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Abstract

The high demand for low-cost multi-sensor integrated kinematic positioning and
navigation systems, for example as the core of direct-georeferencing technique in mobile
mapping, is continuously driving more and more research and development activities.
The effective and sufficient utilization of cameras as navigation sensors is among the
most recent scientific research and high-tech industry development subjects. Cameras are
relatively inexpensive, easy to interface with, and can provide very precise angular
resolution. The research is motivated by the requirement of (a) calibrating off-the-shelf
camera(s) prior to navigation and (b) the fusion of imaging and inertial sensors in poor
global navigation satellite system (GNSS) or GNSS denied environments. The three
major contributions of this dissertation are:

e The development and analysis of a camera auto-calibration and system calibration
algorithm for a GNSS, IMU and stereo camera system that is based on the scale-
restraint equation. The camera auto-calibration is first performed to obtain the
lens distortion parameters, up-to-scale baseline length and the relative orientation
between the stereo cameras. Then, the system calibration is introduced to recover
the camera lever-arms, and the bore-sight angles with respect to the IMU, and the
absolute scale of the camera using the GNSS-aided inertial navigation solution.
The auto-calibration bundle adjustment utilizes the scale restraint equation, which
is free of object coordinates. Such a method is often called structureless bundle
adjustment. The number of parameters to be estimated is significantly reduced in

comparison with the ones in a self-calibrating bundle adjustment based on the



collinearity equations. Therefore, the proposed method is computationally more
efficient. Test results showed that the scale-restraint equation required
approximately 4 times more measurements than the collinearity equations to
achieve comparable calibration accuracy while using only 0.1% of the
computational resources.

The development of a loosely-coupled visual odometry aided inertial navigation
algorithm. The pose changes are pairwise time-correlated, i.e. the measurement
noise vector at the current epoch is only correlated with the one from the previous
epoch. The fusion of the two sensors is usually performed using a Kalman filter.
The standard Kalman filter runs under the assumption that the process noise
vector and measurement noise vector are white, i.e. independent and normally
distributed with zero means. However, this assumption does not hold when fusing
visual odometry and IMU measurements. It is well-known that the solution of the
standard Kalman filter becomes suboptimal if the measurements are colored or
time-correlated. Time-correlated errors are usually modelled by a shaping filter.
The shaping filter developed in this dissertation uses Cholesky factors as
coefficients derived from the variance and covariance matrices of the
measurement noise vectors. The test results with real data showed that the
proposed algorithm reduced the position drifts by 20% and 8% when compared to
the standard Kalman filter and the Kalman filter with the conventional shaping
filter respectively. Furthermore, the method can seamlessly be blended into an

existing state-of-the-art GNSS aided-IMU system.



The development of a tightly-coupled stereo multi-frame aided inertial navigation
algorithm for reducing position and orientation drifts. Usually, the image aiding
based on the visual odometry uses the tracked features only from a pair of the
consecutive image frames. The proposed method integrates the features tracked
from multiple overlapped image frames for reducing the position and orientation
drifts. Hence, the proposed method is referred as multi-frame visual odometry
(MFVO). Previous multi-frame methods, which are sometimes referred as sliding
window methods, use batch estimators that jointly estimate the vehicle’s pose and
feature positions. However, the size of the parameter vector can become
impractically large when the number of features is view is high. Furthermore, it is
difficult to integrate these methods optimally into an existing GNSS/INS
integration architecture. In the proposed MFVO method, the measurement
equation system is derived from Simultaneous Localization and Mapping
(SLAM) measurement equation system where the landmark positions in SLAM
are algebraically eliminated by time-differencing the measurements at two
consecutive epochs. However, the resulting time-differenced measurements are
time-correlated. Through a sequential de-correlation, the Kalman filter
measurement update can be performed sequentially and optimally. The main
advantages of the proposed algorithm are (a) the reduction of computational
requirements when compared to SLAM and (b) a seamless integration into an

existing GNSS aided-IMU system.
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1. Introduction

This chapter provides an introduction to this dissertation. Section 1.1 contains a
background which is followed by the research objectives in Section 1.2. And finally

Section 1.3 outlines the dissertation.

1.1. Background

The high demand for direct-georeferencing technology with low-cost multisensor
integrated kinematic positioning and navigation systems in mobile mapping and direct
georeferencing is continuously driving more research and development activities. Mobile
mapping involves the collection of data to produce maps while in continuous motion.
GNSS aided-inertial navigation systems are widely used for making maps efficiently on
mobile platforms through direct georeferencing, The direct georeferencing method uses
the position and orientation information to geo-code each pixel or point collected by a
camera or LIDAR system, respectively, without the use of extensive ground control
points. The position accuracy of the georeferenced pixels or points depends on the
accuracy of navigation solution.

GNSS provides long term high accuracy of absolute position and velocity solution but
does not work in indoor or urban-canyon environments. INS, on the other hand, works in
all environments but its solution accuracy deteriorates with time. An integrated GNSS-
INS system can take their advantages to determine the trajectory of a moving platform in
position, velocity and attitude and so on. During any GNSS outage the accuracy of the
navigation solution depends solely on the quality of inertial navigation sensors.

Navigation and tactical grade of inertial measurement units (IMUSs) exhibit low solution
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drift rate but are very expensive and not easily accessible to the public in civilian
applications. Hence, more and more low-cost IMUs have been made available during the
past decade. Low grade of MEMS IMUs are considerably cheaper and easily available
but accumulate large errors over a relatively short period of time. To reduce the INS
errors in poor GNSS or GNSS denied environments, other sensors can be added to the
navigation system, for example Wi-Fi positioning, barometer, odometer and
magnetometer to name a few [Aggarwal et al, 2010]. In the past decade, image-aiding has
become a hot topic in multisensor integrated navigation. Cameras are inherently high-
bandwidth and therefore have the high potential for very precise angular resolution and
are readily available and easy to interface with [Miller et al, 2011]. Furthermore, it is
inexpensive in comparison with other self-contained electro-optical sensors such as laser
ranging (LIDAR) [Shen and Liu, 2005].

In order to use cameras as navigation sensors, they have to be calibrated first, which
refers to the determination of the focal length, the principal point offset and the image
distortion parameters. Furthermore, the determination of the translational offsets and the
orientation (boresight) angles between the individual sensors in a multi-sensor system are
also part of the calibration. Usually, the traditional camera calibration consists of
capturing images containing an array of the reference targets with their coordinates
accurately known in a laboratory [Wolf and Dewitt, 2000]. However, such methods
require the setup of enough reference points and the calibrated parameters can become
invalid during field operations, e.g., due to camera assembly/disassembly, replacement

and/or bumps [Teller et al, 2010].



Alternative to the traditional calibration techniques are the auto-calibration (or self-
calibration) methods. An auto-calibration refers to the determination of the camera
parameters from a sequence of the overlapped images without setting up ground control
points (GCPs) or specific calibration targets. The main advantages are: (a) the procedure
can be fully automated, (b) the calibration can be performed in-field, and (c) the accuracy
of the estimated calibration parameters can be improved by the applied information from
other sensors in the system. Typically, an auto-calibration is performed in a bundle
adjustment based on the extended collinearity equations where the interior orientation
parameters (IOPs), the exterior orientation parameters (EOPs) and the object coordinates
(a.k.a. landmark coordinates) are estimated. However, they are computationally
expensive due to the very large number of object position parameters.

Another way of performing the auto-calibration is through structureless bundle
adjustment methods [Faig, 1975; Cefalu et al, 2016]. These methods are based on the
epipolar and scale consistency constraints and are free from object coordinates. The
number of unknown parameters in the bundle adjustment is drastically reduced. Hence,
this PhD research developed a camera calibration method that could precisely calibrate
camera parameters in a GNSS/IMU/Stereo cameras integrated system exclusive of the
object coordinate parameters. It applies the three-view scale-restraint equation [Bethel,
2003; Ghosh, 2005], with which the measurements are processed exclusively in the
image space. Therefore, it does not allocate large memory and computing resources.

Once the cameras are calibrated, they are ready for navigation. There are two main
analytical approaches to extract navigation information from image measurements,

namely visual Simultaneous Localization and Mapping (SLAM) and visual odometry



(VO) [Murcott et al, 2011]. The former simultaneously determines the motion and the
map while the latter only focuses on the motion of consecutive frames. The advantage of
SLAM is that the navigation accuracy can be increased by detecting and applying loop-
closures in scenarios when the same locations are visited more than once [Liu and Zhang,
2012]. However, this benefit does not hold when the same locations are not revisited and
absolute positioning information, such as GNSS or position fixes, are available. The main
drawback with the SLAM is the increase of the computational requirement as more and
more landmarks are added to the map. The VO, on the other hand, can maintain a
constant dimensionality in system parameterization since the output is only the pose
changes of a moving object and does not take up a large memory.

The fusion of imaging and inertial sensors can be performed using batch processing
methods [Indelman et al, 2013b; Leutenegger et al, 2015; Forster et al, 2017] or using a
Kalman filter [Veth et al, 2006; Mourikis et al, 2009; Sazdovski et al, 2011; Bloesch et al,
2015; Liu et al, 2016]. The Kalman filter is generally preferred since the data processing
is conducted sequentially epoch after epoch. Furthermore, GNSS-aided inertial
navigation via a Kalman filter is well-known so that it is natural to employ Kalman
filtering for image-aiding in the GNSS/IMU/stereo cameras integrated kinematic
positioning and navigation. The SLAM-based image-aiding method [Sazdovski et al,
2011] uses the standard form of the extended Kalman filter and does not require any
modification to the current GNSS-aided INS architectures. The VO-based image-aiding
methods, however, require special attention to the following two specifics with the pose
changes: (a) they are relative in nature and (b) pairwise correlated in terms of time. The

relative measurements can be processed using the stochastic cloning Kalman filter



[Roumeliotis et al, 2002], which relates the positions and attitudes of a moving vehicle
between two consecutive image frames. A shaping filter, which is a differential or
difference equation with white noise input and output of a certain correlation function
[Grewal, 2001], is usually used to model time-correlated measurements. The state vector
is then augmented with the state vector components of the shaping filter and the resulting
system model is in the form of a linear dynamic system driven by white noise [Grewal,
2001]. However, the conventional shaping filter for time-correlated measurements in
[Bryson and Henrikson, 1968; Gelb, 1974] does not adequately model the pairwise time-
correlated case and is therefore suboptimal with its application in the VO aided inertial
navigation.

Similar to any dead-reckoning navigation technique, the incremental VO estimates
accumulate errors and drifts over time. The drifts in the VO estimates can be reduced by
utilizing image measurements from more than two consecutive frames; specifically, the
last m frames (m > 2). This approach has been employed in [Mourikis and Roumeliotis
2007; Fraundorfer et al, 2010; Clement et al, 2015; Wen et al, 2016], where the pose and
feature positions are jointly estimated at the local level. However, the number of
parameters in these methods increases as more features are observed and could become
impractical when the dimension of the parameter vector is too high. Furthermore, the
optimal integration of multi-frame image measurements in the current state-of-the-art
GNSS aided inertial navigation is not so obvious.

This dissertation is focused on developments of theoretical and practical techniques
for image and IMU integration. Two image-IMU integration algorithms were developed:

(@) loosely-coupled visual odometry aided inertial navigation (LC VO aided-INS) and (b)



tightly-coupled multi-frame visual odometry aided inertial navigation (TC MFVO aided-
INS).

The LC VO aided-INS employs a Kalman filter algorithm that models the pairwise
time correlated VO measurements. The shaping filter for this type correlation uses
Cholesky factors as the coefficients derived from the variance and covariance matrices of
the measurement noise vectors. The state vector is then augmented with the de-correlated
measurement noise vector which results in the form of the standard Kalman filter. The
test results showed that the proposed algorithm performs better than the existing Kalman
filter algorithms and provides more realistic covariance estimates.

The TC MFVO aided-INS algorithm integrates image data from multiple stereo
frames without involving feature positions in the state vector. The measurement equation
system in this MFVO is derived from the SLAM measurement equation system where the
landmark position parameters are algebraically eliminated by time-differencing the
measurements at two consecutive epochs. However, the resulting time-differenced
measurements are time-correlated. Through a sequential de-correlation algorithm, the
Kalman filter measurement update can be performed sequentially and optimally. The
proposed MFVO algorithm uses far less computation resources while producing identical
navigation solution in comparison with the SLAM method.

The derived system and measurement equations for both the LC VO aided-INS and
the TC MFVO aided-INS algorithms are in the form of the standard Kalman filter.
Therefore, they can be easily integrated into the current state-of-the-art GNSS aided-INS

architectures.



1.2.

Research objectives

The objectives of the dissertation are to:

1.3.

Design, implement and evaluate a structureless camera auto-calibration and
system calibration for a GNSS/IMU/Stereo camera integrated system based on the
scale-restraint equation. Compare (a) the accuracy of the estimated calibration
parameters and (b) the computational complexity of the proposed method with the
auto-calibration algorithm based on the collinearity equations.

Develop Kalman filter algorithm for processing pairwise time-correlated
measurements. Then, implement the algorithm in a loosely coupled stereo VO
aided-INS. Finally, evaluate and compare the accuracy of the proposed algorithm
with the standard Kalman filter and the Kalman filter with the conventional time-
correlated measurements.

Develop and implement an optimal technique for fusing the multi-frame visual
odometry and IMU measurements. Then, evaluate and compare the performance

of proposed method to visual SLAM aided-INS.

Dissertation outline

The remainder of the dissertation is structured as follows: Chapter 2 gives a literature

review of multisensor fusion and integration navigation, camera calibration and image-

aided inertial integrated navigation while Chapter 3 summarizes the fundamentals of

estimation theory, GNSS, inertial navigation and image-based navigation. Right after, the

structureless camera auto-calibration and system calibration algorithms for a

GNSS/IMU/Stereo camera integrated are developed in Chapter 4. Chapter 5 presents the



loosely-coupled visual odometry aided inertial navigation. Then, the tightly-coupled
Kalman filter is presented for fusing multi-frame visual odometry and INS tightly
coupled stereo multi-frame aided inertial navigation algorithm in Chapter 6. Chapter 7
further gives the test results and conducts performance analysis of the proposed
algorithms developed in Chapters 4, 5 and 6 using data collected from YUMIS system by
the EOL lab of York University. At the end, Chapter 8 summarizes the dissertation with

the conclusions of the research and recommendations for future work.



2. Literature review

This chapter contains a literature review. Section 2.1 focuses on camera calibration

while Section 2.2 focuses on reviewing image-aided inertial integrated navigation.

2.1. Camera auto-calibration and system calibration

Image-based navigation (IBN) algorithms assume that the camera system is
geometrically calibrated prior to its use and the calibration parameters do not change over
time. There are many definitions of camera calibration in the literature. In general,
regardless of the various definitions, a camera is considered as calibrated if its focal
length, principal point offset and image distortion parameters are known [Remondino and
Fraser, 2006]. The determination process of these parameters is referred to as camera
calibration. In photogrammetry, the mathematical model for camera calibration involves
the extension of the collinearity equations through additional parameters that model the
distortions. The distortion model generally requires five or more point correspondences
from multiple overlapping images and is fit through a least-squares bundle adjustment
[Remondino and Fraser, 2006].

In multisensor integrated system consisting of a stereo camera system, the
translational offsets and the orientation angles between the individual sensors are
unknown after assembly. In a GNSS, IMU and stereo cameras integrated system, these
geometric parameters are the 3D baseline vector and the relative orientations between
two cameras [Prokos et al, 2012], the lever-arms and bore-sight angles [Bender et al,
2013] of the reference camera with respect to a specific reference point of the system.

The determination of these unknowns is referred as system calibration.



There are different camera and system calibration techniques that solve some or all the
parameters and can be categorized as follows:
Laboratory calibration: determines the focal length and principal point offset using
goniometers, compactors, collimators or other optical alignment instruments in a
laboratory setting [Clarke and Fryer, 1998, Wolf and Dewitt, 2000, Ghosh, 2005]. This
type of the methods is usually employed in high accuracy metric cameras and almost
never in low- cost off-the-shelf cameras.
Traditional calibration: consists of capturing images containing an array of the 3D
reference targets, whose coordinates are accurately known i.e., pre-surveyed [Wolf and
Dewitt, 2000]. The reference targets can be in two or three planes orthogonal to each
other [Zhang, 2004] or in a calibration cage [Moe et al, 2010]. These methods provide a
very accurate calibration results but are expensive to setup and maintain. An easier setup
is to employ planar grid, such as checkerboard [Zhang, 2000]. It is reasonably accurate,
simple to produce and more practical to use. The parameters are usually estimated
through a bundle adjustment or the Levenberg-Marquardt algorithm [Remondino and
Fraser, 2006]. However, these parameters are calibrated in such an environment that may
not necessarily be the same as the real working environment.
Auto (or self) -calibration: performs the calibration by using a sequence of the
overlapping images without the use of any reference target and does not require an
elaborate setup. The calibration can be performed in any environment with texture and
close-range objects. The methods in this category are therefore more flexible and
practical than the traditional methods. However, they may not be able to achieve the

same accuracy level as traditional methods. Besides, the absolute scale of the camera
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system cannot be known without additional information. Similar to the Traditional
calibration methods, the calibration parameters are estimated through a bundle
adjustment (BA) or the Levenberg-Marquardt algorithm.

System calibration: involves the determination of lever-arms [Bender et al, 2013],
boresight angles [Mostafa, 2001] and the absolute scale of the camera system [Kelly el al,
2011] in a multisensor integrated system. These parameters can only be obtained via
external information. For example, lever-arms can be measured using survey equipment,
boresight angles can be recovered with GCPs and the absolute scale can be estimated
using GNSS measurements as the reference.

In-field (or in-flight) calibration: can be considered as a combination of the traditional,
auto and system calibration methods. This is performed when system calibration
parameters are not available or become invalidated during in-field operations, e.g., due to

camera assembly/disassembly, replacement, or bumps [Teller et al, 2010].
2.1.1. Auto-calibration

The most widely used mathematical model for camera auto-calibration is the well-
known extended collinearity, which consists of the collinearity equations and the image
distortion model [Fraser, 2012]. The auto-calibration procedure can be categorized into
block-invariant [Kenefick et al, 1972; Ghosh, 1988] and photo-variant [Moniwa, 1980]
approaches. The former assumes that the distortion is constant in a set of images, while
the latter assumes that the distortion changes between images. Most auto-calibration
approaches involving digital cameras are block-invariant.

The calibration parameters can be determined in a bundle adjustment (BA) [Ghosh,

1988; Triggs et al, 2000] or in the SLAM framework [Civera et al, 2009; Kelly and
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Sukhatme, 2009; Kelly et al, 2011; Keivan and Sibley, 2014]. This process involves the
simultaneous estimation of the calibration parameters, the exterior orientation and the
positions of the stationary objects. In photogrammetry, BA is the preferred method for
this purpose. The parameters are usually estimated by using least-squares (LS) [Triggs et
al, 2000] or the Levenberg-Marquardt (LM) algorithm [Levenberg, 1944; Hartley and
Zisserrnan, 2003]. The size of the computed Jacobian matrix and normal equation system
can be large. Solving this linearized system can be inefficient in terms of the memory and
computation loading and can be impractical especially when the number of the involved
exterior orientation parameters and the involved objects is large [Jeong et al, 2012].

There are several methods proposed to reduce the computation and memory load in
the BA by exploiting the sparsity of the Jabobian matrix and normal equation. Lourakis
and Argyros [2009] presented the Sparse Bundle Adjustment (SBA) by constructing a
dense normal matrix from the non-zero Jacobian blocks, in which the Cholesky
decomposition and back-substitution method were used to solve the parameters. Konolige
[2010] improved the efficiency of the SBA with the Sparse Sparse Bundle Adjustment
(sSBA) by employing a highly-optimized Cholesky decomposition solver. The efficient
Incremental Smoothing and Mapping (iISAM) algorithm was developed by Kaess et al
[2008], where the parameters were updated by a QR factorization of the naturally sparse
normal matrix and by only re-computing matrix entries that actually changed. Kaess et al
[2011] further improved variable reordering and re-linearization in iISAM2 by
implementing a Bayes tree data structure. Although these have methods have improved
the computationally efficiency of solving the BA problem, the number of estimated

parameters can still be large. As an example, consider a set 100 stereo images viewing
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10000 objects. The total number of parameters the being estimated in the BA is 30625
(see Table 2.1) and 98% of them are the position vector of the objects. The object
coordinates are not particularly in need since the goal is to obtain the calibration
parameters. If they can be removed or omitted from the system of equations, then the
memory and computational usage for solving the BA problem can be drastically reduced.

Table 2.1 The components of the parameter vector and the
corresponding size in a stereo camera auto-calibration bundle adjustment

Number of stereo images 100
Number of observed objects 10000
Parameter Size
Focal length error, principal point error 2x3
Image distortion (10 parameter model) 2x10
Stereo baseline and relative orientation (one
. ) 2+3
baseline component is fixed)
Exterior Orientation (one EO parameter is fixed) 6x(100-1)
Object position parameters 3x10000
Total parameter vector size 30625

Several approaches have been proposed to reduce the order of the BA. Dang et al
[2009] introduced a BA with the reduced order for their stereo self-calibration algorithm.
The x and y components of the object positions were algebraically eliminated from the
equation system, only the depth (z) component of the objects remains in the parameter
vector, which reduced the parameter dimension by almost 2/3. The Schur complement
trick was used in [Triggs et al., 2000, Jeong et al, 2012] where the dimension of the linear
equation system was reduced such that only exterior orientation (EO) parameters were
estimated. These methods are useful for cases where only the EO parameters are required
by the user. However, the Jabobian matrix requires a good approximation of the object

positions which can be difficult to obtain if the camera system is not calibrated.
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Calibration methods that are free of object coordinates are referred as structureless BA
or light BA. They typically employ two-view constraints, e.g. the coplanarity equations,
or three view constraints, e.g. the trifocal tensor [Hartley, 1997], or both. Faig [1975]
developed an auto-calibration method which employed the coplanarity equation.
Furthermore, a control restraint condition was included to recover the absolute orientation
of the images. More recently, Rodriguez et al. [2011a, 2011b] developed the Global
Epipolar Adjustment (GEA) using the two-view coplanarity constraint in their bundle
adjustment. Cefalu et al [2016] implemented a similar approach as in [Rodriguez et al.,
2011b], which included the image distortion model into the measurement equation by
Brown [1971]. It has shown that the GEA required less number of iterations than the
SBA using the LM algorithm. Furthermore, the number of parameters is fixed per image
pair. However, the estimated translation vectors between the images are ambiguous and
do not have physical meaning since coplanarity constraint does not ensure that all images
are with the same scale. Scale consistency is important in a multisensor integrated
navigation system and for general applications. Three view constraints can be used to
ensure the scale consistency between the views. Steffen et al. [2012] proposed a
structureless relative BA which combined the epipolar and trifocal constraints between
images. The relative representation of the camera positions improved the numerical
condition of the equation system and is also statistically equivalent to the classical bundle
adjustment. Indelman [2012] implemented the incremental light bundle adjustment
(iLBA) and derived a three-view constraint system involving three equations, i.e., two
epipolar equations and a third three-view constraint equation, for the scale consistency.

Indelman et al. [2013a] integrated the iLBA with IMU measurements for robotic
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navigation. Both Steffen et al. [2012] and Indelman [2012] used monocular vision and
chained the entire image set by constraining images {1, 2, 3}, then images {2, 3, 4}, and
so forth. This chaining ensures that all images operate on the same scale. However, they
assumed that the cameras have been calibrated.

Auto-calibration algorithms have a rank deficiency of order seven (i.e. 3D position,
3D orientation and scale). Hence, they require the minimal constraints to define the
network datum, which can be done by applying the minimum constraint free-network
adjustment, or through explicit minimal control point [Remondino and Fraser, 2006]. In
free-network adjustment one can fix one camera position and one orientation. Then one
coordinate component of a second position or the distance between the two cameras can
be fixed [Cefalu et al, 2016]. If stereo cameras are used, then the length of the stereo
baseline is treated as a free parameter [Hartley and Zisserman, 2003]. In order to recover

the absolute scale, certain external information is needed.
2.1.2.  System calibration

The boresight angles between an IMU and a camera system can be determined with or
without ground control points (GCPs). In the first case, the camera orientation is first
computed using GCPs. Then the IMU body-to-mapping frame direction cosine matrix
(DCM) is determined at the time of exposure. Finally, the boresight angles are recovered
by comparing the two sets of orientations [Skaloud et al, 1996, Mostafa, 2001]. In the
second case, the boresight angles are treated as constant parameters in a bundle
adjustment [Pinto, 2002, Heipke et al, 2002, Mostafa, 2002, Bender et al, 2013]. These
two methods are typically applied in calibrating aerial photogrammetric survey systems

with the known 10 parameters.
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Camera-IMU lever-arms can be measured using survey equipment or estimated in the
BA. Bender et al [2013] presented an in-flight graph based the BA approach for system
calibration between a rigidly mounted camera and an IMU. Image point features together
with the solution of the GNSS aided-inertial navigation position and orientation were
used as measurements. This method simultaneously computed the I0Ps as well as the
lever arms and boresight angles between the two systems. However, it also required one
GCP at least in-order to recover the z-component of the lever-arm vector. Kelly and
Sukhatme [2009] proposed a camera-IMU self-calibration method within the SLAM
framework implemented by an unscented Kalman filter. The lever-arms and mounting
angles, the IMU gyroscope and accelerometer biases, the local gravity vector and
landmarks could all be recovered from camera and IMU measurements alone. However,
they assumed that the internal camera parameters were known beforehand. Mirzaei and
Roumeliotis [2008] presented a similar tightly-coupled approach using an iterative
extended Kalman filter, but, in need of known landmark position.

Auto-calibration algorithms in free-network adjustment mode require external
information to compute absolute scale of the camera system. Kelly el al [2011] focused
on determining the absolute scale of both the scene and the baseline in a stereo rig using
GNSS measurements. Their approach was similar to the photogrammetric BA and the
structure from motion algorithms. They could recover the baseline and the relative
orientation between the two cameras and the lever-arms between the GNSS antenna and
the reference camera.

Accordingly, this dissertation develops a camera auto-calibration algorithm using a

structureless bundle adjustment for a stereo camera system. Furthermore, system
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calibration is performed using GNSS/IMU data to recover the boresight angles, lever-
arms and absolute scale of the camera system. Both camera auto-calibration and system

calibration parameters are estimated simultaneously using the least square method.

2.2.  Image aided-INS integration

In an image aided-INS (IA-INS), the performance of the inertial navigation system can
be improved by fusing the measurements derived from images taken by an on-board
camera system. Typically, point features are extracted and matched from consecutive
overlapping image frames using image processing techniques. Then the IA-INS
algorithm uses these point features as measurements to estimate the navigation states via
batch processing [Indelman et al, 2013b; Leutenegger et al, 2015; Forster et al, 2017] or a
Kalman filter [Veth et al, 2006; Mourikis et al, 2009; Sazdovski et al, 2011; Bloesch et al,
2015; Liu et al, 2016].

The camera system can consist of a single or stereo camera. Monocular vision can
only estimate the trajectory only up to an unknown scale. Stereo vision, on the other
hand, avoids the scale ambiquity inherent in monocular vision when the stereo baseline
is known. Furthermore, monocular vision requires three consecutive frames in order to
transfer the relative scale and this tends to reduce the stability of the system [Scaramuzza
and Fraundorfer, 2011].

Since the early 1980s, IA-INS research has been conducted. Moravec [1980]
introduced one of the first image-only motion estimation using stereo cameras. Merhav
and Bresler [1986] developed an online image-based velocity-to-height ratio estimation
algorithm and its integration with on board navigation sensors. With the availability of

digital cameras in the 1990s, the typical data process of modern IA-INS consists of three

17



main steps (a) point feature detection (b) point feature matching and (c) pose (or pose

change) estimation and navigation state update. Figure 2.1 overviews a typical modern

IA-INS.
INS

IMU Trajectory

Camera INS IA-INS IA-INS
System Error Estimate 1 Navigaton I Trajectory
¥ Update

A
Feature N Feature
Detection Matching

Figure 2.1 Overview of a typical IA-INS system

In the feature-detection step, stable points, such as corners and blobs, are located on
the images. For navigation applications, the detector must be repeatable, i.e. it should
ideally be able to find the same point features in multiple frames. Many feature detectors
have been developed, for example, Harris [Harris et al., 1988], SIFT [Lowe, 1999] and
SURF [Bay et al., 2008]. Once the features have been identified in each frame, they are
matched across multiple frames. This is achieved by first constructing a feature descriptor
using pixels around the point. The descriptor vectors on an image are then matched
against descriptors from other images in order to obtain correspondences. Constrained
matching techniques can be employed to reduce the number of potential matching
candidates and there can reduce the search time. In the case of stereo vision, the search
can be performed along the epipolar lines between the stereo pairs [Bin Rais, et al, 2003].

Between consecutive frames, the locations of the features on the next frame can be
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predicted using a motion model [Scaramuzza and Fraundorfer, 2011] or using the motion
estimate from the inertial navigation solution [Veth et al, 2006]. This can effectively
reduce the search radius, increase the efficiency and help to prevent aliasing. Figure 2.2

shows point features extracted and matched from a stereo pair.

Left Image Right Image

Figure 2.2 Matching of point features from a pair of stereo frames

The pose estimation and navigation state update are typically based on visual SLAM
[Davison, 2003; Konolige, K and Agrawal, 2008; Alcantarilla et al, 2012] or visual
odometry (VO) [Nister et al, 2004; Konolige, et al 2007; Gopaul et al, 2017]. The former
applies the well-established SLAM algorithms, while the latter tracks common features
from the consecutive image frames [Murcott et al, 2011].

The SLAM technique incrementally builds a consistent map of landmarks in an
unknown environment whilst the simultaneous determination of the location of the
mobile system is being conducted [Dissanayake et al, 2006; Durrant-Whyte and T.
Bailey, 2006a; Thrun et al. 2008]. The state vector consists of the navigation states
(position, velocity and/or orientation) and the landmark positions. The SLAM algorithm
requires map maintenance where newly visible landmarks observed from the
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environment are added to the map and landmarks that are no longer visible or to be
revisited are removed from the map.

Visual SLAM tends to be more accurate than VO, since the map retains the memory
of the measurements over multiple frames while VO only employs measurements from
two latest consecutive image frames [Scaramuzza and Fraundorfer, 2011]. Furthermore,
the accuracy of visual SLAM can be increased by detecting and applying any loop-
closure in scenarios when any location is visited more than once [Liu and Zhang, 2012].
However, the application of loop-closures may be irrelevant in cases where past locations
are not revisited and when absolute position measurements, such as GNSS position or

position fixes, become available. Furthermore, the main drawback with the SLAM is the
computational load increases in the order of O(n?), wherein nis the number of

landmarks in the map.

The computation complexity can be reduced though approximate and suboptimal
methods. Guivant and Nebot [2001] introduced a suboptimal EKF-SLAM method where
only a subset of the landmarks’ variance-covariance (VCV) matrix is considered during
the measurement update. The VCV estimate then becomes more conservative. Julier
[2001] used the Schmidt-Kalman filter, in which only the camera pose and a limited
subset of the landmarks are updated. The computational costs become linear in relation to
the number of the landmarks in the state vector. Even though suboptimal methods trade
optimality for computation and memory usage, they can also degrade or even cause the
KF estimates to diverge. Since VO concerns only in determining the trajectory and does
not have to deal with landmark positions, it is computationally more efficient than visual

SLAM and can work in constant state vector size [Williams and Reid, 2010].
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The image-aided inertial integrated navigation can be achieved using a batch
processing (e.g. bundle adjustment [Indelman et al, 2013b] and non-linear least-squares
[Leutenegger et al, 2015] and graph-based optimization [Forster et al, 2017]) or a Kalman
filter [Veth et al, 2006; Mourikis et al, 2009; Sazdovski et al, 2011; Bloesch et al, 2015;
Liu et al, 2016]. Batch processing methods process all measurements simultaneously to
compute all the parameters. However, these methods can be impractical when the
dimension of the parameter vector becomes large. The Kalman filter, on the other hand,
IS a recursive process, more computationally efficient and more practical. Furthermore, it
is preferred since the state-of-the-art GNSS-aided inertial integrated navigation typically
employs a Kalman filter.

