19 research outputs found

    GLCM-based chi-square histogram distance for automatic detection of defects on patterned textures

    Full text link
    Chi-square histogram distance is one of the distance measures that can be used to find dissimilarity between two histograms. Motivated by the fact that texture discrimination by human vision system is based on second-order statistics, we make use of histogram of gray-level co-occurrence matrix (GLCM) that is based on second-order statistics and propose a new machine vision algorithm for automatic defect detection on patterned textures. Input defective images are split into several periodic blocks and GLCMs are computed after quantizing the gray levels from 0-255 to 0-63 to keep the size of GLCM compact and to reduce computation time. Dissimilarity matrix derived from chi-square distances of the GLCMs is subjected to hierarchical clustering to automatically identify defective and defect-free blocks. Effectiveness of the proposed method is demonstrated through experiments on defective real-fabric images of 2 major wallpaper groups (pmm and p4m groups).Comment: IJCVR, Vol. 2, No. 4, 2011, pp. 302-31

    A Review of Recent Advances in Surface Defect Detection using Texture analysis Techniques

    Get PDF
    In this paper, we systematically review recent advances in surface inspection using computer vision andimage processing techniques, particularly those based on texture analysis methods. The aim is to reviewthe state-of-the-art techniques for the purposes of visual inspection and decision making schemes that areable to discriminate the features extracted from normal and defective regions. This field is so vast that itis impossible to cover all the aspects of visual inspection. This paper focuses on a particular but importantsubset which generally treats visual surface inspection as texture analysis problems. Other topics related tovisual inspection such as imaging system and data acquisition are out of the scope of this survey.The surface defects are loosely separated into two types. One is local textural irregularities which is themain concern for most visual surface inspection applications. The other is global deviation of colour and/ortexture, where local pattern or texture does not exhibit abnormalities. We refer this type of defects as shadeor tonality problem. The second type of defects have been largely neglected until recently, particularly whencolour imaging system has been widely used in visual inspection and where chromatic consistency plays animportant role in quality control. The emphasis of this survey though is still on detecting local abnormalities,given the fact that majority of the reported works are dealing with the first type of defects.The techniques used to inspect textural abnormalities are discussed in four categories, statistical approaches,structural approaches, filter based methods, and model based approaches, with a comprehensivelist of references to some recent works. Due to rising demand and practice of colour texture analysis inapplication to visual inspection, those works that are dealing with colour texture analysis are discussedseparately. It is also worth noting that processing vector-valued data has its unique challenges, which conventionalsurface inspection methods have often ignored or do not encounter.We also compare classification approaches with novelty detection approaches at the decision makingstage. Classification approaches often require supervised training and usually provide better performancethan novelty detection based approaches where training is only carried out on defect-free samples. However,novelty detection is relatively easier to adapt and is particularly desirable when training samples areincomplet

    A VISION-BASED QUALITY INSPECTION SYSTEM FOR FABRIC DEFECT DETECTION AND CLASSIFICATION

    Get PDF
    Published ThesisQuality inspection of textile products is an important issue for fabric manufacturers. It is desirable to produce the highest quality goods in the shortest amount of time possible. Fabric faults or defects are responsible for nearly 85% of the defects found by the garment industry. Manufacturers recover only 45 to 65% of their profits from second or off-quality goods. There is a need for reliable automated woven fabric inspection methods in the textile industry. Numerous methods have been proposed for detecting defects in textile. The methods are generally grouped into three main categories according to the techniques they use for texture feature extraction, namely statistical approaches, spectral approaches and model-based approaches. In this thesis, we study one method from each category and propose their combinations in order to get improved fabric defect detection and classification accuracy. The three chosen methods are the grey level co-occurrence matrix (GLCM) from the statistical category, the wavelet transform from the spectral category and the Markov random field (MRF) from the model-based category. We identify the most effective texture features for each of those methods and for different fabric types in order to combine them. Using GLCM, we identify the optimal number of features, the optimal quantisation level of the original image and the optimal intersample distance to use. We identify the optimal GLCM features for different types of fabrics and for three different classifiers. Using the wavelet transform, we compare the defect detection and classification performance of features derived from the undecimated discrete wavelet and those derived from the dual-tree complex wavelet transform. We identify the best features for different types of fabrics. Using the Markov random field, we study the performance for fabric defect detection and classification of features derived from different models of Gaussian Markov random fields of order from 1 through 9. For each fabric type we identify the best model order. Finally, we propose three combination schemes of the best features identified from the three methods and study their fabric detection and classification performance. They lead generally to improved performance as compared to the individual methods, but two of them need further improvement

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    View suggestion for interactive segmentation of indoor scenes

    Get PDF
    Point cloud segmentation is a fundamental problem. Due to the complexity of real-world scenes and the limitations of 3D scanners, interactive segmentation is currently the only way to cope with all kinds of point clouds. However, interactively segmenting complex and large-scale scenes is very time-consuming. In this paper, we present a novel interactive system for segmenting point cloud scenes. Our system automatically suggests a series of camera views, in which users can conveniently specify segmentation guidance. In this way, users may focus on specifying segmentation hints instead of manually searching for desirable views of unsegmented objects, thus significantly reducing user effort. To achieve this, we introduce a novel view preference model, which is based on a set of dedicated view attributes, with weights learned from a user study. We also introduce support relations for both graph-cut-based segmentation and finding similar objects. Our experiments show that our segmentation technique helps users quickly segment various types of scenes, outperforming alternative methods

    View suggestion for interactive segmentation of indoor scenes

    Get PDF

    Learning cell representations in temporal and 3D contexts

    Get PDF
    Cell morphology and its changes under different circumstances is one of the primary ways by which we can understand biology. Computational tools for characterization and analysis, therefore, play a critical role in advancing studies involving cell morphology. In this thesis, I explored the use of representation learning and self-supervised methods to analyze nuclear texture in fluorescence imaging across different contexts and scales. To analyze the cell cycle using 2D temporal imaging data, as well as DNA damage in 3D imaging data, I employed a simple model based on the VAE-GAN architecture. Through the VAE-GAN model, I constructed manifolds in which the latent representations of the data can be grouped and clustered based on textural similarities without the need for exhaustive training annotations. I used these representations, as well as manually engineered features, to perform various analyses both at the single cell and tissue levels. The application on the cell cycle data revealed that common tasks such as cell cycle staging and cell cycle time estimation can be done even with minimal fluorescence information and user annotation. On the other hand, the texture classes derived to characterize DNA damage in 3D histology images unveiled differences between control and treated tissue regions. Lastly, by aggregating cell-level information to characterize local cell neighborhoods, interactions between DNA-damaged cells and immune cells can be quantified and some tissue microstructures can be identified. The results presented in this thesis demonstrated the utility of the representations learned through my approach in supporting biological inquiries involving temporal and 3D spatial data. The quantitative measurements computed using the presented methods have the potential to aid not only similar experiments on the cell cycle and DNA damage but also in exploratory studies in 3D histology

    International Conference on Computer Science and Information Technology (ICCSIT-2011)

    No full text
    Name of Conference: International Conference on Computer Science and Information Technology (ICCSIT) Paper Id: CSIT-11_045 Paper Title: GLCM based Chi-square Histogram Distance for Automatic Detection of Defects on Patterned Textures Auther Name: V. Asha Address: Department of Master of Computer Applications, New Horizon College of Engineering, Bangalore, Karnataka, INDIAhttps://www.interscience.in/awards/1002/thumbnail.jp
    corecore