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Abstract 

Quality inspection of textile products is an important issue for fabric manufacturers. It is 

desirable to produce the highest quality goods in the shortest amount of time possible. Fabric 

faults or defects are responsible for nearly 85% of the defects found by the garment industry. 

Manufacturers recover only 45 to 65% of their profits from second or off-quality goods. 

There is a need for reliable automated woven fabric inspection methods in the textile industry. 

Numerous methods have been proposed for detecting defects in textile. The methods are 

generally grouped into three main categories according to the techniques they use for texture 

feature extraction, namely statistical approaches, spectral approaches and model-based 

approaches. 

In this thesis, we study one method from each category and propose their combinations in 

order to get improved fabric defect detection and classification accuracy. The three chosen 

methods are the grey level co-occurrence matrix (GLCM) from the statistical category, the 

wavelet transform from the spectral category and the Markov random field (MRF) from the 

model-based category. We identify the most effective texture features for each of those 

methods and for different fabric types in order to combine them. 

Using GLCM, we identify the optimal number of features, the optimal quantisation level of 

the original image and the optimal intersample distance to use. We identify the optimal 

GLCM features for different types of fabrics and for three different classifiers. 

Using the wavelet transform, we compare the defect detection and classification performance 

of features derived from the undecimated discrete wavelet and those derived from the dual-

tree complex wavelet transform. We identify the best features for different types of fabrics. 

Using the Markov random field, we study the performance for fabric defect detection and 

classification of features derived from different models of Gaussian Markov random fields of 

order from 1 through 9. For each fabric type we identify the best model order. 

Finally, we propose three combination schemes of the best features identified from the three 

methods and study their fabric detection and classification performance. They lead generally 

to improved performance as compared to the individual methods, but two of them need 

further improvement. 
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Chapter 1: Introduction 

1.1 Importance of textile fabrics in human life 

Textile fabrics are found in every aspect of human life, from the basic needs of people to the 

most advanced technological invention.  

The basic needs of people are food, clothing and shelter. For example, in the food industry 

fabrics are used to provide plant covers, absorbent liners in pre-packaged meats and reusable 

cloth bags [1]. The most common use of fabrics is in clothing. They are used to provide 

warmth, cover, protection and aesthetic properties. Fabrics are also used as shelter in form of 

tents and umbrellas and are part of building materials. 

Other uses of fabrics include carpets, conveyer belts in factories, fabric-supported hoses at 

petrol stations, space suits for astronauts etc. It is difficult to imagine any sector of human life 

that does not make use of textile fabrics.  

1.2 Fabrics and the process of fabrication 

According to Kadolph, a fabric is a pliable, plane-like structure that can be made into two- or 

three-dimensional products that require some shaping and flexibility [2]. Most fabrics are 

made from yarns and are either woven or knitted. Yarns themselves are continuous threadlike 

strands composed of fibres that have been twisted together during a process known as 

spinning. Fibres are the smallest part of the fabric; they are fine, hair-like substances, 

categorised as either natural or manufactured [1]. Examples of natural fibres are cotton, wool 

and silk. Manufactured fibres are formed from chemicals and comprise acrylic, nylon and 

polyester. 

Woven fabrics are made with two or more sets of yarns interlaced at right angles. Figure 1-1 

shows the two basic components of a woven fabric; warp yarns and filling yarns. The yarns in 

the length-wise direction are called warp yarns or ends while the yarns in the cross-wise 

direction are called filling yarns, weft or picks. 
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yarn through the shed (picking), pushing the filling yarn into place in the fabric with a reed 

(beating up) and winding the finished fabric onto the fabric beam (take-up) are repeated over 

and over again. 

1.3 Importance of fabric defect detection and classification  

Quality inspection of textile products is an important problem for fabric manufacturers. Good 

quality products increase profitability and customer satisfaction. Defects in textile fabrics 

affect the appearance and the integrity of the fabric products and that leads to loss of customer 

acceptance and confidence of the manufacturer. Therefore, good quality improves the 

manufacturer competitiveness in the global market. In addition, fabric defects lead to a direct 

loss in terms of money to the manufacturer. It has been estimated that the price of fabrics is 

reduced by 45%-65% due to the presence of defects [3]. It is also estimated that fabric defects 

are responsible for nearly 85% of the defects found by the garment industry [4]. 

Presently, most defects arising in the production process of a textile material are still detected 

by human inspection [5]. However, that way of visual inspection has several weaknesses 

including fatigue, boredom and inconsistent performance of human inspectors. The high cost 

of human labour is also to be mentioned. More importantly, human defect detection rate in 

fabrics is low. It has been reported that human inspectors do not detect more than 70% of 

fabric defects and cannot deal with fabrics wider than 2 m and moving faster than 30 m/min 

[6]. Yet, a typical web material is 1-3 m wide and is driven with speeds ranging from 20-200 

m/min [6]. Therefore, automated detection of fabric defects, which would result in the 

production of high-quality products at a high production speed is definitely desirable. 

The traditional procedure for fabric quality inspection is manual and is carried out offline by 

human inspectors. The fabric produced from the weaving machines is about 1.5-2 meters 

wide, and rolls out at the speed of 0.3-0.5 meters per minute. When a human inspector notices 

a defect on the moving fabric, he stops the motor that rotates the fabric roll, records the defect 

with its location and starts the motor again [7, 8]. 

1.4 The fabric defects and their classes  

The fabric defect can be defined as an abnormality in or on the fabric structure. Fabric defects 

are caused by the yarn quality or/and malfunction during the weaving process. The yarn 

defects themselves may come from the fibre defects or a malfunction during the spinning 

process. Figure 1-3 shows a flowchart of woven fabric defects based on their source [9]. 

© Central University of Technology, Free State



 

 4 

 
Figure 1-3: Flowchart of woven fabric defects based on their source [9] 

Among the defects that may be due to the yarn quality one can name colour and width 

inconsistencies, hairiness, slubs, broken ends etc [10]. The weaving defects include broken 

end, broken pattern, double end, float, gout, hole or tear, missing end, oil or other stain etc 

[11]. According to an industry survey conducted by Lewis et al. [4], broken picks, harness 

drops and start marks top the list of the most frequently occurring defects, while broken ends, 

broken picks, waste and coarse picks are the most costly defects in terms of penalty points 

explained later in this section. 

Table 1-1 lists the common defects in woven fabrics as well as their description. 

The automatic classification of fabric defects into their categories is useful because the 

information about a defect category may reveal the origin of the defect. For example, a high 

occurrence rate of a certain type of defect may indicate malfunction of components of the 

weaving machine. This would allow maintenance technicians to locate the faulty component 

and repair it. Furthermore, statistics about each type of defects provide necessary information 

for the quality grading of the fabric [12].  

