.98e
-18 

7.16e
-19

 -1.02e
-18 

7.35e
-19

 -9.77e
-20 

3.72e
-19
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Table 7.5 The lens distortion parameters with the right camera 

Parameter COL SRE1 SRE2 

 mean stdev mean stdev mean stdev 

Rf (px) 2.606 0.602 2.307 0.974 2.544 0.553 

0,Rx (px) -0.545 0.210 -0.691 0.310 -0.495 0.164 

0,Ry (px) 2.045 0.805 1.930 0.877 2.009 0.477 

1,Rk  (px
-2

) -4.95e
-07 

9.36e
-09

 -5.06e
-07 

9.62e
-09

 -4.89e
-07 

5.03e
-09

 

2,Rk (px
-4

) 8.94e
-13 

1.32e
-13

 9.15e
-13 

1.47e
-13

 5.56e
-13 

7.60e
-14

 

3,Rk (px
-6

) -1.75e
-18 

6.45e
-19

 -1.34e
-18

 7.40e
-19

 8.46e
-20 

3.82e
-19

 

 

The estimated relative orientation parameters and their standard deviations are listed in 

Table 7.6. The estimated baseline vectors were similar from all of them, so were the 

boresight angles about y and z. Besides, the estimated boresight angles about x were 

similar from COL and SRE2. SRE1 estimated this same boresight angle at the lowest 

accuracy in comparison with the other two. 

 

Table 7.6 The relative orientation of the right camera w.r.t the left camera. 

† free parameter 

Parameter COL SRE1 SRE2 

 mean stdev mean stdev mean stdev 
c

xLRb . (m) 0.019 0.001 0.017 0.001 0.018 0.001 

c
yLRb . (m) †

 
0.65 - 0.65 - 0.65 - 

c
zLRb . (m) -0.011 0.001 -0.009 0.001 -0.010 0.001 

c
xcR, (deg) 0.235 0.010 0.223 0.016 0.240 0.008 

c
ycR, (deg) -0.571 0.004 -0.569 0.006 -0.594 0.003 

c
zcR, (deg) -0.050 0.001 -0.054 0.002 -0.053 0.001 

 

Table 7.7 summarizes the estimated lever-arms, the absolute scale factor and the bore-

sight angles of the stereo camera system. 
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Table 7.7 The estimated lever-arms, scale and bore-sight angles 

 

 

The estimated bore-sight angles and absolute scale factors were similar in all three 

calibration results. However, the estimated lever-arms were not consistent with each 

other and showed that their estimates could not be reliable. The standard deviation of the 

lever-arm in z-direction was approximately three times larger than the ones in x and y 

directions as there was little variation with the pitch angle and the vertical accuracy of the 

GPS position was normally two times worse than its horizontal accuracy. The lever-arms 

were measured beforehand using a measuring tape at the accuracy of 0.5cm. The 

difference between the estimated and the measured lever-arms, and the standard 

deviations are presented in Table 7.8.  

Table 7.8 Difference between the estimated and measured lever arm components  

and with the corresponding standard deviations 

Component 

Measured 

lever-arm 

(m) 

COL(m) SRE1(m) SRE2(m) 

  mean stdev mean stdev mean stdev 

x 0.060 0.043 0.015 0.062 0.021 0.042 0.015 

y -0.325 0.042 0.014 0.015 0.021 0.031 0.018 

z -0.050 -0.092 0.055 -0.110 0.060 -0.101 0.061 

 

Parameter COL SRE1 SRE2 

 mean stdev mean stdev mean stdev 
b

xLla , (m) 0.103 0.015 0.122 0.021 0.102 0.015 

b
yLla , (m)

 
-0.283 0.014 -0.310 0.021 -0.294 0.018 

b
zLla , (m) -0.142 0.055 -0.160 0.060 -0.151 0.061 

cs  1.012 0.002 1.013 0.002 1.011 0.002 

b
xc, (deg) 92.697 0.027 92.424 0.029 92.278 0.027 

b
yc,  (deg) 0.391 0.029 0.495 0.029 0.454 0.025 

b
zc, (deg) 89.485 0.256 89.123 0.331 89.071 0.333 
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The results in Table 7.8 show that difference between the estimated and measured 

lever arm components are within three standard deviations (3-σ). This implies that the 

lever-arms could be estimated and the measurements were not accurate enough to recover 

them reliably. Table 7.9 lists the number of points, number of objects, the size of the 

parameter, the number of iterations, the total theoretical flops and the a-posteriori 

variance of unit weight (
2
0̂ ) from the solutions using COL, SRE1 and SRE2.  

Furthermore, Table 7.10 lists the components of the parameter vector and their 

corresponding sizes.  

Table 7.9 Number of points, objects, iterations, flops and 2
0̂  

 COL SRE1 SRE2 

Number of stereo images 140 140 140 

Number of stereo points 11137 11137 40021 

Number of observed objects 2731 2731 9818 

Parameter vector size 9051 858 858 

Number of least-squares iterations 2 4 5 

log10(flops) (theoretical) per iteration 12.027 8.9608 9.2163 

log10(flops) (theoretical) 12.328 9.5629 9.9153 

A-posteriori variance of unit weight 
2
0̂  1.54 1.69 1.76 

      

Table 7.10 COL, SRE1 and SRE2 parameter list and size 

Parameter COL SRE1 SRE2 

Image distortion model 

(6 parameter model, see Section 4.5.2) 
2×6 2×6 2×6 

Stereo baseline and relative orientation 

(one baseline component is fixed) 
2+3 2+3 2+3 

Exterior orientation 

(one EO parameter is fixed)
 6×(140-1) 6×(140-1) 6×(140-1) 