Similar to multisensor integrated navigation systems in general, the integration
schemes of vision-aided inertial navigation can be divided into loosely- and tightly-
coupled approaches [Corke el al, 2007]. A loosely-coupled system consists of two
parallel estimation processes that run at different rates and exchange information. The
first filter processes the image measurements to obtain the pose or pose change. Then a
second filter performs the visual-inertial integration using the output of the first one as
measurements. The tightly-coupled approach directly combines image measurements (2D
or 3D) and inertial measurements in a single and optimal filter. A loosely-coupled system
integrates two well-known subsystems and tends to be computationally more efficient
[Leutenegger et al, 2015]. However, the estimation of the camera biases is almost
impossible [Li and Mourikis, 2013]. The state vector in tightly coupled systems can
include camera biases. However, this requires extensive filter model tuning and increases

the computational loading [Corke el al, 2007].
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In a VO aided INS [Roumeliotis et al, 2002; Tardif et al, 2010, Sirtkaya et al, 2013],
the VO measurement are relative in nature, that is, they are the differences of the
positions and attitudes of a moving vehicle between two image frames, from which the
VO estimates were derived [Roumeliotis et al, 2002]. The measurement equation is a
function of the state vector at the current epoch k and the previous epoch k-1 (or some

epoch in the past). Equation (2.1) illustrates this model:
zy =hX, X 1) + Vi (2.1)
where z, is the measurement vector, X, and X,_,; are the state vectors, V, is the

measurement noise vector, and h(.) is the nonlinear measurement model. The current

systems augment the state equations to accommodate the relative measurements

[Roumeliotis et al, 2002, Konolige et al, 2007, Tardif et al, 2010]. The augmented state

vector contains two copies of the original one. The first copy X, evolves with time,

while the second copy X,_; remains stationary. They are then related to each other

through the measurement model in (2.1). This approach increases the accuracy of the
estimated states and improves the robustness of the system [Roumeliotis et al, 2002].
Another issue with VO is that two consecutive VO estimates are time correlated. The
position and attitude change at epoch k is derived from the tracked features at epochs k
and k —1. Some of the common features at epoch k —1 are also used to derive the relative
position and attitude change between epochs k —1 and k —2. Since there are no common
feature points are shared at epochs k and k —2, only two consecutive VO measurements
(i.e. at epochs k and k—1) are correlated. Hence, they are pairwise time-correlated,

which was first coined by Bierman [2006]. The Kalman filter in the standard form
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assumes that the process noise vector and the measurement noise vector are white and
conform to normal distributions with their expectations of zero. However, this
assumption is not satisfied with the VO measurements. If the aiding is performed with the
standard Kalman filter and the measurement noise vector is colored or time-correlated,
the solution of the states will become suboptimal. Neglecting significant time-correlated
errors can degrade the performance of the filter. In this case, the Kalman filter is usually
augmented with a shaping filter that handles the time-correlated measurements [Bryson
and Henrikson, 1968; Gelb, 1974]. However, the commonly used shaping filter as in
[Bryson and Henrikson, 1968; Gelb, 1974] not only assumes that the measurement noise
are correlated with the ones from the previous epoch, but also with the ones before them,
i.e.,, from epochs k—2, k—3 and so on. Hence, it cannot appropriately model the
pairwise time-correlated measurements. If it is employed in VO-aided inertial integrated
navigation, the Kalman filter solution will not produce optimal results. Bierman [2006]
introduced a sequential method for whitening pairwise time-correlated measurements for
a time series, which uses the Cholesky factors derived from the measurement variances
and covariances. The algorithm is efficient, since it is recursive and does not require all
the measurements simultaneously available for computation. Mourikis et al [2007]
developed the Stochastic Cloning-Kalman filtering equations to deal with pairwise
correlated measurements, which involved augmenting the state vector with the feature
observations and then estimated camera pose in the following epoch. Although the
position and orientation estimates were optimal, the size of the state vector and variance-
covariance matrix increases as more observations are made available. This obviously

requires more computation and memory resources.

23



This dissertation proposes a novel method for processing pairwise time-correlated
measurements in a Kalman filter. The corresponding shaping filter uses Cholesky factors
as coefficients that are derived from the measurement noise variance and covariance
matrices. The state vector is augmented with the de-correlated measurement noise vector
which results in the form of the standard Kalman filter. The advantages of the proposed
algorithm can be summarized as follows: (a) the shaping filter models the VO
measurement noise characteristics correctly (b) the Kalman filter can provide a more
realistic covariance estimates (c) the size of the state vector is constant and (d) can be
easily integrated into an existing GNSS aided-INS architecture.

The drift of VO pose estimates can be reduced by utilizing image measurements from
more than two consecutive frames, specifically, the last m frames (m > 2). These
approaches, which are often referred as sliding window filter or windowed bundle
adjustment, employ batch processing estimators and jointly estimates the vehicle’s pose
and feature positions at the local level [Fraundorfer et al, 2010; Clement et al, 2015; Wen
et al, 2016]. They have also been implemented in integrated visual-INS systems
[Leutenegger et al, 2015; Qin et al, 2017]. Leutenegger et al [2015] employed a non-
linear least-squares estimator where the cost function combined the weighted reprojection
errors for visual landmarks and inertial error terms for a stereo system. Qin et al [2017]
proposed a non-linear optimization-based estimator for a monocular-IMU system using
pre-integrated IMU factors. Moreover, they included a procedure for relocalization and
loop closure. The number of parameters in these sliding window methods increases as
more features are observed and can become impractical when the dimension of the

parameter vector becomes too high. Furthermore, it is difficult to integrate these methods
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optimally with the current GNSS/INS integration architecture since they do not employ a
Kalman filter. Mourikis and Roumeliotis [2007] developed the Multi-state Constraint
Kalman Filter (MSCKF), in which the state vector contained vehicle poses in a variable
window and did not contain feature positions as the feature positions were handled
separately in a batch processor. This method computes 3D feature position in the global
frame, which can be problematic if the position errors are too large and they require all
measurements related to a feature from the last m poses to have been observed before the
update is performed.

This dissertation proposes MFVO aided inertial navigation algorithm that integrates
image data from multiple frames without involving feature or landmark positions in the
state vector. This is accomplished by algebraically eliminating the landmark position
vector in the SLAM measurement equation at two consecutive epochs. However, the
derived measurements are time-correlated. Through a sequential de-correlation algorithm,
the system and measurement equations take form of the standard Kalman filter. Thus the
Kalman filter measurement update can be performed sequentially and optimally. The
advantages of the MFVO algorithm aided inertial navigation can be summarized as
follows: (a) the integration of image measurements from multiple frames without
involving landmark positions (b) the reduction of computational requirements when
compared to SLAM and (c) a seamless integration into an existing state-of-the-art GNSS

aided-INS architecture.
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3. Estimation theory and navigation sensor overview

This chapter provides the fundamentals and background that will be required for the
development in Chapters 4, 5 and 6. The relevant mathematical techniques are reviewed
in Section 3.1. Section 3.2 overviews least-squares and Kalman filter techniques. Section
3.3 defines the coordinate systems and the transformation between coordinate systems
used in the research. Sections 3.4, 3.5 and 3.6 present the fundamental concepts of GNSS,

INS and image-based navigation (IBN) respectively.

3.1. Mathematical preliminaries

The section reviews the mathematical techniques and operations that are used in this
dissertation. The following topics are presented: direction cosines matrices and

mathematics of the rotation vector.
3.1.1. Direction cosine matrix

Direction cosine matrix (DCM) is an essential element in multisensor integrated
navigation, which transforms a 3D vector from one coordinate frame to another and is

also called the transformation matrix.
3.1.1.1. DCM and Euler angles

The DCM can be expressed by three successive rotations about any three axes and the
angles of rotation are called Euler angles. There is no unique sequence to apply the
successive rotations. The most commonly used sequence rotations, called the Tait-Bryan
angles, performs the rotations about three distinct axes. For example, the Tait-Bryan
angles between the navigation frame (see Section 3.3.3) and the body frame (see Section

3.3.5) are the roll (¢), pitch (@) and heading (y ) angles. The first rotation is performed
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about the z-axis by the heading angle, the second rotation about the y-axis by the pitch
angle and the final rotation is performed about the x-axis by the roll angle [Bekir, 2007;
Rogers, 2007]. The sequential transformation from the navigation frame to the body can
be expressed as
X" =C,(#)Cy (6)C, (w)X"
1 0 O0)co 0 -s@) cy sy O

=10 cg sg 0 1 O |-sy cy OK
0 —-s¢g cps@ 0 co )i 0 0 1

3.1)

with ca=cosa and sa=sina for a=¢,0 or . Combining the sequential rotations in

Equation (3.1), the DCM (transposed) becomes as

Cy sgsley —Cgsy Cesly +sgsy
Co(0p) =| coby sgsGsy+cgey  Cosbsy —sgey 3.2
—-s6 s¢gco cgcl

where 0] = (4,0, w)" . Given the DCM, the Euler angles can be recovered by

—tan~L(&2
¢ =tan"(gX)

0 =sin!(-C,,) (3.3)
_tan-t(Cn
y =tan™ (%)
3.1.1.2. DCM and the rotation vector

Instead of performing three sequential rotations to transform between two coordinate
systems, one can use the rotation vector ¢ to perform one rotation around a single fixed
axis. The DCM can be expressed in terms of the rotation vector by the Rodrigues formula
[Roger, 2007, p 30]

CJ = clo|1 +s|o|(ux) + L —cle)uu’ (3.4)
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where |(p| is the rotation angle and u is the rotation unit vector. If the rotation angle is
small, then Equation (3.4) can be approximately written as

C) ~ I +|g|(ux) =1+@x (3.5)
Given the DCM CJ, the magnitude of the rotation vector can be computed with [Bekir,
2007, pp45]

| = 2cos‘1(%w/tr (c) +1)

(3.6)
3.1.1.3. DCM differential equation
The DCM differential equation is given as [Rogers, 2007, p29]

Cy=CjQ}, =-Q}C/ (3.7)
where Q. is the skew-symmetric form of the angular rate vector @}, . In the linearized
form, (3.7) can be written as [Rogers, 2007]

P = QX O, + 5wy, =—Q ¢+ 0y, (3.8)
3.1.1.4. Rotation vector differential equation

Rotation vector differential equation can be written as [Salyshev, 2004, p30]

 |o[sin|e]

2(1- cos|ol) Ju <o) &9

. 1 (
(p:(o+5q)><m+ 1

where o is the angular rate vector between frames. For small angle ||, Equation (3.9)

can be rewritten as

(i):m+%(pxm+%q)x((pxm) (3.10)
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3.1.1.5. Quaternion

The Quaternion is a four-dimensional vector that can be used to represent rotations
and attitude. Quaternions are useful in avoiding singularity problems in attitude
representation when the pitch and roll angles are close to 90 degrees. However, this is not
expected in the research presented in the dissertation. Therefore, it will not be used.

Readers interested in this topic can refer to [Salychev, 2004; Rogers, 2007, etc.].

3.2.  Estimation theory

This section summarizes least-squares estimation, Kalman filtering and outlier
detection with the help of statistic tests. Least squares method and Kalman filter were
originally developed based on linear systems and then extended to non-linear ones. Most
systems are inevitably non-linear in nature. Therefore, the concepts presented here starts
with non-linear and linearized counterparts.

3.2.1. Least squares estimation

The least squares (LS) algorithm is a method for estimating unknown parameters in a
measurement model by minimizing the weighted sum of measurement residuals squared.
Consider the following non-linear implicit measurement equation system:

h(x,z,v)=0,v~N(O,R) (3.11)
wherein x is the nx1 unknown parameter vector; z is the px1 measurement vector; v
is the px1 measurement noise vector; and h(.) is the mx1 vector of the measurement
functional model. v is generally assumed to be normally distributed with its zero-mean
and positive definite variance-covariance (VCV) matrix R

R=ciW™ (3.12)
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where a§ is the variance of unit weight and W is the measurement weight matrix. To

estimate the unknown parameters using least-squares method, the measurement model

needs to be usually linearized about the measurement vector z and an given approximate

x@ of x. The first order Taylor series expansion gives:

0 =h(x 2)
=h(x? +&,z—-V) (3.13)
~h(x?,2)+H, x-H,v

where ox is the correction vector of X, h(x?,z) is the misclosure vector, H, is the

mxn Jacobian matrix of h(.) at x® and vector H, is the mx p Jacobian matrix of h(.)
at z.
The most probable value of the parameter correction vector ox is the vector Sx that
minimizes the weighted sum of squares of the measurement residuals ¥ (i.e. the
difference between the measurement vector and the model). This is achieved by
computing &x such that the following the cost function J is minimized
J=U"RY. (3.14)
The LS solution for the parameter correction vector and its variance-covariance matrix

is given by (derivations omitted here):

& =-N"THIM*h(x©,z)
P=65P=65N"
M=H,W™'H]
N=H;M™'H,

(3.15)

wherein

N is the coefficient matrix of the normal equation system,

30



P is the variance-covariance matrix of the estimated parameters, and

o UTWY
O-O =
m-—n

,(m>n) is the a-posteriori variance of unit weight.

The trace of the P matrix can be interpreted as a measure of the overall accuracy of
the estimated parameters [Caspary, 2000]. The measurement residual vector and the
corresponding VCV

U=WTHIM'[h(x?,2)+H,X]

(3.16)
Yoo = EWHIM I - H, (HIMH, ) THTM A H, W

In the case where a-priori information of some or all of the parameters are known

with VCV P,,, the solution then can be expressed as

N=P,+HIM™'H,
X=N"THIM™sz . (3.17)
P=6iP=6¢N"

The formulation in (3.17) can be useful for processing the measurements sequentially.

For more discussion of least-squares techniques, refer to [Gelb, 1974, Bierman, 2006,

Simon, 2006, etc.].
3.2.1.1. RANSAC

The random sample consensus (RANSAC) [Fischler et al, 1981] algorithm is an
iterative parameter estimation of a mathematical model from a set of measurements
which contains large number of the outliers. RANSAC first estimates candidate solutions
using minimum number of measurements that are randomly selected. Then a consensus
set of measurements created with consistent inliers. This process is performed iteratively

and the best consensus set is used to estimate the parameters. There are many variations
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of this algorithm, for example, the MSAC (M-estimator SAC), the MLESAC (Maximum
Likelihood SAC) and the R-RANSAC (speeded RANSAC), etc. Performance analysis
and comparisons between different algorithms and applications can be found in
[Subbarao et al, 2006, Chum et al, 2008, Choi et al, 2009]. The basic RANSAC algorithm
can be summarized as follows:
1. Randomly select the minimum number of measurements to solve the
parameters
2. Solve the parameters with the minimum measurement set
3. With the remaining measurements, determine those that fit the model in step 2
within a predefined tolerance and add them to a consensus set
4. If the fraction number of inliers measurements is greater than a predefined
threshold, then solve the parameters with the consensus set
5. Repeat steps 1 to 4 until the best consensus set is obtained within N iterations
The theoretical number of iterations (N ) can be determined based on the probability (

p ) that the RANSAC algorithm in some iteration in step 1 selects only inliers. If u is
the fraction of inliers in the entire measurement set and M,,;, is the minimum number of
measurements required for solving the parameters, then U™ is the probability that all
Myin PoINts are inliers. This implies that 1—-u™i js the probability that at least one of
M., points is an outlier. The probability that RANSAC only selects outliers is
(1—u™n)N and therefore

(1-p) = (1—yMmin) (3.18)

Solving for N one obtains
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log(1—u™nin) '

Typically, the probability p is usually set to 0.99 and u can be an approximation or
obtained empirically. Depending on the scenario, both methods of determining the value

of uwere employed in this dissertation.
3.2.2. Kalman filter in discrete time

The Kalman filter, developed by Kalman [1960], is a set of mathematical equations
that implement a predictor-corrector type estimator that is optimal in the sense that it

minimizes the covariance. Consider the following discrete system at epoch k :

X = Fi (X1, Wy _q)
z, =h (X ) + vy

(3.20)
wherein x, is the nx1 state vector, f,_,(.) is nx1 vector of the system functional model,
w,_, the qx1 process noise vector, z, is the mx1 measurement vector; h,(.) is the
mx1 vector of the measurement functional model and v, is the mx1 measurement
noise vector. w,_; and v, are assumed to be w,_; ~N(0,Q, ;) and v, ~N(0,R,) with
the positive definite variance matrices Q, ; and R, , respectively. Furthermore,
E[v;vj]1=0 for i# ], E[w,w}]=0 for i# ] and E[v;w]]=0O for all i and j are
assumed. The time update of the state vector is given as follows [Simon, 2006]:

% =fi1(%e1.0)

) (3.21)
P = (I)k—lpl:—lq)-II(——l + Tk—le—l\I’-l[—l
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where @, =Tt ., isthe nxn state transition matrix and ¥, ; = us _isthe nxp
k-1 k-1

coefficient matrix of w,_,. The measurement update in a minimum variance sense of the
state vector gives

X =%+ K (z —h (%)
Pk+ =(I —Kka)Pk_ (3.22)
K, =P Hy (HPH +Ry )™

wherein H, =%A_and K 1s the Kalman gain matrix. The minus (-) and plus (+)
Xk

superscripts indicate the time-update and measurement update estimates, respectively.

The system innovation vector d, and system innovation matrix is given by

dy =2y —hy (%)

(3.23)
S, =H.P-H| +R,

For more discussion of Kalman filtering technique refer to [Gelb, 1974, Bierman, 2006,
Grewal and Andrews, 2001, Simon, 2006, etc]. For the sake of simplicity and illustration
of Kalman filter concepts, the remaining part of the dissertation shall use the linear

model, i.e.

X = Py Xy + W Wy g (3.2)

3.2.2.1. Kalman filter with time-correlated noise

The standard Kalman filter presented in the previous section assumed that the

measurement noise vector v, is not timely correlated, i.e., E[vivTj]:O. Now consider

the case where the vector v, is time-correlated (a.k.a. colored measurement noise), i.e.
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E[vivTj] # O. The correlation is typically modeled by a shaping filter driven by the white

Gaussian noise of zero mean [Gelb, 1974; Grewal and Andrews, 2001; Simon, 2006].
Accordingly, the system and measurement equations become

X =@ X g+ ¥ Wy g, Wy ~ N(0,Qy )
Vi =WV M M ~ NO.Q, )

wherein vy, _, is the mxm transition matrix of the time-correlated measurement errors,
N, IS the mx1 white driving noise vector with zero mean and the associated positive
definite variance matrix Q, . The covariance matrix of the time-correlated

measurements between two consecutive epochs k and k —1 is given as [Simon, 2006]:

Ryka = E[VkVI—l]

=E[(wy Vi + 'lkfl)VLl]

=y, BV Vi 1+ Em Vi ] (3.26)
=y, 4R, +0

=y R

Two main approaches used to deal with the time-correlated measurements are the
measurement differencing and the state vector augmentation [Bryson and Henrikson,
1968; Gelb, 1974; Simon, 2006]. The first approach removes the time-correlated part of
the measurement noise by time-differencing the measurement equations. However, this
method introduces a time latency in the updated state vector since measurements up to
epoch k are used to estimate the state vector at epoch k —1 [Petovello et al, 2009]. More
details on the measurement differencing method can be found in [Bryson and Henrikson,
1968; Simon, 2006]. The state vector augmentation method extends the system and
measurement models to

35



09 5 S Il )
Vi O v \viy o) I P

(3.27)
2 =(H, 1) |40
k k Vk
In short form, the above equations can be written as
X = @y Xy + Wi Wi, Wiy ~ N(0,Qy4) (3.28)

wherein the symbol ~ denotes the augmented vectors and matrices. With the above

formulation, the standard Kalman filter equations can be employed. The variance-

covariance matrices of the new process noise and measurement noise vectors are

Qk—l = E[V~Vk—1"~V1—1]

e )

(Qu ©
- O Q‘lk—l

Ry =E[V,Vi]1=0

(3.29)

Notice that the measurement covariance is now zero. Theoretically, it is possible to run

the Kalman filter with zero measurement errors [Simon, 2006]. Practically, the

~ o~

covariance matrix of the system innovation vector S, =H,P;H! +R, =H, P H] has to

be invertible [Grewal and Andrews, 2001]. However, the VCV matrix of the augmented
state vector can become singular, especially when the transition matrix is close to identity
[Bryson and Henrikson, 1968; Gelb, 1974]. To mitigate these numerical problems,
[Wang et al, 2012] proposed two algorithms, the Tikhonov KF and the Perturbed-P. The
former regularizes the gain matrix K so that the VCV matrix of the augmented state
vector becomes invertible. The later adds a small quantity to the diagonal elements of the
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singular VCV matrix so that it is made positive definite. However, these two methods are
not optimal.

The formulation of the time correlated measurement noise model in Equation (3.25),
Vi = WkaVka T Mk (3.30)
assumes that measurement noise vector v, at epoch k is not only correlated with the
measurement noise vector v, , at epoch k-1but also with the measurement noise
vectors before the epoch k—1. For example, the correlation between v, and v,_, can be
derived as

Ryk2= E[ViVi_2]
= E[(Wk-1Vics + Mea) V2]
= E[(W i1 (Wk2Via + Me2) + Mea) Vio]
= E[(WiaWi2Viea + Wiz + Mka) Vo] (3.31)
= Wi Wi EVic Vi o1+ Wi Elne o Vi o]

+ E[‘Ik—lvl—z]
=YWy Ry, +0O+0

=VaWi2R 2 #0
If vector v, is pairwise time-correlated (i.e. v, is not correlated with v;for j<k-1)

and the shaping filter in (3.25) is used, then the state estimates will not be optimal.
Furthermore, the solution performance can be degraded. Accordingly, Section 5.2.2

develops a method to process measurements that are pairwise time correlated.
3.2.3.  Outlier detection via statistic tests

Outlier detection is important for quality assurance and quality control of the estimates
from both least squares and Kalman filter. Assuming that the system and measurement
models are correct, measurement outliers can be identified by performing statistic tests on
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the measurement residuals and the system innovations [Wang, 1997, 2008]. The statistic
test procedure can be summarized as follows [Caspary, 2000]: (a) formulate a null

hypothesis H, against its alternative H,, (b) construct a suitable statistic based the
known distribution of the random variable or vector for which H,is true, and (c) select
the risk level (a.k.a. significance level) « to accept or rejectH,, .

Consider the statistic tests on the individual measurement residuals. The null
hypothesis is H, :v; =0 and the alternative is H, :v; =0 where v; is the i measurement

residual of the residual vector v. For the case where the a-priori variance factor o is

known, the test statistic follows the standardized normal distribution [Caspary, 2000]:

y=—_ ~N(0J). (3.32)

00 ViV;

If |YI<Snoniarzs Enoni-arz 1S the corresponding two-tails critical value, the null

hypothesis H,will be accepted. For the case where the a-priori variance factor oé is

unknown or unreliable and the a-posteriori variance factor 6Z is available, then the test

statistic follows the 7 distribution [Caspary, 2000]:

Y, =——"~1,. (3.33)

If |YI<& u1 a2, uisthed.o.f.and &, 1,/ is the corresponding two-tails critical value,

the null hypothesis H,will be accepted. The 7 statistic is derived from the Student’s t

statistic as follows [Pope. 1976]:

38



7, :ﬂ_ (3.34)

Consider the statistic tests on the system innovation vector d, as a global test at

epoch k [Wang, 2008]. The null hypothesis is H,:d, =0 and the alternative is

H, :d, #0. The test statistics is

Yo =diSid = 7y (3.35)
If y< C—’Z,(z,u,l—a’ where u is the d.o.f. and 98;(2,u,1_a is the corresponding critical value, then
the null hypothesis will be accepted. The individual elements of d, can also be tested by

the following normal test statistics:

d. .
Yo =L~ N(0,) (3.36)
k,ii

where d; is the i element in d, . The null hypothesis H, will be accepted if

|yl SN(o1)1-a/2- The t-and F - tests can also be applied to the system innovation.

However, these tests are not common [Wang, 2008]. Details and discussion on statistic
test in least squares and Kalman filtering can be found in [Caspary, 2000] and [Wang,

1997, 2008] respectively.

3.3.  Coordinate frames and transformations

In navigation and surveying applications, the positioning solution is typically
expressed in geodetic coordinates and in roll, pitch and heading for attitude. The
measurements from the sensors in a navigation system are usually given in their own

specific coordinates forms. These measurements should be modeled as the functions of
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the selected navigation parameters that are relevant to the application and readable to
users. Therefore, it is important to define all coordinates that are involved in the
development of a navigation system. This section overviews the definition of such

coordinates systems applied in this dissertation and their transformations.
3.3.1. Inertial frame

An inertial frame is a frame which does not rotate or accelerate [Salyshev, 2004. p9].
However, it is impossible to realize. Instead a right ascension system as an approximation
to the ‘true’ inertial frame is employed which is more suitable for surveying and
navigation. The inertial frame (i-frame) defined here is a stationary frame with respect to
the distant stars. It has its origin at the Earth’s center of mass, the x-axis points towards
the mean vernal equinox, z-axis points toward to the North-pole and y-axis is

perpendicular to the z-axis forming a right-hand orthogonal coordinate system.
3.3.2. Earth frame

The Earth-centered and Earth-fixed (e-frame) shares the same origin as the inertial
frame i.e. the center of mass of the Earth. The x-axis points towards the Greenwich
meridian in the equatorial plane. The z-axis points toward to the North-pole. The y-axis is
perpendicular to the z-axis forming a right-hand coordinate system. The e-frame can be
transformed to the i-frame by a negative rotation about the z-axis by the amount of the
Greenwich Mean Sidereal Time (GMST) [Salyshev, 2004, p11]. The rotation rate vector

of the e-frame with respect to the i-frame projected on to the e-frame is

0.=0 0 @) (3.37)
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where @, is the magnitude of the rotation rate of the Earth (7.2921158x107 rad/s). The

relationship between the e-frame position vector x¢[m] and the geodetic coordinates is as

follows

e

X (Ry +h)ceca
Xe=|Y | =| (Ry+h)cesd (3.38)
Z (Ry(1—€?) +h)sep

where ¢ is the geodetic latitude, A is the geodetic longitude, h is the geodetic height,
Ry is the curvature radius in the prime vertical and € is the first eccentricity of the
reference ellipsoid. The WGS84 reference ellipsoid is used in this dissertation.

3.3.3.  Navigation frame

The navigation frame (n-frame) is a local level frame that moves with the vehicle with
its origin located at a predefined point on the vehicle. Its z-axis is normal to the reference
ellipsoid and points downwards while its x and y axes point towards the geodetic North
and East, respectively, to complete a right-handed Cartesian coordinate system. The

DCM matrix from the n-frame to the e-frame is

—-SpCA —SA —cCcecA
Ci=|-spsA cA —cesd (3.39)
co 0 —-S@

The Earth’s rotation rate vector in the n-frame can described as
n _~e_e _ T
Mije _anie _(a)eC(p 0 _a)es(p) (3-40)
The transport rate vector @, is the rotation rate vector of the n-frame with respect to the

e-frame
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T
n _(_VE Vi vl tang
Oen _((RN +h)  (Rg+h)  (Ry +h)) (3.41)
where vy and vg are the North and East velocity components in [m/s], respectively, and

Rg is the curvature radius of the meridian [m].

3.3.4. Computer frame

The computer frame (n°-frame) is local level frame that has the origin at the computed
inertial navigation position. Its z-axis is normal to the reference ellipsoid and points
downwards while its x and y axes point towards the geodetic North and East,
respectively, forming a right-handed Cartesian coordinate system. The misalignment
vector of the n°~frame w.r.t the n-frame is given by (Benson, 1975):

D=(cpst -G -spoi) (3.42)
where s and &1 are the latitude and longitude errors, respectively. The DCM matrix

from the n-frame to the n°-frame can be written as
Cp =1-Mx (3.43)
3.3.5. Body frame

The body frame (b-frame) shares the same origin with the n-frame. Its x-axis points
along the vehicle’s longitudinal axis and the z-axis points down while its y-axis forms a

right-handed coordinate system. The DCM matrix from the b-frame to the n-frame is

Cy sgsey —Cgsy Cgsly +Sgsy
Ci=|Cclhy sgby+cdcy Cgsbsy —sgcy (3.44)
-sé s¢gco cgct

where ¢ is the roll, @ is the pitch and y is the heading.
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3.3.6. Camera frame

The camera frame (c-frame) is the frame in which the image measurements are taken.
Its origin is at the perspective center of the reference camera. Its x-axis and y-axis are
parallel to the columns and rows of the CCD sensor while its z-axis points away from the
CCD sensor to form a right-handed coordinate system. The camera system is assumed to
be rigidly mounted on the vehicle. Hereafter, the left camera is set as the reference
camera in the stereo system. The transformation from the c-frame to the b-frame via the

known lever arms and boresight angles is given by

X2 =COXC 412, (3.45)
where  X® and X® are the position vectors in the b-frame and the c-frame respectively,
2. is the lever-arm vector of the reference camera in the body frame and C® is the DCM
between the c-frame to the b-frame. The DCM CE can be defined by the boresight angle
vector OE.

3.3.7. n'-frame

The (n’-frame) has the same origin as the n-frame, but has an arbitrary fixed
orientation with respect to the n-frame. The DCM matrix from the n’-frame to the n-

frame is
Ch(07) (3.46)
where 0] is the vector of Euler angles defining C... This frame is used when the roll,

pitch and heading angles are not available. For example, when navigating with camera-
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only systems, the object space can be defined in the n’-frame and the C'c" DCM
parameterizes the orientation angles.
3.3.8.  Summary

Figure 3.1 illustrates i-, e-, n-, n°-, b-, c- and n’- frames.

CAM

Centre of the Earth INS Position

i D

Figure 3.1 The i-, e-, n-, n°-, b-, ¢- and n’- frames.

3.4. Global Navigation Satellite System

This section introduces the basic concepts of GNSS. A GNSS is a radio-based satellite
system that is used to determine accurate position, velocity, attitude and time estimates
worldwide under all weather conditions. As of May 2018 only two GNSS systems are
fully operational: Global Positioning System (GPS) and Global Orbiting Navigation
Satellite System (GLONASS). Europe's Galileo and China’s Beidou satellite systems are
currently in development and are expected to be fully operational by 2020. More details
on GNSS can be found in [Parkinson and Spilker, 1996; Hofmann-Wellenhof et al.,

2008].
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3.4.1.  GNSS position

A GNSS receiver computes the user’s position by simple trilateration process using
ranges or range differences measured to satellites [Hofmann-Wellenhof et al., 2008]. The
basic principles of GNSS positioning is as follows. First the satellite ECEF position
vector is computed from the ephemerides broadcast by the satellite. Secondly, the range
to each satellite is measured by recording the time-of-flight of the coded satellite signal to
reach the receiver. GNSS receivers typically use an inexpensive crystal clock and are not
synchronized to the true system time. The synchronization error causes an offset in a
measured distance. The measured distance is called the code pseudorange, which can be

modelled as

PI=|X§ - X +cat, (3.47)

where P’ [m] is the pseudorange to satellite |, Xej [m] is the known satellite position

vector, X{[m] is the position vector of the unknown receiver, ¢ [ms™] is the speed of

light and At, [s] is the receiver clock offset. Figure 3.2 illustrates the standard point

positioning using pseudoranges.

Receiver

Figure 3.2 GNSS Pseudorange positioning
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Finally, at least four simultaneous pseudoranges are required to solve for the four
unknowns, i.e. the three components of receiver position and the clock offset. Typically
these are unknowns are estimated via least-squares or a Kalman filter algorithm. The
accuracy of the position solution mainly depends on

(a) the accuracy of each satellite position and clock error,

(b) the accuracy of the pseudoranges,

(c) the accuracy of the corrected ionosphere and troposphere delays, and
(d) the geometry of the observed satellites.

The accuracy in autonomous standard point positioning (SPP) is within a few meters.
The most accurate GNSS position can be achieved through relative positioning. This
involves simultaneous observation from two receivers to same satellites. Differencing the
code pseudoranges and carrier phases from the two locations to form a baseline, reduce
or eliminate systematic errors when the baseline length is relatively short (typically less
than 20 km). In this setup, the relative positioning accuracy between the two receivers
can reach centimeter level once the phase ambiguities, inherent in the phase pseudorange
measurements, are resolved to an integer [Hofmann-Wellenhof et al., 2008].

Other GNSS position positioning modes including network RTK [Vollath et al, 2000;
Wibbena, 2001] and precise point positioning [Zumberge et al., 1997; Gao and Shen,

2002] will not be necessarily summarized here.
3.4.2. Velocity and track angle

GNSS can determine the instantaneous velocity of a moving vehicle using the Doppler
principle of radio signals. Because of the relative motion of the satellites with respect to a

moving vehicle, the frequency of a signal broadcasted by the satellites is shifted when it
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is received at the vehicle. This measurable Doppler shift is proportional to the relative
radial velocity or range rate and can be expressed as [Hofmann-Wellenhof et al., 2008]

o X=X
X% - X¢

o (V§ —VP)+CAf, (3.48)

where v [ms™] is the known satellite velocity vector, v [ms™] is the unknown

receiver velocity vector and Af, [unitless] is the change rate of the clock error. In case,
the position vector of a receiver is known, a minimum of four Doppler measurements is
required to solve for the receiver’s velocity vector and the change rate of the clock error.
The Doppler measurements can also be derived from carrier phases by computing first

order central difference, which is given at epoch k as follows [Serrano et al, 2004]

D! ~ ) =L (), -} ) (3.49)

where @], and @), are the phase measurements in meters at epochs k—1 and k+1

respectively, and At is the data sampling interval. It is simple to implement and can
achieve an accuracy of 0.005 ms™ [Serrano et al, 2004].
The track angle of a moving receiver can be derived from the velocity vector as

follows [Grewal et al, 2001]

w = tan‘l(ﬁJ (3.50)

VN
This model can deliver a valid heading when the absolute velocity is more significant

than its uncertainty.
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3.4.3. GNSS compass

The heading of a moving platform can be determined from a moving baseline [Graas
and Braasch, 1991; Li, 1996]. This method requires two receivers whose baseline vector
AXP [m] in the body frame is known and fixed. Using the relative positioning method, the
baseline vector Ax"[m] between the two GNSS receivers can be determined within an
accuracy of a few centimeters. Then the heading angle in a longitudinal setup can be

computed by [Reis et al, 2010]:
AE"
=tan? . 3.51
v ( AN nj (3.51)

An accuracy of Imm in the relative positioning of the dual antennas corresponds to 0.057

degrees in heading for a baseline length of 1m [Hofmann-Wellenhof et al., 2008]. The
longer the baseline is, the higher the heading accuracy. GNSS can also be used to
determine all the three attitude angles [McMillan, 1994; Giorgi, 2010], which requires a
minimum of two independent baselines from at least three receivers. However this is

beyond the scope of the research in this dissertation.
3.4.4. Summary

In this dissertation, the following GNSS positioning solution shall be applied: position
derived from the relative positioning (b) velocity from carrier phase measurements (c)
heading derived from the velocity vector and (d) DGNSS heading from a baseline
between two antennas mounted on the moving platform. By the way, only the GNSS
measurements have been applied in order to avoid any potential complication and under
the considering of our time limit and the available GNSS receivers without loss of the
generality with possibility of applying other GNSS measurements at large.