Typically, the finished fabric is inspected for faults according to industry standards [13]. For 

example, in the standard four-point system of fabric inspection penalty points are given for 

detected defects. The amount of the penalty depends on the length of the defect as follows: 1 

penalty point is given to defects of 3 inches or less, 2 penalty points are being given to defects 

of between 3 to 6 inches, 3 penalty points are given to defects of between 6 to 9 inches and 4 

penalty points are given to defects of above 9 inches. Any defect of continuous nature is given 

4 points for each yard in which it occurs. Severe defects such as hole are assigned the 

maximum 4 points for each yard in which they occur. The quality of the batch of cloth is 

described by the number of penalty points per 100 yards of inspected cloth. A penalty of up to 

40 points is generally considered as an acceptable defect rate. Apart from the four-point 

system described above, other standards, such as the more complicated ten-point system or 

the Dallas System for knitted fabric, may be used to measure the quality of cloth. 

 

Fibre defects Spinning defects 

Yarn defects Weaving defects 

Fabric defects 
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Table 1-1: Common fabric defects [9]  

Defect 

type 

Definition Reasons Severity 

Floats A portion of a yarn in a 

fabric that extends or 

floats, unbound, over two 

or more adjacent ends or 

picks 

It is caused by missing of 

interlacement of two series of 

threads. 

Major fabric 

defect 

Weft 

curling 

A twisted weft thread 

appears on the surface of 

the fabric 

It is caused by inserting a highly 

twisted weft thread or when the 

weft thread is running too freely.  

Minor fabric 

defect 

Slubs  A local uneven fabric 

thickness  

It is caused by an extra piece of 

yarn that is woven into fabric. It 

can also be caused by thick 

places in the yarn or by fly waste 

being spun in yarn during the 

spinning process. 

Minor/major 

fabric defect 

Holes A fabric area free of both 

of warp and weft threads 

It is a mechanical fault caused by 

a broken machine part. 

Major fabric 

defect 

Oil stains A fabric area contains oil 

spots 

It is caused by too much oiling 

on loom parts or from other 

external sources. 

Minor/major 

fabric defect 

Stitching A common fabric fault in 

which the ends and the 

picks are not interlaced 

according to the correct 

order of the pattern  

As the main purpose of the loom 

is to interlace two sets of threads 

according to the correct order of 

the pattern, this defect is a result 

of any undesired motion of the 

main or auxiliary loom 

mechanisms such as: shedding, 

picking etc. 

Major fabric 

defect 

Rust 

stains/dirt 

A dirty area or when 

fabric contains stains 

Stains are caused by lubricants 

and rust. Most of the stains can 

be traced back to poor 

maintenance and material 

handling. 

Minor/major 

fabric defect 

Knots A fabric place where two 

ends of yarn have been 

tied together and the tails 

of the knot are protruding 

from the surface  

It is caused by tying spools of 

yarn ends together. 

Minor fabric 

defect 

Temple 

marks/ 

pinholes  

Marks or holes along 

fabric selvage  

It is caused by the temples or 

pins which hold the fabric while 

it processes through tenter frame. 

Minor fabric 

defect 

Snag  A thread segment or 

group of fibres pulled 

from its normal pattern 

It is created due to the friction 

between the fabric and sharp or 

rough objects. 

Minor fabric 

defect 

Tear Damaged fabric portions 

differ from holes in that it 

has a random uneven 

shape 

It is created due to the friction 

between the fabric and sharp or 

rough objects. 

Major fabric 

defect 
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Table 1-1: Common fabric defects [9] (continued) 

Defect 

type 

Definition Reasons Severity 

Gouts A local uneven fabric 

thickness differs from 

slubs in that they are 

characterised by a lumpy 

appearance while slubs 

generally are symmetrical 

It is caused by masses of 

accumulated short fibre (fly) 

being drawn undrafted into the 

filling yarn during the spinning 

process. 

Major fabric 

defect 

Weft snarls A short length of three 

fold weft yarn of which 

two folds are inter-twisted 

It is caused due to insufficient 

twist setting which increases the 

possibility of yarn severe rubbing 

between the shuttle and the box 

front plate  

Minor fabric 

defect 

Moiré Presence of wavy areas in 

a periodical sequence, 

where crushed and 

uncrushed threads reflect 

light differently that 

affects the fabric 

appearance 

It is caused due to a different 

compression of weft and/or warp 

threads.  

Major fabric 

defect 

Miss-end  A warp thread is absent in 

the fabric for a short or 

long distance  

It is due to incorrect warping or 

by a broken warp thread that 

never replaced by another one. 

Major fabric 

defect 

Warp 

stripes 

One or more faulty 

threads giving rise to 

zones of different aspect  

It is caused by scraping or 

rubbing between warp threads 

and some parts of production 

machines or due to inaccurate 

reeding. 

Major fabric 

defect 

Tight/slack 

warp 

thread 

A warp thread or pieces of 

warp thread which are 

tighter or slacker than the 

other pieces/threads 

It is caused due to the incorrect 

tension applied on warp threads. 

Major fabric 

defect 

Double-

ends 

Two ends threaded in the 

same place as one 

It is caused by incorrect warping 

or by a broken end wound on 

another and takes the behaviour 

of one thread. 

Major fabric 

defect 

Coarse-end  A warp thread or pieces of 

warp thread which are 

coarser than the other 

pieces/threads 

It is caused due to the presence 

of a warp thread that has 

different count (coarser thread) 

than the other warp threads. 

Major fabric 

defect 

Smash Many ends or warp 

threads are consequently 

broken 

It is caused by a wrong timing of 

shedding, soft picking, 

insufficient checking of shuttle in 

the boxes, severe slough off, and 

damaged or broken picking 

accessories. 

Major fabric 

defect 

Open reed It is conspicuous on 

fabrics that use different 

coloured threads on wrap 

and weft where the wrap 

threads is held apart, 

exposing the filling ones  

It is caused due to the bent reed 

wires leaving a crack in the 

fabric. 

Major fabric 

defect 
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Table 1-1: Common fabric defects [9] (continued) 

Defect 

type 

Definition Reasons Severity 

Miss-pick  A weft thread is absent in 

the fabric for a short or 

long distance  

It is caused by incorrect picking 

or if the weaver restarted the 

loom after any stoppage without 

adapting the position for the new 

insertion.  