Object position parameters 3×2731 0 0 

Lever-arm, scale and boresight 3+1+3 3+1+3 3+1+3 

Total parameter vector size 9051 858 858 

 

The COL and SRE1 estimates used the same set of measurements. SRE2 employed 

3.6 times more measurements. At the same time, SRE1 and SRE2 estimated the same 
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number of the parameters, but COL estimated 8193 more parameters. Even though, SRE2 

processed more measurements than COL, it still used 259 less flops (or 647 times less 

flops per iteration). However, SRE1 and SRE2 required 2 and 3 more iterations than COL, 

respectively. This is due to the higher non-linearity of the scale-restraint equation in 

comparison with the collinearity equations. The a-posteriori variance of unit weight 
2
0̂  

for all solutions were greater than 1 (go to Section 7.3.4 for the discussion). The 

following section evaluates the three calibration results.  

7.3.3. Evaluation  

To evaluate the calibration results from COL, SRE1 and SRE2, the VO solution based 

on (3.80) was computed with each of the calibration parameters and then compared with 

the GNSS aided inertial navigation solution. Since the estimated lever-arm vector was 

unreliable due to its significant standard error, the tape measured values were employed 

instead. The trajectory was parsed into thirty-five 200m sections, which all  contained 

continuous image data at the specified data rate. Figure 7.10 shows the color coded 

sections together with their corresponding ID.   
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Figure 7.10 The thirty-five 200m sections with Section ID 

 

For each set of calibration parameters, the VO translation and rotation errors were 

computed in the following way. First, the VO solution and trajectory for each section 

were computed. The VO frame distance was set to 1.0m and the significance level   for 

measurement rejection was set to 0.5%. Then, for each section, the position and 

orientation differences between the VO path and the reference solution were computed. 

And finally the translation and rotation drift rates (i.e. error per meter) were computed 

using the computed position and orientation differences (see Section 3.6.4.6 for more 

details). 
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Figure 7.11 The numbers, and mean ranges of the 3D features for the divided sections. 

The colors of the plot corresponds the sections in Figure 7.10. 

 

The number of the features and the mean range of the 3D features for each section are 

shown in Figure 7.11 while the number of the image frames, the time interval and the 

average number of the points per frame in each section are given in Table 7.11. The 

numbers of features in all three solutions were very similar. The small differences in 

number were due to the fact that the calibration parameters of COL, SRE1 and SRE2 

were not exactly the same and therefore produced slightly different sets of measurements 

for the VO computation. The magnitudes of the measurement residuals between the 

solutions were close. Thus, the numbers of the detected outliers were slightly different. 

Figure 7.12 shows the VO 3D position and rotation drift of all the sections (the color of 



181 

 

the lines in Figure 7.12 corresponds to the section ID in Figure 7.10). Table 7.12 lists the 

VO translation and rotation drift rates for each section and their RMS errors of drift rates.   

Table 7.12 shows that the RMS errors associated with the translation drift rates from 

COL, SRE1 and SRE2 were 1.78%, 1.86% and 1.70%, respectively. The auto-calibration 

parameters from SRE2 produced the lowest translation error and therefore were the most 

accurate solution. The second best and the worst auto-calibration parameters were given 

by COL and SRE1, respectively. The RMS errors of the estimated rotation drift rates 

were similar (approximately 0.024deg/m) for all three cases. Conclusively, the estimated 

VO position change was more sensitive to the variations of the camera calibration values 

than the estimated VO orientation change, which will further be discussed in the next 

section.  
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Table 7.11 Average number of points per frame used in each section. 

   Average points per frame 

Section ID 
Number 

of frames 

Interval 

(sec) 
COL SRE1 SRE2 

1 164 22.8 289.8 284.3 296.2 

2 170 32.5 453.1 450.7 455.8 

3 210 41.3 221.0 220.0 223.2 

4 190 25.3 308.5 305.7 311.0 

5 206 34.3 232.5 230.5 233.3 

6 168 34.5 279.2 277.1 280.7 

7 190 25.2 314.0 313.9 314.5 

8 193 32.0 236.6 235.8 237.6 

9 200 29.6 226.6 225.8 228.7 

10 172 32.7 480.0 477.7 481.5 

11 203 36.9 245.4 244.0 246.2 

12 213 33.7 268.5 267.2 270.4 

13 195 29.8 303.8 301.7 305.7 

14 211 34.1 254.5 253.2 255.7 

15 206 32.1 485.9 482.4 487.8 

16 197 32.5 290.6 289.3 291.6 

17 212 32.7 230.9 229.0 232.5 

18 191 27.5 293.4 290.7 296.7 

19 193 29.9 486.2 480.0 490.4 

20 201 28.5 261.0 259.5 262.5 

21 203 33.5 449.3 445.5 452.2 

22 199 29.3 436.1 433.2 438.0 

23 198 29.9 469.5 465.4 473.2 

24 188 25.3 398.7 396.1 403.2 

25 197 39.5 213.9 212.1 215.3 

26 196 35.0 459.0 454.9 463.4 

27 210 34.4 448.5 445.8 450.4 

28 174 23.1 427.0 423.6 434.1 

29 153 20.3 370.9 361.5 377.6 

30 184 26.9 394.1 387.4 401.1 

31 165 24.1 390.6 388.0 399.6 

32 177 25.7 402.7 397.0 407.8 

33 182 25.1 342.4 340.7 343.5 

34 192 28.2 465.7 462.3 469.7 

35 185 27.7 276.5 271.1 283.6 

mean 191.1 30.2 345.9 342.9 349.0 
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Figure 7.12 3D position and orientation drifts of the individual sections 
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Table 7.12 The VO translation and rotation drift rates 