48



3.5.  Inertial Navigation

This section introduces the fundamental concepts of inertial navigation. The inertial
navigation system (INS) is a self-contained dead-reckoning navigation system that uses
accelerometers, gyroscopes and a computer to obtain the position, velocity and attitude of
a moving object. The strapdown inertial navigation is widely used on vehicles such
aircrafts, space crafts, land vehicles, marine vehicles and so on. The accelerometers and
gyroscopes are mounted in orthogonal triad clusters and enclosed within an inertial
measurement unit (IMU) to provide three components of sensed acceleration and angular
rate outputs, respectively [Rogers, 2007]. Typically, an IMU is rigidly mounted on the
vehicle such that the IMU body axes are coincident with the axes of the moving body
frame. The initial position, velocity and heading information are transferred to the low-
cost INS from an external source, for example GNSS and GNSS compass. A computer
then performs the numerical integration of the IMU outputs to yield the navigation

solution, i.e., the position, velocity and attitude.
3.5.1. Navigation equations

The navigation equations with the outputs of the inertial sensors describe the dynamics
of a vehicle in the specified coordinate frame. In a strap-down INS, the IMU
measurements are resolved in the body frame. In order to navigate on or near Earth, the
navigation solution expressed in the navigation frame is more convenient and meaningful
to the user [Bekir, 2007]. The navigation equations in the navigation frame are given the

following differential equations [Farrell and Barth, 1999; Bekir, 2007]:
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r=D,V"
V" =Cl° — (0] +200)x V" +g" (3.52)

Cp = CoQyp —2,C;
where r is the geodetic position vector with latitude ¢ [rad], longitude 1 [rad] and
height h [m],
v" is the velocity vector [m],
Cy is the body frame to navigation frame DCM defined by attitude angles roll ¢,

pitch @ and heading v,

£° is the accelerometer measurement vector [ms™],
D, = diag (m,m,—l) :

Ry is the radius of curvature of prime Meridian,
Re is the radius of curvature of the prime vertical,

o], is the transport rate vector [rads™],

o}, is the Earth rotation rate vector [rads™],

g" is the gravity vector [ms™],

Qibb is the skew-symmetric form of the angular rate measurement vector wibb
[rads™], and
Q! is the skew-symmetric form of rotation rate vector @}, [rads™] which is the

sum of the transport rate and Earth rotation rate vectors [rad] i.e. o}, = o} +®g, .
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In (3.52) f®and coibb are the sensed specific force vector and angular rate vector of the

IMU, respectively, in the body frame. The navigation solution is the position vector r",

velocity vector v" and the roll, pitch and heading that define C; . The transport rate
vector oy, is the vehicle’s angular rate as it moves about a spherical Earth. The Earth

rotation rate vector @, is known. The gravity vector g" is normal to the Geoid and

obtained from a gravity model. The derivation of these equations can be found in [Bekir,
2007; Rogers, 2007]. The navigation equation in (3.52) requires the heading to be
known. For scenarios where the heading is not available, the navigation equation
involving the wander frame and wander angle can be used. The wander frame is a local
level frame where its x-axis is not slaved to the North. The wander angle is the angle
between the x-axis of the wander frame and the North. Details on the wander frame and

wander angle can be found in [Salyshev, 2004; Rogers, 2007].
3.5.2.  INS error models

The INS error models are employed to analyze the systematic errors of the IMU and
are used in the implementation of aided-INS data fusion. The navigation equations, which
are used to generate the navigation solution, are non-linear. When the INS is aided with
independent measurements via a Kalman filter algorithm, the algorithm requires a
linearized error formulation of the navigation equations [Rogers, 2007]. The two
common error models are the phi angle approach and the psi angle approach. The phi-
error model and psi-error model are resolved the n-frame and n°-frame respectively. The

phi-error model can be written as [Scherzinger, 1994]:
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oxX" :—mgnxéxn +®xV"+ 0"
" = —(0! +20")xN" +CM" x@— (S0 +250l)x V" +8" +CIK (3.53)
¢ =—of, x¢ +dof, —Cidoy,

wherein ¢ is the misalignment vector of C;, 6X"is the position error vector in meters,

St°is the accelerometer sensor error vector and &oibb Is the gyroscope sensor error
vector. The geodetic position error vector can be express as

o" =D, X" (3.54)
and the gravity perturbation 59" can be written as [Rogers, 2007]

&"=0 0 2sz"' (3.55)

where g is the local gravity [ms?] and Ris the radius [m] of a spherical Earth. The psi-
error model is given by [Scherzinger, 1994]:
X" = —mr;;c x X"+ "
& =~ +20) )x&" +Cl P xy+a" +Cl 5F° (3.56)
V= —C‘)ir:c Xy —CBC&”ibb
wherein y is the misalignment vector of CQC and &g" =" —g"xM [Rogers, 2007].

Both error models are equivalent [Benson, 1975]. As the position error becomes smaller,
the psi-error model converges to the phi-error model. In this dissertation the psi-error
model is employed since the position errors are expected to be small due the availability
of GNSS position information. Furthermore, the psi-error equations contain fewer terms
than the phi-error equations and therefore it is easier to be implemented in a Kalman

filter.
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3.5.3. Sensor errors and sensor error model

The accelerometer and gyroscope outputs are corrupted by a number of systematic
errors, for example, biases, scale factor errors, nonlinearities, non-orthogonality of sensor
axes, temperature variations and random measurement noises [Naranjo, 2008]. The biases
and scale factor errors are the dominant ones in general. A bias is an additive error to the
sensor output. It consists of a constant offset, a bias instability which is random in nature
and temperature varying part. A scale factor is the ratio of the change in output to the
input and is also contaminated by an offset, the drift rate and the temperature dependent
part. The constant offsets and temperature varying part can be obtained through
laboratory calibrations. The stochastic properties of the bias instability and measurement
noises can be identified by two popular methods, namely the power spectral density [Yi,
2007] and the Allan variance [Allan, 1966; EI-Sheimy et al, 2008]. The latter method is
preferred due to its simplicity and efficiency.

Considering only the bias and scale factor, the accelerometer and gyroscope sensor
errors can be modelled as [Roger et al, 2007]:

St =b, +diag (f®)s, +w,

3.57
sop, =b, +diag (e, )s, +W, (357)

where b is the bias vector, s is the scale factor error vector, w is the measurement noise

vector, a denotes the accelerometers and g denotes the gyroscopes. The biases and scale

factors can be modelled as random constant or Gaussian-Markov processes. The

measurement noise can be considered to be white with zero mean.
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3.5.4. Mechanization Equations

The inertial navigation mechanization equations generate the position, velocity and
attitude navigation states by the numerical integration of the outputs of the inertial
sensors. The INS mechanization can be performed in the coordinate system required by
the user, for instance, in the i-frame, e-frame or n-frame. The n-frame mechanization is
commonly employed and is more meaningful to the user when navigating on or near the
surface of the Earth [Titterton and Weston, 2004; Bekir, 2007]. The mechanization
equation in the n-frame can be summarized in Figure 3.3. First the sensor biases and scale
factor errors are compensated from the IMU raw measurements. These errors can be
obtained from laboratory calibrations and/or estimated by a Kalman filter. The attitude is
then updated followed by the transformation of the sensed accelerations (specific forces)
from the body frame to the navigation frame. The accelerations due to gravity and
Coriolis force are removed from the transformed sensed accelerations to obtain the total
body accelerations with respect to the Earth. Finally the velocity and position vectors are
computed by single and double integration of the total body acceleration vector,

respectively.
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Figure 3.3 Inertial navigation mechanization [Grewal et al, 2013]

Details on the mechanization equations can be found in [Salyshev, 2004; Titterton and
Weston, 2004].
3.5.,5. Alignment

Alignment is the process of determining the initial attitude parameters. The alignment
procedure typically consists of three stages (a) coarse horizontal alignment (a.k.a. coarse
leveling), (b) coarse heading alignment, and (c) fine alignment [Salyshev, 2004].

In the coarse leveling stage, roll and pitch angles are obtained by accelerometer

leveling while the vehicle is stationary [Bekir, 2007]:
(s;ﬁj ~ 1 [— ff}
eg) Janz (e -1

sO) 1 f,
co) gl |- (fPsg+ flcg)

where = (2, f2, )7 and g; is the gravity in downward direction.

(3.58)
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In practice, the accelerometer measurements from multiple epochs in stationary mode
are averaged to reduce the measurement noise. However, the roll and pitch estimates are
corrupted due to the biases in the accelerometer measurements.

In the coarse heading alignment stage, the heading can be obtained by gyro-
compassing. Gyro-compassing uses the rotation rate of the Earth sensed by the
gyroscopes to determine the heading. However, low-cost IMUs cannot observe the
Earth’s rotation rate due to large biases and noise in the angular rate measurements. The
heading must be transferred from other sensors such as from a GNSS compass, GNSS
track angle or a magnetic compass.

The fine alignment phase is performed using a Kalman filter. In this stage the attitude

angles and together with the sensor error estimates are refined [Roger, 2007].
3.5.6. GNSS aided-inertial navigation

The Kalman filter is widely used for fusing GNSS and IMU data. There are two
popular integration architectures, namely loosely-coupled integration and tightly-coupled
integration [Scherzinger, 2000; Salyshev, 2004; Rogers, 2007]. The former consists of
two parallel estimation processes. One filter processes the GNSS measurements to deliver
the GNSS position, velocity and/or heading solutions, while the other Kalman filter
integrates the GNSS navigation solution of the first filter as the aiding measurements and

the inertial navigation solution from the inertial mechanization (Figure 3.4).
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Figure 3.4 Loosely coupled GNSS/IMU integration architecture

The tightly-coupled integration architecture, described in Figure 3.5, directly

integrates the GNSS raw observables to aid the inertial navigation solution [Scherzinger,

2000].
n
INS s
MU 1 Mechanization [~ gﬁns
b,ins
INS r"
GNSS INS < Kalman vt
errors Filter Cy

Code
Phase
Doppler
Figure 3.5 Tightly coupled GNSS/IMU integration architecture

The loosely-coupled method is simpler to implement and can easily integrate GNSS-
only software in the system. It yields accurate navigation solution under full satellite

coverage and low multipath environments. The tightly-coupled method is more difficult
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to implement. Unlike the loosely-coupled method, however, it can still operate when
fewer than four satellites are available [Moon, 2000].

There are two strategies to integrate IMU with an aiding sensor, namely the direct
(total state) and indirect (error state) approaches. The state vector in the direct approach
consists of the state variables and the measurements are the IMU outputs and the aiding
sensor. In the indirect approach, the state vector consists of the errors of estimated
variables and the measurements are the differences between the computed INS solution
and the aiding sensor. For instance, the measurement equation for the indirect loosely-

coupled GNSS-aided inertial navigation is:

n n
Fins k —Fonss k
n n _
OZonssk =| Vinsk —Venssk |=HXinsk + Vonss k- (3.59)

n n
Vins k — W GNss k

In this dissertation, the indirect method is employed because (a) it works well with
linear/linearized models (b) it can be modified to work with multiple types of
measurements e.g. visual odometry and GNSS, and (c) uses less computation resources
than the direct approach.

Actually, a generic multisensor integration strategy (GMIS) has also been developed
[Wang and Sternberg, 2000; Qian et al, 2015, 2016; Wang et al, 2015 and Qian, 2017]
where the kinematics of a rigid body was considered in integration GNSS and IMU
measurements. The GMIS method uses a kinematic trajectory model as the system model
in the navigation Kalman filter and the measurements from all of the individual sensors,
including IMU measurements, are directly involved in the estimation of the navigation
states. The advantages are: (a) the IMU measurements are directly applied through the

measurement updates in Kalman filter instead of their application in inertial
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mechanization and error measurements, (b) the system observation redundancy is
increased due to angular rate and acceleration of a rigid body model, (c) the novel filter
structure allows the easier fusion of multiple inertial sensors and all types of
measurements, e.g., relative measurements, and (d) direct error analysis can be performed
on raw sensor data and virtual zero-mean process noise measurements. The GMIS has
shown its high potential to work with low-cost IMUs in particular [Wang et al, 2015 and
Qian, 2017]. Readers may have noticed that the comprehensive research activities with
the mentioned GMIS, however, have been run in parallel with my PhD studies so that it

has not been adapted for my research due to the time limit of my PhD studies.

3.6.  Photogrammetry and image-based navigation

Photogrammetry is the science of making measurements from photographs and images
for making inferences about the size, shape, and spatial attributes of the objects in images
[Bethel, 2003]. Image-based navigation (IBN), on the other hand, refers to the
determination of the navigation parameters of a camera system derived from a successive
sequence of images. IBN employs the theories and techniques in computer vision and in
photogrammetry to convert off-the-shelf digital cameras to a navigation sensor. This
section presents the relevant background of IBN that will be used in the later

development.
3.6.1. Mathematical photogrammetry

The equations in photogrammetry relate the coordinates of 3D objects to the 2D

coordinates of the objects in images. The equations employed in the research are (a) the
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collinearity equations, (b) the coplanarity equation, and (c) the scale-restraint equation.

The choice of condition equations depends on the particular problem to be solved.
3.6.1.1. Collinearity equations

The fundamental characteristic of a perfect perspective camera model is that the object
point, its corresponding image point, and the lens perspective center all lie on a line in

space. The collinearity equations describe the perspective transformation between the

image space and the object space [Bethel, 2003; Ghosh, 2005]:

X — X, X =X"
Xt =| Y=Y, |=S(CH| Y;"-Y" (3.60)
—f z"-z"

wherein (x;,y;) [px] is the coordinates of an image point, (x,,Y,) [pX] is the
coordinates of the principal point and f [px] is the focal length, s is the scale factor, C
is the DCM from the camera frame to the navigation frame, X' [m] are the 3D object

coordinates and X"[m] the perspective center coordinates in the navigation frame,

respectively. The elimination of the scale factor s yields the following equations

X =X, — f

[Cea1 Con Coan]OXT —XT)
[C(?,13’C(?,Z?ﬂ(:(?,33](><in - Xn)

o=y - f [Ce12:Claa: Clal (X — XT)
C 70 {[Cs Gl Claal (X — X")

(3.61)
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Figure 3.6 The collinearity condition

The corresponding short-hand notation can simplify to

x. =x, — fg(X",07,X")

(3.62)
Yi =Y, — f(X",0¢, X7
where 07 [rad] is the vector of Euler angles,
[Cn , n ,Cn ]Axn
g(X", 0, X}) = L A R (363)
[Cc,13’ c,23’Cc,33]AX
and
h(X", 00, X[') = [Cerz:Cezz: Cogp1AX” (3.64)

[Cé1a:Clas, Cosa]AX"
If the coordinates of the object and the perspective center are relatively close (i.e. a
few hundred meters) and are not near the polar regions, then position difference between
the object and the perspective center AX" can be written as [Gade, 2010]
AX" = X' = X" =D (r;, ) (3.65)
where r; and r are the geodetic coordinates of the object and the perspective center

respectively.
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3.6.1.2. Coplanarity equation

The coplanarity condition, as shown in Figure 3.7, implies that the two perspective
centers, any object point and the corresponding conjugate image points on a pair of

images, must all lie in a common plane [Ghosh, 2005].

1 b?z

r2

n n
Xl X,

Figure 3.7 Two view geometry

Since the baseline vector b, between the two perspective centers and the position
vectors x; = C¢,x; [px] and x5 = C{ ,x5 [px] are coplanar, their scalar triple product is
zero:

eX{ xX5 =0 (3.66)

The coplanarity equation is mainly used in determining the relative orientation

between two views.
3.6.1.3. Scale restraint equation

The scale-restraint equation is a three-view constraint equation. Consider image point

vectors x; = Cl,x{ [px], X3 = C ,x5[px] and X3 = C¢ 55 [px] shown in Figure 3.8:
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Figure 3.8 Three view geometry

wherein b}, and b’ are the baselines between images 1 and 2, and between images 2

and 3, respectively. s;and s, are the scale factors in stereomodel 1-2. Similarly, s;and s;

are the scale factors in stereomodel 2-3. The three image point vectors X;, X3 and Xj
may fail to intersect at a common point due to scale variations [Ghosh, 2005]. The

‘mismatch’ vector df, is perpendicular to both of X{ and X5 . It is computed as
1 =X{ xX5, while the other ‘mismatch’ vector is given as d); =X3 xX3. S;, and s, are
the scale factors of the vectors d;, and d?, respectively. For the stereomodels 1-2 and

2-3 to intersect at the same point, the scale factors s,and s, must be equal in magnitude
and opposite in sign, i.e.
S, +5, =0. (3.67)
From the principles of vector analysis, any four vectors a, b, ¢ and d in three-
dimensional space can be related to each other through

(axb)x(cxd)=(acxd)b—(b.cxd)a

= (abxd)c—(abxc)d " (3.68)
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This implies,

(abxd)c=(acxd)b—(bcxd)a+(abxc)d
_ (acxd) b (b.cxd) At (abxc)

C = (3.69)
(abxd) (abxd) (abxd)
C =bb-aa+dd
where the scalar multipliers a, b and d are
4 (b.cxd)
(abxd)
_(acxd) (3.70)
(abxd)
d- (abxc)
(abxd)

Consider equating a, b, ¢ and d in (3.69) with X3,X{, b,and dy,, respectively, and also
with x3,X3, b5, and db,, respectively. One obtains:

by, =sx!' —s,x5 +s,,d"
12 = $Xg —35,X5 + 5,00,
bn _ ol yn rn ! dn' (371)
23 = SpX5 = S3X3 + 5303

From (3.70) s, and s, can be computed as

s _Xfod&xb?z
27 n n n

X, od;, XX

1 ®Upp XX;
. 3.72
x5 edh. xb) (3.72)
s, =— 2 @053 XDy3

n n n

X5 @0y X X3

Substitute (3.72) in (3.67)

n_an n N 4qn n
X; edy, xby, X ed;; xby

n n n n n n
X; odp, xX; X, edys x X3

=0. (3.73)
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Equation (3.73) is the scale restraint equation [Bethel, 2003; Ghosh, 2005]. It is
mainly used for solving successive relative orientations and for transferring the scale in a
sequence of images.

3.6.2. Camera error sources

This subsection reviews the systematic and random errors associated with a stereo

camera system.
3.6.2.1. Image distortion

Image distortion is due to the imperfections of the camera hardware system during
manufacture and causes the image coordinates of a point to deviate from its true location.
There are five types of image distortions: (a) the focal length error, (b) the principal point
error, (c) the radial lens distortion, (d) the decentering lens distortion, and (e) the affine
distortion.

There have been many variations in modelling of the image distortions [Ebner, 1976,
El-Hakim and Faig, 1977, Grun, 1978, Tang, 2012]. The model developed by Brown

[1971] is widely accepted in close range photogrammetry for camera self-calibration.

The image distortions (Axy;, Ay, ;) corresponding to a specific point are given by

Axg i =—AXg — L AF +X(K 1 +Kor* +Kgr® +..) + py(r? +2%X%) + 2 p,Xy
—AX+AY (3.74)
AYg; =—AYo — L AF + J(kr? +kor* +kor® +..) + 2, XY + p, (r? +2y°)

where r is the radial distance from the principal point to the image point (r2 =X+ 72 =

(% —%,)% + (Y; = ¥,)?), Af is the error of the focal length, (Ax,,Ay,) is the principal
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point error, k; and p; are the coefficients of the radial and decentering distortions,
respectively, and A (i =1, 2) are the coefficients of the affine deformation.

Other causes of the image distortion are atmospheric refraction and Earth’s curvature.
The atmospheric refraction bends light rays from the object to the camera and causes the
image point to be shifted similar to the radial distortions [Wolf and Dewitt, 2000]. The
collinearity equations assume that the objects are defined in a 3-D Cartesian coordinate
system [Ghosh, 2005] and do not take account into the Earth’s curvature. The corrections
for the atmospheric refraction and Earth’s curvature are employed in aerial
photogrammetry since they can be significant. However, these errors are insignificant in
close range photogrammetry since the objects are expected to have a range of shorter than

100 m.
3.6.2.2. Lever-arms, boresight angles, stereo baseline and relative orientation

The lever-arms can be the position vector between two sensors or between a sensor
and a reference point. Once the sensors are assembled on the vehicle, the translational
offsets between the individual sensors are assumed to be constant. In a stereo image-

aided inertial navigation system, there are two lever-arm vectors as shown in Figure 3.9.
The first one is the baseline vector b{y [m] between the perspective centers of two
cameras. The second lever-arm vector is the vector Iati [m] between the reference
camera (in this example it is the left camera) and a reference point on the vehicle. For

practical purposes, bfz and Ia‘ﬂ vectors are expressed in the camera and body frames

respectively. The lever-arms can be determined directly using a measuring tape or a total
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station. Alternatively, they can be estimated as part of the states in the data fusion using

least-squares or a Kalman filter.

Left Camera Right Camera

Ll [l
[bir, 6Zk]

v

&
e

Figure 3.9 The geometrical relationship between an IMU and
a stereo camera system: Lever-arms (Iatﬂ ), boresight angles (92),

stereo baseline (b ) and relative orientation (0:g).

The boresight angles 8°[rad] are the mounting angles between the reference camera

system and the body frame. They are also assumed to be fixed after the sensors are
assembled. Unlike the lever-arms, these angles cannot be measured directly and can only
be estimated indirectly. In a stereo camera system, the relative orientation 0g [rad] of the
right camera with respect to the left is also unknown and can only be obtained indirectly.
3.6.2.3. Image Motion Blur

Image motion is the smearing or blurring of an image due to the vibration and the
relative movement of a camera with respect to the scene during the opening of its shutter
(i.e. exposure). This may result in resolution degradation and displacement of the image

point [Ghosh, 2005] and therefore decrease the accuracy of the image measurements. The

longer the exposure time, the closer 3D objects, the higher the velocity and/or the higher
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the attitude rate, the larger the motion blur will be. To mitigate the motion blur, the
exposure time needs to be reduced or one needs to avoid high dynamics. The images can
be deblurred by deconvolution using a blur kernel (or point spread function), which can
enhance the visual quality of the image so that image features can be easily identified.
However, these conventional methods do not reverse any image blur in a

photogrammetrically correct and precise way [Sieberth et al, 2014].

3.6.2.4. Image noise and filtering

The visual quality of an image is important for detecting and matching point features.
Image noise causes random variations in the brightness of each pixel. It degrades the
quality of the image and appears as grains. The main types of image noise are (a)
Gaussian noise, (b) speckle noise, (b) salt-and-pepper, and (d) shot noise [Farooque and
Rohankar, 2013]. Gaussian noise (amplifier noise) is the additive random noise and
independent between pixels and independent of the signal intensity. Speckle noise is the
random multiplicative noise of the signal intensity. Salt-and-pepper noise (impulse noise)
is the dark pixels in bright regions and the bright pixels in dark regions. Shot noise
(Poisson Noise) is caused by the variation in the number of photons sensed at a given

exposure level.
3.6.3. Camera auto-calibration considerations

The camera auto-calibration is performed via a bundle adjustment. There are several
factors to be considered for achieving a successful and accurate auto-calibration. They

are summarized below [Brown, 1989; Fraser, 2006; Tang, 2012]:
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e The accuracy and geometric stability of a photogrammetric network increases
with increasing convergence angles between the images (i.e. the angle between
two point correspondences to an object). This implies the accuracy increases with
longer baselines between the images or closer distance of the object or both.
Furthermore, orthogonal roll angles must be present in order to decouple the 10
and EO parameters.

e The accuracy increases with increasing number of image points per object up to a
maximum of 8 points per object. The accuracy does not significantly improve
after 8 points per object.

e The accuracy enhances with the increasing number of image points per image.
However, the accuracy does not significantly improve after a few tens of points
per image.

e The image points should be evenly distributed points throughout the image format
to avoid degeneracy of a least-squares solution and to obtain reliable image
distortion estimates. This is can be accomplished by the bucketing technique
[Zhang et al, 1995] where the image is evenly divided into non-overlapping
regions (buckets) and constant number of point matches are chosen from each
bucket.

e The objects in the scene should be stationary (strictly w.r.t. the e-frame), stable

and varying in distances (w.r.t. the c-frame).

The accuracy and repeatability assessment of the calibration parameters is not

performed in the image space but in the object space since the 3D measurements are most
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important to the user [Fraser, 2012]. This is done by comparing the computed object
space coordinates with GCPs.

The number of the lens distortion terms in the model is important. If it is too small, the
least-squares solution becomes biased. If it is too large, the solution will be weakened due

to the over-parameterization [Fraser, 2006]. Most of the radial lens distortion is generally
accounted by the second term k,r* [Barazzetti et al, 2011]. The terms with k, and even

with k, are typically included in high-accuracy applications and wide-angle lenses. The
decentering distortion parameters p; are highly correlated with the principal point offset.

Furthermore, they are generally small. When they are omitted in the auto-calibration, the
decentering error gets absorbed by the principal point offset error [Fraser, 2012]. The

affine distortion parameters A, were originally included in the self-calibration model by

Brown [1971] because they could be significant in film cameras. However, this distortion
is rarely significant in the modern digital cameras [Tang, 2013]. The number of the lens
distortion terms can be empirically determined by performing the calibration with various

lens distortion models and the most accurate combination is chosen.
3.6.4. Image-based navigation

This section describes image-based navigation (IBN) methods. The modern IBN
consists of three main steps (a) feature detection, (b) feature matching, and (c) pose or
pose change estimation. There are two major IBN approaches namely the visual
odometry (VO) and the visual SLAM. The former uses the tracked features only from the

consecutive frames while the latter applies the well-established SLAM technique
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[Murcott et al, 2011]. It is assumed that a stereo camera system is employed and the

cameras have been calibrated.
3.6.4.1. Feature detection

Feature detection is an essential step of many computer vision applications [Szeliski,
2011]. At this step, the feature detector locates those interesting points such as corners
and blobs on an image. A corner is defined as a point at the intersection of two or more
edges while a blob is an image pattern that differs in properties, such as brightness or
color and texture in comparison with the surrounding regions [Scaramuzza and
Fraundorfer, 2011].

A point feature detector consists of two steps. First, an image is filtered using a mask.
Figure 3.10 shows an example of a 5x5 blob mask and a 5x5 corner mask. Then non-
maxima suppression is applied on the filtered image where all the local minima (or
maxima) locations are identified. The resulted outputs are the locations of the detected

features [Scaramuzza and Fraundorfer, 2011].

-1-10 11 -1-1-1-1-1
-1-10 1 1 -11 1 1 -1
O 0 0 0 O -11 8 1 -1
1 10 -1-1 111 1 -1
110 -1-1 -1-1-1-1-1

Figure 3.10 The corner (left) and blob (right) masks

The desirable qualities of a feature detector are its repeatability, localization accuracy,
computational efficiency, robustness distinctiveness, photometric invariance and

geometric invariance. Examples of the corner detectors are Harris [Harris et al., 1988],
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Shi-Tomasi [Tomasi and Shi, 1994] and FAST [Rosten and Drummond. 2006]. And
examples of the blob detectors include SIFT [Lowe, 1999], PCBR [Deng et al., 2007] and

SURF [Bay et al., 2008].
3.6.4.2. Feature description and matching

In the feature description step, a feature descriptor is constructed using the
neighboring pixels around the feature points. Then the feature descriptor can be matched
against descriptors from another image frame in order to obtain the correspondences. The
simplest method to generate a descriptor is to extract an mxm square patch surrounding
each feature point, where m is odd, and then construct an mx m —21 descriptor vector
from the pixels in the window excluding the feature point itself [Howard, 2008]. The next
step is to construct a score matrix between the feature points of the two frames to be
matched. This is achieved by computing simple error metrics [Szeliski, 2011] such as the
sum-of-absolute differences (SAD), sum-of-squared differences (SSD) or normalized
cross-correlation (NCC) using the descriptor vectors between the two frames. If the
values in the score matrix for the SAD and SSD are close to 0 or if the NCC value is
close to 1, it indicates that the features between the frames are similar. The descriptors
based on the local appearance are not invariant to the orientation, scale and illumination
changes [Scaramuzza and Fraundorfer, 2011]. On the other hands, the descriptors, such
as SIFT or SURF, are invariant to the orientation, scaling and illumination changes and
may improve the matching accuracy. However, they are computationally expensive. In
IBN, the local appearance of the features is not expected to change between consecutive
and stereo image frames. This is due to the fact that video cameras can capture images at

a high rate, the stereo cameras are usually parallel with each other, the stereo baseline
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length is relatively short (less than 1m) and the camera motion are typically smooth
[Geiger, 2011]. Hence, the simple SAD, SSD or NCC methods are usually sufficient for
IBN systems.

Searching and matching for feature points between two frames can be inefficient since
all the points are searched for potential matches. This can be time consuming if the
number of the being detected features is large, for example, in the thousands. In order to
reduce the searching radius, one can constrain the matching in a region where a potential
match is expected. Between stereo pairs, the search can be performed along the epipolar
lines [Bin Rais, et al, 2003]. Between the consecutive frames, the locations of the features
on the next frame can be predicted using a motion model [Scaramuzza and Fraundorfer,
2011] or any available external sensor, for example, an IMU [Veth et al, 2006]. To
increase the robustness of the matching process, one can employ the random sample
consensus (RANSAC) algorithm [Fischler et al, 1981], which was overviewed in Section

3.2.1.1.
3.6.4.3. Stereo Space Intersection

Stereo space intersection (a.k.a. stereo triangulation) is a technique that is commonly
used to determine the 3D coordinates of an object from 2D image correspondences based
on the known interior orientation and exterior orientation parameters. There are two
methods to determine the 3D object coordinates: (a) the simplified triangulation equation
and (b) the collinearity equations. The simplified model [Sibley et al, 2005] is

17 = Nyereo (XLi» Xrii)

XLi —XL0

Yii—= Yo
—f

(3.75)

XLi — XRii
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where I{ [m] is the 3D position vector of the object w.r.t. the left camera, b . is the
baseline length between the two cameras, and X ; and Xg; are the image position vectors

of the i-th object in left and right image, respectively. This model assumes that the stereo
images have been rectified and has a unique solution (i.e. 3 equations and 3 unknowns).
The space intersection expressed by collinearity equations is an over-determined system
(i.e. 4 equations and 3 unknowns) so that the 3D object coordinates are estimated using
least-squares. The four equations for space intersection by collinearity (corrected for
image distortion) are given as follows [Bayoud et al, 2004]

XLi =XLo — fLOL(0,0,1F) Vi

Yii = Yo~ thL (O’O’ I::) +VY|_,i

c c ¢ ’
Xri =Xro — frROR (DR, Ocr: I7) T Vi

Yri = Yro ~ frMR (blr B¢k, If)+VVR,i

(3.76)

3.6.4.4. Visual SLAM

Simultaneous localization and mapping (SLAM) is a navigation technique widely used
in robotics. It incrementally builds a consistent map of landmarks in an unknown
environment while simultaneously determining the location of the mobile system within
this map [Dissanayake et al, 2006; Durrant-Whyte and T. Bailey, 2006a; Thrun et al.
2008]. The Extended Kalman filter (EKF) can be used to solve the SLAM problem and
is referred as the EKF-SLAM algorithm. The system and measurement model for EKF-

SLAM at epoch k is given as [Durrant-Whyte and Bailey, 2006a]:

[kaz(f(Xk)+Wk_lJ W1 ~ N(0, Q)

), My (3.77)

Zi i =h i (X my) + v Vi =~ N(O,Ry )
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where x, is the vehicle’s pose state vector, M, =[m{ ,---,m{ ,---,my]" is the map which

consists of all the landmark position states, w,_, is the process noise vector that conforms
to N(0,Q,_;), Zy; is the measurement vector of feature point i, hy;(X,,m;) is the
non-linear function of the vehicle pose states and the landmark position states and Vv, ; is

measurement noise vector that conformsto N(0, Ry ;).

The stereo visual SLAM measurement equation can be formulated based on 2D
[Bayoud et al, 2004; Lategahn et al, 2011; Sazdovski et al, 2011; Alcantarilla et al, 2012]
or 3D [Davison and Kita, 2001; Davison and Murray 2002; Paz et al, 2008] image
measurements. The stereo visual SLAM with 2D image measurements can use the
collinearity equations [Bayoud et al, 2004]

XLi = XLo — FLOL (KR, 054, M) +Vy

Yii=Yio— fLh Xk, Q(k)vm?)JrVyL_i

o ) (3.78)
Xri =Xro — frROR (X + DR, 0c(y, M; )+Vvai

YRi = Yro ™ frhg (XE +brI1R’ g(k)’m?)"'vyre;

where the navigation frame here is the global frame and Xy and 8y, are the position and

orientation vectors of the camera system, respectively. The stereo visual SLAM

measurement equation with 3D image measurements can be written as [Paz et al, 2008]

|§,i = (Cg(k))T (m{' —Xg) +V|ﬁ,i : (3.79)

The 2D method can include the camera calibration parameters and is referred as
simultaneous calibration localization and mapping (SCLAM) [Kimmerle et al, 2011].