Minor/major 

fabric defect 

Irregular 

pick 

density 

A jammed or opened area 

formed in the fabric due 

to uneven pick density 

(number of picks per 

inch) 

It is a mechanical fault caused by 

an irregular beating up force. 

Major fabric 

defect 

Double-

picks 

Two weft threads take the 

same place of one thread 

It is caused by incorrect picking. Major fabric 

defect 

Coarse-

pick 

A weft thread or pieces of 

weft thread which are 

coarser than the other 

pieces/threads 

It is caused due to the presence 

of a weft thread that has different 

count (coarser thread) than the 

other weft threads. 

Major fabric 

defect 

Starting 

mark (weft 

bars) 

A visual light/dark effect 

in weft direction 

It is caused by a higher or lower 

weft density caused by the 

weaving machine. 

Major fabric 

defect 

Tight/slack 

weft thread 

A weft thread or pieces of 

weft thread which are 

tighter or slacker than the 

other pieces/threads  

It is caused due to the incorrect 

tension applied on weft threads. 

Major fabric 

defect 

Skew/bias When the weft threads are 

not square or 

perpendicular with warp 

threads  

It is caused due to the variation 

of the beating up force value 

after the insertion of weft 

threads. 

Minor fabric 

defect 

    

1.5 Commercial automatic defect detection systems 

There is little published information about existing commercial fabric defect detection and 

classification systems, probably because of trade secrecy. One such publication was provided 

by Alfred Dockery. 

According to Dockery [14] fabric inspection has proven to be the most difficult of all textile 

processes to automate. However, some commercial automated optical fabric inspection 

systems do exist. Examples of such systems include Cyclops manufactured by BMS (Belgium 

Monitoring Systems, formerly Barco Vision), I-Tex by Elbit Vision System and Fabriscan by 

Zellweger Uster. 

Cyclops has a travelling scanning head and can be deployed on the weaving machine itself. It 

can prevent the production of off-quality fabric by stopping the weaving process if it detects a 

serious or running defect. After resolving the defect‟s cause the weaver makes a declaration 

on the loom terminal so that Cyclops releases the loom for further production. When 
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connected to the QualiMaster system (a system of fabric inspection and reporting also from 

BMS) all defect information, pick and time stamped, is sent to a fabric quality database. This 

allows producing defect maps and various types of quality reports [15]. 

The I-Tex system is capable of inspection speeds up to 300 metres per minute and can handle 

fabric widths of up to 5 metres. The system‟s proprietary software learns the normal pattern 

of the fabric and detects changes. These changes in the pattern are then analysed by multiple 

detection algorithms to separate real defects from random but normal variations in the fabric. 

Once a defect is detected, the x-y location and the size of the defect are recorded in a defect 

map. In addition, a digital image of the defect is saved for later review by the system operator 

[14]. 

Fabriscan can inspect fabric at speeds of up to 120 meters per minute and can detect defects 

down to a resolution of 0.3 millimetres. It can handle fabric widths from 110 to 440 

centimetres. Fabriscan classifies defects in a matrix called Uster Fabriclass. That matrix has 

two axes. The x-axis is for the length of the defect, while the y-axis is for the contrast of the 

defect. This allows the system to tell the difference between disturbing versus non-disturbing 

defects. Data on defects can also be stored in a relational database, allowing users to generate 

any type of report that they need [14]. 

1.6 Research in the field of fabric defect detection and classification 

As shown on the block diagram of Figure 1-4, fabric inspection generally implies two stages; 

fabric defect detection and fabric defect classification. Fabric defect detection declares the 

presence or absence of a defect, while defect classification puts the detected defects into their 

corresponding predefined classes.  
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accuracy [18]. High-order statistics (e.g. co-occurrence matrices) provide much more accurate 

models, but are characterised by huge memory and computational requirements [19]. 

The usage of spectral features for the detection of defects is based on the high degree of 

periodicity of basic texture primitives, such as yarn in case of textile fabric. However, random 

textured images cannot be described in terms of primitives and displacement rules, as the 

distribution of grey levels in such images is rather stochastic. Therefore spectral approaches 

are not suitable for detection of defects in random textured materials. In spectral-domain 

approaches, the texture features are generally derived from the Fourier transform, Gabor 

transform and wavelet transform [20].  

Through various publications spectral approaches, in particular Gabor filtering, have been 

more popularly applied in these areas. Spectral approaches are not suitable for detecting 

defects in random textured materials. Model-based approaches are more suitable for those 

randomly textured fabrics [17]. Markov random fields (MRF) have been popular for 

modelling images. Özdemir et al. [18] compared six texture features consisting of MRF, KL 

transform, 2D lattice filters, Law filters, co-occurrence matrices and a FFT based method. 

Texture modelling using a high (9
th
) order MRF model gave the best detection result. 

Some effort is still needed in the field of fabric defect detection to increase the quality and 

performance of defect detection and classification systems. Authors such as Kumar suggest a 

combination of statistical, spectral and model-based approaches for further research to obtain 

better results than any one method individually [10]. 

There have been some attempts of combining wavelet transform with grey level 

co-occurrence matrix (GLCM) for feature extraction. This was generally done by extracting 

GLCM features from the wavelet transform sub-image for texture segmentation, which 

proved to be successful [21-23]. However, such methods did not compare the obtained 

detection performance with that obtained by using individual methods (GLCM or wavelet), 

nor did such methods compare the obtained performance with the detection performance that 

would be obtained by directly pooling together GLCM and wavelet features. 

1.7 Outstanding problems (challenges) of fabric defect detection and classification 

There has been a lot of research in the field of fabric defect detection and classification, but 

there are still obstacles. The major challenges in fabric defect detection and classification 

include [10, 16, 24, 25]: 

1. There are numerous categories of fabrics [24]. 

2. The data throughput is enormous [16]. 
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3. Great number of fabric defect classes; at present there are more than 70 classes of 

fabric defects [24] defined by the textile industry. 

4. Defects within the same class may have different appearances in different fabric 

materials and from different factories [16]. 

5. The diversity within each class of defect and the similarity among different classes of 

defects [16]. 

6. Some classes of defects only have slight difference from non-defective fabric [16]. 

7. Unlike images of other materials such as steel and paper, textile images are rich in 

details [25]. 

8. The stochastic variations in scale stretch and skew of fabric texture/defects, 

predominantly due to the environment and the nature of weaving process [10]. 