 
Translation drift rate (%) Rotation drift rate (deg/m) 

Section 

ID 
COL SRE1 SRE2 COL SRE1 SRE2 

1 2.21 2.28 1.88 0.030 0.034 0.025 

2 1.74 1.70 1.89 0.026 0.025 0.029 

3 1.70 1.74 1.57 0.015 0.015 0.016 

4 1.74 1.96 1.47 0.024 0.027 0.019 

5 1.28 1.30 1.34 0.025 0.023 0.028 

6 2.77 3.06 2.40 0.039 0.043 0.034 

7 1.49 1.46 1.58 0.026 0.025 0.030 

8 1.40 1.35 1.49 0.026 0.027 0.025 

9 1.81 2.00 1.52 0.026 0.028 0.022 

10 1.89 1.83 2.02 0.024 0.021 0.028 

11 1.27 1.29 1.25 0.024 0.025 0.024 

12 1.24 1.32 1.20 0.021 0.020 0.023 

13 1.79 2.05 1.45 0.026 0.029 0.023 

14 1.44 1.67 1.23 0.014 0.013 0.017 

15 1.66 1.70 1.63 0.022 0.020 0.026 

16 1.10 1.18 1.10 0.009 0.011 0.009 

17 1.14 1.12 1.23 0.021 0.021 0.021 

18 1.66 1.79 1.56 0.019 0.021 0.016 

19 2.32 2.42 2.10 0.015 0.015 0.015 

20 1.62 1.77 1.43 0.026 0.029 0.020 

21 2.06 2.13 2.12 0.039 0.038 0.044 

22 1.31 1.45 1.09 0.024 0.026 0.020 

23 1.48 1.69 1.19 0.012 0.014 0.011 

24 2.04 1.94 2.21 0.028 0.027 0.028 

25 2.02 2.06 1.95 0.030 0.033 0.025 

26 1.47 1.52 1.43 0.022 0.023 0.021 

27 1.98 2.12 1.82 0.027 0.029 0.023 

28 1.39 1.32 1.43 0.021 0.021 0.018 

29 2.57 2.70 2.31 0.029 0.032 0.025 

30 1.95 2.01 1.93 0.017 0.017 0.019 

31 1.56 1.47 1.57 0.016 0.015 0.016 

32 1.53 1.58 1.52 0.019 0.019 0.020 

33 1.20 1.24 1.29 0.020 0.019 0.022 

34 2.05 2.11 1.92 0.019 0.019 0.020 

35 2.63 2.65 2.63 0.019 0.027 0.015 

RMS 1.78 1.86 1.70 0.024 0.025 0.023 
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7.3.4. Discussion 

The results showed that with a given number of measurements, the collinearity 

equations produced more accurate calibration parameters than the scale-restraint equation 

and disadvantageously utilized more computational and memory resources. Oppositely, 

the scale-restraint equation is highly non-linear in comparison with the collinearity 

equations and required more iterations when running the least-squares bundle adjustment 

algorithm. Despite the fact that more measurements were processed with more iterations, 

the scale-restraint equation used less computation resources and delivered more accurate 

calibration parameters than the collinearity equations.  

The test results showed that both methods could not estimate the IMU-camera lever-

arms at the expected accuracy. This could be due to (a) the measurements were not 

accurate enough to provide the absolute and relative positional information at an accuracy 

of better than 1cm and (b) the estimation was limited by the low dynamics of a land 

vehicle especially in the vertical. The former is the key to the problem. 

The a-posteriori variances of unit weight 
2
0̂  for all solutions were greater than 1. This 

suggests that (a) the measurement noise model are too optimistic or the weighting 

between the two sets of measurements were not optimal (b) the measurement vector 

contained undetected outliers, possibly due to the incorrect feature matching and (c) the 

measurement functional model may contain unknown errors. 

The most essential finding in the test results is that the scale-restraint equation can 

estimate the camera calibration parameters more accurately than the collinearity 

equations at a fraction of the computational resources even though more measurements 

were employed.   
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 Loosely-coupled stereo visual odometry aided-INS 7.4.

This section presents the road test results with the loosely coupled VO aided-inertial 

integrated navigation developed in Chapter 5. The loosely coupled VO aided-inertial 

integrated navigation with the proposed Kalman filter with pairwise time-correlated 

measurements (KF-PTC) was tested and compared with two other versions of the Kalman 

filter: the standard Kalman filter (KF), the Kalman filter with the standard shaping filter 

for time-correlated measurements (KF-TC). The data processing was conducted as 

follows: 

 Process the image data to obtain the stereo visual odometry solution for the 

entire trajectory. 

 Compute the loosely coupled VO aided inertial-navigation solutions using the 

three Kalman filters.  

 Evaluate the performance of the three VO aided-inertial solutions and compare 

them with each other.  

7.4.1. Stereo visual odometry solution 

The visual odometry-based pose changes together with their corresponding variance-

covariance matrix and time-correlated covariance matrix were processed independently 

of the GPS and IMU data. The disadvantage is that the IMU data was not available to 

improve the feature matching between consecutive image frames. However, in order to 

ensure the identical VO solution to be used for the three Kalman filters, they were first 
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derived, saved and then used as measurements in aiding the inertial navigation. The 

visual odometry solution was computed as follows: 

 The SRE2 image distortion parameters, the stereo baseline, orientation of the right 

camera, the bore-sight angles and the scale factor derived in Section 7.3 were 

used to calibrate the stereo camera system.  