The 3D method assumes that the cameras are calibrated and is easier to be implemented.
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3.6.4.5. Visual odometry

The visual odometry algorithm computes the position and orientation change between
two consecutive frames. Then by concatenating the successive pose changes, the
trajectory of the camera system can be obtained. The matched features between the
current frame k and the previous frame k-1 yield two sets of 3D object positions. The
relationship between the pair of the 3D vectors for each object is given by the following

3D rigid body transformation [Matthies and Shafer, 1987; Kelly et al, 2008]:
ki =ngt)-1) ko1 FAX 4 (3.80)

where  C) and AX;,, are the DCM and position difference respectively.

AXE 5 and CH,) can be estimated using the weighted least squares method. Another
approach to estimate the pose change is to use the 2D image coordinates [Badino et al,
2013]. By substituting (3.75) in (3.80) , one obtains:

Nytereo (XL k.i» XRok,i) = CEEE)—l)hstereo(XL,kfl,i Xeki) +AXE (3.81)
However, this method only applies to the rectified stereo images.
3.6.4.6. Accuracy assessment of IBN

The accuracy of an IBN solution can be evaluated using an absolute reference such as
the corresponding GNSS-aided inertial navigation solution. The translation and rotation

drift rates, i.e. the error with respect to distance travelled, are typically used to describe
the performance. Suppose that (Xigy  » Cegyian) @nd (Xger ks Cegky.rer ) are the IBN

and reference solutions, respectively, at epoch k. Then the percentage translation drift

rate is computed by

76



n N
ST = IBN,k REF k <100 (3.82)

dREF,k

and the rotational drift rate in radm™ is

59— 2008_1(% \/tr((cg(k),lBN )! Ceik) rer )+1)

(3.83)
dREF,k

where Ogep is the total path length, which is computed as shown in Algorithm 3.1.

Algorithm 3.1 Computation of total path length
dREF,k =0

fori=2:k{

_ n n
dREF,k - dREF,k +‘XREF,i - XREF,i—lH

¥

In practice, the translational and rotational drift rates are computed for multiple
lengths in the trajectory (e.g. 20m, 40m and so on). Then all the possible translational and

rotational drift rates are averaged to obtain the global performance metrics.
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4. Structureless stereo camera auto-calibration and system

calibration

This chapter is mainly based on the following publication:
Gopaul, Nilesh S.; Wang, Jianguo and Hu, Baoxin (2016): Camera auto-calibration in
GPS/INS/stereo camera integrated kinematic positioning and navigation system,
Journal of Global Positioning Systems, 2016, 14:3 https:/doi.org/10.1186/s41445-016-

0003-7, Springer, ISSN 1446-3164.

4.1. Introduction

This chapter presents a two-step camera calibration method for multisensor integrated
kinematic positioning and navigation systems with GNSS receivers, IMU and stereo
cameras. The stereo camera auto-calibration employs two scale-restraint equations for
each consecutive and stereo pair [Gopaul et al, 2016]. In comparison with the collinearity
equations, the proposed method is structureless, i.e., free of the object positions. First, a
camera auto-calibration is performed to obtain the lens distortion parameters, the up-to-
scale baseline length and the relative orientation between the two cameras. Then, the
system calibration is introduced to recover the camera lever-arms, and the bore-sight
angles with respect to the IMU, and the absolute scale of the camera using the GNSS-
aided inertial integrated navigation solution.

This chapter is organized as follows: Section 4.2 describes the proposed method for
stereo camera auto-calibration and camera system calibration. The comparison and
analysis of the computational complexity of the auto-calibration methods using the
collinearity equations and the scale restraint equation through the simulated data is shown

78



in Section 4.3. Section 4.4 contains the pre-analysis to determine the best scale-restraint
equations combination and the expected accuracy of the collinearity equations and the
scale restraint equation using the simulated data. Section 4.5 presents lab test results. The
chapter ends with a summary and the research contributions in Section 4.6. The field test

results and analysis are presented in Section 7.3.

4.2. Camera calibration

The assumptions prior to the development are as follows:

e The object points in the scene are stationary w.r.t. the e-frame,

e The raw measurements from the sensors are synchronized,

e The GNSS-aided inertial integrated navigation solution is available,

e The GNSS-aided inertial integrated navigation solution is referenced at the center
of the IMU, and

e The left camera is specified as the reference camera of the stereo camera system.
4.2.1. Structureless camera auto-calibration

The algorithmic development of the stereo camera auto-calibration begins with the
well-known extended collinearity equations (COL). The roll, pitch and heading angles
are assumed to be unavailable at this point. Therefore, EOPs are resolved in the n’-frame.

The extended collinearity equations for a stereo system at the current epoch k is:

n’ n’ n’
XLk = Xo. = FLOL (XL, Ocqiys Xi' ) + AXg ki TV

Yiki=YoL~ thL(Xrlj,,k’ gék)'XP!) +AYq ki TV,

n’ n' e n’ n' oc (4'1)
Xrk,i = Xor = FROR(XL k + Ceobir 00 Xi 1 0cr) + AXg g TV

XR k,i

Yrki = Yor — frhr (XE,k +C2(k)b(l:_R’ g(k)'xin ,0cr) +AYq4 Rk Vyer
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wherein L and R denote the left and right cameras, respectively, (X ;, Yy ;) [px] are the
2D coordinates of the image point i, X{" [m] is the position vector of the object point,
X'E’k [m] is the camera’s perspective center of the left camera, 92’(k) [rad] is the orientation
vector of the left camera, (X, Y,) [pX] is the position vector of the principal point, f [px]

is the focal length, (AX4 i, AYq i) [PX] are the 2D image distortion, (Vg .»Vy, ) [PX] are

the measurement noises in x and y directions, b}, [m] is the baseline vector between two

cameras, and 0 [rad] is the orientation vector of the right camera w.r.t. the left one.

Figure 4.1 shows the image points, the object point and the camera EOP in a stereo

camera system.
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Figure 4.1 Stereo Vision

The auto-calibration image distortion model given by Brown [1971] is as follows
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Xgi=—AXg =X Af + X(Kr? +Kor* +Kar® +..) + Py (r? +2X%) + 2 p,Xy
—AX+AY (4.2)
AYgi=—AYo —FAF + J(kr? +kor* +kor® +...) + 2, XY + p, (r? +2y°)

where r is the radial distance from the principal point to the image point (r? = X% + )72 =

(% =%, )2+ (Y; = Y,)?), Af is the focal length error, (Axy,Ay,)" is the error vector of

the principal point position, k; and p; are the coefficients of the radial and decentering

distortions, respectively, and A is the coefficient of the affine deformation (i = 1, 2).
Given the definition of n’-frame and stationary object points are fixed in the e-frame,

it is noted that (4.1) does not account for the transport rate (ogn On the surface of the

H i P 101 180
Earth, the transport rate in degrees per meter is approximately tan™(g)x=>

~9.0x10°° [deg/m], where R is the radius of a spherical Earth. It has been demonstrated
that image-based navigation systems can generate orientation solutions with orientation
drift rates as low as 0.003[deg/m] [Cvisi¢ et al, 2017]. Given that the transport rate in
degrees per meter is atleast 2 to 3 orders of magnitude smaller than the orientation drift
rates of modern image-based navigation systems, it can be ignored.

Auto-calibration algorithms suffer from a rank deficiency of order seven (i.e. 3D

position, 3D orientation and scale). In order to enable a free-network adjustment, one

component of the baseline vector b} must be free (i.e. 2 d.o.f.), one of the position X[’yk

'

and one of the orientation parameters in 0, must be fixed, which resolve the
deficiencies due to the missing scale and orientation as part of the adjustment datum.

Practically, one can set X[’leo and 02'(1) =0 at the first epoch. The remaining
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parameters, including the stereo baseline vector, the orientation vector of the right camera
and the image distortion parameters can be solved in a least-squares bundle-adjustment.

Now, consider the scale restraint equation (SRE) [Bethel, 2003; Ghosh, 2005], which

relates the three arbitrary views i, j and k:

:‘

X o (x xx5)xbil X7 e (X} xx7)xbh

! = (4.3)
X; o (x] xX])xX] x| e(X] xXg)xX
wherein
Xa —Xo _Axd,a _an
n n'
Xa=ijk = Cc,a Ya—Yo _Ayd,a _Vya ) (4.4)

—f
bﬂ and b’}k are the baselines [m] between images i and j, and between images j and

k , respectively. For the stereo auto-calibration, the proposed algorithm uses point

features matched from four views which are stereo pairs from two consecutive epochs,

1.8, X[, Xgy» X[ xsand Xg . Figure 4.2 (left) depicts the quad-matches.

k-1 Tixa K

n c
c(fc—l)hLR .
r Pl
AXG | Cex

Right Right

Figure 4.2 Four view feature matching (left) and
translational offsets between the four views (right)
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Figure 4.2 (right) shows the translational offsets between the four views while the
parameters are listed in Table 4.1. Since the scale restraint equation constrains three
views, there are four possible combinations in a four-view configuration. The four
combinations are listed in Table 4.2.

Table 4.1 Camera auto-calibration parameters (L and R denote the left and right camera)
Parameter Description
Af, Afg Correction for focal lengths [px]

AX 0, AY Lo, AXR 0, AYR o

Correction for principal points [px]

kL,l J kL,2 J I(L,3 J kR,l! kR,2 ) kR,S

Radial lens distortion parameters
[px?, px*, px®, px? px*, px®]

Decentering distortion parameters

pL,l! pL,Z! pR,]_y pRyz [px_2 px'2 px_2 pX'Z]
Affi f i
AL,1, AL,z ) AR,11 AR,Z [pX'IPS)?'? g;r_qagiq]parameters

R Stereo baseline vector [m]
Orientation vector of the right camera w.r.t. left

90
cR camera [rad]
AXY Position difference of the left camera between
L,k,k—1 :
two consecutive frames [m]
Q'(k) Orientation vector of the left camera [rad]

Table 4.2 Four combinations of the scale restraint equation in four views

Combination Image i Image j Image k
a X[ XRk XR k1
b X1 Xk X[k
c X{ X{ ka XR k-1
d Xk XR k-1 X{ k4

In order to relate all four views, two scale restraint equations are required. This leads
to the following six possible combinations: (1) {a,b}, (2) {a,c}, (3) {a,d}, (4) {b,c},

(5){b,d}, and (6) {c,d} as shown in Figure 4.3.
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Figure 4.3 The six possible combinations to constrain four views with two SREs

The combination that outputs the minimum trace of the variance-covariance matrix of
the parameter vector when performing the auto-calibration can be considered the most
accurate and therefore the best solution. Simulated data in a typical land vehicle scenario
were used to determine the best combination. The corresponding test results can be found
in Section 4.4.1. The test results showed that combination (5) performed the best and the

corresponding equations can be expressed as

n’ n’ n’ n" e n’ n' n’ n’
Xrk ® Kri XXLi) X CoPin XL @ (XL XX L) XAX i

n n n n n n n n
Xpk ® (X XXL k) XXk X1k ® (XL XX 1) XX g
n n n n c n n n n'
X| ko1 ® (XL X XR k1) X Coenbir _ XRk-1® (XRka XXy ) X AXR k1 0
n' n' n' n' n' n' n' n' -
XL k1 ® (XL k1 XXR k1) X XRka XRk-1® Xrk-1XXR k)X XR k
(4.5)

Whel’e XE’,k = Cgl(k)xcl_’k f
XRk = Ccr:]’(k)CgRXIC?ka , and
AXR gk =X xa + (C(r:](k) - g(k—l))bCLR :

In short form, (4.5) can be written as,
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P k1 XUk XRoer X1 1 AXT g k1 eQ(k) ; eg(k—l) bir,0cr) =0

, , , ) (4.6)
Ok ki (XCL,k , XCL,k—l’ XCR,k—17 AXE,k,k—la 92(k) , 92(k—1) ,biR,0cr) =0

In order to introduce a free-network adjustment, one component of the baseline vector

‘r must be free (i.e. 2 d.o.f.) and one of the orientation parameters in BQ;k) must be

fixed (ideally 2'(1) =0). Since the measurement equation in (4.5) is the implicit form

(i.e., h(x,z,v)=0), the parameters can be solved by bundle adjustment with the

conditional least-squares method with parameters described in Section 3.2.1.

When the objects are close and the stereo baseline is long or both, the stereo
overlapping region reduces. To fill the entire image frame, the point features in the non-
overlapping areas can be constrained by one SRE equation if the object point can be
viewed in 3 images or by the coplanarity equation (CP) between 3 images, which is

illustrated in Figure 4.4.

Ly

L 1\
Lk—l\ \ Ris CP\. XSRE

T . .
\ \3 image overlap

2 image overlap Ly_q Ry,

Figure 4.4 Two and three overlapping regions.

4.2.2. Camera system calibration
The camera system calibration is to determine the lever-arm vector Iaf , the absolute

scale s, of the camera and the bore-sight angle vector OE. The relationship between the
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integrated GNSS aided-INS solution and left camera can be expressed as the following

seven parameter Helmert transformation:
n n~\/N' n b
Xenssins k = ScCrn XLk — Cpxy.anssins 121 (4.7)

wherein Xgyssinsx aNd Chyy arssins re the integrated GNSS aided-INS position vector
and attitude DCM respectively. C;. is determined by the orientation of the camera

system with respect to the n-frame at the first epoch

Cﬂ' = C(r:](l) = CE(l),GNSSINSC(k:) (4-8)

where th’ is the camera-to-body DCM represented by the bore-sight angle vector GE.
Differencing (4.7) between epoch k -1 and epoch k gives

Axcnstsms,k = SCCQ'AXEI,k,k—l - (Cg(k),GNSSINS _Cg(k—l),GNSSINS)IabL (4.9)
wherein AXgussinsx = Dr (Fonssins x — Fanssins ks, ) - From (4.5), the relationship between
Cho.onssins and the camera DCM C,, can be written as

CQ(k),GNSSINSCE = Cﬂ' Ql(k)- (4-10)

Equations (4.9) and (4.10) equate the GNSS/IMU information ( AXgnssins k »

Cho.enssing ) and the up-to-scale auto-calibration AX{, , jand CJ,, parameters. All of 7
system calibration parameters can be solved by using the least-squares.
4.2.3. Parameter Initialization

The least-squares method requires good approximation of the parameter vector (i.e.

x©@ in (3.15)) when the measurement equations are non-linear. This can reduce the
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effects of non-linearity and prevent the LS solution from diverging. This section presents
a practical method for initializing the parameters in the structureless camera auto-

calibration and system calibration.

The up-to-scale stereo baseline vector by, the orientation vector 05 of the right
camera w.r.t. the left camera and the coefficients k; of the radial lens distortions can be
initialized using the coplanarity equations. The focal length error Af , the principal point
error (Axy,Ay,), the decentering distortion p; and the affine deformation parameters A
are relatively small and can be ignored during the initialization process. The coplanarity
equation is given by

bir ®X{ ki XCERX%F,{k,i =0 (4.11)
where

- 2 4 6
Xa ki~ Xo.a = Kaki(Kaal +Kgol" +K o +...) —Vy\,

- 2 4 6
X?a:L,R),k,i = yL,a,i - yo,a - Xa,k,i(ka,lr + ka,Zr + ka,3r + ) _VYL,a,i . (4-12)

—f
Typically, a stereo system is assembled such that the cameras are near parallel and
left-right adjacent to each other. Hence, b{y is approximately equal to (O,b,O)T where b
is the baseline length. Since (4.11) is rank defect by one, one of the components in b{y
must be set free. Here bj; , =b is set. Therefore, the parameter vector becomes
X= (bER,x’bER,z ) (BSR)T K Ko K, kR,l!"')T : (4.13)

It is recommended to run the adjustment at two or three epochs in order to check for

consistency.
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As mentioned in the Section 4.2.2, the approximate values of the lever-arm vector Iatﬁ
can be obtained directly by external means, for example, a measuring tape. However, the
bore-sight angles 92 can only be obtained indirectly. One way to determine these angles

is to compare the integrated GNSS/IMU solution and the camera orientation solutions for
a given time interval. Since only the camera orientation information is required and the
scale is not important at this stage, the coplanarity equation can be employed. Consider
the coplanarity equation for the left (reference) camera at two consecutive epochs k —1

and k:

AXT k1 ® X0 ki Xcggtll)xi,k—l,i =0 (4.14)
where the image vectors xj , ; and X} ,_,; have been corrected for the radial distortion
obtained from (4.11). Similar to (4.12), (4.14) is also rank defect by one, thus one of the
components in AXY , ,_, must be set as a free parameter. For example, set AZ[', ; to
1. Thus, parameter vector becomes

X = (AX E,k,kfl’ AYLC,k,kfl' (OEEE)_D)T )T (4.15)

Next, Cf,,can be obtained by chaining the CZ{\);, solution from (4.14) for epochs up
to and includingk :

Cgl(k) = C(r:]‘(k—l) (ngt)—l) ) (4.16)
with C\ = Q'(l) =1. Then, compare the GNSS/IMU and the camera orientations to obtain
the bore-sight angles. The substitution of (4.8) in (4.10) gives

b bn'
CB(k),GNSSINS Cc= CE(l),GNSSINSCcCQ(k) (4.17)
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which relates the GNSS/INS and the reference camera orientation solution. The boresight

angles 02 in (4.17) can be obtain via the linearized least-squares method.

4.3.  Computational complexity

This section compares the number of parameters and the number of floating point
operations (flops) required in a least squares bundle adjustment between the stereo auto-
calibration algorithms based on collinearity equations (COL) (Equation (4.1)) and the
scale restraint equations (SRE) (Equation (4.5)).

Table 4.3 shows the number of parameters based on COL and SRE auto-calibration

approaches, in which n, is the number of the stereo image frames and n,; is the number

of the visible 3D objects. One component in the stereo baseline vector is left free (i.e.,
only two stereo baseline parameters). The number of the camera position and orientation
parameters is 6(n, —1) in total because the first camera position and orientation is fixed
(practically they are set to zero). The advantage of employing SRE is to have the number

of the estimated parameters far less than the one with COL.

Table 4.3 Dimension of the parameter vector (COL vs. SRE)

COL SRE
Number of image frames n, n,
Number of observed objects Nopj Nobj
Focal length, principal point 2%3 2%3
Lens distortion (K;, K, ,Ks) 2x3 2x3
Stereo baseline and relative orientation 2+3 2+3
Camera position and orientation 6(n, —1) 6(n, -1
Object parameters 3Nobj 0
Total 11+6n, +3n0bj 11+6n,
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The flop count is the total number of multiplication and addition operations required to
obtain a least squares (LS) solution. Table 4.4 shows the flops counts for the common

matrix operations used in least squares.

Table 4.4 Matrix operations and the corresponding number of flops

Operation Description Flops
AnBid Matrix-Matrix Product 2mnl —ml
A nbrg Matrix-Vector Product 2mn—m

Al Symmetric Matrix Inversion n+n?+n
Kk
2 Amami Matrix Summation mn(k —1)
i=
2 b Vector Summation m(k —1)
i=1

The factors considered in the analysis are the number of the matched stereo points (i.e.
number of measurements), the number of the image frames, the number of the objects in
view and the overlapping percentage between the consecutive frames. The overlap
percentage encompasses the frame rate, the velocity and the attitude rate of the camera
system. Furthermore, COL system has its measurements as the functions of the unknowns
in the explicit form (i.e. z=h(x)+V) and is solved by applying the parametric LS
adjustment method while the SRE system has its measurements as the functions of the
unknowns in the implicit form (i.e., h(x,z,v)=0) and is solved by applying the
conditional LS adjustment with parameters. The flop counts between the two will be
different under a given number of the measurements and parameters.

To simplify the analysis, the number of the processed image frames is kept constant

(here it is set to 92 and the same number is used the simulation tests in Section 4.4).
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Furthermore, the number of the measurements and objects and the overlapping

percentage are assumed to have the following predictive relationship

m 1
ms=—=—" (4.18)
Nobj 1=

where m’ is the average number of the matched stereo pairs per object, m is the total
number of the matched stereo pairs and p is the average overlapping percentage. For
instance, if p = 75% then m’'= 4, which means that, on average, an object is viewed on 4
images. By keeping the average overlap percentage constant, the number of the objects in
the system can be predicted with a given number of the stereo points. The number of the
measurements and parameters in the LS are now known. Therefore, the flop count can be

predicted. Under the assumption that the measurement variance-covariance matrix R is

homoscedastic, i.e. R =c?l, the least-squares bundle adjustment solution for COL is

given as follows

LU
N = Zi(Hx,in,i)
1=
P=N" (4.19)
3T
i=1
Since there are 4 equations per stereo pair (Equation (4.1)), the dimension of H,; is
4x[11+6(1)+3(1)]=4x26. Furthermore, the dimension of &X is n=11+6n, +3n,, (Table

4.3). The total flops count required for computation in (4.19) is summarized in Table 4.5.
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Table 4.5 Flops count required for computing COL

Operation Flops

m 2(26x4x26)-26x%x26)+26x26]m+ 26x 26(m -1
N_S(HLH,) | ) ) ] (m-1)

i=1 =6084m—-676

P=N" n®+n?+n

m 2(26x 4) - 26) + 26]m + 26(m -1
BTy | [@@6x4)-26)+ 26m o 26(m-1)

i=1 =234m- 26

& =PI 2n®—n

Total n° +3n® +6318m —702

The least-squares bundle adjustment solution for SRE can be written as

Nopj _
N= Zi(HI,i(Hz,iH-Iz-,i) "Hyi)
i=
PN~ (4.20)

Nobj .
oX=P Zi(H;i (H z,iH-Iz-,i) 15Zi)
i=

The dimension of &z; in (4.20) varies as it depends on the number of the matched stereo

pairs for a specific object. For example, if an object is viewed in three consecutive stereo

pairs, the SRE equations will be

C Cc C
fk1i (XL s XRoo XL ggr+--) =0

C C C
gk,k—l,i(XL,I;’XL,k—Cl’XR,k—i’---) =0 4.21)
f k2 (XU k1 XRkas X[ k21--) =0
Ox-1k-2,i (XCL,k—l’ X(I:_,k—2 ) X(F:Q,k—z ,..)=0

92



Table 4.6 Flops count required for computing SRE

Operation

Flops

M = (H,;HJ;), Ny; times

[2(2m")(4m" +4)(2m") — (2m")(2m")]n,y,;

= (32m" + 28m"*)n,;

-1 .
M, ngy; times

[(2m)° +(2m')* + (2m)Ingy,

= (8m" +4m'? + 2m)n,,

HL M ™, ng; times

[2(6m' +17 )(2m")(2m') — (6m’ +17 )(2m')Iny
= (48m” +124m' —34m’)n,;

[H M TH, Ny, times

[2(6m'+17 )(2m")(6m' +17 ) — (6M' +17 )(6M' +17 )Inyy;
= (144m’® + 780m’? + 952m’ — 289)n,,;

Nobj _
N= _Zl(HI,i(Hz,iHI,i) le,i)
i=

[(6m’+17 )(6m' +17 )](ngp,; —1)

= (36m’* + 204m’ + 289) (N, —1)

P=N"

n®+n?+n

[H} M ™16z;, Ny, times

[2(6m'+17 )(2m') — (6m' +17 )]y
=(24m™ +62m'—17 )ny

Nobj .
I = Zl(Hl,i(Hz,iH-lz-,i) 15Zi)
i=

6m’'+17)(n,, -1

X =PI 2n? —n
n®+3n%+(232m"° +1202m'* +1192m)n; ..
—(36m'? +210m’ + 306
Total ( )

=n®+3n2+(232m'? +1202m’ +1192)m. ..
—(36m'% +210m'’ + 306)

If the average number of the matched stereo pairs per object is m’, the dimension of

dz; is 2m’, the dimension of H,; is 2m'x(4m'+4), and the dimension of H,; is

2m'x(6m’'+n., ) = 2m’'x(6bm’'+17) , where n., corresponds to the number of the

calibration parameters (the focal length, the principal point, the image distortion

parameters, the stereo baseline and the relative orientation in Table 4.3). Furthermore, the

dimension of &X is n=11+6n, as shown in Table 4.3. The total flops count required to
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solve (4.20) is summarized in. Figure 4.5 shows the number of flops vs. number of stereo
points required in COL and SRE with the overlapping percentages of 70%, 80% and

90%.

Number of frames = 92

Iogm(ﬂops)

3 35 4 4.5 5 E& 6 6.5 7 7h 8
log, o(m)

Figure 4.5 Flops vs. number of stereo points (m)

As expected, the plot shows that COL uses more flops than SRE does. As the overlap
percentage increases, the number of the flops in COL decreases because the number of
the matched stereo pairs per object becomes larger. Therefore, given the same number of
the measurements, the number of the object parameters becomes smaller. As the overlap
percentage increases, the number of the flops in SRE increases because more matrix

inversion operations are needed in the conditional LS adjustment with parameters.
4.4. Pre-analysis using the simulated data

This section presents the results from the pre-analysis of COL and SRE auto-
calibration algorithms via least-squares bundle adjustment. Pre-analysis is typically

performed in geodetic control network design in order to predict the achievable accuracy
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of the estimated parameters and appropriately adjust the network design or so. Here, the
pre-analysis is applied to (a) determine the best SRE combination described in Figure 4.3
in Section 4.2.1 and (b) compare the performance of COL and SRE auto-calibration
algorithms in terms of their accuracy and computation complexity. The simulated data
were used for the following reasons: (a) they contain no correspondence errors, (b) the
measurement model is exact and does not contain un-modelled errors, and (c) it provides

flexibility in terms of number of measurements for the analysis.

A typical land vehicle trajectory was simulated for the tests, i.e., it consisted of large
horizontal motion and heading variation. Figure 4.6 (left) shows the vehicle’s trajectory

and the landmarks. The vehicle’s height and attitude profiles are given in Figure 4.6

(right).
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Figure 4.6 The 2D trajectory, landmarks (left)
and the height, roll, pitch and heading profiles (right)
The camera resolution and its field of view (FOV) were set to 640x480 pixels and 50

degrees (equivalent to 686.2 pixels), respectively. The baseline length between the two

cameras was 0.65m. Algorithm 4.1 below describes the simulation parameters. The
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number of the epochs is 92. To simulate the urban scenario, the landmarks between the
ranges 15m and 25m were selected to be in the view of the camera. Furthermore, the
measurement noise was set to zero mean Gaussian noise with the standard deviation of

+0.5px. The initial value for each camera calibration parameter was set to zero except the

baseline component by, , as the free parameter and equal to 0.65m.

Algorithm 4.1 Simulation Algorithm
1.Simulate trajectory (i.e. position & attitude)
2.Simulate landmark position (i.e. map)

3. For each position and attitude
a. Find landmarks in view
b. Find landmarks with ranges [15,25] m
c. For each landmark
i. Get image coordinates
ii. Add lens distortion
iii. Add measurement noise (0.0+0.5px)

Figure 4.7 shows a 3D view of the trajectory, landmarks in view and the corresponding

left and right images at epoch 46.
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Figure 4.7 3D trajectory, landmarks in view, Ieft image and right image at epoch 46
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44.1. SRE combination test

This section determines the best SRE combination as described in Figure 4.3. For each
combination, the least-squares bundle adjustment SRE solution was computed. Table 4.7
lists the parameters and gives the size of the parameter vector. The number of stereo
points per frame is shown Figure 4.8, in which the total number of stereo pair
measurements is 17074 . Then, the trace of the parameter variance-covariance matrix was
computed for each of the SRE combination. Finally, the results are presented in Table

4.8, from which the Combination 5 performed the best with the minimum trace.

Table 4.7 SRE stereo auto-calibration parameter

Parameter Size
Image distortion 26
X
(6 parameter model: Af |, Ax,, Ay, , K, K, ,Kg)
Stereo baseline and relative orientation (one
. . 2+3
baseline component is fixed)
Exterior Orientation (one EO parameter is fixed) 6x(92-1)
Total parameter vector size 563
200
150
AAAA AN A/

stereo points per frame

100 SN~ VY v\_,-/\/\/vv\/" oV V\/\/‘/\-’\/"‘\/‘“/ A

50

10 20 30 40 50 60 70 80 90
epoch k

Figure 4.8 Number of stereo points per frame vs. epoch
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Table 4.8 Square-root of the trace of the parameter variance-covariance
matrix for each of the SRE combination shown in Figure 4.3

SRE Combination SRE Equat_ion 1 | SRE Equat'ion 2 tr (P)
Number Image Points Image Points
1 XLk Xk XRka XLk Xk XLk 8.2305
2 X[k Xk XR k1 XUk XUkt XRket 7.7353
3 XLk Xk Xk XRk XRk-1 XL k-1 55.211
4 XUk Xek XL XUk XUkt XRket 74.896
5 XUk XRk XL ka XRk Xrk XLkt 6.1466
6 Xek XRk1 XL k1 Xek XRk1 XL k1 56.589

4.4.2. Comparison of COL and SRE auto-calibration algorithms

The accuracy analysis on COL and SRE algorithms is presented in this section. Auto-
calibration results, one from COL and two from SRE (as SRE1 and SRE?2), are presented
here. The estimates from COL and SRE1 were obtained using the same number of the
measurements, i.e., 17074 stereo points (m) as SRE2 used 4.5 times more measurements.
The average overlap percentage for all three cases was 74%. Figure 4.9 shows the

number of stereo points per frame and the number of the accumulated stereo points.
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Figure 4.9 The number of the stereo points per frame (top)
and the number of the cumulative stereo points (bottom).

Figure 4.10 shows the standard deviations of the estimated focal length and the

coordinates of the principal point obtained from the three cases w.r.t. the number of the

epochs.

1-a.AY,PH)

20 40 60 80 20
epoch k

:1:[] S:[] 8:[]

epoch k

Figure 4.10 The standard deviations of Afi, Axi o, AyLo, Ki1, K2 and ki 3
for the left camera
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The results showed that, with the same given number of measurements, SRE1
performed worse than COL did. However, SRE2 required 4.5 times more measurements
to reach the equivalent or better performance than the COL algorithm did. Figure 4.11
shows the standard deviations w.r.t. the number of flops. The results showed that both

SRE1 and SRE2 required less computation resources to achieve the same level of the

accuracy as COL did.

1-ak, (px?)

95 10 105 11 115
log, 4(flops)

85 9 95 10 105 11 115
log, 5(flops)

-4
T-ak,(px™)

95 10 105 11 115
log, 4(flops)

95 10 105 11 115
log, 5(flops)

-6
T-aky(px™)

85 9 95 10 105 11 115 . . 115
log, (flops) log, 4(flops)

Figure 4.11 The standard deviations of Afi, Ax_ o, AyLo, KL 1, kL2 and ki 3
for the left camera as the function of flops

The final bundle adjustment solution from COL, SRE1 and SRE2 are presented next.
Table 4.9, Table 4.10 and Table 4.11 show the true values, estimates and their standard
deviations for the left, right and relative camera orientation calibration parameters,

respectively. The results showed that the accuracies of the focal length error from COL
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and SRE2 were similar and better than the one from SRE1. SRE2 delivered the smallest
principal point error, but SRE1 behaved the worst. The radial distortion coefficients from

COL and SRE1 were similar. However, SRE2 delivered the best results.

Table 4.9 Left camera lens distortion parameters

Parameter J{;ﬂee coL SRE1 SRE2
mean stdev mean stdev mean stdev
Af (pX) -2 -1.825 | 0438 | -2.713 | 0.875 | -2.318 | 0.417
Axo(pX) 2.5 2393 | 0.230 | 2665 | 0.309 | 2432 | 0.142
Ayo(pX) -3 -3.232 | 0219 | -2.851 | 0.266 | -3.061 | 0.122
ki(px®) | 5.0e7 |5.03e? | 6.47¢” | 5.07¢"" | 6.97¢” | 5.06e?" | 3.21e”
ko(px™®) | 4.0e™ | 7.16e™ | 1.03e™ | 6.49e™° | 1.04e° | 3.92e™ | 4.75¢™
ks(px®) | 4.5e™ | 1.78¢™° | 4.86e™ | 4.89e™° | 4.89¢ | 3.72¢™° | 2.20e™”
Table 4.10 Right camera lens distortion parameters
Parameter \T;I‘di coL SRE1 SRE2
mean stdev mean stdev mean stdev
Af (pX) +2 2082 | 0441 | 2534 | 0884 | 2078 | 0421
Axo(px) -2 -2.003 | 0.226 | -2.250 | 0.319 | -2.029 | 0.146
Ayo(px) 1 0.391 | 0.217 1.217 | 0.243 | 1.233 | 0.112
ky(px®) | 5.0e% [5.08¢°" | 6.72¢” |5.04e”" | 8.02¢™ | 5.06e”" | 3.76e™”
ko(px™®) | 4.0e™ | 2.85e™° | 1.08e™ | 2.38¢ " | 1.28e™° | 3.60e™° | 6.03¢™*
ka(px®) | 4.5¢™ [9.01e™ | 5.21e™ |5.89™° | 6.22¢™ | 5.82e™° | 2.93¢"

The relative orientation parameters from SRE2 were the best overall as the ones from
COL and SRE1 were similar to each other. The total number of the used stereo points, the
number of parameters and the flop count are shown in Table 4.12 for each of the auto-
calibration algorithms. COL and SRE1 employed the same number of measurements, as
SRE2 used 4.5 times more measurements. SRE1 and SRE?2 estimated the same number
parameters, but COL estimated 7854 more parameters. Even though, SRE2 processed
more measurements than COL, it still used 1000 times less flops and achieved a higher

accuracy.
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Table 4.11 Relative orientation of right camera w.r.t left camera (}Free parameter)

Parameter | 1 "Ue coL SRE1 SRE2
value

mean stdev mean stdev mean stdev
be.X(m) 0.01 | 0.011 0.001 0.007 0.002 0.007 0.001

bixy (M)t | 0.65 | 0.650 - 0.650 - 0.650 -

biay (M) | -0.01 | -0.013 | 0.004 | -0.013 | 0.004 | -0.012 | 0.002
0%, (deg) | -0.25 | -0.257 | 0.007 | -0.266 | 0.008 | -0.260 | 0.004
0%,(deg) | 05 | 0504 | 0.008 | 0.500 | 0.014 | 0.494 | 0.006
0%,(deg) | 0 | 0.002 | 0.002 | -0.003 | 0.002 | -0.002 | 0.001

Table 4.12 Number of points and parameters
COL | SRE1 | SRE?
Number of stereo points 17074 | 17074 | 77945
Number of parameters 8417 | 563 563
log;0(flops) 12.4 8.8 9.4

4.5.  Laboratory tests and results

This section presents the calibration results of a stereo camera system in a laboratory
setting. The first set of tests determined the number of the image distortion terms through
trial and error. The second test compared the performance of SRE and COL auto-

calibration algorithms.
45.1. System description

The stereo camera system consisted of two Point Grey Flea3 cameras separated by a
baseline of 0.65cm long as shown in Figure 4.12 (left). The camera resolution and the
FOV were set to 640x480 pixels and 50 degrees (equivalent to 686.2 pixels),

respectively. The size of each pixel is 4.65 um [Point Grey Research Inc, 2011]. An 8x12
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checkerboard with the dimensions of 90x60cm (Figure 4.12 (right)) was used as the

reference target field.