9. Defects inspection is done on moving and vibrating fabric [16]. 

Even if many different fabric defect detection have been proposed in literature and different 

detection success rates have been reported, it is rather difficult to compare the detection 

success rates among them because the experiments have been generally performed on 

different datasets. It is desirable to have a common dataset that could be used by different 

researchers so that the methods that they propose can be easily compared to each other. To 

emphasise that, Mahajan et al. [17] stated  

„… due to lack of uniformity in the image database, performance evaluation and the nature of 

intended application, it is not prudent to explicitly declare the best available methods for 

fabric defect detection. Therefore, the effective performance evaluation requires careful 

selection of data sets along with its clear definition of scope‟.  

1.8 The objective of this thesis 

The objective of this thesis is to devise new defect detection and classification methods by 

combining existing statistical, spectral and model-based methods for improved performance. 

It will not deal with details about image capturing, but will rather make use of an existing 

fabric image dataset and focus on texture feature extraction and classification.  

More specifically, this thesis will look into the combination of co-occurrence matrix feature-

based methods (from the category of statistical methods), wavelet-based methods (from the 

category of spectral methods) and Markov random field-based methods (from the category of 

model-based methods).  

Pertaining to the classification stage, the thesis will compare the Euclidean distance, the K-

nearest-neighbour and the feed-forward neural network classifiers.  
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1.9 The contribution of this thesis 

Experiments involving various defect detection methods on a large, unique dataset allowing 

for the comparison of their performances. 

Identification of the optimal number of GLCM features for fabric defect detection. 

Three combinations schemes of fabric defect detection and classification methods involving 

statistical, spectral and model-based methods. 

The use of complex wavelet transform to extract features that lead to improved performance 

in fabric defect detection and classification. 

1.10 The outline of this thesis 

Chapter 1 presents background information about textiles and fabric defect detection and 

classification. It also presents the objective, scope and contributions of this thesis. 

Chapter 2 reviews the main published research in the area of fabric defect detection and 

classification. The methods proposed by various authors are grouped into three categories: 

statistical, spectral and model-based approaches. 

Chapter 3 presents conceptual information about the methods that are used in the 

experimental part of the thesis. GLCM, wavelet transforms and Markov random fields are 

successively presented. Next, the classifiers that will be used are presented. 

In chapter 4, we describe the experimental data. After the overall description of the types of 

fabrics as well as the types of defects that the Textile texture database developed by the 

Texture Analysis working group of the Deutsche Forschungsgemeinschaft in Germany 

(TILDA) dataset contains, we define our elementary experimental sample and then describe 

how the whole dataset was divided into elementary experimental samples. Next, we present 

our method of labelling each sample with its respective class defect. We finally describe how 

the samples were divided into two groups, namely the training and testing sets. 

Chapter 5 experiments with the GLCM features. The objective is to find a small set of co-

occurrence matrix features that allows one to best discriminate the fabric defects and find an 

algorithm that allows their fast extraction. 

In chapter 6, we experiment with wavelet-based features. We are interested in the 

undecimated wavelet transform and the dual-tree complex wavelet transform due to their 

shift-invariance property. We compare their respective performance when applied to the 
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detection and classification of defects in our dataset. Then, their best features for 

discriminating the defects of fabric images in our dataset are identified. 

Chapter 7 experiments with the Markov random field features. We deal with Gaussian 

Markov random field models. For each of the different types of fabrics in our dataset, we 

identify the model order that yields the best discriminating parameters for fabric defects. 

In chapter 8, we propose combination schemes of features identified in chapters 5, 6 and 7. 

Those combination schemes constitute new defect detection and classification methods that 

are tested using our dataset. 

The thesis is concluded in chapter 9. In that chapter we present the suggestions for future 

research work.  
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Chapter 2:  Review of fabric defect detection literature 

2.1 Introduction 

This chapter aims at presenting the main approaches to fabric defect detection and 

classification that are found in literature, highlighting their advantages as well as their 

limitations.  

The literature related to fabric defect detection and classification covers a large variety of 

methods that have been attempted. Kumar [10] and Ngan et al. [24] provided recent reviews 

of research in that field. Other reviews include [17, 18] and [26]. 

Most publications take the problem of fabric defect detection and classification as a texture 

analysis problem and assume that a fabric defective region has texture that is different from a 

sound fabric area. Therefore it becomes possible to detect fabric defects by identifying 

regions where texture is different from the dominant background texture. The categorisation 

of the various defect detection techniques is generally based on the texture feature extraction 

method used by those techniques. Kumar [10] classified the fabric defect detection techniques 

into three categories: statistical, spectral and model-based. Ngan et al. [24] extended the 

number of categories to seven, adding the learning, structural, hybrid and motif-based 

categories to the statistical, spectral and model-based approaches. We will adopt the 

classification by Kumar. Specifically, the object of this thesis is to propose defect detection 

and classification methods that combine methods from each of the three categories for 

improved detection or classification performance. Studies [10, 17] have suggested the 

combination of statistical, spectral and model-based methods for improved fabric defect 

detection and classification. 

The remaining part of this chapter will be organised as follows. Sections 2.2 and 2.3 review 

the methods in the statistical category. Section 2.2 reviews methods that make use of first 

order statistics, while Section 2.3 deals with methods that utilise second order statistics of 

image pixels. Section 2.4 deals with spectral methods with special emphasis on wavelet-based 

approaches. Section 2.5 deals with model-based methods with a particular emphasis on the 

Markov random fields-based methods.  

2.2 Methods based on first order statistics 

Methods based on first order statistics are those that make use of statistics of individual image 

pixels such as mean, variance, skewness and kurtosis. Usually a fabric image is divided into 

blocks, some first order statistics are calculated from the image pixels of each block, and then 
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each block is classified as defective or defect-free, comparing the calculated statistics to the 

same statistics of defect-free blocks. The assumption made by such methods is that the first 

order statistics remain the same within the defect-free region, but change drastically from a 

defect-free to a defective region.  

Elragal [27] combined first order statistical features and second order textural features for 

improved detection and classification rates. He used a fuzzy C-mean clustering and adaptive 

neural-fuzzy inference system (ANFIS) for classification. A similar approach was adopted by 

Balakrishnan et al. [28] to classify defects in denim fabrics into four classes. Using first order 

statistics features (mean, variance, skewness, kurtosis and entropy) they obtained a 

classification rate of 70%. To improve the classification rate they combined the first order 

classification features with second orders statistics features and got a classification rate of 

93%.  

In order to reduce the computational cost, Neubauer [29] used local histograms on a window 

grid to detect defects in textile fabrics. The histograms were calculated on 10x10 and 20x20 

windows. The number of grey levels for histograms was limited to 8 to reduce the amount of 

data. Classification was done using a perceptron net trained by backpropagation. 