 Since the estimated IMU-camera lever-arm vector was not good enough to 

replace the measured one by using a steel tape, the measured values were 

employed instead.   

 The VO frame distance was set to a minimum 1.0m or maximum angular change 

of 3.0deg. The standard deviation of the measurement noise for extracted point 

features was assumed to be ±0.3px. The maximum feature range accuracy was set 

to 3.0m. The significance level   for measurement outlier rejection was set to 

0.5% (approximately 3-σ).  

 The point features were extracted and matched using the LIBVISO2 library 

[Geiger et al, 2011].  To improve the matching accuracy between the stereo pairs, 

the search was constrained along the epipolar lines using the coplanarity 

equations.  

 The pose changes were computed using the least-squares estimator and RANSAC 

was applied to improve the robustness of the estimates. 

The VO estimates and their corresponding standard deviations (1-σ) are given in 

Figure 7.13 and Figure 7.14, respectively.  
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Figure 7.13 The visual odometry solution; the position change (top)  

and orientation change (bottom) 

 

 
Figure 7.14 The standard deviation (1-σ) of the VO solution 
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Figure 7.15 shows the number of the features at each epoch, the minimum, average 

and maximum object feature ranges, and the percentages of the shared features between 

the current and previous VO estimates. The maximum range was approximately 52m 

since the objects with the ranges beyond 52m had their accuracy worse than 3.0m and 

were not included in the VO estimates.   

 
Figure 7.15 The number of the features at each epoch (top), the minimum, average and 

maximum object feature ranges (middle), and the percentage of the shared features 

between the current and previous VO solution epochs (bottom). 

 

To check for the consistency, the VO solution was compared with the b-frame position 

and orientation changes derived from the reference solution (the GNSS-aided inertial 

integrated navigation solution in Section 7.2.1). Figure 7.16 plots the differences between 

the VO solution and the reference solution.  
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Figure 7.16 The differences between the VO and GNSS-aided 

inertial integrated navigation solution 

 

Table 7.13 The mean, standard deviation and rms of the differences between the VO and 

GNSS-aided inertial integrated navigation solution 

 

bX
(m) 

bY
(m) 

bZ
(m) 

b
x

(deg) 

b
y

(deg) 

b
z

(deg) 

mean -0.002 -0.004 -0.003 0.001 -0.007 0.002 

1-σ 0.030 0.019 0.008 0.050 0.044 0.062 

rms 0.030 0.020 0.008 0.050 0.044 0.062 

 

The results in Table 7.13 show that the VO solution and the reference solution were  

consistent with each other with the RMS errors: [0.030, 0.020, 0.008] m and [0.050, 

0.044, 0.062] deg for the position and orientation changes, respectively.  

7.4.2. VO-aided inertial navigation solution and evaluation  

This section presents and compares the loosely coupled VO aided inertial-navigation 

solution using the three Kalman filters. For this series of tests, GPS position and heading 
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measurements were used for alignment and also for aiding in loosely-coupled mode. For 

simplicity, the VO measurements were only employed when the GPS measurements were 

turned off.  The state vector for the KF is 

Tn
mk

n
mk

b
g

b
ak

n
k

n
kk

cccc

),,,,,,(  ψXbbψvXx      (7.2) 

wherein 
cn

kX , 
cn

kv , kψ , 
b
ab  and b

gb  are the 3x1 subvectors for position error, velocity 

error, attitude misalignment, accelerometer bias and gyroscope bias, respectively. mk   

is the epoch of the previous image frame.  The KF-TC state vector is 

T
k

n
mk

n
mk

b
g

b
ak

n
k

n
kk

cccc

),,,,,,,( vψXbbψvXx      (7.3) 

where kv  is the 6×1 measurement noise vector. The KF-PTC state vector is 

T
mkk

n
mk

n
mk

b
g

b
ak

n
k

n
kk

cccc

),,,,,,,,( 
 vvψXbbψvXx     (7.4) 

wherein kv  is the 6×1 de-correlated measurement noise vector.  

The horizontal static alignment was performed using (3.58) whilst the GPS position 

and heading measurements were used to initialize the state vector together with its 

covariance matrix. Then, the respective Kalman filters became ready for navigation.   

To assess the performance of three different Kalman filters, 35 GPS outages for 200m 

long, the same as described in Section 7.3.3, were simulated by excluding the GPS 

position and heading measurements. Figure 7.10 shows the color coded sections together 

with their corresponding IDs while Table 7.11 lists the number image frames and the 

time interval for each section.  

For each Kalman filter, the translation and rotation errors for each section were 

computed in three steps. First, the VO-aided inertial navigation solution was computed. 

Then, the position and orientation differences between the VO-aided inertial navigation 
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solution and the reference solution were computed. And finally the translation and 

rotation drift rates (i.e. error per meter) were computed using the computed position and 

orientation differences. The drifts in 3D position and rotation, and their drift rates with 

the associated RMS errors for each section are given in Figure 7.18 and in Table 7.14, 

respectively.   

Table 7.14 shows that the RMS errors of the position drifts rates of KF, KF-ST and 

KF-PTC were 1.48%, 1.28% and 1.18%.  The results show that the position drifts with of 

KF-PTC improved the solution by 20% and 8% in comparison with the ones from KF 

and KF-ST, respectively. However, the rotation drift rates remained the same. It is 

noticed that sections 27 and 25 performed the best and the worst, respectively, whose 2D 

overviews are given in Figure 7.17.   