Figure 4.12 Stereo Camera System with IMU (Left). 90x60cm Checkerboard (right)

17 stereo pairs of images, 19 left-only images and 20 right-only images were captured.
The left-only and right-only images were taken to fill the entire image format. The
corners of the checkerboard were extracted using the Camera Calibration Toolbox in
Matlab [Bouguet, 2015]. The total number of the extracted points was 5621. Figure 4.13

shows the extracted image measurements.

left right

Figure 4.13 Image measurements for the calibration

The minimum, average and maximum distances from the mid-point of the stereo

system to the center of the checkerboard were 1.2m, 1.6m and 2.5m, respectively. In
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order to obtain a reliable geometry, the image network consisted of orthogonal roll angles

and highly convergent images.
4.5.2. Determination of lens distortion parameters

In this section the significant image distortion terms are determined experimentally.
The calibration is performed with various sets of image distortion coefficients. Then, the
most accurate combination is chosen as the correct one. Table 4.13 lists the combinations
specifically employed in the completed tests.

Table 4.13 Image distortion coefficients combinations

Combination ID Combination
1 AXo, Ao, AF ki Ky kg Ky Ksy Py P AL A
2 AXg, AYq , AT ki Ky kg kg ks, AL A,
3 AXg, Ao, AF Ky Ky kg Ky ks, pys P
4 AXy, Ao, Af ki Ky kg Ky ke
5 AXy, AYq, Af ki Ky kg K,
6 AXy, Ao, Af ki, K,y kg
7 AXy, Ao, Af kK,
8 AXqy, Ay, Af Kk,

The combinations are chosen for the following reasons: the radial distortion is
dominant and therefore is included in all the combinations. The decentering distortion
can be small enough that it can be absorbed by the position error of the principal point
[Fraser, 2012] and the affine distortion may not exist in the digital cameras [Tang, 2013].
Thus, they only appear in combinations 1, 2 and 3. The combinations of the image
distortion coefficients were computed and the ranging accuracy of the stereo system was

analyzed. For each combination, the followings were conducted:
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1. The camera system was calibrated using the traditional calibration method (i.e.
the checkerboard coordinates were set as constants) so that the exterior orientation
of the cameras can be obtained.

2. Auto-calibration was performed using the collinearity equations.

3. By using the estimated position and orientation of the stereo system from the
tradition calibration results in Step 1 and the auto calibration results in Step 2, the
3D position of the corners of the checkerboard were estimated by space
intersection.

4. The differences of the estimated 3D positions and the true checkerboard corner
positions were computed. Then the mean and RMS of the differences was
determined.

Figure 4.14 shows the X, Y, Z and the 3D ranging errors for combinations 1 to 8.

2 3 4 5 6 7 s 3 3 4 & 6 7 s
Combination 1D Combination 1D
Figure 4.14 X, Y, Z and 3D ranging errors for combinations 1 to 8

The results from the combinations 1, 2 and 3 showed that the inclusion of the

decentering distortion and the affine distortion terms degraded the overall ranging

accuracy in comparison with the models that contained only the radial distortion terms.
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The results were degraded due to the high correlation of the decentering distortion and
the affine distortion with other parameters. Table 4.14 shows the correlation coefficients
between the focal length error and affine parameters for Combination 2.

Table 4.14 The correlation coefficients of the focal length error
and affine parameters for Combination 2

Left Camera Right Camera
Af A A, Af A A,
Af - 082 017 | Af | - 079 039
A - 018 | A - -0.18
A - A -

The correlation coefficients between principal point error and decentring distortion
parameters for Combination 3 are shown in Table 4.15.

Table 4.15 The correlation coefficients of the principal point error
and decentring distortion parameters for Combination 3

Left Camera Right Camera
AXy, Ay, n P, AXy  Ayg Py P2
A% | - 012 092 023 | | - -022 089 -0.17
Ay - 0.09 0.89 | AYo - 0.21 0.86
Py - -0.16 | p - -0.18
P> - P> -

Table 4.14 shows that the correlation coefficient between Af and the affine parameter
A, are 0.82 and 0.79 for the left and right cameras respectively. Furthermore, Table 4.15
shows that Ax, and Ay, are highly correlated with p, and p, , respectively, with

correlation coefficients greater than 0.86. A high correlation mathematically implies a
significant linear relation between two parameters in question and can cause instability in

the solving the bundle adjustment solution. The presence of these high correlation
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degraded the overall calibration solution. (Note: the full correlation analysis of all the
results were omitted; only relevant ones were presented)

Other than the principal point error and the focal length error, the combinations 4 to 8
contain only radial distortion terms. The RMSE decreased from the combinations 8 to 6

and then levels off from 6 to 4. This showed that most of the radial distortion is

accounted up to the term k, and the inclusion of the coefficients k, and k,; does not

improve the overall solution accuracy. Furthermore, the mean errors slightly increased

when k, and kg were included. The test results showed that the combination 6 performed
the best, i.e.

Axg; =—AXg — X Af + X (Kyr? +Kor* +Kgr®)
’ _ (4.22)
AYq i =—AYo —LAF + J(kyr® +Kor* +Kqr®)

45.3. Comparison between COL and SRE

The SRE and COL auto-calibration algorithms were tested and their performances
were compared using the auto-calibration model in (4.22). The calibration results using
the traditional method via collinearity equations were used as the reference solution. The
standard deviation of the measurement for the image points was assumed to be +0.3px.
Table 4.16, Table 4.17 and Table 4.18 show the estimates and their standard deviations

for the left, right and relative orientation camera calibration parameters, respectively
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Table 4.16 Left camera lens distortion parameters

Collinearity Collinearity Scale Restraint
Parameter Equations Equations Equations
(Traditional) (Auto) (Auto)
mean stdev mean stdev mean stdev
Af_ (PX) -1.72 0.40 2.49 0.56 2.50 0.79
AX( ¢ (PX) -0.49 0.33 -0.24 0.37 0.04 0.57
AY| o (px) 0.47 0.32 -0.17 0.36 0.15 0.73
K i(px? | -4.80e” | 1.35e® | -4.93¢" | 1.30e® | -4.79¢% | 1.11¢®
kio (x| 1.09e™ | 2.64e™® | 4.91e™ | 257¢™® | 4.93¢™ | 2.12¢"
kK s(px®) | -3.35¢® | 1.55¢"® | -537¢® | 1.52¢® | 7.11e™ | 1.27¢"®
Table 4.17 Right camera lens distortion parameters.
Collinearity Collinearity Scale Restraint
Parameter Equations Equations Equations
(Traditional) (Auto) (Auto)
mean stdev mean stdev mean stdev
Afg (PX) 2.02 0.24 5.60+ 0.54 6.58 0.84
AXg ¢ (PX) 1.02 0.24 -0.63+ 0.37 0.49 0.64
AYg o (PX) 2.80 0.22 1.77+ 0.36 1.88 0.76
Kpi(px?) | -4.97€" | 1.24¢® | -4.94e" | 1.31e% | -4.88¢"" | 1.10e®
Keo (X | 9.99e™ | 2.49e™ | 3.92¢™ | 2.63¢™ | 6.69e™® | 2.20e™
Kes(px®) | -1.82¢™® | 1.50e™ | 9.88e%° | 1.56e%® | -3.15e™° | 1.39¢18

Table 4.18 Baseline and relative orientation estimates. tFree parameter.

Collinearity Collinearity Scale Restraint
Parameter Equations Equations Equations
(Traditional) (Auto) (Auto)
mean stdev mean stdev mean stdev
ER_X (mm) 3.11 0.43 3.15 0.60 8.36 2.99
bﬁR.y (mm) | 650.19 0.59 +650.19 - +650.19 -
bER_y (mm) 2.62 2.34 6.73 3.63 3.81 3.45
HCCR,X (deg) 0.32 0.06 0.36 0.10 0.29 0.04
6’§R,y (deg) -0.23 0.07 -0.41 0.12 -0.30 0.05
9§R’Z (deg) -0.06 0.01 -0.07 0.02 -0.04 0.01
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Table 4.19 Number of the points and parameters

Collinearity Collinearity | Scale Restraint
Equations Equations Equations
(Traditional) (Auto) (Auto)
Number of points 5621 5621 5621
Number of parameters 354 578 347

Table 4.19 shows the total number of the used feature points and the number of the
estimated parameters. As expected, the results showed that the estimated standard
deviations in SRE are worse than the ones in COL with SRE containing less number of

the estimated parameters. The accuracy of the auto-calibration parameters was evaluated

as follows

1. The exterior orientation of the cameras was obtained using the traditional

calibration method.

2. Using the estimated position and orientation of the stereo system from the
tradition calibration results in Step 1 and the auto calibration results of COL and

SRE, the 3D position of the corners of the checkerboard were estimated by using

space intersection.

3. The differences of the estimated 3D positions and the true checkerboard corner

positions were computed. Then the mean, standard deviations and RMS of the

differences were determined.

Table 4.20 shows the mean, the standard deviations and the RMS of the position

errors. The results showed that the SRE algorithm performed worse than the COL

algorithm. This is expected since the same measurements were used.
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Table 4.20 Means, standard deviations and RMS of the deviations between the
corresponding 3D reference points and estimated points.

Collinearity Equations Scale Restraint Equations
(Auto) (Auto)
dx(mm) dy(mm) dz(mm) dx(mm) dy(mm) dz(mm)
mean -0.94 1.22 13.76 0.74 1.85 16.94
std 1.81 3.54 3.71 1.65 4.18 4.83
rms 2.04 3.75 14.25 1.81 4,57 17.61

Table 4.21 shows the means, the standard deviations and the RMS of the image residuals.

The residual RMSes are at subpixel levels. This shows a tight fit of the measurement

models with the measurements.

Table 4.21 Means, standard deviations and RMS of the image residuals.

Collinearity Equations Scale Restraint Equations
(Auto) (Auto)
Left Right Left Right
Camera
Vo (PX) | vy, (px) | Vi (PX) | vy (px) | Vi (PX) | vy (px) | V< (PX) | vy (px)
mean -0.003 0.005 | -0.005 | -0.007 | 0.002 0.003 | -0.004 | -0.006
std 0.140 0.149 0.142 0.156 0.158 0.154 0.177 0.162
rms 0.140 0.149 0.142 0.157 0.158 0.154 0.177 0.163
4.6. Summary

This chapter presented the design and implementation of a structureless camera auto-
calibration method in a GNSS, IMU and Stereo camera integrated kinematic positioning
and navigation system. The most widely used mathematical model for camera auto-
calibration is the well-known extended collinearity equations. The vast majority of the
parameters to be solved in the bundle adjustment are the object coordinates. However,
they are not directly part of the calibration parameters. By removing or omitting these
parameters from the system of equations, the memory and computational usage can

drastically be reduced. Structureless auto-calibration methods, which are free of object
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coordinates, have been proposed. For instance, Faig [1975] and Cefalu et al [2016]
utilized the two-view coplanarity constraint in their bundle adjustment. However, they
did not consider the scale-consistency between the image positions in their calibration
algorithm. Scale-consistency is important when measurements from external sensors,
such as a direct-georeferencing system with GNSS receivers and IMU, are incorporated
in an auto-calibration.

The realized auto-calibration here in this research employs the scale-restraint equation
and consists of two-stages. The first step determines the lens distortion parameters, the
up-to-scale baseline length and the relative orientation between the two cameras by
employing two scale-restraint equations to constrain the matched features from two
consecutive stereo pairs. Then, the system calibration is introduced to recover the camera
lever-arms, and the bore-sight angles with respect to the IMU, and the absolute scale of
the camera using the GNSS-aided inertial navigation solution. The main advantage of the
proposed method is that it is free of the object positions in the parameters vector and this
results in computation and memory savings. The contributions of the research in this
chapter can be summarized as follows:

e The development of a camera auto-calibration and system calibration algorithm
for a GNSS, IMU and stereo camera system that is based on the scale-restraint
equation.

e The pre-analysis and comparison of the calibration accuracy of a self-calibrating
bundle adjustment based on the collinearity equations and the proposed method.
Test results using simulated data for a land vehicle scenario showed (a) the

collinearity equations performed better than the scale-restraint equations when the
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same measurements were used and (b) the scale-restraint equation required
approximately four times more measurements to produce comparable results to
the collinearity equations.

e The analysis and comparison of the computational complexity for solving the
self-calibrating bundle adjustment based on the collinearity equations and the
scale-restraint equation. The test results with simulated data showed that the
scale-restraint equation required 4.5 times more measurements than the
collinearity equations to achieve comparable calibration accuracy while using
only 0.1% of the computational resources.

The real road tests and their results will be presented in Section 7.3.
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5. Loosely-coupled visual odometry aided inertial navigation

This chapter is mainly based on the following publication:
Gopaul, Nilesh S.; Wang, Jianguo and Hu, Baoxin (2017): Loosely coupled visual
odometry aided inertial navigation system using discrete extended Kalman filter with
pairwise time correlated measurements, 2017 CPGPS Forum on Cooperative
Positioning and Service, 19-21 May 2017, Harbin, China, IEEE EI-Indexed Proceedings,
Electronic ISBN: 978-1-5090-5022-2/17©2017 IEEE, DOI: 10.1109/CPGPS.

2017.8075140.

5.1. Introduction

A loosely-coupled (LC) visual odometry (VO) aided-INS implies that pose changes
estimated from the VO engine are used to aid the inertial navigation system. The Kalman
filter algorithm is generally preferred for the fusion of the inertial measurements and the
measurements from other aiding sensors. The Kalman filter in the standard form assumes
that the process and the measurement noise vectors are white and conform to normal
distributions with zero means. However, the assumption about white noise is not satisfied
with the VO measurements since the VO estimates are pairwise time-correlated, i.e. the
measurements at the current epoch are correlated with the measurements from the
previous epoch in the stochastic sense. Neglecting significant time-correlated errors can
degrade the performance of the filter and produce suboptimal solution.

This chapter develops an algorithm for processing pairwise time-correlated
measurements in a Kalman filter. Time-correlated errors are usually modelled by a

shaping filter. The shaping filter presented in this chapter uses Cholesky factors as the
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coefficients derived from the variance and covariance matrices of the measurement noise
vectors. The advantage of using Cholesky factors is that they are derived sequentially
epoch-by-epoch and therefore it is suitable to be implemented in a Kalman filter. The
results using the simulated data showed that the proposed algorithm performed better
than the existing Kalman filter algorithms and provided more realistic covariance
estimates. Furthermore, because VO measurements are relative in nature, the Kalman
filter formulation for processing relative measurements is also represented.

This chapter is organized as follows: Section 5.2 constructs the Kalman filter for
processing the relative measurements and dealing with their pairwise time-correlation.
Then, the simulation tests results are shown in Section 5.3 to validate the development
presented in Section 5.2. Section 5.4 presents the system and measurement models for the
VO-aided inertial navigation in loosely-coupled mode. Finally, a summary is given in

Section 5.5. The field test results and analysis are presented in Section 7.4.

5.2.  Design of the Kalman filter

The assumptions prior to constructing the Kalman filter are

e the stereo camera system is calibrated,;

e the visual odometry is derived from two consecutive image frames;
e the IMU data rate is higher than the one of the camera system;

e the IMU has a constant output rate;

e the camera system output rate may not necessarily be constant;

e the image and IMU measurements are synchronized.
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5.2.1. Relative measurements

The VO estimates are relative in nature because they are the differences of the
positions and attitudes of a moving vehicle between two consecutive image frames. In
order to process the relative measurements, the equations in the standard Kalman Filter
have to be modified. This section summarizes the stochastic cloning algorithm for
processing relative measurements which was developed by [Roumeliotis et al, 2002].

Consider the following linear/linearized discrete system and measurement model:

X =@ X + ¥ gWi g, Wi ~ N(0,Q ) 5.1)
Zk:Hka+Hk—ka—m+Vk’Vk~N(O’Rk)’m>l l

wherein the measurements are the functions of the state vectors at the current epoch k
and the past epoch k—m. Furthermore, there are no aiding measurements available
between k —m and k, i.e. only the system model is used to predict the state vectors from
epoch k —m to epoch k, and conducts the measurement update at epoch k. Figure 5.1
depicts the relationship between the states and measurements between the epoch k —m

and the epoch k.

Epoch k-m .. k=2 k-1 k
mmm I an I I I

_ L L LI

States Xi—m | K == -2 R} X | A
Measurements  Zr_,, ‘e n'a n'a Z;

Figure 5.1 Timeline between epochs k-m and k

The derivation starts with the estimated state vector X; . at the epoch k—m. The

augmented state vector and its associated variance-covariance matrix are
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+
v X1,k—m
Xk—m -

+

X2,k—m

_ o pr (5.2)
Pk+—m :( k—m k—m]

Pim Pim
Where ~ denotes the augmented vectors and matrices, and the subscripts 1 and 2

differentiate between two copies of the state vector x;_,,. Between two epochs, k —m and

epoch k, only the first copy of x; is propagated while the second one has to remain in

stationary. Therefore, the augmented system becomes

Xy ()] O\ x ¥
E,k7m+1 :( k—m j Jlr,kfm +( k—m )Wk—m- (5.3)
X2 k-m+1 o I\ Xok-m o

Now, the propagation of the augmented variance-covariance matrix is discussed. At
epoch k—m+1, the variance-covariance matrix of the predicted augmented state vector

becomes
5- D, o I:)I<+—m Pk+—m ., OT
Pema =l 7 ) pr pr o |
I:)k—m I:)k—m

T
‘Pk—m ‘Pk—m
+
— (‘Dk—m Plzr—mq)l—m + Tk—ka—mTI—m (I)k—m PI:—mJ

+ T +
I:)k—m(I)k—m I:)k—m

— I:)k_—m+1 q)k—m I:)I<+—m
I:)kJr—m(I)-II(-—m Pk+—m

(5.4)

Similarly, the variance-covariance matrix of the predicted augmented state vector at

epoch k —m+2 is

~ P, ®, .. P
Pk_—m+2:[ k—m+2 k—m+17* k-m k—m]. (5.5)

P;—m(l);l(-—mq)-r Pk+—m

k—m+1
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Finally, at epoch k, the variance-covariance matrix of the predicted augmented state

vector becomes

- P7 ! P+
Pk_ = . l:T kfl,k;m k-m (5.6)
I:)k—m(I)k—l,k—m I:)k—m

with @ 4, =®, @, ,...®, . . The variance-covariance matrix of the system

innovation vector at epoch k is given by

5- T
Sy :(Hk Hk—m)Pk (Hk Hk—m) +R,
= HkPk_HI + Hk—mPI:—mq)[(T—l,k—mHl : (5'7)
+ Hkq)L—l,k—mPI:—mHI—m + Hk—mPk+—mH-I£—m + Rk
After the measurement update, the variance-covariance matrix of the augmented state
vector can be obtained as follows
- o~ o~ - -
P =P —Py (Hk Hk—m) Skl(Hk Hk—m)Pk

~ P Hp + @, P oHr
— Pl; _ +k k'T k—l,kT—m k—er k-l—-m SE]. . . (5.8)
Pem @i k-mHk + PicmHyem

(H kPk_ +H k—m Plzlmq)ill,kfm H k(DI(fl,kfm F)ktm + kam I:)kJ:m)
The corresponding Kalman gain matrix is given by

~ K
Kk=[ LkJ:Pk(Hk Hk—m)TSE1
Kok

B , N (5.9)
_ (P Hy +q)k71,k7mpkth-ll<-—m)Skl
(Plzr—mq)[(T—l,k—mHI + PI:—mHI—m)SEl
The solution of the augmented state vector after the measurement update is equal to

In summary, the basic equations are:
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(I)Lfl,kfm =0, D, ,.. D,
T i T
Sy =HPH + Hk—mPkJr—m(I)k—l,k—mHk
' T T
+ Hk(Dkfl,kmekJr—mkam +H o PnH e m + Ry

Ky =(PH] +®) 4, P HI )SE G4
k =(PeH + @ g P nHim)Sk

x; =X + Kk(zk - Hkxi - Hk—mXJkr—m)
PI:— = Pk_ — Kk (Hkpk_ + Hk_mplz——m(I)I(T—l,k—m)

5.2.2. Pairwise time correlated measurements

This section develops a shaping filter to handle pairwise time-correlated measurement
noises in a Kalman filter [Gopaul et al, 2014, 2017]. The goal is to derive the optimal
Kalman filter solution and run the filter sequentially in practice. Since the measurement
noise vector is independent of whether the measurement type is relative or not, the
relative measurement states described in Section 5.2.1 are not included in the derivation
here. They can be added later. The derivation starts with the following measurement
model

z, =H. %, +v,,v, ~NO,R,) (5.12)

If R, is positive definite, it can be decomposed using the Cholesky factorization [
Grewal and Andrews, 2001; Bierman, 2006, etc.] as follows:

R, = CkC-l[ (5.13)

wherein the Cholesky factor matrix C, is unique and real lower triangular with the

strictly positive diagonal elements. By multiplying (5.12) with its inverse, i.e. C.*, one
obtains

z, =Cl'z,=C.'H, x, +C.'v, = Hix, + V' (5.14)
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wherein the individual components in the derived measurement noise vector v, are un-
correlated and have the identity matrix as their variance and covariance matrix:
k = E[(Vi)(Vi) 1= ClElv, v I,
=C/'R,C,' =C,'C,C/C,’ (5.15)
=1
The substitution of v, =C, v, into (5.12) yields
z, =H/x, +C, V', , v, ~N(O,I) (5.16)
Now suppose that the measurement noises are pairwise-time correlated, i.e.
E[z,z; ,]1#0 and E[zszj] =0 for j#k-1 and j=k , which are equivalent to
E[v,V, ,]#0 and E[vka] =0 in terms of their noise vectors. After having

concatenated all the measurement noise vectors from epoch 1 to epoch N into a vector v

, one obtains its corresponding variance-covariance matrix r

Vl Rll Rlz O e O
Vs Rai Ry Ry -+ O

V= V3 y R = O R32 R33 ce O . (5.17)
vy O O 0O - Ry

By applying the Cholesky factorization to the matrixr, one has
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Vv, Cy Cp O

o C32 C33

vy, LO O O

Ra Ry Ry o
@) @) (@) R
cC, O O O \yc, O O
Cy Cp O O |Cy Cp O
= O C:32 C33 o o Csz Css
O O O CWwWhO O O
Cllcl-l Cllc-lz-l o)
CZIC-lrl C21C;1 + szcgz szcgz
=l O C32C£2 Cszcgz + Csscgs
@) @) @)

measurement noise vector v' as follows

!
O \v;
!
O |V,
!
O | v;
!
Can AV

! !
Vi =Cy Vi +Cy Vi
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(5.18)

The original global measurement noise vector v is related to the de-correlated global

(5.19)

In short form, the measurement noise vector at an arbitrary epoch k can be written as

(5.20)

with vi ~N(0,1) and C;, =0. Based on (5.18), the Cholesky factor matrices C, , ;

and C,, can be obtained sequentially from epoch to epoch as described in Algorithm



Algorithm 5.1: Sequential Cholesky factorization of the
pairwise time correlated variance-covariance matrix

CO,O=O
Cl,OZO
for k =1,---,N{

Ck,k—l = (Cil,k—le—l,k)T
Cy x =chol(Ry _Ck,kflc-kr,k—l)

By substituting Vv, in (5.20) into (5.12), the measurement model becomes

With C,, =0 . Based on (3.27), the augmented system and measurement models

become:
Xk @, O O Xy Y1 O O\w,
Vi |=| O O Of|viyl+l O 1 O|ng,
vi.,] Lo 1 olv,,] Lo o o) o 522)
Xk
Zk—(Hk Cex Cukar) Vi [+0
Vi

Since v, is now part of the state vector, its corresponding noise is modelled as the
process noise vector n, ,, Vi =n,, . Therefore, n,, ~N(O,1) . In short form, the
augmented system (5.22) can be written as

X = @ X g+ Wy 4, Wi ~ N(0,Qyy) (5.23)

where  ~ denotes the augmented vectors and matrices. Notice that (5.23) is in the form

of the standard Kalman filter with zero measurement variance matrix i.e. ﬁk =0.
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Theoretically, the Kalman filter algorithm can handle measurement noises with zero

variance-covariance [Simon, 2006] since it only requires the system innovation variance-
covariance matrix I:|k5k‘I:II to be non-singular [Grewal and Andrews, 2001]. Since

(5.23) is in the form of the standard Kalman filter defined in (3.21) and (3.22), any
smoother associated with the Kalman filter can easily be employed without any

modifications. Next, (5.23) is simplified. The time update of the augmented state vector

runs
., O O x4 Xk Xk

X, =| O O Oo|vi|=|vi|=| 0 (5.24)
(0] I O)\vi, Vi Vi

with the associated variance matrix update

5. X 5+ XT T A~ T
Pe =@, P 1@ +¥, QWi

T
(I)k—l ©0 O I:)kJr—l Pl:r—l,xk,lv[(,l Pk+—1,xk,lv£<,z (I)k—l o O
= O 0 0 Pk+—1'Vi<71Xk71 Pk+—1,v[<71vi<71 Pk+—1,vi<71vi<72 O o O
O I O PI:—l,kazxkfl P;——lvvlkfzkal Pktlkafzvi(fz O IO
¥, O 0YQ., O OY¥, O oY
+ O I O O I O O I O
O OOoOf O O OoOpfO OO
O, P Dy +¥, Q¥ O (I’k—1|:)k+—1,xk,1v;H
= @) | @]
Pktlkalekflq)-'[—l O Pkﬁkaflefl
P O Py X Vit
= @) | @)
Pk_xVL-lxk O Pk_vV/l<-1V/k-1
(5.25)

The gain matrix of the augmented system can be derived as follows
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A
I
2

=

_ _ T -1
Pk o Pk,xkv[<_1 |_Ik
(Hk Ck,k Ck,kfl o I o C-Ik-,k
Pk_wV&lek O PIZVi(—lVI(—l C-lk-vk—l

-1

T T
H P Hy +Cy Cyy -
T
Chya
+H.P v Criq

k' kX Vi 2k k-1

- T
+Cy kaProvix, Hi

T L p- T
PeHi + Pixvi,Croxa
_ T
= Crx

- T p- T
Peve o Hi + Pevi i, Crkt

+Cy k1P i,

~ ~ ~ B (5.26)
(P Hy + Pk,xkv[(_lc-lz,k—l)(HkPk Hi +Z,)7

= Cik (HPHE +2,)7
(Pk_,v'k,lxk H-IE + Pl;,vi(,lvk,lcl,k—l)(HkPI;H-IE + z“k)_l

wherein

_ T - T
2y =CkCuk +CrxaPivi v, Croker

+H kPl:,xkv;(,lCkal +ChkaPiovi x, Hy (5.27)

I 0 Yc
(c c . k,k
( k.k k'k_l{o Pk,vL,lvi«l J{Cl,kl]

The measurement update further runs

Xy Xk Ky
VA r+ r— - - -
X = Vi |=| Vi |+ Kew (@ —HXe =CiiVic =CraVicn) . (5.28)

However, from (5.24), V', =0. So, (5.28) becomes
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N _
Xk Xk Ky
T+ + — r—
X =| Vi [=] 0 |+ Ky (2 —HiXe —Cy Vi
r+ r—
Vka Vka Kivi,

The corresponding variance-covariance matrix of X, is

+
.
KXy Vi 4
+
’ !
K\ViVi
+

+

+
k Pk,xkvi(

P,

+
Pk,v@xk

+
/ "
K, Vic_aXy K.V 1V

I O O Ky
O I O|- Ky (Hk Cyx Ck,k—l)

0 0 1) |Kyy,

_ +
I:)k,vi<vi<

D+
P =
+
Py vievi

(I-KH )P -
- K Cy 4Py,
~ Ky HePp

J -KyCyx [
Vi_aXi
(1 =Ky v, Cyk) (

-K K, Vi Ck,k—lpk,v[(,lxk

(1-Ky v ,Crxa)
—Kivi,Crx

Pk,vi(_lxk -K K,Vi_1 H k

(5.29)

1/ -

Pk o Pk X V-1
O I O
Pk Vi-1Xg O Pk ViV

(lKka)kav'kl”']

From (5.24) and (5.25) , the time update of X, is summarized as

- +
Xk = Py 1Xy 1
P =®, P @ +¥, Q. ¥,
k k-1" k-1*'k-1 k-1k-1* k-1

—KyCy 1Py, i
St J (5.30)
—Kyv CrokaProvi v
(1 =Ky v, Crxa)
Pi;Vi(—lvk—l
— Ky v HiPxoi s
(5.31)

From (5.26), (5.29) and (5.30), the corresponding measurement update is further

summarized
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d =z, —HiX —Cy 1 Vicy
2, =CyxCx + CrxaPevi v ,Chxa

o+ H P g +CaPey o Hi
Sy =HPcH[ +X, : (5.32)
Ky = (PcHk + Py, Cun)Si”
Xg =X, + K, d,
P =(1-KH )P =K, Cy 1Py,

’
Vi-1Xk

Equation (5.32) requires the estimate v, ,, its variance matrix Pev,_v, and the

covariance matrix P, .. . Based on (5.24) at epoch k and (5.29) at epoch k-1, vi

can be computed by

Vica = Viy = Kiv Ok (5.33)
Similarly, from (5.25) at epoch k and (5.30) at epoch k-1, P, .. and P, . can

further be obtained by

Pk_,v'k_lv'k_1 = PI:—l,v[(_lv[(_l =(1- Kk—l,v'kck—l,k_l) (5.34)

_ _ " .
Pl(,xkv[(,1 - (I)k—lpk—l,xk,lv[(,l - _(I)k—lKk—lck—l,k—l

By substituting K\, ,, | =Cy_11Sk ((5.26) atepoch k —1) into (5.33) and (5.34),

one obtains
Vica B Cl—l,k—ls Pt DY
Py, =(1- Cl-l,k—lsilck-l,k_l) (5.35)

Pk_,xkv'k_l =—‘I’k—1Kk—1Ck—1,k—1
In summary, the time update can be written as

- _ +
X =@ Xy

i (5.36)
P, =@, P/ (I)-lk-—l + Tk—le—lT-IE—l
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and so can the measurement update:

- _ T -1
Vi1= Cy 1 k-1Skt1dy 4
- _ T =]
=(1-Cy 1k 1S¢1Ck 1k 1)

ViaVka
x_kvi(,l = _(I)k—lKk—lck—l,k—l
Ck,k—l = (Cil,k—le—l,k)T
Cyx =chol(Ry , — Ck,kflcl,k—l)
d =z —H X = Cy Vi
Xy = Ck,kcl,k + Ck,k—lplz,v;(,lv;(,lcl,k—l"'
+ Hkpk_,xkv[(,lcl,kﬂ +Cyk-1Picvix, HI
S, =HP HL + X,
Ky = (Pk_H-IE + Pk_,xkv{(_lC-IE,k—l)Sgl
X, =X, +K,d,
P =(1-KH)P - K Cr k-1Pvy x, (5.37)
The final state covariance in Joseph stabilized form [Simon, 2006] is as follows
P = (1-KHOP (- K Hy)T + K E K -
~KyCy i aPu i — P, Ch Kk

, ,
Vi-1Xk Xy V-1

(5.38)

The derivation of the state covariance in Joseph stabilized form can be found in
Appendix 0. The estimator will run as long as the system innovation variance-covariance

matrix S, is invertible [Grewal and Andrews, 2001] and the global measurement noise

variance-covariance matrix R in (5.17) is positive definite. To check for correctness,

assume that the time-correlation is zero, i.e. set R, ;, =0 in (5.37). The matrix C, , ;

becomes zero and the equations will be the same as in the standard Kalman filter.
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5.2.3. Pairwise time-correlation in stereo visual odometry
This section derives the pairwise time correlation for the stereo visual odometry and also
shows that the corresponding global variance-covariance matrix R is always positive
definite. The visual odometry measurement equation described in (3.80) at epoch k is
Cc(k 1) k L Axﬁ,k—l =0 (5.39)

for i=1,2,---, N features. In short form (5.39) can be written as

hy (A%, 3,1 1 1) =0 (5.40)
wherein Ax,, ; =[AXE _1,08(;] is the pose change between epoch k —1 and epoch k
e =01 Voo lkand and 1 =[5, 185, Ik 1 are the image measurement
vectors at epochs k-1 and k, respectively. The pose change can be estimated as in
(3.25) using the conditional LS adjustment with parameters:

ARy g =Gy hk(AX(kOI)< ol k)
Pog s = (H} x(H, kRIIkH K) ka)7
Gk = Pcmk k_le,k(Hz,kRII,kHz,k)_l (5.41)

. R|k|k O
e le—llk—l

where Pg - Hy, Hyo Ry and Ax(k“)l)(_l are the variance-covariance matrix for the

estimated parameters, the Jacobian matrix associated with the image measurements in
(5.40), the Jacobian matrix associated with the parameters in (5.40), the variance-
covariance matrix of the image measurements and the initial approximation of the pose
change vector, respectively. Through error propagation, the parameter variance-

covariance matrix P  can also be expressed in the form of
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_~ [on, ahk)Q (ahk oh, )T T
Pé‘Akk,k—l_Gk(ﬂ ol ) Ik \al Ay Gy

G (@R, (7 + (R, ()T fo]

(5.42)
oh oh oh oh
=G (G- k)R|k|k( k) GT +Gy (3 )R|H|H( : ) GT
=B kR, Bl,k + Bk,k—lRIHIHBk,k—l
where B, , =G (a|k) and B, , =G ((f,hk)
Consider two consecutive VO estimates at epochs k-1 and k:
AKXy 12 =-G k—lhk—l(AX(ko—)l,k—z’ I, k) (5.43)

MNXy i =—Gyhy (Ax(k(,)?(—l’ leilet)
Notice that the image measurement vector I, in (5.43) appears at both epochs.
Therefore, oAX, 4, _,and 0AX, ,_; are stochastically correlated due to I,_,. The cross-

covariance matrix between two successive epochs k —1 and k can be computed as:

Rk—lk = E[é‘A)A(k “1k— 2§A)A(-I£,k—1]
ohy_ oh
=G (TR, 1, (G Gk (5.44)
= kal,kRIk_llk_lBl,k

Furthermore, for all j =k —1and j#k, one has
Rijx = E[é‘A)’\(j,jflé‘A)A(l,kfl] =0 (5.45)
The degree of the correlation between two successive epochs k-1 and k depends on

the number of the shared image measurements between the estimates 0AX,_;,_,and

OAX 4. This directly depends on the percentage overlap between the image frames

k-2, k—1and k, as shown in Figure 5.2.
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Figure 5.2 Overlap of frames k-2, k-1 and k.