Abouelela et al. [25] used local mean grey values and local variances to detect defects in 

textiles. After a preprocessing stage to eliminate inhomogeneity due to illumination and to 

filter out false defects, the fabric image was submitted to a smoothing operation and then 

local variances were calculated. Defects were detected as fabric areas with high local 

variances.  

The advantage of methods based on first order statistics is their relative low computational 

complexity and thus the defect detection is relatively fast. However, the first order statistics 

and pixel-wise analysis are not able to efficiently define or model a texture [30]. Therefore, 

statistical texture analysis methods usually employ higher order statistics and neighbourhood 

properties of texture. 

2.3 Methods based on second order statistics 

Methods based on second order statistics deal with statistics of pairs of pixels related in some 

manner. The most commonly used second order statistics methods for texture analysis are 

grey level co-occurrence matrices (GLCM), autocorrelation function and grey level run length 

(GLRL) [30]. 
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2.3.1 Grey level co-occurrence matrices 

The grey level co-occurrence matrix of an image, originally described by Haralick et al. [31], 

is used to describe the statistics of neighbouring pairs of pixels separated by a given distance 

d in a given direction . Details of compilation of the co-occurrence matrix are given in 

Subsection 3.2.2. In general, four such matrices are used to describe different orientations in 

an image. More specifically, one co-occurrence matrix describes pixels that are adjacent to 

one another horizontally, P
0
. There are also co-occurrence matrices for the vertical direction 

and both diagonal directions called P
90

, P
45

 and P
135

 respectively [32]. 

After the compilation of co-occurrence matrices, usually a set of textural features are derived 

from them and those features are used to obtain the texture description. The commonly used 

co-occurrence matrix features are energy (also called angular second moment), entropy, 

correlation, local homogeneity (also called inverse difference moment) and inertia (also called 

contrast). The definitions and details of calculation of those features and more other features 

are provided in Subsection 3.2.3. 

Several researchers have used the co-occurrence matrix and its features to detect and classify 

defects in textile fabrics [33-38], to detect defects in texture from different sources [23-42] or 

to classify texture in general [43]. Clausi [44] made an extensive analysis of co-occurrence 

matrix features when applied to classifying images of Synthetic Aperture Radar (SAR) sea-

ice images. 

One of the common issues when using co-occurrence matrices and their features is the choice 

of the distance d and the direction  necessary for their compilation. These choices are not 

always motivated, and the distance d=1 and four directions =0
o
, =45

o
, =90

o 
and =135

o
 are 

usually used [18, 21, 31, 37-38, 44]. However, some researchers found ways of improving the 

choice of the distance d or the directions .  

Tsai et al. [33], for example, chose the distance d that maximised the angular second moment 

and minimised the contrast features in the weft and warp directions for co-occurrence 

matrices from images of defect-free fabrics. They assumed a periodic behaviour of grey level 

values of pixels in the weft and warp directions, and using the fact that periodicity in the 

direction  leads to large values of diagonal elements of the co-occurrence matrix compiled 

for along that direction, they showed that the distance d that maximises the angular second 

moment and minimises the contrast is the period of the grey value level signal. 

Bodnarova et al. [32, 34] proposed a method of improving the choice of both the distance d 

and the direction  that makes use of a 
2
 significance test. A similar method was used by 
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Murino et al. [35]. The optimal choice of parameters using the method proposed by those 

authors depends on the specific feature to be extracted from the co-occurrence matrix. To 

derive the optimal parameters d and  which would provide the maximum structural 

information from the feature of interest, they performed a 
2
 test on EFMs (elementary 

feature matrices) corresponding to the considered feature. For different values of 

displacement vector (d, ), a 
2
 score was computed on EFMs. The optimal displacement 

vector (d, ) was chosen as the one that produced the maximum value of the 
2
 score for that 

particular feature. 

Another issue with the co-occurrence matrix-based methods is the choice of specific features 

to be used in a particular defect detection or classification task. Haralick al. [31] proposed 14 

features that can be extracted from each co-occurrence matrix and some more features have 

been proposed by others researchers [42, 45-47]. It has also been shown that many of those 

features are correlated among each other [48]. Therefore there should be a method of 

selecting a suitable subset of those features that need to be extracted. Furthermore, using a 

small number of effective features allows decreasing the computational burden to extract the 

required features.  

As shown by numerous publications, the most frequently used features are contrast, energy, 

entropy, homogeneity and correlation, or a subset of them [33-47]. However, most of those 

publications do not justify the choice of the specific features that they use. Some authors 

performed feature selection procedures for their specific applications. For example, Gomez et 

al. [47] used the mutual information (MI) technique to rank and select the features extracted 

from breast ultrasound images using the minimum redundancy maximum relevance (mRMR) 

criterion. The selected features were then used to classify the breast lesions on the images. 

The number of grey levels in the input image is also an important issue. The input image is 

generally coded using 8 bits per pixel, and therefore each pixel can have values from 0 to 255. 

However such a great number of grey levels increases the computation cost of the co-

occurrence features. So, often the input image is quantised so that the co-occurrence matrices 

are compiled from an image that allows less grey levels. An additional benefit of using a 

reduced number of grey levels is reduction of noise [45-47], although that gain may not 

compensate the loss of information as a result of quantisation. Several authors [18, 23, 31-35, 

42, 43, 49] selected 8, 16, 32 and 64 grey levels for their applications, but most of them did 

not justify their choice. 

A few researchers performed studies of the effect of the number of grey levels on the 

effectiveness of the co-occurrence matrix features. For example, Clausi [44] analysed the 
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change of classification ability of various GLCM features as the number of grey levels 

increased. He found that most of the features had poorer classification power with a high 

number of grey levels while the opposite was expected. Using the dissimilarity and contrast 

features, coarse quantisation (less than 24 grey levels) produced low classification results, 

while quantisation with more than 24 grey levels provided quite consistent results with 

minimal variability. The entropy, uniformity and maximum probability features all had a 

strong decrease in classification accuracy with increasing number of grey levels. The inverse 

difference and the inverse difference moment features had also decreasing classification with 

an increasing number of grey levels. 

Soh and Tsatsoulis [46] studied the effect of the number of grey levels on the effectiveness of 

the GLCM features from SAR sea ice images. In their study, they used 8, 16, 32, 64, 128 and 

256 grey levels obtained using the uniform quantisation scheme. They found that 8 grey 

levels were inadequate to represent texture effectively. Furthermore, they showed that the 

dissimilarity between two samples of different textures does not change systematically with 

the number of grey levels. However, they found that for the same sample the GLCM results 

obtained using a pair of quantisation levels (i.e. number of grey levels) were more consistent 

as the number of quantisation levels increased. On his side Shohr [48] found that the 

uniformity and entropy GLCM features of sea ice radar images were sensitive to the number 

of grey levels and that the ice classes were more separable for 16 levels compared to 4 and 64 

levels. Different findings were obtained by Gomez et al. [47], who found that the quantisation 

level did not impact the discrimination power of GLCM features extracted from breast 

ultrasound images 

The main weaknesses of the co-occurrence-based approach to fabric defect detection are as 

follows: 

1) It is computationally costly to determine the co-occurrence matrices and to 

compute features from them [50]. 