 
Figure 7.17 The 2D overview of Section 27 (best) and Section 25 (worst) 
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Figure 7.18 The drifts in 3D position and orientation from KF, KF-ST and KF-PT for the individual color coded sections 
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Table 7.14 The translation and rotation drift rates from the VO-aided inertial integrated 

navigation 

 Translation error (%) Rotation error (deg/m) 

Section ID KF KF-ST KF-PTC KF KF-ST KF-PTC 

1 1.58 0.91 0.64 0.0156 0.0139 0.0141 

2 1.01 0.48 0.46 0.0028 0.0021 0.0021 

3 0.81 0.52 0.46 0.0066 0.0063 0.0065 

4 0.60 1.03 1.01 0.0049 0.0070 0.0029 

5 1.69 0.65 0.68 0.0137 0.0138 0.0144 

6 0.75 0.47 0.68 0.0032 0.0026 0.0038 

7 0.80 0.94 0.47 0.0048 0.0048 0.0051 

8 1.87 2.70 1.13 0.0101 0.0122 0.0108 

9 0.82 3.08 0.64 0.0055 0.0025 0.0037 

10 1.00 0.50 0.93 0.0095 0.0089 0.0102 

11 2.36 1.10 2.10 0.0028 0.0037 0.0030 

12 1.78 0.36 0.40 0.0047 0.0059 0.0046 

13 1.42 1.53 1.97 0.0192 0.0178 0.0192 

14 3.43 0.73 1.66 0.0078 0.0071 0.0081 

15 0.39 0.51 0.59 0.0101 0.0088 0.0085 

16 0.87 1.82 1.21 0.0111 0.0160 0.0183 

17 0.70 0.58 0.77 0.0086 0.0086 0.0091 

18 3.00 1.86 1.16 0.0128 0.0088 0.0079 

19 0.76 0.48 0.85 0.0076 0.0069 0.0071 

20 1.62 1.23 0.57 0.0106 0.0065 0.0061 

21 0.90 0.70 1.04 0.0027 0.0031 0.0031 

22 1.59 0.43 0.75 0.0087 0.0050 0.0066 

23 0.65 0.34 0.29 0.0044 0.0019 0.0018 

24 2.22 0.47 0.40 0.0075 0.0038 0.0020 

25 2.31 4.28 4.53 0.0053 0.0080 0.0059 

26 1.15 0.78 1.35 0.0052 0.0049 0.0063 

27 0.42 0.25 0.20 0.0077 0.0101 0.0079 

28 0.54 0.50 0.47 0.0104 0.0098 0.0096 

29 0.64 0.49 0.79 0.0046 0.0044 0.0051 

30 0.90 0.44 0.37 0.0056 0.0052 0.0054 

31 0.44 0.77 0.36 0.0007 0.0024 0.0011 

32 2.29 0.55 0.84 0.0166 0.0152 0.0151 

33 1.54 0.46 0.55 0.0042 0.0053 0.0057 

34 0.41 0.82 0.50 0.0039 0.0042 0.0030 

35 1.13 0.96 0.90 0.0020 0.0027 0.0017 

rms 1.48 1.28 1.18 0.0086 0.0083 0.0084 
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The system innovations with the corresponding 1-σ error bounds for section 27 are 

given in Figure 7.19 and Figure 7.20. The system innovation was small w.r.t. its standard 

deviation. This shows that VO and INS solution are in agreement and all the aiding 

measurements were of good quality. Figure 7.21 and Figure 7.22 show the system 

innovation and the corresponding 1-σ error bounds for section 25. The system innovation 

was relatively large especially in the 
bX , 

bY  and 
b
z  components. As shown in 

Figure 7.15, the number of features available during this interval (from 995 to 1025 

seconds) dropped to approximately 50 for most epochs. This degraded the VO solution 

and hence degraded the integrated solution.    

 

 
Figure 7.19 Section 27 position change system innovation and 1-σ error bounds  

from KF, KF-ST and KF-PTC 
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Figure 7.20 Section 27 orientation change system innovation and 1-σ error bounds  

from KF, KF-ST and KF-PTC 

 
Figure 7.21 The system innovations of the position changes and 1-σ error bounds  

from KF, KF-ST and KF-PTC (Section 25) 
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Figure 7.22 The system innovations of the orientation changes and 1-σ error bounds  

from KF, KF-ST and KF-PTC (Section 27) 

 

7.4.3. Discussion 

The results showed that the measurement model under the consideration of their time-

correlation in the VO IA-INS using the KF-TC has reduced the overall position error in 

comparison with the standard KF solution. The position performance of the VO IA-INS 

was further improved when the KF-PTC was employed. The position drifted linearly with 

distance. The position drifts were mainly caused by the scale and heading errors. The 

former caused the drifts in the along-track direction while the latter caused the drifts in 

the cross-track direction. Furthermore, these scale and heading errors amplified position 

error as the distance increased.  

The results also showed that the orientation results were similar among the three 

Kalman filters. The VO aiding does not improve the performance of the roll and pitch 
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angle estimates. However, the improvement of the heading performance in VO aiding 

depends on the accuracy of the VO orientation change measurements and the quality of 

the gyroscopes. Figure 7.14 shows that the standard deviation of the VO orientation 

changes was, on average, 0.06 deg per frame. From Table 7.3, the random walk and bias 

stability with the z-gyroscope are 1.94 deg/√hr and 8.39 deg/hr respectively. Given that 

the image rate is 7.5 Hz (or 0.133 sec), the IMU heading error on the level ground in free-

inertial mode is expected to be approximately 0.012 deg in 0.133 sec. This shows that the 

VO orientation change measurements were too noisy to improve the heading solution. 