If the percentage overlap is zero, then the correlation between the estimates 0AX,_; ,_,and
OAX, 4 is obviously zero. If the overlap is 100% (i.e. when the vehicle is stationary),
then OAX,_;,_, and OAX,,; share half of the measurements and the correlation

coefficient is approximately -0.50 (the negative sign comes from the fact that in (5.44),

‘j;l‘kkll =land % ~—| for small orientation change). This correlation coefficient depends

on multiple factors, such as the velocity of the vehicle, frame rate, texture of the images
and the number visible features. In really, one can expect the value to be between -0.45
and -0.25. This is significant and if the correlation is ignored the Kalman filter then
position and orientation errors can accumulate faster over long distances.

The global variance-covariance matrix R is positive definite if and only if yTRy >0

for any non-zero vector y. Another definition of the positive definiteness says that R is

positive definite if and only if R can be expressed as R = AAT, where A is an mx P
matrix, where m< p, and has independent columns [Strang, 2009]. The substitution of

(5.42) and (5.44) into the global variance-covariance matrix R in (5.17) yields
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A% R, o o
R P(mz‘l Rs o
R=| O R3 P, O |=BR,B’ (5.46)
@) O O Paagy
where
Ry =diag(R,, . Ry, -~ Ry, ) (5.47)
and
O O O O Bunn
Since R, is diagonal, it can be factorized into two equal diagonal matrices
R=BR,B'
5 o T
— B!B!T

Since the columns in B are independent and R, is diagonal, B" also has its columns

independent. Therefore R always positive definite.

In summary, the VO estimates can be computed as

. N T 1 0)
5Axk,k—1:_P§A>‘<k'k4§1[Hx,k,i(Hz,k,iRII,k,in,k.i) hy (A i Tl

1
N

Psag, , 4 :(izl[Hl,k,i(Hz,k,iRII,k,iH-Iz-,k.i)_le,k,i]) (5.50)

R",kvi = diag (le,ilk,i ' le—l,ilk—l,i)

130



and the corresponding cross-covariance matrix of the parameters with the one from the
previous epoch can be obtained by

N Ny ohy
Ryax = _Zl[G k-1 (—a|kk_11'i Ry e ('a|k_:i )’ Gl,i]
i= ) .

N
= Zl[Bk—l,k,i Ri iy Bix.i] (5.51)
i=

Gy =PEAkk‘k_lH;k,i(Hz,k,iRII,k,iHI,k,i)il
wherein N is the number of the features.

5.3.  Test results with the simulated data

A series of simulations were conducted to compare the performance of the standard
Kalman filter (KF), the Kalman filter with the standard shaping filter for time-correlated
measurements (KF-TC) and the proposed Kalman filter with pairwise time-correlated
measurements (KF-PTC). Furthermore, the measurements are relative. The simulated
data were used for the following reasons: (a) the measurement noise characteristics are
known (b) the true state errors can be computed and (c) the proposed KF-PTC can be
validated. The three models being studied can be summarized as

1. The standard Kalman filter [Kalman, 1960; Kalman-Bucy, 1961]

Xy =@y Xy g+ ¥ Wy 1, W, 1 ~ N(0,Qy4) (5.52)
z, =H X +Hy X + Vi, v ~ N(O,Ry) '

2. The Kalman filter with the time-correlated measurements [Bryson and Henrikson,
1968]

Xy =@y X4+ ¥ Wy g, Wy ~N(0,Q, )
z, =H X +Hy Xy + Vi
Vi = WicmViem + Mems Meem ~ N0, Q)

E[VkV-I[—m] =Ry m =WiemRim

(5.53)
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3. The Kalman filter with the pairwise time-correlated measurements [Gopaul, 2014;

Gopaul, 2017]

X =@ X 1+ ¥ Wy 4, Wy ~ N(0,Qy 4)
Zy =H X +Hy o X +Cy Vi +Cy o nViems Vi = N(O, 1)

Ck,k—m = (Cim,k—mRk—m,k)T’Cl,O =0 (5.54)
Cyx =chol(Ry _Ck,k—mCI,k—m)!CO,O =0
E[Vy Vi n]= Rick-m

In this example, a 2D planar trajectory shown in Figure 5.3(left) was simulated.

Figure 5.3 (right) shows the velocity and heading profiles. Furthermore, 2D image

ranging and IMU measurements were constructed. The 2D n- and b- frames were

considered here.
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Figure 5.3 The top view of the vehicle trajectory with visible landmarks (left)
and the velocity and heading profiles (right)

The IMU measurements (two accelerometers and one gyroscope) were acquired at
100Hz. The power spectral density of the process noises of the accelerometers and

gyroscope were set to 1.0 m/s/vhr and 4.5 deg/+hr, respectively. The data rate of the
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image measurements was 10Hz and the standard deviation of the 2D feature points in
(5.41) was set to 0.10m. Both the image and IMU measurements are resolved in the b-
frame. The 2D VO were computed using the visible features in Figure 5.3 (left). The 2D

VO measurement equation is given by
IE,i _VE,i =CE§II:)—m)(IE7m,i _VE—l,i) +AXE,k7m (5.55)
where Iﬁ,i [m] and I}Lm’i [m] are the measurement vectors of object i in epochs k and

k —m respectively, v ;[m] and v;_,;[m] are the measurement noise vectors, Cp{)  is

the DCM between k and k —m, and AXE,k_m [m] is the position difference. Figure 5.4

shows the standard deviations of the 2D VO estimates and the number of the used

features.
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Figure 5.4 The 2D VO standard deviations and the numbers of the features

At epoch k, the system model in the n-frame is
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X" (001 0 0 \ox"

N"| (0001 0 || (O 0)Wy

s [=|0 0 0 0 aj | & |+ CH 0w, (5.56)
Ny 0000 —a;fo O 1wy,

sy") 00 00 0 oy’

where (6X",Y™" [m], (&/Q,&/;)T [m] and &y, [rad] are the vehicle’s position,
velocity and heading error states, respectively, (aQ,ag)T [ms?] are the accelerations,

(W5, W, )" [ms™?] are the accelerometer process noises, W [rads™] is the gyroscope
X Yy z

process noise, and

o :(cos«u?) —sin(wz“)} (557

sin(y!)  cos(y!)

Equation (5.56) was derived from (3.56) by (a) setting the mzn o ,mi”ncc and 5g”°

vectors to zero and (b) removing the éZ”C, &/Qc, 51//QC and &//’y‘c states from the state

vector. The measurement model is given by

b n n

AXvo k k-m (cr )T| " insk = ZVINS k-m VAX\?O,k,kfm
b _ b(k),INS n n

AVyokk-m |= Yinsk ~Yinsk-m ) [F| Vave, (5.58)
b n n o

AYvo kk-m Yins k —YINs k-m Ao

wherein m =10, specifically in this simulation.

Monte Carlo (MC) simulations were used to compare the performance of the three
implemented Kalman filters. Each algorithm was run for 100 times. The true position and
heading errors were computed for each run. Then the root-mean-square errors (RMSE)
across the 100 runs were computed at every epoch. The resulting error bounds were then

compared with the estimated standard deviations. Figure 5.5 (left) compares the pose
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RMS errors computed against the true poses in (a) KF, (b) KF-TC, and (c) the proposed

KF-PTC. Clearly the true errors from KF-PTC are smaller than the ones from KF and

KF-TC.
KF RMS Error (100MC) KF std. dev.(1-c)
= 2 - B 2
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Figure 5.5 True position and heading RMSE (left)
and the estimated position and heading standard deviations (right)

time (s)

Table 5.1 The dimensions of the state vectors in the KF, KF-ST and KF-PTC

States KF KF-TC | KF-PTC
Navigation 5 5 5
Relative measurements 3 3 3
Shaping filter 0 3 6
Total 8 11 14

The Figure 5.5 (right) shows that the corresponding standard deviations estimated
from the three filters and can conclude that KF-PTC standard deviations are smaller than
the ones from KF and KF-ST. Figure 5.5 also shows that the standard deviations of KF
and KF-TC are larger than the true errors, while the standard deviations of KF-PTC
closely match the corresponding true errors. Therefore, the solutions from KF and KF-TC

are optimistic, while KF-PTC solutions are reasonably optimal. Table 5.1 compares the
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dimensions of the state vectors in three Kalman filters. As expected, the dimension of the

state vector in KF-PTC is larger than the ones in KF-ST and KF.

5.4.  Loosely-coupled stereo VO-aided inertial navigation

This section derives the measurement model for the LC VO-aided inertial navigation.
Here psi-error model (3.56) is used to model the measurements. It assumed that (a) the
initial position and velocity are obtained by external means (e.g. GNSS) and (b) the
alignment procedure has been completed. Furthermore, the VO solution is generated in

the b-frame. The VO measurement equations are given by

AXVo ik = (Cg(k),INS)T D (Mins.k = Mins ko) (550)

CEgt)—m),vo = (Cg(k),INS )T CE(k—m),INS
where D;lzdiag((RN +h),(R, +h)ce,—1) . The linearization of the first equation in
(5.59) gives

AXVo = (Cho.ms)" Dy s « = (Chiyins) ' Dy Fing kom
- (Cg(k),INS ) (DFl(rle,k —Mins kem ) X WiNs k (5.60)

¢ T /-1
+(Cg(k),INS) (D (s .k — Mins k-m)

where
Ny 0 0
D x| 0 codh —hsedp, 0] (5.61)
0 0 0

The position difference (Fyys —Finsk-m) between two consecutive frames is expected
to be small i.e. less than 3.0 m. Hence, the term oD;™(Iyns « —Finskm) N (5.60) will be
negligibly small i.e.,
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oy 0 0\ Ay km
éD;l(rINS,k_rINS,k—m): 0 cooh —hspop, 0 Adyy
0 0 0O\ Ahy
ke (5.62)
aqkAgok,k—m
=| (cohy —hso 00 ) A4 i [#0
0

Therefore, (Cp.ins)’ (0D (Fins.x — Fins «_m) iS Omitted. D;*dr s can be expressed

as &X(ys - (5.60) can be simplified to

b c c c c
5Axvo,k = (Cg(k),INS )T éX?NS,k - (Cg(k),INS )T éXrI]NS,k—m"' (5.63)
—(Chgoins )" (D (Mins i = Fins k-m)) X W ins i
Further, the linearization of the 2" equation (the orientation change measurement
equation) in (5.59) gives
Pvok = _(Cg(k),INS)T (Wins k = Wins.k-m) (5.64)

The system model in discrete time is written as

X s @, O Oisie Oises || HKinska ¥ awWi
'S k-m _ Ogas  loe  Oss Osxs | Kinskem N O (5.65)
Vi Ogas Oes  Osws  Oeus Vicm Nka
Vicm Ogas Oss  loe  Oss Vi om Oga

: n® n® b |bN\T ’ n® T
wherein X ys k = (Xins ko WMins ks Wins kP2 0g) 1 KX ins = (Xins kems Wins kem)

w, ; ~N(0,Q,,) and n,_, ~ N(0,1). The measurement model is given as

~ ~ X
5Zvo,k=(Hk Hicm Cux Crxem INS,'k_m +0gq (5.66)

wherein
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SAX?
GZyox =( VO"‘], (5.67)

A - ngk) Os3 —C:ﬁk)(D;l(rk —Nm))x Ogs Ogug (5.68)
k= ' '
03><3 O3x3 - Cﬁgk) O3x3 O3x3
and
~ —Cbgk) Os,3
Ay . = N n b | (5.69)
3x3 n¢

With the formulation of the system and measurement models in (5.65) and (5.66), the
VO measurements can be easily integrated with an existing GNSS/IMU integration and
smoothers without any modifications to the architecture. For instance, in a LC GNSS
(3.59) and LC VO integrated inertial navigation scheme, the measurement equation can

be written as:

[5ZGNSS,kj_(HGNSS,k Oz O O7x6]5X,INS,k—m +[VGNSS,k

J (5.70)
OZyo k Hy Hiem Cuk Criem

6x1

The LC stereo VO aided-inertial navigation with pairwise time correlated

measurements is outlined in Figure 5.6.
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Figure 5.6 Loosely-coupled VO aided-inertial navigation with
pairwise time correlated measurements.
The LC stereo VO-aided inertial navigation field test results and analysis are presented

in Section 7.4.

5.5. Summary

This chapter presented a novel Kalman filter algorithm for processing pairwise time-
correlated measurements and specifically applied it to the visual odometry-aided inertial
navigation in a loosely-coupled manner. The coefficients of the constructed shaping filter
for modeling the time-correlation are Cholesky factors obtained from the measurement
variance-covariance matrices. Results using a simulated dataset showed that the proposed
Kalman filter with the pairwise time-correlated measurement noise performed better than
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the standard Kalman filter and the Kalman filter with the conventional shaping filter.
Furthermore, the covariance matrix of a state vector provides an accurate description of
the uncertainty of the state vector. The Kalman filter is in the standard form and therefore
can easily be adapted in the current GNSS-aided inertial navigation integration
architecture. This method is primarily designed for the loosely-coupled VVO-aided inertial
navigation. But, it can also be applied to the tightly coupled counterpart. However, the
dimension of the state vector will be augmented by the measurement noise vector for
each individual image measurement and become impractically very large. Two problems
may appear with the algorithm: firstly, its benefit may not be apparent if the correlation
between the two consecutive pose estimates is weak and secondly, the solution can be
significantly degraded if the measurement noise is non-Gaussian which can be the case

with real world applications. Results with real datasets are presented in Section 7.4.
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6. Tightly-coupled stereo multi-frame visual odometry aided-
inertial navigation

This chapter is mainly based on the following publication:
Gopaul, Nilesh S.; Wang, Jianguo and Hu, Baoxin (2015), Multi-frame Visual Odometry
in Image-Aided Inertial Navigation System, In: Sun J., Liu J., Fan S., Lu X. (eds) China
Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume 111, Lecture Notes in
Electrical Engineering, vol 342, Springer, Berlin, Heidelberg, pp. 649-658, DOI:

https://doi.org/10.1007/978-3-662-46632-2_57.

6.1. Introduction

This chapter presents a novel stereo multi-frame aided inertial navigation algorithm
for reducing drifts in position and orientation in poor GNSS and/or GNSS-denied
environments. Usually, the image aided inertial navigation based on the visual odometry
uses the tracked features only from a pair of the consecutive image frames. The proposed
method integrates the features tracked from multiple overlapping image frames to
obtainsolution accuracy improvement, which is referred to as stereo Multi-Frame Visual
Odometry (MFVO) with respect to pairwise VO in previous chapter. Basically, the
MFVO measurement model is derived from the SLAM measurement equation system. In
particular, MFVO algebraically eliminates the landmark position parameters included in
SLAM by timely-differencing the measurements between two consecutive epochs.
Furthermore, the measurement updates in the Kalman filter can be performed using a
sequential de-correlation mechanism, since the time-differenced measurements are
timely-correlated. Monte Carlo simulations show that the pose estimates from the MFVO
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are identical with the ones from SLAM. In comparison with the SLAM, the proposed
MFVO method uses less computation resources, especially when the number of features
in view becomes large.

This chapter is organized as follows: Section 6.2 develops the system and
measurement models in a Kalman filter for the proposed MFVO method. Then, the
results from simulation tests are shown in Section 6.3 to validate the development
presented in Section 6.2. Section 6.4 presents the system and measurement models for
MFVO aided-inertial navigation in the tightly coupled integration architecture. At the
end, Section 6.5 concludes the chapter. The field test results and analysis are presented in

Section 7.5 .

6.2.  Stereo Multi-frame visual odometry

The goal of the proposed MFVO algorithm is to develop a measurement model that
can be run in the navigation Kalman filter sequentially to obtain optimal solutions. The
term ‘visual odometry’ is used here because the focus is on image measurements.
However, the algorithm is a generic one applicable to any EKF (extended Kalman filter)
based SLAM application.

The derivation begins with the EKF-SLAM model. The system model for N landmark

states at epoch k is given as follows

Xy f(Xg) + Wiy
my my
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wherein X, is the vehicle’s position and orientation state vector, m; (i=1, 2, ..., N) are
the position states of the landmarks and W, _, is the process noise vector and conforms to

N (0, Q,_;) . The measurement model is given as

Zy1 hy 1 (X, my) Via
c = : +| (6.2)
Zy N h n (X, my) Vi

where Zz,; is the measurement vector for landmark i, h;(X,,m;) is the non-linear
measurement model of the vehicle’s trajectory states and the landmark states, and Vv, ; is

the measurement noise vector and conforms to N(0,R, ;) fori=1, 2, ..., N. The stereo
visual SLAM measurement equation (described in Section 3.6.4.4) is
ZE,i = (Cg(k))T (mi! = Xg) + vy (6.3)
Now consider the measurement model for landmark i at two consecutive epochs k —1
and k:

.
Zyai = (Cg(k—l)) (M’ — X 4) + Vi y;

(6.4)
Zyi= (Cg(k))T (m{ = Xg) + Vi
Next, algebraically cancel the landmark position vector m; in (6.4) to obtain the
following implicit measurement equation:
Cg(k) (Zyi = Vii) — Cg(k—l) (Zy_1j = Vier) + Xg — X, =0. (6.5)
In short form (6.5) can be expressed as

Hk,i (X s Xk1sZk i Zkair Vi Vkai) =0 (6.6)

The linearization of (6.6) using first order Taylor series expansion gives:
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=Dy (X X 10 Zg i Zk100,0) = Hy i Xg + Hy g%y g - (6.7)
+MykiVii T My iV

where Hy i, Hy 15, My and My ; are the Jacobian matrices associated with x,,
Xe o Vi oand Vv q; o, respectively. For simplicity, write 6z, =
— P (% X0 20 2413,0,0) and Vyj =My Vi M qViq; - Then, one has the
linearized measurement model as follows

OZy i = Hy iy +Hy ki s + Vi, Vi =~ N(O, I:”\Sk,k,i) (6.8)
and the variance-covariance matrix of the measurement noise vector Vy ;

|ik,k,i = Ivlk,k,iRk,il\/l-ll;k,i + I\/Ik,k—l,iRk—l,i'VI-I[,k—l,i ' (69)

Consider (6.6) at two consecutive epochs k —1and k:

Ny i (Ri1 Xk 20 Zk a0 Zk2iis Viesio Vi2i) =0

- (6.10)
i (s Xk 15 Zk i Zkaio Vi Viesi) =0

which has involved the measurement noise vector V,_y;in both h,_;;() and hy;(.).

Therefore, the derived measurement noise vectors Vi ; and V,_;; are correlated with
respect to time

E[Vi, Vk11= ElMy i Vi + M Vier)(MicaeaiVies +Miciee2iViezi) ']
=My EDViG Ve IME i + Miceni BV Ve, IMicr e -
+ My ELV G Vi, IME o
+ Myt EIVicri Viczi Mo .(6.11)
=0+ My 4iE[ViqVigi Mgy +O+0O
=My i Vi Vi IME
=My 1Ry, M-I[—l,k—l,i

= Rk,k—l,i
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If the feature i is first observed at epoch k— j, then all the linearized measurement
equations up to and including the epoch k can be written as

OZi_juri = Hicjunie jni®ue jor + HiC ke i + Vi jagio

Viisti = NO Ry jaak—jeai)

- - ~ (6.12)
ﬁk—z,i =Hy 5k 2i% 2 +Hy ok 3i% 3+ Vi 20 Viai ~ N(O,Ry ok 2i)

&k—l,i =Hy x1iea + Hicw2i&e o + Vi Vieri ~ N(O, Ry gy 1i)

0Zy i =Hi i +HigriXig Vi Vi ~ N(O,Ry i)
Now concatenate all the measurement noise vector as time series into a vector v; and

construct its corresponding variance-covariance matrix R;:

\~/k—j+1,i Rk—j+1,k—j+1,i o o o
Vi=| Ve [R= O %k—Z,k—Z,i E\;k—z,k—l,i _ o |.(613)
Vit O o Rygkeai Fik—l,k—l,i R_vk—l,k,i
Vii O O Ry ki Ry ki

The standard Kalman filter runs under the assumption that the measurement noise vector
IS white, i.e. normally distributed with zero means, and independent to each other from
epoch to epoch. However, the measurement noises in (6.13) are pairwise time-correlated
between two consecutive epochs. One way to de-correlate the measurement noise vector
is to use the inverse matrix of the Cholesky factors of the variance-covariance matrix. For
simplicity, all the vectors and matrices in .(6.12) are concatenated to obtain the following

short-form with dropping out the feature index i :

8% =H&+V,V ~ N(O,R) (6.14)
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If Ris positive definite, it can be decomposed using the Cholesky factorization [

Grewal and Andrews, 2001; Bierman, 2006; etc.]:

R=cC' (6.15)
wherein the Cholesky factor matrix C is a unique, real lower triangular matrix with its
diagonal elements strictly positive. By multiplying (6.14) with the matrix L, the inverse
of C, one obtains

0Z =HX+V
C'oZ=C'HX+CV
Loz =LH&X+LV
o' =H'X+V'

(6.16)

wherein the derived measurement vector v’ becomes un-correlated and has the identity
matrix as its variance matrix
R’ =E[(V)(V)"]=CE[W']CT
=Cc*rRc T =c'cc’cT (6.17)
=1
In this case, the variance-covariance matrix R in (6.13) is sparse, actually a lower

bidiagonal block matrix, i.e. only its first lower off-diagonal blocks are non-zero.

Therefore, the Cholesky factor matrix C is also in the same lower bidiagonal block

structure
Crojmk—jur = o O O
C= O Ck—2,k—2 O O (6.18)
O o Gk Crawa O
O O Cikr Cuk
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Furthermore, the block factor matrices C, , and C, , ; can be obtained sequentially as
described in Algorithm 6.1.

Algorithm 6.1 Sequential Cholesky factorization of R at epoch k
Cejk-j=0
Ck—j+1,k—j =0
fori=(k—-j+1), -, k{
Ci,i—l = (Ci_—ll,i—lﬁi—l,i)T
Ci= Cho'(ﬁi,i _Ci,ific-ir,ifl)
}

However, the matrix L is a full lower block (triangular) matrix:

Ly ik jo o o o)

L=| Licokojuu - Liook O o | (6.19)
Lickojar - Likak—z Liaxa O
Liojor o Lk Lk Lk

Since the matrix C is lower triangular, the block matrices L _j.;...Ly at epoch k
can be obtained sequentially. Therefore, the process to obtain L j,;...Ly, can be

simplified. Algorithm 6.2 describes the algorithm for computing Ly ji-- Ly

sequentially from R at epoch k , whose derivation can be found in Section 0.

Algorithm 6.2 Inverse of the Cholesky factor matrix C at epoch k

Ly« :CE,lk
for i = (k= j+1), - (k=14

k-1
Lk,i = _Lk,kck,k—l jgil—j,i

147



Besides, .(6.12) can be written as

Ny
57, k= Ve
=H : +| 6.20
6Zy 4 5 Vi (620
k-1 ~
OZ, 5x Vy
k
Hk—j+1,k—j Hk—j+1,k—j+1 o) O o
where H = ' ' ' ' ' '
O O o Hygks Heaxa o
O O M O Hk|k71 Hk,k

The de-correlation of (6.20) by multiplying by L goes as follows

XKy
0z, _; k=) Vi_:
k:_J"'l 5Xk_j+1 k—.J+l
Ll _ =LH : +L| _
67y 4 S Vka
ﬁk k-1 '\7k
Xy
(6.21)
0L, 5Xk_j V!
k._j‘*'l §Xk_j+]_ k—:j+l
PUR i B I W)
Z %
kfl Ny kfl
0z, Vi
Xy,
Thus, the de-correlated measurement vector &z’ is given as
é‘ZI<—j+l Lk—j+l,k—j+1 O O 52k—j+1
= ' S ' ol (6.22)
Oy Liakeju o Liaxka O OZy_4
Iz, Lk,k—j+1 o Ly Ly 0Ly
In short form, oz} can be computed as
Kk
oy = % (Ly;ozg). (6.23)

i=k—j+1
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The de-correlated output matrix H' is given by

’ ’
Hi ke Hicjkejm o 0 o
’ ’ ’ ’
k-1k-j k-Lk—js1 " kk—2 Hiawa O
! 1 ! ! !
Hik-j Hiojr 0 Higeo Hir  Hik
Lk—j+l,k—j+l o o Hk—j+1,k—j Hk—j+l,k—j+l o o o
Licikojr o Lyaka O 0 o o Hiakee Hiaa O
Likojor 0 Lk Lk 0 © o Hir  Hik
Lk—j+l,k—j+lHk—j+l,k—j Lk—j+l,k—j+lHk—j+l,k—j+1 o o o
Lok jerH i jankojor o PP o PIPYRPRES
| Ly iaHe i Ly e qHe g (@]
k-1k—jr1 M k—jrik-j L H L H k-Lk-1Mk-1k-1
+ Lk ak—jr2Mk—jr2k-j+1 + Lk akaMkak—2
Lk jarH i jankjon o LikoHiokz LixaHicka
LickojaH i janiej L H L H L H LyxHik
T Lkk—jr2Mk—jeok—js1 + L kaFkoik— + Lk Pk

(6.24)
The block matrix Hj ; for i =(k— j)<i<k can be computed by
LiiaHiai fori=(k—j)

ki = LwiHii+ LiaHig fori=(k—j+) <i<(k-1). (6.25)
At epoch k, the final measurement equation for feature point i becomes
The system model is given by

XKy D, X4 Y, Wy

& &

et | X:“ o 0 (6.27)

OXy_j OXy_j 0

The state augmentation and time update algorithm has been described in Section 5.2.1

above.
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6.2.1.  Discussions

The system model in (6.27) and the measurement models in (6.26) are in the form of
standard Kalman filter and therefore can be easily implemented in the current
GNSS/IMU integration architecture and smoothers. For the Cholesky factors C is unique,
real and strictly positive with its diagonal block submatrices, the variance-covariance
matrix R must be positive definite. R is positive definite if it can be written as R=AAT

, Wherein A is possibly rectangular with the independent columns [Strang, 2009]. In
theory, (6.9) and (6.11) satisfy this condition and therefore R is always positive definite.

However, in practice, R can become semi-definite or indefinite if the feature matcher
finds incorrect correspondences.
The computational complexity of the SLAM measurement updates is in the order of

O((6+3N)x(6+3N)) where N is the number of landmarks in the map. On the other
hand, the MFVO computational complexity is in the order of O((6+6])x(6+6])) where
k — j is the epoch at which the feature in the current feature list at epoch k was first
observed. Because matrix R is sparse, the computation of L can be simplified as
described in Algorithm 6.1 and Algorithm 6.2, and does not consume significant
computational resources. The computational complexity of computing L, ,5z, and H;
is in the order of O((BN)x(6+6]))). This shows that MFVO is more efficient than
SLAM when N is large and j is small. The value of j depends on the overlap

percentage of the image frames which, in turns, depends on the velocity of the camera
system. Based on (4.18) and under the assumptions in the analysis presented in Section

4.3, the value j as a function of the overlap percentage p can be predicted as
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j =ceil (L —1] . (6.28)
1-p

wherein ceil (x) is the operator that rounds X up and returns the smallest integral value,
which is not less than x. For example, if p=30%, a feature can only be observed at
epochs k and k-1, but not again at k —2, i.e.,, j=1. In case p=60%, the overlap

percentage between k and k —2 will be 20%, and a feature can be observed at epochs k

, k=1 and k—2, but not further at k—3, now j=2. As the overlap percentage

increases, the value ] increases as graphically presented in Figure 6.1.