2) It has poor performance for textures constructed by large-sized primitives [24]. 

Therefore there is a requirement that the defective regions in a fabric be large in 

order to discriminate between defective texture properties and non-defective 

texture properties. Thus this method is not appropriate for small-sized defects. 

3) The co-occurrence matrices are a highly redundant way of representing texture 

[32] and therefore means of reducing redundancy by using optimal parameters 

(d, ) and by feature selection is highly desirable. 
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4) Haralick et al. [31] proposed fourteen features that can be extracted from each 

co-occurrence matrix, and some more features have been proposed by other 

researchers [42, 44-47]. Therefore there is a feature selection problem of 

choosing the most appropriate features from those that can be extracted. 

2.3.2 Autocorrelation function 

The autocorrelation function (ACF) of a digital image f(x,y) is defined as [51] 
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where M and N are the numbers of rows and columns in the image respectively. It measures 

the correlation between the image itself and the image translated by a displacement vector 

(p, q). Textures with strong regularity will exhibit peaks and valleys in the autocorrelation 

function [52]. The autocorrelation function can also be used to assess the coarseness and 

fineness of the texture. The autocorrelation function of a coarse texture drops off slowly and 

vice versa [30].  

A few authors attempted to use the autocorrelation function to detect defects in textile 

materials. For example, Chetverikov and Hanbury [53] defined texture defects in terms of 

regularity. They considered defects as regions of abruptly falling regularity. In their study, 

they quantified pattern regularity by evaluating the periodicity of the autocorrelation function 

and then analysed it to detect defects in texture images including fabric images from TILDA. 

Wood [54] used an autocorrelation function in two dimensions to describe the translational 

and rotational symmetry of an image of plain carpet. 

The autocorrelation function is generally considered as unsuitable for random textures with 

irregularly arranged textural elements [52]. 

2.3.3 Grey level run length method 

This method compiles the number of grey level runs of various lengths. A grey level run is 

defined as a set of linearly adjacent pixels in an image with the same grey level value [51]. 

The run length is the number of pixels within the run. A longer run length implies a coarser 

texture and vice versa; also, a more uniformly distributed run length implies a more random 

texture and vice versa [30]. The number of grey level run lengths is organised in grey level 

run length matrices R()=[r(i,j|)]. The matrix element r(i,j|) specifies the number of times 
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that a run length i of grey level j appears in the image in the direction . Normally four grey 

level run length matrices are compiled from each image, for =0
o

, =45
o

, =0
o

 and =135
o

 

Texture features are then computed from the grey level run length matrices (GRLM) and used 

for the purpose of classification. 

Some research work made use of the grey level run length features for defect detection in 

textiles. Siew et al. [55] used features extracted using four second order statistical methods, 

including the grey level run length, to discriminate the degrees of wear in a wool carpet. 

Sardy et al. [56] used textural features from the neighbouring grey level dependence matrix 

(NGDM) and grey level run length matrix (GRLM) and a backpropagation-trained neural 

network to identify three fabric types and detect defects from them. 

Similar to the other methods based on second order statistics, GRLMs represent texture better 

than methods based on first order statistics. However, computing GRLMs is computationally 

costly because run lengths should be computed for all grey levels and lengths, and for 

different directions. Moreover, the texture discrimination ability of GRLM features is low 

compared to the other well-known texture features. For example, Singh and Singh [57] 

compared eight texture feature extraction methods including GRLM, grey level co-occurrence 

matrix (GLCM) and autocorrelation function (ACF) on the same dataset and GRLM 

performance was the lowest with about 43% correct classification, much lower than ACF 

(76%) and GLCM (79%). 

2.4 Spectral methods 

Unlike the statistical methods that work directly on grey-scale values of the image, the 

spectral methods perform some filtering or transform operations on the raw fabric images and 

then extract features from the results of those operations for the detection or classification of 

defects. In this section we review the spectral methods based on the Fourier transform, then 

on the Gabor filters and finally on wavelet transforms. For the wavelet-transform based 

methods we separate the real wavelet transform and the complex wavelet transform. 

2.4.1 Methods based on the Fourier transform 

Faultless fabric is a repetitive and regular global texture and therefore Fourier transform can 

be applied to monitor the spectrum of the fabric and detect defects from it [58]. This method 

is based on the assumption that the defects will modify significantly the spectrum of the fabric 

image to enable sensing their presence. Among researchers who used this method, Castellini 

et al. [59] used the optical Fourier transform to monitor the fabric structure, while Wood et al. 

[54] used Fourier and associated transforms to characterise carpet patterns. Ravandi and 
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Toriumi [60] used Fourier transform analysis to measure fabric appearance. They also 

discussed the fabric surface characteristics of fill and warp yarns for plain weave cotton 

fabric. Tsai and Hsieh [61] used the Fourier transform and the Hough transform to suppress 

directional texture with periodic or almost periodic lines from images under inspection. They 

then detected the defects using double thresholding. More recently, Malek [9] used the 

discrete Fourier transform in a system to detect fabric defects online.  

The main disadvantage of Fourier transform-based methods is the lack of spatial information 

in the Fourier transform that makes it impossible to spatially locate the detected defects.  

2.4.2 Methods based on Gabor filters 

One way to overcome the limitations of the Fourier transform based-methods is to use Gabor 

filters. In the spatial frequency domain, a Gabor filter can be interpreted as a windowed or 

short-time Fourier transform. Unlike the Fourier transform, which is a global frequency 

content analyser, a Gabor filter performs a local analysis and returns the frequency contents of 

the signal in the neighbourhood of a specific point. It can be tuned to a specific direction. 

A 2D filter is characterised by its impulse response 
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or by its transfer function 
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Where 
0

u  and 
0

v  are the filter central frequencies in x and y directions, 

σx and σy are the filter standard deviations in x and y directions, 

0
x  and 

0
y  are the horizontal and vertical displacements in the spatial domain. 

Gabor filters are a traditional choice for obtaining localised frequency information. They offer 

the best simultaneous localisation of spatial and frequency information [62]. 