The most important finding in the completed tests was that, the quality of the 

navigation solution from the Kalman filter was improved by appropriately modelling the 

time-correlated measurements.  

 Tightly-coupled stereo MFVO aided-INS 7.5.

In this section, the tightly-coupled (TC) stereo SLAM-aided INS will be analysed and 

compared with the TC stereo MFVO-aided INS developed in Chapter 6 using the 

aboved-utilized road test data.  The camera calibration parameters used for LC VO-aided 

INS tests Section 7.4 was employed for the tests. The TC SLAM aided-INS state vector 

for N landmarks is given by 
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where ijk   (for Mi ,,2,1   and mm jjj  110  ) are the frame epochs and 

mjk   is the epoch at which the feature in the current feature list at epoch k  was first 

observed.  The road test dataset was processed with the two algorithms and the results 

evaluated. 

7.5.1. SLAM and MFVO-aided inertial navigation solution and evaluation  

With this series of tests, the GPS position and heading measurements were used for 

alignment and also aiding in loosely-coupled mode. The horizontal static alignment was 

performed using (3.58). Then, the GPS position and heading measurements were used to 

initialize the state vector together with its covariance matrix. The computation of the 3D 

feature points for both algorithms is summarized as follows:  

 The frame distance between consecutive frames was set to a minimum of 1.0m or 

maximum angular change of 3.0 deg.   

 The point features were extracted and matched using the LIBVISO2 library 

[Geiger et al, 2011].  To improve the matching accuracy between stereo pairs the 

search was constrained along the epipolar lines using the coplanarity equations. 

Between consecutive frames, the locations of the features on the next frame were 

predicted by using the inertial navigator solution.  

 The standard deviation of the measurements for the 2D features was assumed to 

be ±0.3px. The maximum accuracy for the triangulated 3D features was set to 

3.0m.  

The same method, which was used to assess the LC VO-aided INS algorithms in 

Section 7.4.2 , was employed to evaluate the TC SLAM-aided INS and TC MFVO-aided 

INS algorithms. That is, the same 35 GPS outages of 200m long were simulated by 
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excluding the GPS position and heading measurements. Then, during the GPS outages 

only the 3D image measurements were used for aiding. And finally, the translation and 

rotation errors for each section and for the two algorithms were computed, respectively. 

Figure 7.23 shows the drifts in 3D position and rotation for all the sections. Table 7.15 

lists the translation and rotation drift rates for each section and the their RMS errors.   

 
Figure 7.23 The drifts in 3D position and orientation from  

TC SLAM and TC MFVO for the individual color coded sections 

 

Table 7.15 shows that the RMS errors of the translation drift rates of TC SLAM and TC 

MFVO were 1.21% and 1.27%, respectively. Furthermore, the changes of the rotation 

drifts were 0.0086 deg/m and 0.0093 deg/m, respectively. The results showed that the TC 

MFVO solution was slightly worse than the one from TC SLAM. It is noticed that the 

drifts with TC MFVO between 0m and 150m distance are smaller than the ones with TC 

SLAM (Figure 7.23). However, TC MFVO drifts between 150m and 200m distances, 
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were worse than the ones with TC SLAM, which contributed to the overall degradation 

of TC MFVO. 

Figure 7.24 shows the size of the state vector, the number of the features and the 

average number of the features per frame from each respective section, and the color 

coded sections. The size of the state vector of TC SLAM varied approximately between 

500 and 1100, as it was between 40 and 80 for MFVO. The average number of features 

per frame for both algorithms was generally similar for most sections. The small 

differences may be because (a) the measurement equations are different, (b) the estimated 

poses were not the same and therefore the feature match results were not identical, and 

(c) the unmodelled errors may have produced different sets of inliers. The number of TC 

SLAM measurements during intervals [1005, 1025] sec and [1206, 1232] sec were 

considerably lower than the ones with TC MVFO. During these two periods, there were 

numerous SLAM re-initializations due to the low number of features in view.  
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Table 7.15 The translation and rotation drift rates from the TC SLAM and TC MFVO 

algorithms 

 Translation error (%) Rotation error (deg/m) 

Section ID TC SLAM TC MFVO TC SLAM TC MFVO 

1 1.16 0.56 0.0030 0.0075 

2 1.13 0.59 0.0015 0.0049 

3 1.01 0.72 0.0033 0.0107 

4 1.20 0.70 0.0021 0.0082 

5 1.55 0.94 0.0020 0.0101 

6 1.07 0.46 0.0022 0.0031 

7 2.09 1.92 0.0201 0.0057 

8 1.03 2.54 0.0030 0.0155 

9 0.93 0.51 0.0028 0.0014 

10 0.91 2.14 0.0071 0.0113 

11 1.24 3.27 0.0026 0.0063 

12 0.56 0.43 0.0019 0.0069 

13 0.64 0.50 0.0126 0.0193 

14 1.75 1.89 0.0055 0.0076 

15 0.66 0.47 0.0049 0.0049 

16 1.27 0.97 0.0135 0.0154 

17 1.65 0.94 0.0089 0.0088 

18 1.24 0.71 0.0046 0.0066 

19 0.90 0.54 0.0034 0.0022 

20 1.26 0.78 0.0046 0.0124 

21 0.58 1.16 0.0201 0.0085 

22 0.96 0.68 0.0033 0.0162 

23 1.12 0.61 0.0005 0.0097 

24 1.17 1.51 0.0092 0.0075 

25 0.78 1.54 0.0019 0.0119 

26 1.21 1.38 0.0083 0.0044 

27 0.47 0.57 0.0058 0.0063 

28 0.80 0.66 0.0055 0.0021 

29 1.78 1.03 0.0160 0.0087 

30 0.99 1.29 0.0009 0.0108 

31 0.94 0.56 0.0144 0.0027 

32 1.70 2.42 0.0176 0.0113 

33 0.82 0.62 0.0034 0.0069 

34 1.21 0.60 0.0104 0.0109 

35 2.14 1.18 0.0040 0.0024 

rms 1.21 1.27 0.0086 0.0093 

 



203 

 

 
Figure 7.24 The size of the state vector (top). The number of features per frame and the 

average number of features per frame during the respective sections (middle).  