10 H 50

4 20 -
’J e
2 10—

0 0
0 20 40 60 80 90 92 94 96 98

percentage overlap percentage overlap

Figure 6.1 j as a function of overlap percentage

When a vehicle is stationary, the image overlap percentage is 100% and j=c0. This
implies that the size of the state vector increases without bounds. For practical purposes,
J can be limited to a predefined threshold j,,,.and realized in three ways. Firstly, set an
appropriate frame distance, i.e., the distance between two consecutive image frames. If
the distance between the frames are too short, the overlap percentage and j may become

too large. If the distance between the frames is too long, there could be too few

correspondences to compute an odometry solution. Secondly, the extracted feature points
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can be treated as new landmark when | exceeds jp.. Thirdly, the measurement vector
8Z;_j,1 can be omitted in the derivation of dz,, once ] exceeds .. However, this

requires the re-computation of the corresponding matrices C and L from (k—j+2) to

6.3.  Test results with simulated data

Monte Carlo (MC) simulations were conducted to illustrate and compare the
performance of the SLAM and the proposed MFVO. The same 2D trajectory,
measurements and simulation parameters were employed as in Section 5.3. Figure 6.2

shows the vehicle’s trajectory with the visible landmarks, velocity and heading profiles.
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Figure 6.2 The top view of the vehicle trajectory with the visible landmarks (left)
and the velocity and heading profiles (right)

The system model in the navigation frame is given by:
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X" (00 1 0 0 )eX"

N[ (0001 0 | (O 0)Wy

&y |=10 0 0 0 aj | &y |+ Cy 0)w, | (6.29)
&) | [0 00 0 —af| & O 1)wy,

sy") 0000 0 \sy'

wherein (6X",8Y™" [m], (&/Q,&/Q)T [m] and S| [rad] are the error states of the
vehicle’s position, velocity and heading, respectively, (aQ,a;)T [ms?] are the

accelerations; (W, W, ) [ms?] are the accelerometer process noises, W [rads™] is
X Yy z

the gyroscope process noise, and

o :(@s(w?) —Sin(s//z”)} (6.30)
sin(yy)  cos(y))

The 2D SLAM measurement equations for landmark i are given as

1o X0o—ml) (VB
I)l;,k,l — (ngk)T Ir<1,| nx,l + )';,k,l (6.31)
y.K,i Yii =My Vy ki

where (|S,k,i,|§,k,i)T [m] is the measurement vector, (m[(“i,m;i)T [m] is the landmark
position vector, and (vfzvk,i,v;k'i)T is the measurement noise vector. Using the 2D

SLAM (6.31) at epochs k and k—m and the landmark position vector (m)’("i,m;i)T are

algebraically eliminated in order to derive the following 2D MFVO measurements

©PY Is,k,i_vg,k,i () Is,kfm,i_vs,k—m,i 4 Xii B X-mi —0.(6.32)
' |§,k,i _V?/,k,i |§,k—m,i —V;k_m,i Y Y imi
The SLAM and MFVO were run for 100 times, respectively. The true position and

heading errors were computed for each run. Then the root-mean-square errors (RMSE)

across the 100 runs were computed every epoch. The resulting error bounds were then
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compared with the estimated standard deviations. The true pose RMS errors from SLAM
and MFVO are plotted in Figure 6.3 (left) while the corresponding estimated standard

deviations are plotted in Figure 6.3 (right). Clearly, the position and heading solutions are

identical.
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z z
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Figure 6.3 The true position and heading RMS errors (left)
and the estimated position and heading standard deviations (right)

Figure 6.4 shows the dimensions of the state vectors with SLAM and MFVO, the

number of features in view and the value j. With the same number of features, the

number of the states in MFVO is generally smaller than the one in SLAM, except around

the 60th second as there were less features in view around that instant.
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Figure 6.4 The dimensions of the state vectors with SLAM and MFVO,
the number of features and j
Notice that the dimension of the MFVO state vector and the number | vary inversely
with the velocity profile (in Figure 6.2), because the slower a vehicle travels, the more

time a camera spends to view the same set of landmarks and therefore the value of |

increases.
6.3.1. VO KF-PTC versus MFVO

The performance comparison between the VO with KF-PTC presented in Section 5.3 and
the MFVO is shown in Figure 6.5, which shows that the MFVO approach performed
better than the VO/KF-PTC with the same set of measurements. Unsurprisingly, the

MFVO approach works with more states and requires more computational resources.
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Figure 6.5 The comparison between the VO/KF-PTC and MFVO approaches

6.4.  Tightly-coupled stereo MFVO aided inertial navigation

This section derives the measurement model to develop the tightly-coupled MFVO-
aided inertial navigation. The derivation starts with the visual SLAM measurement model

for feature i at epoch k

IE,i = (CB(k),INS )T (m]! _XTNS,k)_"VE,ivVE,i ~N(O, RVE,iVE,i) (6.33)
where IE,i is the 3D image measurement vector. Using the visual SLAM as in (6.33) at
epochs k and k —1, m{' can be algebraically eliminated to yield the MFVO model:

o (2. —vP.)-Ch (A0 —vP )+ XN, = XD =0 (6.34)

b(k),INS ki k,i b(k-1),INS \"k-1,i k-1, INS k INS k-1 . .
in which Xy — X{ns «_1 €an be expressed as D;l(r,NS’k — s k) Since it is expected to

be small i.e. less than 3.0 m. Thus, (6.34) becomes

CB(k),INS (IE,i - VE,i ) _Clr:)](k—l),INS (IE—l,i - VE—l,i )+ D;l(rle,k —TInska)=0. (6.35)
The linearization of (6.35) gives
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b b b
0z ; = _Cg(k),INSVk,i +(Cg(k),INSIk,i)X\|’INS,k +CB(k—1),INSVk—1,i
b 1
—(Cownyans ki) X Wins ke +Dr (Mis k —Mins ka) (6.36)

-1
+ D, (Ons k — O ins k1)
- b b -1 - aym
wherein 67 ; =—(Cpgq.inslii —Cok-n.ns ki + O (Mins i —Fins-1)) - Since the position
change between two consecutive frames is expected to be relatively small, i.e. less than

3.0 m, the term oD (s« — Nins k1) Will be significantly small and can be omitted in

(6.36) (see Section 5.4 for more details). D 'or can be expressed as X} s and
r INS ,k Kk, INS

(6.36) can further be simplified to

b
&k,i = ?NS,k —éX?Ns,k—l + (Cg(k),lelk,i)x‘I’INS,k (6.37)
b b '
- (Cg(k—l),lNS i) X Wins kg — CQ(k),INS Vii T CE(k—l),INSVk—l,i
The measurement noise vector V, ; is expressed as follows
~ b b
Vii :_Cg(k),INSVk,i +CE(k—1),INSVk—1,i . (6.38)

With the corresponding variance-covariance matrix R, ,; and the cross-covariance

matrix Ry _i;

5 T
Rk,k,i = (Cg(k),INS)RVEiVEi(Cg(k),INS)

+ (Cg(k—l),lNS )RVE_l,iVE_l,i (Cg(k—l),le )T : (6.39)
Rk,k—l,i = _(Cg(k—l),lNS )RVE—I,iVE—l,i (CE(k—l),INS )T

The coefficient matrices Hy ,;and H, ,_;; of the measurement model are

Hk,k,i = (l 3x3 (Cg(k),INSIE,i)X)

. (6.40)
Hk,k—l,i :(— I3.3 _(Cg(k—l),lNSIE—l,i)X)

Hence, the discrete system model can be given as follows
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Xy Ins D, ;X1 1ns h P\

Xi_1.1Ns Ny 4 N Opa (6.41)

! !/
i jins Ny j 06

: b |b ' '
wherein X, s =(5XE,|NS’5VE,|NS’\I’E,|NS:ba’bg)T and S =(5XE',|NS:‘I’E',|NS)T for k'=

(k—1)---(k—=1). For each feature in view, one can compute the corresponding C, ,;,
Chxtiv Likojosire-r Lk and Hy i Hi i and 6z, ;. The measurement model can
also be given as
Zy i = Hi X +Hp 0% g+ Hi(,k—j.igxk—j +Vii, Vi ~N(O,1). (6.42)
With the formulation of the system and measurement models as in (6.41) and (6.42),
respectively, the MFVO measurements can be easily integrated into the current
GNSS/IMU Kalman filters and smoothers without any further modification to the

architecture (see Section 5.4 for more details). The tightly coupled MFVO aided-inertial

navigation algorithm is outlined in Figure 6.6.
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Figure 6.6 Tightly coupled MFVO aided-inertial navigation

The field test results from the TC stereo MFVO-aided inertial navigation and their

analysis are presented in Section 7.5 .

6.5. Summary

This chapter presented a novel stereo based MFVO aided inertial navigation which
integrates features tracked from multiple overlapping image frames sequentially and
optimally. The existing algorithms such as [Fraundorfer et al, 2010; Clement et al, 2015;
Wen et al, 2016] employed batch processing estimators and jointly estimated the
vehicle’s pose and feature positions at the local level and have two major drawbacks: (a)

the number of parameters in the system quickly increases as more features per frame are
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being observed and (b) it is impractical to integrate them into the an existing GNSS/INS
integration architecture since they do not employ a Kalman filter.

The proposed MFVO method can process features from multiple overlapping frames
without having to estimate the landmark positions. This is achieved by algebraically
eliminating the time-invariant landmark position parameters in the SLAM measurement
equation system at two consecutive epochs. Consequently, the derived measurements is
timely-correlated. Through a sequential de-correlation algorithm, the measurement
updates in Kalman filter can strictly be performed sequentially without loss of the
solution’s optimality. Monte Carlo simulations showed that the solution of the MFVO
positions and orientations is identical to the one directly solved using the SLAM
algorithm.

Although, this method is here specifically developed for the tightly coupled multi-
frame aided-inertial integrated navigation, it can certainly be developed for the loosely-
coupled multi-frame aided-inertial integrated navigation. However, its solution may be
sub-optimal since the measurement time correlation may not be easily modeled
appropriately.

Loop closure techniques can improve the navigation accuracy in image-based
navigation system. However, these techniques were not applied in the research. Loop
closure detection algorithms and the measurement update for SLAM application are well
established. The challenge in applying loop closures in MFVO is how to perform the
measurement update after a scene has been revisited given that the landmark position has

been cancelled and the map is non-existent. This requires further research and
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implementation in order to compare both SLAM and MFVO with loop closures. MFVO

with loop closures is suggested for the future work.

The advantages of the proposed algorithm can be summarized as follows.

The MFVO measurement updates in Kalman filter can be performed sequentially
without loss of the optimality under the appropriate consideration of the
measurement time correlation from epoch to epoch.

The Kalman filter is in the standard form and therefore can easily be adapted in an
existing GNSS-aided inertial navigation integration architecture.

The MFVO and SLAM pose accuracy are the similar. MFVO allocates less
memory and computation resources than SLAM when the number of features in
view becomes large.

MFVO can perform better than VO especially when the number of frames per
landmark is high i.e. 3 or higher.

The algorithm assumes that the landmark position vector can be algebraically
eliminated. This can be accomplished with other SLAM applications and
measurement models. For instance, in 2D Lidar SLAM [Wang el al, 2013], 3D
Lidar SLAM [Hewitt and Marshall, 2016], radar SLAM [Callmer et al, 2011] and

Sonar SLAM [Siantidis, 2016].

The disadvantages of MFVO are:

Matrix R can become semi-definite or indefinite if an incorrect match occurs and
the Cholesky factorization can fail. In this case the measurements should be

rejected.
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e Conventional loop closure techniques cannot be applied in the current design
since the landmark position vector is cancelled.

The selected results from visual SLAM aided-inertial integrated navigation and

MFVO aided-inertial integrated navigation with real datasets and their comparison are

presented in Section 7.5.
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/. Experiments: road tests and results

7.1. Introduction

This chapter overviews the test results and analysis of the proposed algorithms
developed in chapters 4, 5 and 6 using the data collected from the York University
Multisensor Integrated System (YUMIS) [Qian et al, 2012; Qian, 2017]. The algorithms
were implemented as software utilities in the MATLAB script language and their
performances were evaluated in post-mission.

This chapter is organized as follows: Section 7.2 provides the YUMIS hardware
specification and dataset information. Section 7.3 presents the results and analysis for the
structureless stereo camera auto-calibration algorithm and system calibration algorithms.
Then, the loosely-coupled visual odometry aided-inertial navigation analysis and results
are shown in Section 7.4 followed by the one for the tightly-coupled multi-frame visual

odometry aided-inertial navigation in Section 7.5.

7.2.  YUMIS system and dataset information

The data were collected by the YUMIS navigation system developed at the Earth
Observation Laboratory of York University on a land vehicle [Qian et al, 2012; Qian,
2017]. This system provides a low-cost alternative to the expensive commercial
navigation systems such as the Applanix POS system []. The YUMIS navigation system
consists of two NovAtel OEMS GNSS receivers, one Crosshow IMU440CA and two
PointGrey Flea3 cameras. They are all connected to a central 1.6 GHz Intel Atom N270
CPU on a Jetway motherboard (NF94-270-LF). The GNSS receivers and the IMU are
connected to the system via the RS232 serial ports, while cameras use the IEEE firewire
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1394 interface. The system was built on the Ubuntu Linux (10.04 LTS) with Real Time
Application Interface (Linux/RTAI) operating system (OS). The OS environment was set
to hard real-time so that it can handle multiple tasks and to avoid time latency. The
software system consists of four major components, namely data collectors, time-tagging
module using GPS time, the data buffers, and data processors. The data collector grabs
the raw data from the various sensors and loads them into a data buffer that the data
processors can access. The time-tagging module catches the PPS (pulse per second) pulse
train from the GNSS receivers to time tag and synchronize the various data. Figure 7.1
shows the hardware configuration of YUMIS system during a van test. For more details
on the design and development of the YUMIS system, refer to [Qian et al, 2012; Qian,

2017].
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Figure 7.1 GPS and IMU, and Controller in YUMIS system [Qian, 2017]

Multiple datasets collected using the YUMIS system have been processed and

analysed. The results from one of them were selected to demonstrate the relevant research

for the following reasons: () it contains relatively ideal GPS observables, (i.e. open sky

conditions, no datagaps, minimal cycle slips and low multipath) so that a reliable cm-
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level RTK position solution could be obtained and (b) the images were highly textured
and therefore many point features could be extracted.

Two GPS receivers, separated by 1.8m, on the vehicle’s roof were used for the GNSS
compass to estimate the absolute heading measurements and a third GPS receiver was set
up as the base station for providing RTK level of positioning solution. The stereo
baseline was 65cm and the resolution of the images was set to 640x480 pixels with the
field of view of 50 degrees. The size of each pixel is 4.65 um [Point Grey Research Inc,
2011]. The lever arms of the GNSS receivers and the cameras with respect to the IMU
were measured using a measuring tape at the accuracy of about 0.5cm. The individual
sensor data rates were set to 5.0Hz, 100Hz and 7.5Hz for GPS receivers, IMU and
cameras, respectively. The technical specification of Crossbow IMU440CA is
summarized in Table 7.1 [Crossbow Technology Inc, 2010].

Table 7.1 Crosshow IMU440CA technical specification (partial)

Acceleration Bias Stability[mg] <1.0
Velocity Random Walk[m/s/vhr] | <1.0
Bias Stability [deg/hour] <10.0

Angular Rate Angle Random Walk [deg/vhr] <45

The test ran in City of Vaughan, Ontario, on 2 November 2014. The top view, the
velocity profile and the attitude profile of the trajectory with the dataset can be
overviewed in Figure 7.2. As the test was conducted in a residential area, the speed limit
was 40km/h (11.1m/s).

Table 7.2 lists the length of the dataset, the traverse length, the maximum velocity and

the maximum rover-base baseline length.
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Figure 7.2 The 2D overview of the trajectory with starting point, end point and base
position (left) and the velocity and attitude profiles (right)
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Table 7.2 Dataset properties

Dataset Property Value
Dataset length (sec) 2147
Traverse length (m) 10436

Maximum velocity (m/s) 12.6
Maximum baseline length (km) 0.93

7.2.1.  Loosely-coupled GNSS aided inertial navigation

The loosely-coupled GNSS aided inertial navigation solution was generated and used

as the reference trajectory for the subsequent tests. This sub-section summarizes the

results.

The rover position was obtained using the third party POSGNSS (Grafnav) software.

A MATLAB based GPS compass module was developed to obtain the GPS heading

measurement. The GPS compass module consists of a sequential least squares estimator

that processes C1 code and L1 phase measurements, integer ambiguity resolution using

the LAMBDA method [Teunissen, 1995], a carrier phase cycle-slip detector [Bisnath,
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2000] and a measurement outlier detector. Figure 7.3 shows the estimated position
accuracy (1-o), estimated heading accuracy (1-c), the rover-base baseline length and the

number of satellite used for computing the GPS position and heading.
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Figure 7.3 The GPS position standard deviation (1-c) (top-left).
The GPS heading accuracy (bottom-left). The baseline length (top-right).
The number of satellite used for computing the GPS position and heading (bottom-right)
Table 7.3 lists the IMU sensor error parameters. The parameters were obtained using the
Allan variance technique [Allan, 1966] with 18 hours of static data (the detailed Allan
variance results are omitted here).

The loosely-coupled integration was performed next. The psi-error model described in

Section 3.5.2 was employed and the navigation state vector is

x =(@X" &y bl bY)T (7.1)
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wherein éX”c, ﬁvnc, v, bg and bz are the 3x1 position error vector, 3x1 velocity error

vector, 3x1 attitude misalignment vector, 3x1 accelerometer bias vector and gyroscope
bias vector, respectively.

Table 7.3 IMU440CA sensor error model parameters
Power spectral
density

0.62
0.46
0.43
1.73
2.26
1.94
0.87
0.73
0.74
8.40
8.70
8.39

Parameter Component

x

Velocity random walk [m/s/\hr]

Angle random walk [deg/vhr]

Accelerometer bias stability [mg]

Gyroscope bias stability [deg/hour]

NN IX|INK[X|NK|[X|NK

Firstly, the horizontal static alignment was performed using (3.58). Then, the GPS
position and heading measurements were used to initialize the state vector together with
its covariance matrix. Finally, the Kalman filter was employed in the loosely coupled
integration architecture. Figure 7.4 shows the overall 1-c position and orientation
accuracies. The North, East and down accuracies were about +0.03m, +0.02m and
+0.05m, respectively. The roll, pitch and heading accuracies were approximately
+0.15deg, +0.15deg and +0.20deg, respectively. The position and attitude results are

accurate enough as the reference solution for the subsequent tests.
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Figure 7.4 The estimated position accuracy (1-c) and orientation accuracy (1-c)
of the loosely-coupled GNSS aided inertial navigation solution
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Figure 7.5 The GPS system innovations (left)
and measurement residuals (right) with the corresponding 1-c envelope
Figure 7.5 shows the GNSS system innovations and measurement residuals with the

corresponding 1-c envelope. The magnitude of the system innovations and measurement

residuals for the GNSS position (<5cm) and GNSS heading (<0.5 deg) measurements
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verify the correctness of the computed position and heading accuracy. Figure 7.6 shows
the estimated accelerometer and gyroscope biases together with 1-c envelope.
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Figure 7.6 The estimated accelerometer and gyroscope biases
with the corresponding 1-c envelope.
In summary, the loosely-coupled GNSS aided inertial navigation solution at the

centimeter level position accuracy can provide an accurate reference trajectory.

7.3. Structureless stereo camera calibration

This section presents the results from the structureless stereo camera auto-calibration
and system calibration using the algorithms developed in Chapter 4 and also compares
them with the ones using the algorithm based on the collinearity equations. The analysis
was conducted as follows:

e An interval of the trajectory was chosen for the calibration. Furthermore
feature points within this interval were extracted and matched.

e The calibration parameters were computed by bundle adjustment using (a) the
collinearity equations and (b) the scale-restraint equation. Both calibrations
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were photo block-invariant i.e. the calibration parameters were assumed to be
constant.
e The estimated calibration parameters were evaluated and compared.
This section compares the number of parameters and the number of floating point
operations (flops) required in a least squares bundle adjustment between the stereo auto-
calibration algorithms based on collinearity equations (COL) (Equation (4.1)) and the

scale restraint equations (SRE) (Equation (4.5)).
7.3.1. Calibration interval and measurement information

One hundred and forty (140) stereo images within the interval shown in red (Figure
7.7 (left)) were used to test the camera calibration algorithms. This section of the
trajectory contained turns and this favored the estimation of the lever-arm and bore-sight
components. Furthermore, the images were highly textured and should be in favor of

detecting point features.
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Figure 7.7 The calibration interval (left) and a stereo pair with the matched points (right)
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The point features were extracted and matched using the LIBVISO2 library [Geiger et
al, 2011], which consists of a corner and a blob detector. Its matcher employs the Sum of
Absolute Differences (SAD) method on an 11x11 window. To improve the matching
accuracy between stereo pairs, each search was constrained using the coplanarity
equation. Between the consecutive frames, the feature locations on the following frame
were predicted by using the GPS-aided inertial navigation solution. The standard
deviation of the measurement for the extracted point features was assumed to be +0.3px.
Figure 7.7 (right) shows the 75" stereo image with the matched feature points.

Similar to the tests performed in Sections 4.3 and 4.4, the calibration results from one
COL and two SREs are presented (i.e. still refer to as SRE1 and SRE2). The purpose of
COL and SREL1 is the compare the performance of the collinearity equations and the
scale-restraint equation when the same measurements are used. Simulation results in
Section 4.4 suggests that scale-restraint equation requires approximately 4 times more
measurements to produce comparable calibration results to the collinearity equations. The
number of extractable features in the real world depends on the texture of the images.
With these set of images, SRE2 was able to obtain 3.6 more features than COL and
SREL. Figure 7.8 (top) shows the number of the used features and Figure 7.8 (bottom)
shows the minimum, mean and maximum ranges of the 3D features in the test. The

average overlapping percentage for all three cases was approximately 72%.
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Figure 7.8 The number of the features (top), the minimum, mean and maximum ranges of
the 3D features (bottom) for COL, SRE1 and SREZ2.

The EO parameters for each image frame were obtained from the GNSS aided inertial

navigation solution in Section 7.2.1. Their standard deviations are shown in Figure 7.9.
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Figure 7.9 The standard deviations of the EO parameter for the image frames
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The next subsections present and analyze the auto-calibration results associated with

COL, SRE1 and SRE2.
7.3.2. Camera and system calibration results

The calibration parameters were initialized using the techniques described in Section
4.2.3. The initial lever-arm vector from the camera system to the IMU was measured
using a measuring tape. The calibration parameters were then estimated using the least-
squares method.

The estimated lens distortion parameters together with their a-posteriori standard
deviations with the left and right cameras are given in Table 7.4 and Table 7.5,
respectively. The results showed the similar results for the focal length error from COL
and SREZ2, but SRE1 performed the worst. The best estimated principal point errors came

from SRE2, followed by the ones from COL and SRE1. The results showed that the
coefficients k; and k, accounted for most of the radial distortions. More in details, the

lowest standard deviations for them were achieved by SRE2, whilst they were similar
with COL and SREL.

Table 7.4 The lens distortion parameters with the left camera
Parameter COL SRE1 SRE2
mean stdev mean stdev mean stdev

Af_ (px) | 0.393 0592 | -0.694 | 00967 | 0.393 0.549
AX o (pX) | -0.787 | 0193 | -0.938 | 0323 | -0.787 | 0.169

Ay o (px) | 0.068 0.730 | -0.326 | 0.923 | 0.068 0.501
KLi(px?®) | -4.81e% | 9.32¢®° | -4.84e"7 | 9416 | -4.77" | 4.92¢™
KL, (px*) | 6.89e%° | 1.26e™® | 6.92¢™° | 1.45¢° | 4.92¢*° | 7.40e™
KLs(px®) | -0.98e%® | 7.16e™° | -1.02¢™8 | 7.35¢%° | -9.77¢® | 3.72¢1
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Table 7.5 The lens distortion parameters with the right camera

Parameter COL SRE1 SRE2
mean stdev mean stdev mean stdev
Af (PX) 2.606 0.602 2.307 0.974 2.544 0.553
AXg o (pX) -0.545 0.210 -0.691 0.310 -0.495 0.164
AYg o (PX) 2.045 0.805 1.930 0.877 2.009 0.477
Kea (pX?) | -4.95e" | 9.36e® | -5.06e” | 9.62¢™° | -4.89¢" | 5.03¢
keo(pXx™) | 8.94e™ | 1.32¢™ | 0.15¢™ | 1.47¢™ | 556e% | 7.60e™
Kes(px®) | -1.75¢™® | 6.45e%° | -1.34e™® | 7.40e™° | 8.46e° | 3.82¢

The estimated relative orientation parameters and their standard deviations are listed in
Table 7.6. The estimated baseline vectors were similar from all of them, so were the
boresight angles about y and z. Besides, the estimated boresight angles about x were
similar from COL and SRE2. SRE1 estimated this same boresight angle at the lowest
accuracy in comparison with the other two.

Table 7.6 The relative orientation of the right camera w.r.t the left camera.
1 free parameter

Parameter COL SRE1 SRE2

mean stdev mean stdev | mean stdev
blg « (M) 0.019 0.001 0.017 0.001 | 0.018 0.001

bir.y (M) T 0.65 - 0.65 - 0.65 -
'R, (M) -0.011 0.001 | -0.009 | 0.001 | -0.010 | 0.001
Oz (deg) 0.235 0.010 0.223 0.016 | 0.240 0.008
Ocr.y (deg) | -0.571 0.004 | -0.569 | 0.006 | -0.594 | 0.003
Oz, (deg) -0.050 0.001 | -0.054 | 0.002 | -0.053 | 0.001

Table 7.7 summarizes the estimated lever-arms, the absolute scale factor and the bore-

sight angles of the stereo camera system.
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Table 7.7 The estimated lever-arms, scale and bore-sight angles
Parameter COL SRE1 SRE2
mean stdev mean stdev mean stdev

IaﬁX (m) 0.103 0.015 0.122 0.021 0.102 0.015
Ialﬁyy (m) -0.283 0.014 | -0.310 | 0.021 -0.294 0.018
IaﬁZ (m) -0.142 0.055 | -0.160 | 0.060 -0.151 0.061

S 1.012 0.002 1.013 0.002 1.011 0.002
ng (deg) | 92.697 | 0.027 | 92.424 | 0.029 | 92.278 0.027
Hgy (deg) | 0.391 0.029 0.495 0.029 0.454 0.025
032 (deg) | 89.485 | 0.256 | 89.123 | 0.331 | 89.071 0.333

The estimated bore-sight angles and absolute scale factors were similar in all three
calibration results. However, the estimated lever-arms were not consistent with each
other and showed that their estimates could not be reliable. The standard deviation of the
lever-arm in z-direction was approximately three times larger than the ones in x and y
directions as there was little variation with the pitch angle and the vertical accuracy of the
GPS position was normally two times worse than its horizontal accuracy. The lever-arms
were measured beforehand using a measuring tape at the accuracy of 0.5cm. The
difference between the estimated and the measured lever-arms, and the standard

deviations are presented in Table 7.8.

Table 7.8 Difference between the estimated and measured lever arm components
and with the corresponding standard deviations

Measured
Component | lever-arm COoL(m) SRE1(m) SRE2(m)
(m)
mean | stdev | mean stdev | mean stdev
X 0.060 0.043 | 0.015 | 0.062 | 0.021 | 0.042 | 0.015
y -0.325 0.042 | 0.014 | 0.015 | 0.021 | 0.031 | 0.018
z -0.050 -0.092 | 0.055 | -0.110 | 0.060 | -0.101 | 0.061
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The results in Table 7.8 show that difference between the estimated and measured
lever arm components are within three standard deviations (3-c). This implies that the
lever-arms could be estimated and the measurements were not accurate enough to recover
them reliably. Table 7.9 lists the number of points, number of objects, the size of the

parameter, the number of iterations, the total theoretical flops and the a-posteriori
variance of unit weight (&5) from the solutions using COL, SRE1 and SRE2.

Furthermore, Table 7.10 lists the components of the parameter vector and their

corresponding sizes.

Table 7.9 Number of points, objects, iterations, flops and &7

COL SRE1 SRE2
Number of stereo images 140 140 140
Number of stereo points 11137 11137 40021
Number of observed objects 2731 2731 9818
Parameter vector size 9051 858 858
Number of least-squares iterations 2 4 5
logio(flops) (theoretical) per iteration 12.027 8.9608 9.2163
logo(flops) (theoretical) 12.328 9.5629 9.9153
A-posteriori variance of unit weight 65 1.54 1.69 1.76
Table 7.10 COL, SRE1 and SRE2 parameter list and size
Parameter COL SRE1 SRE2
Image distortion model
(6 parameter model, see Section 4.5.2) 26 26 26
Stereo basehpe and relative grlentatlon 243 243 243
(one baseline component is fixed)
Exterior orientation
(one EO parameter is fixed) 6x(140-1) 6>(140-1) 6>(140-1)
Object position parameters 3x2731 0 0
Lever-arm, scale and boresight 3+1+3 3+1+3 3+1+3
Total parameter vector size 9051 858 858

The COL and SREL estimates used the same set of measurements. SRE2 employed

3.6 times more measurements. At the same time, SRE1 and SRE2 estimated the same
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number of the parameters, but COL estimated 8193 more parameters. Even though, SRE2
processed more measurements than COL, it still used 259 less flops (or 647 times less
flops per iteration). However, SRE1 and SRE2 required 2 and 3 more iterations than COL,

respectively. This is due to the higher non-linearity of the scale-restraint equation in
comparison with the collinearity equations. The a-posteriori variance of unit weight &g

for all solutions were greater than 1 (go to Section 7.3.4 for the discussion). The

following section evaluates the three calibration results.
7.3.3.  Evaluation

To evaluate the calibration results from COL, SRE1 and SREZ2, the VO solution based
on (3.80) was computed with each of the calibration parameters and then compared with
the GNSS aided inertial navigation solution. Since the estimated lever-arm vector was
unreliable due to its significant standard error, the tape measured values were employed
instead. The trajectory was parsed into thirty-five 200m sections, which all contained
continuous image data at the specified data rate. Figure 7.10 shows the color coded

sections together with their corresponding ID.

178



600~

500

400~

300

200

100

North{m)

=100 -

=200

=300

=400

East(m)

Figure 7.10 The thirty-five 200m sections with Section ID

For each set of calibration parameters, the VO translation and rotation errors were
computed in the following way. First, the VO solution and trajectory for each section
were computed. The VO frame distance was set to 1.0m and the significance level o for
measurement rejection was set to 0.5%. Then, for each section, the position and
orientation differences between the VO path and the reference solution were computed.
And finally the translation and rotation drift rates (i.e. error per meter) were computed
using the computed position and orientation differences (see Section 3.6.4.6 for more

details).
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Figure 7.11 The numbers, and mean ranges of the 3D features for the divided sections.
The colors of the plot corresponds the sections in Figure 7.10.

The number of the features and the mean range of the 3D features for each section are
shown in Figure 7.11 while the number of the image frames, the time interval and the
average number of the points per frame in each section are given in Table 7.11. The
numbers of features in all three solutions were very similar. The small differences in
number were due to the fact that the calibration parameters of COL, SRE1 and SRE2
were not exactly the same and therefore produced slightly different sets of measurements
for the VO computation. The magnitudes of the measurement residuals between the
solutions were close. Thus, the numbers of the detected outliers were slightly different.

Figure 7.12 shows the VO 3D position and rotation drift of all the sections (the color of
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the lines in Figure 7.12 corresponds to the section ID in Figure 7.10). Table 7.12 lists the
VO translation and rotation drift rates for each section and their RMS errors of drift rates.

Table 7.12 shows that the RMS errors associated with the translation drift rates from
COL, SRE1 and SRE2 were 1.78%, 1.86% and 1.70%, respectively. The auto-calibration
parameters from SRE2 produced the lowest translation error and therefore were the most
accurate solution. The second best and the worst auto-calibration parameters were given
by COL and SRE1, respectively. The RMS errors of the estimated rotation drift rates
were similar (approximately 0.024deg/m) for all three cases. Conclusively, the estimated
VO position change was more sensitive to the variations of the camera calibration values
than the estimated VO orientation change, which will further be discussed in the next

section.
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Table 7.11 Average number of points per frame used in each section.
Average points per frame
Section ID | yumber | nterval |l o) | gpEg | SRE2

of frames | (sec)

1 164 22.8 289.8 | 284.3 | 296.2
2 170 325 453.1 | 450.7 | 455.8
3 210 41.3 221.0 | 220.0 | 223.2
4 190 25.3 308.5 | 305.7 | 311.0
5 206 34.3 2325 | 2305 | 2333
6 168 34.5 279.2 | 277.1 | 280.7
7 190 25.2 314.0 | 3139 | 3145
8 193 32.0 236.6 | 235.8 | 237.6
9 200 29.6 226.6 | 225.8 | 228.7
10 172 32.7 480.0 | 477.7 | 4815
11 203 36.9 2454 | 2440 | 246.2
12 213 33.7 268.5 | 267.2 | 270.4
13 195 29.8 303.8 | 301.7 | 305.7
14 211 34.1 254.5 253.2 255.7
15 206 32.1 485.9 | 482.4 | 487.8
16 197 325 290.6 | 289.3 | 291.6
17 212 32.7 230.9 | 229.0 | 2325
18 191 27.5 293.4 | 290.7 | 296.7
19 193 29.9 486.2 | 480.0 | 490.4
20 201 28.5 261.0 | 2595 | 262.5
21 203 33.5 449.3 | 4455 | 4522
22 199 29.3 436.1 | 433.2 | 438.0
23 198 29.9 469.5 | 465.4 | 473.2
24 188 25.3 398.7 | 396.1 | 403.2
25 197 39.5 2139 | 2121 | 215.3
26 196 35.0 459.0 | 4549 | 463.4
27 210 34.4 4485 | 4458 | 450.4
28 174 23.1 427.0 | 423.6 | 434.1
29 153 20.3 370.9 | 3615 | 377.6
30 184 26.9 394.1 | 387.4 | 401.1
31 165 24.1 390.6 | 388.0 | 399.6
32 177 25.7 402.7 | 397.0 | 407.8
33 182 25.1 342.4 | 340.7 | 3435
34 192 28.2 465.7 | 462.3 | 469.7
35 185 27.7 276.5 | 271.1 | 283.6
mean 191.1 30.2 345.9 | 3429 | 349.0
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Table 7.12 The VO translation and rotation drift rates

Translation drift rate (%) | Rotation drift rate (deg/m)

SeCton | coL | SREL | SRE2 | COL | SREL | SRE2
1 2.21 2.28 1.88 0.030 0.034 0.025
2 1.74 1.70 1.89 0.026 0.025 0.029
3 1.70 1.74 1.57 0.015 0.015 0.016
4 1.74 1.96 1.47 0.024 0.027 0.019
5 1.28 1.30 1.34 0.025 0.023 0.028
6 2.77 3.06 2.40 0.039 0.043 0.034
7 1.49 1.46 1.58 0.026 0.025 0.030
8 1.40 1.35 1.49 0.026 0.027 0.025
9 1.81 2.00 1.52 0.026 0.028 0.022
10 1.89 1.83 2.02 0.024 0.021 0.028
11 1.27 1.29 1.25 0.024 0.025 0.024
12 1.24 1.32 1.20 0.021 0.020 0.023
13 1.79 2.05 1.45 0.026 0.029 0.023
14 1.44 1.67 1.23 0.014 0.013 0.017
15 1.66 1.70 1.63 0.022 0.020 0.026
16 1.10 1.18 1.10 0.009 0.011 0.009
17 1.14 1.12 1.23 0.021 0.021 0.021
18 1.66 1.79 1.56 0.019 0.021 0.016
19 2.32 2.42 2.10 0.015 0.015 0.015
20 1.62 1.77 1.43 0.026 0.029 0.020
21 2.06 2.13 2.12 0.039 0.038 0.044
22 1.31 1.45 1.09 0.024 0.026 0.020
23 1.48 1.69 1.19 0.012 0.014 0.011
24 2.04 1.94 2.21 0.028 0.027 0.028
25 2.02 2.06 1.95 0.030 0.033 0.025
26 1.47 1.52 1.43 0.022 0.023 0.021
27 1.98 2.12 1.82 0.027 0.029 0.023
28 1.39 1.32 1.43 0.021 0.021 0.018
29 2.57 2.70 2.31 0.029 0.032 0.025
30 1.95 2.01 1.93 0.017 0.017 0.019
31 1.56 1.47 1.57 0.016 0.015 0.016
32 1.53 1.58 1.52 0.019 0.019 0.020
33 1.20 1.24 1.29 0.020 0.019 0.022
34 2.05 2.11 1.92 0.019 0.019 0.020
35 2.63 2.65 2.63 0.019 0.027 0.015
RMS 1.78 1.86 1.70 0.024 0.025 0.023
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7.3.4. Discussion

The results showed that with a given number of measurements, the collinearity
equations produced more accurate calibration parameters than the scale-restraint equation
and disadvantageously utilized more computational and memory resources. Oppositely,
the scale-restraint equation is highly non-linear in comparison with the collinearity
equations and required more iterations when running the least-squares bundle adjustment
algorithm. Despite the fact that more measurements were processed with more iterations,
the scale-restraint equation used less computation resources and delivered more accurate
calibration parameters than the collinearity equations.

