349 research outputs found

    Code-Switched Urdu ASR for Noisy Telephonic Environment using Data Centric Approach with Hybrid HMM and CNN-TDNN

    Full text link
    Call Centers have huge amount of audio data which can be used for achieving valuable business insights and transcription of phone calls is manually tedious task. An effective Automated Speech Recognition system can accurately transcribe these calls for easy search through call history for specific context and content allowing automatic call monitoring, improving QoS through keyword search and sentiment analysis. ASR for Call Center requires more robustness as telephonic environment are generally noisy. Moreover, there are many low-resourced languages that are on verge of extinction which can be preserved with help of Automatic Speech Recognition Technology. Urdu is the 10th10^{th} most widely spoken language in the world, with 231,295,440 worldwide still remains a resource constrained language in ASR. Regional call-center conversations operate in local language, with a mix of English numbers and technical terms generally causing a "code-switching" problem. Hence, this paper describes an implementation framework of a resource efficient Automatic Speech Recognition/ Speech to Text System in a noisy call-center environment using Chain Hybrid HMM and CNN-TDNN for Code-Switched Urdu Language. Using Hybrid HMM-DNN approach allowed us to utilize the advantages of Neural Network with less labelled data. Adding CNN with TDNN has shown to work better in noisy environment due to CNN's additional frequency dimension which captures extra information from noisy speech, thus improving accuracy. We collected data from various open sources and labelled some of the unlabelled data after analysing its general context and content from Urdu language as well as from commonly used words from other languages, primarily English and were able to achieve WER of 5.2% with noisy as well as clean environment in isolated words or numbers as well as in continuous spontaneous speech.Comment: 32 pages, 19 figures, 2 tables, preprin

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Enhancement in Speaker Identification through Feature Fusion using Advanced Dilated Convolution Neural Network

    Get PDF
    There are various challenges in identifying the speakers accurately. The Extraction of discriminative features is a vital task for accurate identification in the speaker identification task. Nowadays, speaker identification is widely investigated using deep learning. The complex and noisy speech data affects the performance of Mel Frequency Cepstral Coefficients (MFCC); hence, MFCC fails to represent the speaker characteristics accurately. In this proposed work, a novel text-independent speaker identification system is developed to enhance the performance by fusion of Log-MelSpectrum and excitation features. The excitation information is obtained due to the vibration of vocal folds, and it is represented using Linear Prediction (LP) residual. The various types of features extracted from the excitation are residual phase, sharpness, Energy of Excitation (EoE), and Strength of Excitation (SoE). The extracted features were processed with the dilated convolution neural network (dilated CNN) to fulfill the identification task. The extensive evaluation showed that the fusion of excitation features gives better results than the existing methods. The accuracy reaches 94.12% for 11 complex classes and 91.34% for 80 speakers, and Equal Error Rate (EER) is reduced to 1.16% for the proposed model. The proposed model is tested with the Librispeech corpus using Matlab 2021b tool, outperforming the existing baseline models. The proposed model achieves an accuracy improvement of 1.34% compared to the baseline system
    • ā€¦
    corecore