The color coded intervals for the section (bottom). 

 

Figure 7.25 shows the histrograms of the standardized system innovation vectors for 

TC SLAM and TC MFVO together with a standardized normal distribution curve. The 

histograms were narrow in comparison with the standardized normal distribution. This 

shows that the 3D image measurements and the INS solution were in agreement and the 

aiding measurements were of good quality. 
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Figure 7.25 The histograms of the standardized system innovation vectors  

for TC SLAM and TC MFVO 

 

7.5.2. Discussion 

The results from the simulated data in Section 6.3 showed that the position and 

orientation solutions from TC SLAM and TC MFVO algorithms were similar. However, 

the results from the real data here showed that the overall translation drift rate of the TC 

MFVO translation was 5% worse than the one with the TC SLAM as the TC SLAM 

translation error drifted as expected, i.e., linearly with the distance. However, the drift 

asscoiated with the TC MFVO translation increased quadratically with the distance. This 

error characteristic is not expected with image-based navigation systems. Furthermore, 

the drift with the TC MFVO was smaller for the first 150m of each section. During the 

last 50m, TC MFVO drift was much worse than the ones from the TC SLAM. A common 

understanding is that working with real data could be much more complicated than 
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working with the simulated data. The TC MFVO error characteristics were most likely 

due to the combination of the following factors: (a) The characteristics of the MFVO 

measurement errors was unexpectedly changed when the MFVO measurements were 

derived by time-differencing the SLAM measurements. For example, the effect of the 

focal length errors on the 3D feature range estimates were reduced by cancelling common 

errors in two consecutive SLAM measurements. (b) The MFVO measurements, as shown 

in (6.23), is the function the features from multiple epochs. This requires accurate timing 

from the hardware system. The timing errors could have amplified the measurement 

errors. Further analysis on the error characteristics of the derived MFVO measurements 

from real data is required. Furthermore, the hardware related investigations on the 

YUMIS prototype navigation system are needed to obtain definitive results. 

Simulation results in Section 6.3.1 showed that TC SLAM and TC MFVO were more 

accurate than LC VO with KF-PTC. However, test results with the real data showed that 

the LC VO IA-INS with the KF-PTC in Section 7.4 performed better than the TC SLAM 

and TC MFVO. This verifies the fact that tightly coupled systems are generally more 

difficult to implement and requires extensive filter model tuning [Corke el al, 2007]. 

Furthermore, the research shows that the loosely coupled IA-INS is more robust and 

suitable for low-cost navigation systems.  

As discussed in Section 6.5, the loop closure technique was not applied. The challenge 

in applying loop closures in MFVO is how to perform the measurement update after a 

scene has been revisited given that the landmark positions have been cancelled and the 

map is non-existent. This requires further research and implementation in order to 
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compare both SLAM and MFVO with loop closures. The MFVO with loop closures is 

suggested for the future work. 
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8. Conclusion and future work 

 Conclusion and contributions 8.1.

The focus of this PhD research was on (a) designing and implementing a structureless 

camera auto-calibration camera and system calibration for a GNSS, IMU and stereo 

camera integrated navigation system, (b) developing the Kalman filter for processing 

pairwise time-correlated measurements for loosely coupled VO aided-INS, and (c) 

developing a tightly coupled multi-frame aided INS for drift reduction with the free 

inertial navigation calculation in poor GNSS and/or GNSS denied environment. Its major 

contributions are summarized below. 

First, Chapter 4 presented the design and implementation along with the analysis of a 

camera auto-calibration and system calibration algorithm for a GNSS, IMU and stereo 

camera integrated system based on the scale-restraint equation. The first step determines 

lens distortion parameters, the up-to-scale baseline length and the relative orientation 

between the two cameras by employing two scale-restraint equations to constrain the 

matched features from two consecutive stereo image pairs. Then, the system calibration is 

introduced to recover the camera lever-arms, and the bore-sight angles with respect to the 

IMU, and the absolute scale of the camera system using the GNSS-aided inertial 

navigation solution. The scale-restraint equation has two important characteristics: (a) 

free from the object position and (a) ensuring the scale consistency between the image 

positions. For the stereo case, two scale restraint equations are employed per two 

consecutive stereo pairs, thus ensure that all the common image rays in the stereo-image 

pairs are operated on the same scale. In comparison with the collinearity equations, the 

scale-restraint equations use much less computation and memory resources with the same 
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number of measurements, but at the cost of the accuracy. This study showed that the 

proposed method required more measurements (approximately 4 times more) to reach a 

comparable auto-calibration accuracy as the collinearity equations, while using much less 

computation and memory resources.  