The test results showed that both methods could not estimate the IMU-camera lever-
arms at the expected accuracy. This could be due to (a) the measurements were not
accurate enough to provide the absolute and relative positional information at an accuracy
of better than 1cm and (b) the estimation was limited by the low dynamics of a land

vehicle especially in the vertical. The former is the key to the problem.
The a-posteriori variances of unit weight &g for all solutions were greater than 1. This

suggests that (a) the measurement noise model are too optimistic or the weighting
between the two sets of measurements were not optimal (b) the measurement vector
contained undetected outliers, possibly due to the incorrect feature matching and (c) the
measurement functional model may contain unknown errors.

The most essential finding in the test results is that the scale-restraint equation can
estimate the camera calibration parameters more accurately than the collinearity
equations at a fraction of the computational resources even though more measurements
were employed.
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7.4.  Loosely-coupled stereo visual odometry aided-INS

This section presents the road test results with the loosely coupled VO aided-inertial
integrated navigation developed in Chapter 5. The loosely coupled VO aided-inertial
integrated navigation with the proposed Kalman filter with pairwise time-correlated
measurements (KF-PTC) was tested and compared with two other versions of the Kalman
filter: the standard Kalman filter (KF), the Kalman filter with the standard shaping filter
for time-correlated measurements (KF-TC). The data processing was conducted as
follows:

e Process the image data to obtain the stereo visual odometry solution for the
entire trajectory.

e Compute the loosely coupled VO aided inertial-navigation solutions using the
three Kalman filters.

e Evaluate the performance of the three VO aided-inertial solutions and compare

them with each other.
7.4.1. Stereo visual odometry solution

The visual odometry-based pose changes together with their corresponding variance-
covariance matrix and time-correlated covariance matrix were processed independently
of the GPS and IMU data. The disadvantage is that the IMU data was not available to
improve the feature matching between consecutive image frames. However, in order to

ensure the identical VO solution to be used for the three Kalman filters, they were first
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derived, saved and then used as measurements in aiding the inertial navigation. The
visual odometry solution was computed as follows:

e The SRE2 image distortion parameters, the stereo baseline, orientation of the right
camera, the bore-sight angles and the scale factor derived in Section 7.3 were
used to calibrate the stereo camera system.

e Since the estimated IMU-camera lever-arm vector was not good enough to
replace the measured one by using a steel tape, the measured values were
employed instead.

e The VO frame distance was set to a minimum 1.0m or maximum angular change
of 3.0deg. The standard deviation of the measurement noise for extracted point
features was assumed to be +0.3px. The maximum feature range accuracy was set
to 3.0m. The significance level « for measurement outlier rejection was set to
0.5% (approximately 3-c).

e The point features were extracted and matched using the LIBVISO2 library
[Geiger et al, 2011]. To improve the matching accuracy between the stereo pairs,
the search was constrained along the epipolar lines using the coplanarity
equations.

e The pose changes were computed using the least-squares estimator and RANSAC
was applied to improve the robustness of the estimates.

The VO estimates and their corresponding standard deviations (1-c) are given in

Figure 7.13 and Figure 7.14, respectively.
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Figure 7.15 shows the number of the features at each epoch, the minimum, average
and maximum object feature ranges, and the percentages of the shared features between
the current and previous VO estimates. The maximum range was approximately 52m
since the objects with the ranges beyond 52m had their accuracy worse than 3.0m and

were not included in the VO estimates.
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Figure 7.15 The number of the features at each epoch (top), the minimum, average and
maximum object feature ranges (middle), and the percentage of the shared features
between the current and previous VO solution epochs (bottom).

To check for the consistency, the VO solution was compared with the b-frame position
and orientation changes derived from the reference solution (the GNSS-aided inertial

integrated navigation solution in Section 7.2.1). Figure 7.16 plots the differences between

the VO solution and the reference solution.
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Figure 7.16 The differences between the VO and GNSS-aided
inertial integrated navigation solution

AXD | AYD | AZP | A6y | AG) | AQ

(m) (m) (m) (deg) | (deg) | (deg)

mean -0.002 | -0.004 | -0.003 | 0.001 | -0.007 | 0.002
1-0 0.030 | 0.019 | 0.008 | 0.050 | 0.044 | 0.062
rms 0.030 | 0.020 | 0.008 | 0.050 | 0.044 | 0.062

The results in Table 7.13 show that the VO solution and the reference solution were
consistent with each other with the RMS errors: [0.030, 0.020, 0.008] m and [0.050,

0.044, 0.062] deg for the position and orientation changes, respectively.
7.4.2. VO-aided inertial navigation solution and evaluation

This section presents and compares the loosely coupled VO aided inertial-navigation

solution using the three Kalman filters. For this series of tests, GPS position and heading
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measurements were used for alignment and also for aiding in loosely-coupled mode. For
simplicity, the VO measurements were only employed when the GPS measurements were

turned off. The state vector for the KF is
X = (0K, Vg Wi, b, 05, X Wim) (7.2)
wherein sXI°, &, v, b? and bg are the 3x1 subvectors for position error, velocity

error, attitude misalignment, accelerometer bias and gyroscope bias, respectively. k —m

is the epoch of the previous image frame. The KF-TC state vector is

Xk =(é>(n ’5‘/2 1Wk1bg’b2’ E—m"l’E—m’Vk)T (73)
where v, is the 6x1 measurement noise vector. The KF-PTC state vector is

X = (X 8¢ Wi b, Blg, Xy Wiy Vi Vi) (74)
wherein v is the 6x1 de-correlated measurement noise vector.

The horizontal static alignment was performed using (3.58) whilst the GPS position
and heading measurements were used to initialize the state vector together with its
covariance matrix. Then, the respective Kalman filters became ready for navigation.

To assess the performance of three different Kalman filters, 35 GPS outages for 200m
long, the same as described in Section 7.3.3, were simulated by excluding the GPS
position and heading measurements. Figure 7.10 shows the color coded sections together
with their corresponding IDs while Table 7.11 lists the number image frames and the
time interval for each section.

For each Kalman filter, the translation and rotation errors for each section were
computed in three steps. First, the VO-aided inertial navigation solution was computed.

Then, the position and orientation differences between the VO-aided inertial navigation
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solution and the reference solution were computed. And finally the translation and
rotation drift rates (i.e. error per meter) were computed using the computed position and
orientation differences. The drifts in 3D position and rotation, and their drift rates with
the associated RMS errors for each section are given in Figure 7.18 and in Table 7.14,
respectively.

Table 7.14 shows that the RMS errors of the position drifts rates of KF, KF-ST and
KF-PTC were 1.48%, 1.28% and 1.18%. The results show that the position drifts with of
KF-PTC improved the solution by 20% and 8% in comparison with the ones from KF
and KF-ST, respectively. However, the rotation drift rates remained the same. It is
noticed that sections 27 and 25 performed the best and the worst, respectively, whose 2D

overviews are given in Figure 7.17.

Section 27 Section 25
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Figure 7.17 The 2D overview of Section 27 (best) and Section 25 (worst)
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Figure 7.18 The drifts in 3D position and orientation from KF, KF-ST and KF-PT for the individual color coded sections
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Table 7.14 The translation and rotation drift rates from the VO-aided inertial integrated

navigation
Translation error (%) Rotation error (deg/m)
SectionID | KF | KF-ST | KF-PTC | KF | KF-ST | KF-PTC

1 158 | 091 0.64 0.0156 | 0.0139 | 0.0141
2 1.01 | 0.48 0.46 0.0028 | 0.0021 | 0.0021
3 0.81 | 0.52 0.46 0.0066 | 0.0063 | 0.0065
4 0.60 1.03 1.01 0.0049 | 0.0070 | 0.0029
5 1.69 | 0.65 0.68 0.0137 | 0.0138 | 0.0144
6 0.75 | 047 0.68 0.0032 | 0.0026 | 0.0038
7 0.80 | 0.94 0.47 0.0048 | 0.0048 | 0.0051
8 1.87 2.70 1.13 0.0101 | 0.0122 | 0.0108
9 0.82 3.08 0.64 0.0055 | 0.0025 | 0.0037
10 1.00 | 0.50 0.93 0.0095 | 0.0089 | 0.0102
11 2.36 1.10 2.10 0.0028 | 0.0037 | 0.0030
12 1.78 | 0.36 0.40 0.0047 | 0.0059 | 0.0046
13 1.42 1.53 1.97 0.0192 | 0.0178 | 0.0192
14 3.43 | 0.73 1.66 0.0078 | 0.0071 | 0.0081
15 039 | 0.51 0.59 0.0101 | 0.0088 | 0.0085
16 0.87 1.82 1.21 0.0111 | 0.0160 | 0.0183
17 0.70 | 0.58 0.77 0.0086 | 0.0086 | 0.0091
18 3.00 1.86 1.16 0.0128 | 0.0088 | 0.0079
19 0.76 | 0.48 0.85 0.0076 | 0.0069 | 0.0071
20 1.62 1.23 0.57 0.0106 | 0.0065 | 0.0061
21 0.90 | 0.70 1.04 0.0027 | 0.0031 | 0.0031
22 159 | 043 0.75 0.0087 | 0.0050 | 0.0066
23 0.65 | 0.34 0.29 0.0044 | 0.0019 | 0.0018
24 2.22 0.47 0.40 0.0075 | 0.0038 | 0.0020
25 231 | 4.28 4.53 0.0053 | 0.0080 | 0.0059
26 1.15 | 0.78 1.35 0.0052 | 0.0049 | 0.0063
27 0.42 0.25 0.20 0.0077 | 0.0101 | 0.0079
28 054 | 0.50 0.47 0.0104 | 0.0098 | 0.0096
29 0.64 | 0.49 0.79 0.0046 | 0.0044 | 0.0051
30 090 | 0.44 0.37 0.0056 | 0.0052 | 0.0054
31 0.44 | 0.77 0.36 0.0007 | 0.0024 | 0.0011
32 2.29 | 0.55 0.84 0.0166 | 0.0152 | 0.0151
33 1.54 | 0.46 0.55 0.0042 | 0.0053 | 0.0057
34 041 | 0.82 0.50 0.0039 | 0.0042 | 0.0030
35 1.13 | 0.96 0.90 0.0020 | 0.0027 | 0.0017
rms 1.48 1.28 1.18 0.0086 | 0.0083 | 0.0084
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The system innovations with the corresponding 1-c error bounds for section 27 are
given in Figure 7.19 and Figure 7.20. The system innovation was small w.r.t. its standard
deviation. This shows that VO and INS solution are in agreement and all the aiding
measurements were of good quality. Figure 7.21 and Figure 7.22 show the system

innovation and the corresponding 1-c error bounds for section 25. The system innovation

was relatively large especially in the AX®, AY® and AH? components. As shown in

Figure 7.15, the number of features available during this interval (from 995 to 1025
seconds) dropped to approximately 50 for most epochs. This degraded the VO solution

and hence degraded the integrated solution.
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Figure 7.19 Section 27 position change system innovation and 1-c error bounds
from KF, KF-ST and KF-PTC
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Figure 7.20 Section 27 orientation change system innovation and 1-c error bounds
from KF, KF-ST and KF-PTC
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Figure 7.21 The system innovations of the position changes and 1-c error bounds
from KF, KF-ST and KF-PTC (Section 25)
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Figure 7.22 The system innovations of the orientation changes and 1-c error bounds
from KF, KF-ST and KF-PTC (Section 27)

7.4.3. Discussion

The results showed that the measurement model under the consideration of their time-
correlation in the VO IA-INS using the KF-TC has reduced the overall position error in
comparison with the standard KF solution. The position performance of the VO IA-INS
was further improved when the KF-PTC was employed. The position drifted linearly with
distance. The position drifts were mainly caused by the scale and heading errors. The
former caused the drifts in the along-track direction while the latter caused the drifts in
the cross-track direction. Furthermore, these scale and heading errors amplified position
error as the distance increased.

The results also showed that the orientation results were similar among the three

Kalman filters. The VO aiding does not improve the performance of the roll and pitch
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angle estimates. However, the improvement of the heading performance in VO aiding
depends on the accuracy of the VO orientation change measurements and the quality of
the gyroscopes. Figure 7.14 shows that the standard deviation of the VO orientation
changes was, on average, 0.06 deg per frame. From Table 7.3, the random walk and bias
stability with the z-gyroscope are 1.94 deg/vhr and 8.39 deg/hr respectively. Given that
the image rate is 7.5 Hz (or 0.133 sec), the IMU heading error on the level ground in free-
inertial mode is expected to be approximately 0.012 deg in 0.133 sec. This shows that the
VO orientation change measurements were too noisy to improve the heading solution.
The most important finding in the completed tests was that, the quality of the
navigation solution from the Kalman filter was improved by appropriately modelling the

time-correlated measurements.

7.5.  Tightly-coupled stereo MFVO aided-INS

In this section, the tightly-coupled (TC) stereo SLAM-aided INS will be analysed and
compared with the TC stereo MFVO-aided INS developed in Chapter 6 using the
aboved-utilized road test data. The camera calibration parameters used for LC VO-aided
INS tests Section 7.4 was employed for the tests. The TC SLAM aided-INS state vector

for N landmarks is given by

c

Xk :(&(EC,&/EC,\I’k1bg’btg),mfc1mgc,.”,mr’11 )T (75)
wherein &, v, wy, b by and m™ (for i=12,...,N) are the position error,

velocity error, attitude misalignment, accelerometer bias, gyroscope bias and landmark

position vectors respectively. The state vector for the TC MFVO aided-INS is given by

C

Xy = (OXK SV Wi, b2, bY, X Wi KR, Wk, X, Wi, ) (7:6)
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where k—j; (for i=1,2,...,M and 0< j; <...< jn4 < j,) are the frame epochs and
k- j., is the epoch at which the feature in the current feature list at epoch k was first

observed. The road test dataset was processed with the two algorithms and the results

evaluated.
7.5.1. SLAM and MFVO-aided inertial navigation solution and evaluation

With this series of tests, the GPS position and heading measurements were used for
alignment and also aiding in loosely-coupled mode. The horizontal static alignment was
performed using (3.58). Then, the GPS position and heading measurements were used to
initialize the state vector together with its covariance matrix. The computation of the 3D
feature points for both algorithms is summarized as follows:

e The frame distance between consecutive frames was set to a minimum of 1.0m or
maximum angular change of 3.0 deg.

e The point features were extracted and matched using the LIBVISO2 library
[Geiger et al, 2011]. To improve the matching accuracy between stereo pairs the
search was constrained along the epipolar lines using the coplanarity equations.
Between consecutive frames, the locations of the features on the next frame were
predicted by using the inertial navigator solution.

e The standard deviation of the measurements for the 2D features was assumed to
be +0.3px. The maximum accuracy for the triangulated 3D features was set to
3.0m.

The same method, which was used to assess the LC VO-aided INS algorithms in
Section 7.4.2 , was employed to evaluate the TC SLAM-aided INS and TC MFVO-aided

INS algorithms. That is, the same 35 GPS outages of 200m long were simulated by
199



excluding the GPS position and heading measurements. Then, during the GPS outages
only the 3D image measurements were used for aiding. And finally, the translation and
rotation errors for each section and for the two algorithms were computed, respectively.
Figure 7.23 shows the drifts in 3D position and rotation for all the sections. Table 7.15

lists the translation and rotation drift rates for each section and the their RMS errors.
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Figure 7.23 The drifts in 3D position and orientation from
TC SLAM and TC MFVO for the individual color coded sections
Table 7.15 shows that the RMS errors of the translation drift rates of TC SLAM and TC
MFVO were 1.21% and 1.27%, respectively. Furthermore, the changes of the rotation
drifts were 0.0086 deg/m and 0.0093 deg/m, respectively. The results showed that the TC
MFVO solution was slightly worse than the one from TC SLAM. It is noticed that the
drifts with TC MFVO between Om and 150m distance are smaller than the ones with TC

SLAM (Figure 7.23). However, TC MFVO drifts between 150m and 200m distances,
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were worse than the ones with TC SLAM, which contributed to the overall degradation
of TC MFVO.

Figure 7.24 shows the size of the state vector, the number of the features and the
average number of the features per frame from each respective section, and the color
coded sections. The size of the state vector of TC SLAM varied approximately between
500 and 1100, as it was between 40 and 80 for MFVO. The average number of features
per frame for both algorithms was generally similar for most sections. The small
differences may be because (a) the measurement equations are different, (b) the estimated
poses were not the same and therefore the feature match results were not identical, and
(c) the unmodelled errors may have produced different sets of inliers. The number of TC
SLAM measurements during intervals [1005, 1025] sec and [1206, 1232] sec were
considerably lower than the ones with TC MVFO. During these two periods, there were

numerous SLAM re-initializations due to the low number of features in view.
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Table 7.15 The translation and rotation drift rates from the TC SLAM and TC MFVO
algorithms

Translation error (%) | Rotation error (deg/m)
Section ID | TCSLAM | TC MFVO | TCSLAM | TC MFVO

1 1.16 0.56 0.0030 0.0075
2 1.13 0.59 0.0015 0.0049
3 1.01 0.72 0.0033 0.0107
4 1.20 0.70 0.0021 0.0082
5 1.55 0.94 0.0020 0.0101
6 1.07 0.46 0.0022 0.0031
7 2.09 1.92 0.0201 0.0057
8 1.03 2.54 0.0030 0.0155
9 0.93 0.51 0.0028 0.0014
10 0.91 2.14 0.0071 0.0113
11 1.24 3.27 0.0026 0.0063
12 0.56 0.43 0.0019 0.0069
13 0.64 0.50 0.0126 0.0193
14 1.75 1.89 0.0055 0.0076
15 0.66 0.47 0.0049 0.0049
16 1.27 0.97 0.0135 0.0154
17 1.65 0.94 0.0089 0.0088
18 1.24 0.71 0.0046 0.0066
19 0.90 0.54 0.0034 0.0022
20 1.26 0.78 0.0046 0.0124
21 0.58 1.16 0.0201 0.0085
22 0.96 0.68 0.0033 0.0162
23 1.12 0.61 0.0005 0.0097
24 1.17 151 0.0092 0.0075
25 0.78 1.54 0.0019 0.0119
26 1.21 1.38 0.0083 0.0044
27 0.47 0.57 0.0058 0.0063
28 0.80 0.66 0.0055 0.0021
29 1.78 1.03 0.0160 0.0087
30 0.99 1.29 0.0009 0.0108
31 0.94 0.56 0.0144 0.0027
32 1.70 2.42 0.0176 0.0113
33 0.82 0.62 0.0034 0.0069
34 1.21 0.60 0.0104 0.0109
35 2.14 1.18 0.0040 0.0024
rms 1.21 1.27 0.0086 0.0093
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Figure 7.24 The size of the state vector (top). The number of features per frame and the
average number of features per frame during the respective sections (middle).
The color coded intervals for the section (bottom).
Figure 7.25 shows the histrograms of the standardized system innovation vectors for
TC SLAM and TC MFVO together with a standardized normal distribution curve. The
histograms were narrow in comparison with the standardized normal distribution. This

shows that the 3D image measurements and the INS solution were in agreement and the

aiding measurements were of good quality.
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Figure 7.25 The histograms of the standardized system innovation vectors
for TC SLAM and TC MFVO

7.5.2. Discussion

The results from the simulated data in Section 6.3 showed that the position and
orientation solutions from TC SLAM and TC MFVO algorithms were similar. However,
the results from the real data here showed that the overall translation drift rate of the TC
MFVO translation was 5% worse than the one with the TC SLAM as the TC SLAM
translation error drifted as expected, i.e., linearly with the distance. However, the drift
asscoiated with the TC MFVO translation increased quadratically with the distance. This
error characteristic is not expected with image-based navigation systems. Furthermore,
the drift with the TC MFVO was smaller for the first 150m of each section. During the
last 50m, TC MFVO drift was much worse than the ones from the TC SLAM. A common

understanding is that working with real data could be much more complicated than
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working with the simulated data. The TC MFVO error characteristics were most likely
due to the combination of the following factors: (a) The characteristics of the MFVO
measurement errors was unexpectedly changed when the MFVO measurements were
derived by time-differencing the SLAM measurements. For example, the effect of the
focal length errors on the 3D feature range estimates were reduced by cancelling common
errors in two consecutive SLAM measurements. (b) The MFVO measurements, as shown
in (6.23), is the function the features from multiple epochs. This requires accurate timing
from the hardware system. The timing errors could have amplified the measurement
errors. Further analysis on the error characteristics of the derived MFVO measurements
from real data is required. Furthermore, the hardware related investigations on the
YUMIS prototype navigation system are needed to obtain definitive results.

Simulation results in Section 6.3.1 showed that TC SLAM and TC MFVO were more
accurate than LC VO with KF-PTC. However, test results with the real data showed that
the LC VO IA-INS with the KF-PTC in Section 7.4 performed better than the TC SLAM
and TC MFVO. This verifies the fact that tightly coupled systems are generally more
difficult to implement and requires extensive filter model tuning [Corke el al, 2007].
Furthermore, the research shows that the loosely coupled IA-INS is more robust and
suitable for low-cost navigation systems.

As discussed in Section 6.5, the loop closure technique was not applied. The challenge
in applying loop closures in MFVO is how to perform the measurement update after a
scene has been revisited given that the landmark positions have been cancelled and the

map is non-existent. This requires further research and implementation in order to
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compare both SLAM and MFVO with loop closures. The MFVO with loop closures is

suggested for the future work.
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8. Conclusion and future work
8.1. Conclusion and contributions

The focus of this PhD research was on (a) designing and implementing a structureless
camera auto-calibration camera and system calibration for a GNSS, IMU and stereo
camera integrated navigation system, (b) developing the Kalman filter for processing
pairwise time-correlated measurements for loosely coupled VO aided-INS, and (c)
developing a tightly coupled multi-frame aided INS for drift reduction with the free
inertial navigation calculation in poor GNSS and/or GNSS denied environment. Its major
contributions are summarized below.

First, Chapter 4 presented the design and implementation along with the analysis of a
camera auto-calibration and system calibration algorithm for a GNSS, IMU and stereo
camera integrated system based on the scale-restraint equation. The first step determines
lens distortion parameters, the up-to-scale baseline length and the relative orientation
between the two cameras by employing two scale-restraint equations to constrain the
matched features from two consecutive stereo image pairs. Then, the system calibration is
introduced to recover the camera lever-arms, and the bore-sight angles with respect to the
IMU, and the absolute scale of the camera system using the GNSS-aided inertial
navigation solution. The scale-restraint equation has two important characteristics: (a)
free from the object position and (a) ensuring the scale consistency between the image
positions. For the stereo case, two scale restraint equations are employed per two
consecutive stereo pairs, thus ensure that all the common image rays in the stereo-image
pairs are operated on the same scale. In comparison with the collinearity equations, the

scale-restraint equations use much less computation and memory resources with the same
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number of measurements, but at the cost of the accuracy. This study showed that the
proposed method required more measurements (approximately 4 times more) to reach a
comparable auto-calibration accuracy as the collinearity equations, while using much less
computation and memory resources.

Second, a shaping filter for processing of pairwise time-correlated measurements was
developed in a Kalman filter in Chapter 5. The coefficients of the shaping filter are
Cholesky factors obtained from the VCV matrices associated with the measurements. The
analysis showed that the global measurement VCV of the VO solution is always positive
definite and therefore the Cholesky factors are always unique, real and consists of strictly
positive diagonal elements. The derived measurement equation can seamless and
optimally integrate VO information into the state-of-the-art GNSS aided-INS system
without any modifications to the integration architecture. The results using simulated and
real data showed that the proposed method performed better than the standard Kalman
filter and the Kalman filter with the conventional shaping filter. Furthermore, the state
covariance matrix provides a realistic description of the uncertainty of the state vector.

Third, Chapter 6 presented the development of a tightly coupled stereo MFVO aided
INS which integrated features tracked from multiple overlapping image frames for the
better VO aiding measurements to efficiently restrict position and orientation drifts
during GNSS outages. The MFVO equation was derived from the SLAM measurement
equation by algebraically eliminating the landmark position vector over two consecutive
epochs. However, the derived measurements are time-correlated. Through a sequential
de-correlation algorithm, the Kalman filter measurement update can be performed

sequentially and optimally. Furthermore, the Kalman filter in the standard form and
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therefore can easily be integrated into the Kalman filter in the current GNSS/INS

integration architectures and smoothers. Monte Carlo simulations showed that the

solution of the MFVO position and orientation is similar to the ones estimated by the

SLAM algorithm. In addition, MFVO requires less memory and computation resources

when the number of features in view becomes larger and the percentage overlap becomes

smaller.

8.2.

Future work and recommendations

Some suggestions for future works and recommendations are:

Employ the measurement contribution index [Wang, 1997, 2008, 2009] to select
measurements in camera auto-calibration. The measurement contribution index of
a measurement indicates how much the measurement contributes to the accuracy
of a parameter or parameter group. The larger the contribution index, the more
effect it has on the parameter or parameter group. In camera-auto calibration,
specifically in indoor and land wvehicle navigation, the distribution of
measurements extracted from the images depends on the environment the camera
is sensing. For instance, in land vehicle applications, the objects tend to be far (5-
100m) while indoor applications the objects tend to be closer. When auto-
calibration is performed in different environments, the calibrated values and their
accuracies will be different. Also, a group of parameters can be estimated more
accurately when objects are far while others may require closer ones. For
instance, bore-sight angles require far objects, internal orientation parameters
require dynamics parallel to the image plane and lever-arms require closer objects

and high vehicle dynamics. By performing the measurement index analysis, one
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can determine quantitatively which conditions are more favorable to estimate each
parameter individually. Furthermore, measurements that do not contribute
significantly to the estimated parameter can be omitted from the system and thus
reduces the computation loading.

Develop Kalman filter equations for loosely coupled monocular VO aided-INS
while considering the time-correlated measurements and scale transfer. The scale
restraint equation can compute up-to-scale VO information using measurements
from three consecutive image frames. The scale can be transferred by chaining
images {1, 2, 3}, then images {2, 3, 4}, and so on and so forth. This ensures that
all images operate on the same scale. However, the VO information at epoch k is
correlated with the ones at epochs k-1 and k —2 since some of the same features
is employed one and/or two epochs back. Based on the Kalman filer equations for
pairwise time-correlated measurements presented in Chapter 5, the shaping filter
for monocular vision aided-INS can be developed by augmenting the state vector
with the pose and de-correlated measurement noise states at epoch k —2.

Develop and apply loop-closure technigues for MFVO.

Employ the York’s generic multisensor integration strategy to fuse GNSS, IMU
and image measurements [Wang et al, 2015; Qian et al, 2015, 2016; Qian, 2017].
Utilize a-posteriori variance component estimation (VCE) technique [Wang,
1997, 2008, 2009; Gopaul et al, 2010, Wang et al, 2010, Qian et al, 2016] to tune
VO measurements along with other measurements in the navigation Kalman

filter. The VCE method simultaneously estimates the process noise and
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measurement noise VCV matrices based on the measurement residuals and the

process noise residuals.
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Appendices

Appendix A: KF-PTC state covariance update in Joseph stabilized form

This section derives the state covariance measurement update in Joseph stabilized
form for the Kalman filter with pairwise time correlated measurements. The system

innovation covariance matrix S, , the Kalman gain K, and the state covariance matrix

P, for the Kalman filter with pairwise time correlated measurements are (i.e. from

(5.37))

Sy =HP H{ +X,

Ky = (PcHg + Py Crx1)Si (A1)
Pk+ =(1-KH )P - Kka,k—lp\;k_lxk

Starting with P,

P =(1-KH )P —K,C, 4Py,

’
Vi-1Xk

= PI: - KkaPI: - chk,k—lFr

Vi-1Xk

B ) ) (A.2)
=P =Ky (HP +C 1Py 1)
~(P Hy + Px_kv'k,lcl,k_l)KI +(P Hy + Plz,xkv;‘,lcl,k_ﬂKI
The transpose of K, in (A.1) can be written as
KI :Sil(HkPk_ +Cy 1Py x ) (A3)

Substitute (A.3) with in the last K} in (A.2) one obtains
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P¢ =P, =K, (HPP, +Cy\ 4Py ) - (P HL +P, , Chy K-

X Vi 1
+(PeHg +Peyv Crka)Si (H P +Cy Py )

=P, —K(HP +Cy 1Py )—(PHE +Pc . Cpy 1)K
+(PeHg +Peyv Crok )8k Sk IS¢ (Hi P +Cri 1Py )

=P =Ky (HP+Cy i 4Py ) — (P HT +Pev ,C ,k—l)KI

+ [(PK_HE + PI:,xkijC-lk-,k—l)Sil]Sk [(Pk_HT + I:)k xkv[(,lc-ll;,k—l)sil]-r
=P =Ky (HP+Cy i 4Py 5 ) — (P HT + Py, ,k-1)K1

X Vi1

(A.4)

+K, S K
Substitute S, from (A.1) in (A.4)

P =P =Ky (HP +Ci Py ) = (PcHk + Py Clica)K
+ K (H P Hy + XK,
— Py —KyH Py =P HIKT + K H PrHIKD) + K 2 K]
K Ck k 1PVk _1Xk PX_ka 1C vk_lK?(-

=(I-KH )P (1-K,H)" +K,Z, K,
~KCuxaPyi x. —Prvi . CrraKk

Vi1 Xk XkVk-1

(A5)

Hence

Pk+=(l—Kka)Pk K Ckk Py,
=(I-K,H)P, (1-K,H)" +K,X K{ (A.6)
K Crx1Pu . —Prvi ,ClxaK

k-1Xk Xk Vi1

Vi1Xk

Appendix B: Sequential block inversion of a lower triangle matrix

This section derives the sequential block inversion of a lower triangle matrix, i.e. the

block elements Ly 4,---,Ly in Equation (A.7) are obtained from C,,,---,C, , and

Li,l’”.’ L|’|_1, L|’| fOI‘ 1S | < k —1
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Cu O 9] Ly - 0] 9)
: . : : | . : : A7)
Cean v Craxar O Lias - Lyakas O
Ck,l Ck,kfl Ck,k Lk,l Lk,k—l Lk,k
Consider block inverse identity
-1 _ _ _
(All A12 j — ( Fll1 - A111A12 I:221J (A8)
A21 AZZ - F2_21A21A]Tf FZ_Zl

wherein F; =Ay; —AlZAE%Aﬂand Fr=A, —A21A1_11A12. With A;, =0O Equation

(A.8) becomes

1 _
Ay Ay ~AZALAL Ay

The inverse for k =1

The inverse for k =2
Cy Cyp ~C3CxCi C3
_[Lu O J
L21 L22

The inverse for k =3

. (A.11)
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c o o\ (CM OJ O
11

Cy Cxp O = Ca Czé 0 1 ©
Cai G Cy _Cgé(C3l Csz{cn C j C§31
21 22
L Oj @)
_ ('—21 Lo O
L, O
- |—33(C31 C32)(L21 Lzzj L3
L, @) @)
= Lo L2, O
—(L3sCqlyy +LgsCapl ) —LgsCooly, Ly
L, ©O @)
=Ly Ly O
|—31 |—32 |—33 (A_12)

The inverse for k
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_ Ly1a Ly 1k
Ly,
_Lk,k(Ck,l Crka E
Ly1s
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(@)
(@)
O
: Lk,k
Lk—l,k—l
@)
@)

k-1
—Lix Zk: 1(Ck,ij,k—1) Ly
J: _

(A.13)

Ly 1+ Ly « in Equation (A.13) can be obtained sequentially by Algorithm A.1.
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Algorithm A.1 Determination of L, -+, L , from the inverse of matrix C

Lk,k ZCE,lk

for i =1...(k —1){

k-1
Lk,i = _Lk,k Ei(ck,ij,i)

Now consider the case where C is an off diagonal lower triangular matrix:

-1

Cl,l O O cee O Ll,l O O
C2,1 C:2,2 O O L2,1 L2,2 O
o C3,2 C3,3 -+ 0O = |—3,1 |—3,.2 |—3,3
O O O - C, Lea Lz Ly
Then Equation (A.13) can simplified to
-1
C,,; O O
o Ck—l,k—l o
o Ck,k 1 Ck k
_ I—k—ll Lk—l k-1 o)
- I—k,k(o Ck k-1 : . I—k,k
I—k—ll Lk—l k-1
- I—k—l,l I—k—l,k—l
k= k=1
— Ly kCrka Zlel _Lk,ka,kfl.Zklle,kfl
j= j=k-

I—k,k

(A.14)

(A.15)

Ly 1,-++ Ly « in Equation (A.15) can be obtained sequentially by Algorithm A.2.
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Algorithm A.2 Determination of L, ;,---,L, , from the inverse of off diagonal lower
triangle matrix C

for i =1...(k-1){

k-1
Lk,i = _Lk,ka,k—l Z_Lj,i
J=1
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