Gabor filters showed high performance as feature extractors for texture discrimination [63-

65]. Levesque [66] used their ability to be tuned to a specific frequency band and orientation 
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of image features to successfully segment some real and artificial textures. The images with 

different textures where submitted to Gabor filtering and the magnitudes of the filter 

responses were used to locate the areas occupied by each texture. The magnitude of the 

channel output should be large when the texture exhibits the frequency and orientation 

characteristics to which the Gabor channel is tuned. 

More specifically, Gabor filters have been successfully applied to fabric defect detection. For 

instance, Bodnarova et al. [67] used Gabor filters to detect defects in Jacquard fabrics. They 

optimised their detection scheme by designing Gabor filters that maximise the Fisher cost 

function of their responses when applied to non-defective texture. Escofet et al. [68] used a 

set of 4x4 Gabor filters for detection of local defects in textile materials with periodic regular 

texture. The filters corresponded to four frequency levels distributed in octaves and four 

orientations (horizontal, vertical and two diagonals). The magnitudes of filter responses were 

then used as inputs to the segmentation algorithms. A similar method was proposed by Kumar 

and Pang [69]. Their unsupervised method used a Gabor filter bank of eighteen asymmetric 

filters distributed at three scales and six orientations. They also proposed a supervised method 

that made use of a single Gabor filter to isolate a particular class of defects. The Gabor filter 

was selected automatically using a heuristic algorithm to optimally discriminate that 

particular class of defects. Finally they proposed a defect detection method that used only the 

imaginary Gabor function in a bid to reduce the computational cost. More recently Mak and 

Peng [70] proposed a method to solve the problem of Gabor filter parameter selection for the 

purpose of fabric defect detection. They proposed a system based on a Gabor wavelet network 

consisting of three real-valued filters: (i) two real-valued Gabor filters and (ii) one smoothing 

filter. Jing et al. [71] used features extracted using Gabor filters for defect detection and 

features obtained using the local binary patterns and Tamura methods for defect classification. 

The main advantage of using Gabor filters lies in its multiscale and multidirectional ability, 

combined with the ability of capturing space-localised information about textures. That 

allows effective defect detection of textures. However, disadvantages include the fact that a 

typical Gabor filtering is either expensive to compute, is noninvertible or both [72]. That 

disadvantage can be overcome using the dual-tree complex wavelet transform as described 

later in Subsection 3.3.8. Another problem with methods based on Gabor filtering is that the 

outputs of filter banks are not mutually orthogonal and therefore may result in a significant 

correlation between texture features [22]. Gabor filters have two other main limitations. The 

maximum bandwidth of a Gabor filter is limited to approximately one octave, and Gabor 

filters are not optimal if one is seeking broad spectral information with maximal spatial 
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localisation [62]. To overcome those limitations log-Gabor filters have been proposed [73-

76]. 

2.4.3 Methods based on wavelet transforms 

Similar to Gabor filters, wavelet transforms provide a way to perform multiresolution analysis 

of signals and images, but at significantly lower computational cost [77]. Another advantage 

of wavelet transform over Gabor filtering is that the filters (low-pass and high-pass) used in 

the computation of the wavelet transform remain the same for the different scales, while the 

Gabor filtering requires filters of different parameters [22]. The wavelet transforms provide 

information about both the frequency and time (or spatial location) of a signal. The wavelet-

based defect detection methods belong to the category of spectral methods and appear to be 

the most promising for fabric defect detection and classification [16].  

The wavelet transform of a signal  ( )    ( ) is obtained by convolving the signal with a 

shifted and scaled version of the original mother wavelet as described by the equation (2.4) 

[78].  

dt
s

uttf
sus

fusWf )(*)(
1

,
,),( 





   (2.4) 

Where Wf(s, u) denotes the continuous wavelet transform of the signal f(t) for the scale 

parameter s and time (position) parameter u, * denotes the complex conjugate operator and 

.,. denotes inner product operation. The mother wavelet function  ( )     ( )
 

should 

satisfy the admissibility condition described by (2.5), where  ̂( ) is the Fourier transform of 

 ( ).  
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 (2.5) 

The admissibility condition (2.5) imposes that the wavelet function must have a zero average 

as described by (2.6). 

∫  ( )    
  

  
 (2.6) 

The wavelet described by equation (2.4) with a continuous scale parameter s and continuous 

time parameter u is known as continuous wavelet transform (CWT) and it is highly redundant. 

The discrete wavelet transform (DWT) allows computing the transform with no redundancy 

by selecting just enough discrete scale parameter values and discrete time parameter values. 

Therefore the DWT corresponding to a CWT function Wf(s, u) is obtained by sampling the 
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coordinates (s, u) on a grid. The process called dyadic sampling, in which the values of 

discrete scale as well as the corresponding sampling interval differ by a factor of 2, is 

common. This leads to a modified wavelet representation given by equation (2.7) where j and 

k are integers. 
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Then the DWT of a function f(t) would be given by equation (2.8). 
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More details on wavelet transforms are provided in Section 3.3.  

Wavelet transforms have been used by numerous authors for the purpose of texture 

classification in general and fabric defect detection and classification in particular. Generally, 

the wavelet transform was used as either texture feature extractor or as texture suppressor. 

The use of wavelet transform as texture suppressor is based on the rationale that for a given 

texture, textural information is dominantly located in a limited band of frequencies. 

Removing that band of frequencies from the results of the wavelet transform and performing 

the inverse wavelet transform make it possible to effectively suppress that texture from the 

original image. When used as texture suppressor, non-texture based methods are used to 

complete the defect detection task.  

For instance, Sari-Sarraf and Goddard [40] used the wavelet transform as a preprocessing tool 

to attenuate the background of fabric images and accentuate the defects. That was done by 

performing a M-level wavelet decomposition using the Daubechies‟ wavelet. The optimal 

number of decomposition level M was selected manually by observing the output for a 

handful of fabric images. After wavelet decomposition they submitted the „details‟ (sub-

images) to a fusion scheme. The fused output was then submitted to histogram equalisation 

and then measurements based on correlation dimension were extracted from the result of the 

histogram equalisation. The thresholding operation on the fused image based on the global 

homogeneity measure produced a binary image that was then submitted to a two-pass blob 

analysis. Once the blob analysis was completed, the segmented defects could be classified 

into meaningful classes based on a few extracted features such as size, orientation and 

intensity profile. 
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Tsai and Hsiao [79] also used the wavelet transform as texture suppressor and then applied 

binary thresholding to separate defects from the background. To suppress texture, the fabric 

image under test was decomposed at certain levels of wavelet transform and then the image 

was reconstructed from selected detail images and approximation image in order to eliminate 

all regular, repetitive textures in the reconstructed image. The number of decomposition 

levels and the decomposed sub-images used for image reconstruction were determined from a 

texture model. After experimenting with a few orthogonal wavelets, including Haar, Daublets, 

Symmlets, and B-spline biorthogonal wavelets (BS2.2 and BS3.9), the authors concluded that 

orthogonal wavelets with compact support length such as D4 and S8 were preferable in order 

to avoid leaked subtle anomalies and have fast computation. They also found that the number 

of wavelet decomposition between three and four was generally sufficient to remove regular, 

repetitive textures and to enhance defects in the restored images. 