Second, a shaping filter for processing of pairwise time-correlated measurements was 

developed in a Kalman filter in Chapter 5. The coefficients of the shaping filter are 

Cholesky factors obtained from the VCV matrices associated with the measurements. The 

analysis showed that the global measurement VCV of the VO solution is always positive 

definite and therefore the Cholesky factors are always unique, real and consists of strictly 

positive diagonal elements. The derived measurement equation can seamless and 

optimally integrate VO information into the state-of-the-art GNSS aided-INS system 

without any modifications to the integration architecture. The results using simulated and 

real data showed that the proposed method performed better than the standard Kalman 

filter and the Kalman filter with the conventional shaping filter. Furthermore, the state 

covariance matrix provides a realistic description of the uncertainty of the state vector. 

Third, Chapter 6 presented the development of a tightly coupled stereo MFVO aided 

INS which integrated features tracked from multiple overlapping image frames for the 

better VO aiding measurements to efficiently restrict position and orientation drifts 

during GNSS outages. The MFVO equation was derived from the SLAM measurement 

equation by algebraically eliminating the landmark position vector over two consecutive 

epochs. However, the derived measurements are time-correlated. Through a sequential 

de-correlation algorithm, the Kalman filter measurement update can be performed 

sequentially and optimally.  Furthermore, the Kalman filter in the standard form and 
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therefore can easily be integrated into the Kalman filter in the current GNSS/INS 

integration architectures and smoothers. Monte Carlo simulations showed that the 

solution of the MFVO position and orientation is similar to the ones estimated by the 

SLAM algorithm. In addition, MFVO requires less memory and computation resources 

when the number of features in view becomes larger and the percentage overlap becomes 

smaller.  

 Future work and recommendations 8.2.

Some suggestions for future works and recommendations are: 

 Employ the measurement contribution index [Wang, 1997, 2008, 2009] to select 

measurements in camera auto-calibration. The measurement contribution index of 

a measurement indicates how much the measurement contributes to the accuracy 

of a parameter or parameter group. The larger the contribution index, the more 

effect it has on the parameter or parameter group. In camera-auto calibration, 

specifically in indoor and land vehicle navigation, the distribution of 

measurements extracted from the images depends on the environment the camera 

is sensing.  For instance, in land vehicle applications, the objects tend to be far (5-

100m) while indoor applications the objects tend to be closer. When auto-

calibration is performed in different environments, the calibrated values and their 

accuracies will be different. Also, a group of parameters can be estimated more 

accurately when objects are far while others may require closer ones.  For 

instance, bore-sight angles require far objects, internal orientation parameters 

require dynamics parallel to the image plane and lever-arms require closer objects 

and high vehicle dynamics. By performing the measurement index analysis, one 
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can determine quantitatively which conditions are more favorable to estimate each 

parameter individually. Furthermore, measurements that do not contribute 

significantly to the estimated parameter can be omitted from the system and thus 

reduces the computation loading. 

 Develop Kalman filter equations for loosely coupled monocular VO aided-INS 

while considering the time-correlated measurements and scale transfer. The scale 

restraint equation can compute up-to-scale VO information using measurements 

from three consecutive image frames. The scale can be transferred by chaining 

images {1, 2, 3}, then images {2, 3, 4}, and so on and so forth. This ensures that 

all images operate on the same scale.  However, the VO information at epoch k is 

correlated with the ones at epochs 1k  and 2k  since some of the same features 

is employed one and/or two epochs back. Based on the Kalman filer equations for 

pairwise time-correlated measurements presented in Chapter 5, the shaping filter 

for monocular vision aided-INS can be developed by augmenting the state vector 

with the pose and de-correlated measurement noise states at epoch 2k .  

 Develop and apply loop-closure techniques for MFVO.  

 Employ the York’s generic multisensor integration strategy to fuse GNSS, IMU 

and image measurements [Wang et al, 2015; Qian et al, 2015, 2016; Qian, 2017]. 

 Utilize a-posteriori variance component estimation (VCE) technique [Wang, 

1997, 2008, 2009; Gopaul et al, 2010, Wang et al, 2010, Qian et al, 2016] to tune 

VO measurements along with other measurements in the navigation Kalman 

filter. The VCE method simultaneously estimates the process noise and 



211 

 

measurement noise VCV matrices based on the measurement residuals and the 

process noise residuals.  
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Appendices 

Appendix A: KF-PTC state covariance update in Joseph stabilized form  

This section derives the state covariance measurement update in Joseph stabilized 

form for the Kalman filter with pairwise time correlated measurements. The system 

innovation covariance matrix kS , the Kalman gain kK  and the state covariance matrix 


kP for the Kalman filter with pairwise time correlated measurements are (i.e. from 

(5.37)) 
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The transpose of kK in (A.1) can be written as 
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Substitute (A.3)  with in the last 
T
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Substitute  kS  from (A.1)  in (A.4)  
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Hence 
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Appendix B: Sequential block inversion of a lower triangle matrix 

This section derives the sequential block inversion of a lower triangle matrix, i.e. the 

block elements kkk ,1, ,, LL   in Equation (A.7) are obtained from kkk ,1, ,, CC   and 

iiiii ,1,1, ,,, LLL  for 11  ki . 
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Consider block inverse identity 
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wherein 21
1
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The inverse for 1k  
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The inverse for 2k  
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The inverse for 3k  
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The inverse for k  
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kkk ,1, ,, LL   in Equation (A.13) can be obtained sequentially by Algorithm A.1. 
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Algorithm A.1 Determination of kkk ,1, ,, LL   from the inverse of matrix C  
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Now consider the case where C  is an off diagonal lower triangular matrix: 
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Then Equation (A.13) can simplified to    
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kkk ,1, ,, LL   in Equation  (A.15) can be obtained sequentially by Algorithm A.2. 
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Algorithm A.2 Determination of kkk ,1, ,, LL   from the inverse of off diagonal lower 

triangle matrix C  
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