Yang, Pang and Yung [80] adopted the undecimated wavelet decomposition and thresholding 

for defect detection. The coefficients of the wavelet filter were adjusted adaptively to the 

fabric texture during the training stage in order to maximise the ratio of wavelet transform 

energy between the defect area and the defect-free background at a certain scale. The 

separation of defects was done by thresholding on energy of wavelet coefficients and the 

threshold was selected as µ+3.5σ, where µ and σ are the mean and standard deviation of the 

energy of the same wavelet transform on defect-free area. The choice of the undecimated 

wavelet transform over the orthogonal wavelet transform was motivated by its translation 

invariance property and the more degrees of freedom it offers on the wavelet design with 

respect to the orthogonal wavelets. This method was further improved by designing a specific 

adaptive wavelet for each defect so that eight different adaptive wavelets were designed to 

classify defects into eight classes [81].  

Other methods sought to optimise wavelet coefficients for defect detection by using a genetic 

algorithm [82, 83]. They used a genetic algorithm to find the wavelet filter coefficients that 

minimised entropy in the wavelet transform of images of woven fabrics. Minimising entropy 

in images tends to filter out fabric texture while highlighting fabric defects. After obtaining 

the optimised wavelet filter coefficients, they used them to perform a wavelet transform on 

fabric images. They then isolated fabric defects by submitting the wavelet sub-images to 

double thresholding.  

Ralló et al. [84] used Gabor wavelets and binary thresholding for detecting defects in textile 

fabrics. The image was submitted to a four-level wavelet decomposition using the complex 

Gabor wavelet. Ngan et al. [85] combined the wavelet transform method and a method they 

called golden image subtraction (GIS) for defect detection on pattern textiles. 
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Han and Shi [86] combined the wavelet transform and grey level co-occurrence matrix 

(GLCM) methods. The input fabric image was decomposed at various levels by wavelet 

transform. After each level of decomposition, the GLCM of the approximation sub-image was 

compiled. Then the homogeneity feature was calculated from the GLCM. By analysing the 

homogeneity features at different levels of wavelet decomposition, the appropriate level at 

which the approximation sub-image can be reconstructed into a non-texture image was 

determined. Once the non-texture image was reconstructed, they used the Otsu thresholding 

as detection technique, but also used the mean shift segmentation for complicated images 

where the thresholding techniques were invalid. 

When used for feature extraction normally the texture image is submitted to wavelet 

transform operation, and then the features are calculated from the „detail‟ and/or 

„approximation‟ wavelet coefficients. The calculated features are then fed into a classifier for 

decision making. 

One of the main issues concerning that use of the wavelet transform for texture 

characterisation is the choice of the wavelet to be used. Generally wavelets are characterised 

by properties such as orthogonality, size of support, regularity, symmetry, degree of shift 

variance, directionality in two and higher dimensions, and the number of vanishing moments, 

which could possibly influence their texture discrimination ability and therefore their 

performance in detecting defects in textile fabrics. However, few authors motivated the 

choice of the wavelet they used in their publications on defect detection or classification. 

Yang, Pang and Yung [12, 87-88] used the undecimated discrete wavelet transform because it 

is shift-invariant and allows more flexibility in design than the orthogonal wavelet. Karras et 

al. [89] extracted features from detail wavelet coefficients for the purpose of defect detection 

in textile fabrics. They tried several wavelet bases including Haar, Daubechies, Coiflet, 

Symmlet etc., as well as with Meyer's and Kolaczyk's wavelet transforms. However, only the 

Haar wavelet transform exhibited the expected and desired properties. All the other 

orthonormal, continuous and compactly supported wavelet bases smoothed the images so 

much that the defective areas did not appear in the sub bands.  

For texture classification in general Mojsilovic et al. [90] suggested that the degree of shift 

variance is more important than regularity, with wavelets with low degree shift-variance 

performing better. They also suggested that regularity, number of vanishing moments and 

overall quality of high-pass filters do not have much influence on texture discrimination. 

Ahuja et al. [91] studied the properties determining the choice of mother wavelet in different 

applications and proposed the B-spline wavelet family for wavelet-image sequence super 

resolution.  
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The other issue relating to the use of wavelet transform for texture feature extraction is the 

choice of the adequate number of levels of wavelet decomposition. Also, the fact that each 

level of wavelet decomposition produces four sub bands leads to the problem of choice 

among the sub bands. Generally, the more is the number of wavelet decomposition levels, the 

more is the information in the extracted features but the more is the computational cost. The 

number of decomposition levels used by numerous authors varies from one to five [92-97].  

Important in fabric defect detection and other pattern recognition applications of wavelet 

transform is the issue of shift-variance. That refers to the fact that the same texture pattern in 

the original image may lead to different wavelet coefficients depending on the pattern 

location. Wavelet bases as implemented by the DWT algorithm [78] are shift variant and 

therefore not suitable for pattern recognition applications such as fabric defect detection. 

Shift-variance is introduced by the down sampling process that is part of the DWT algorithm. 

Various authors have dealt with that problem in different ways. For instance, Sari-Sarraf and 

Goddard [40] used a variant of wavelet transform called multiscale wavelet representation 

(MSWAR) which is shift-invariant. Yang, Pang and Yung [12, 87-88] used the undecimated 

discrete wavelet transform which is also shift-invariant. More recently, Wang et al. [98] used 

the 2D dual-tree complex wavelet transform which is almost shift invariant and has other 

interesting properties as described in Subsection 3.3.8. 

2.4.4 Methods based on the dual-tree complex wavelet transform 

As mentioned previously, the discrete wavelet transform (DWT) in its critically-sampled form 

suffers from the problem of shift variance that makes it unsuitable for pattern recognition 

applications such as fabric defect detection [78]. The solution that has been usually used is the 

undecimated discrete wavelet transform (UDWT) [12, 87-88]. 

Even if the UDWT solves the problem of shift variance, it has a high redundancy rate of 3L+1 

for image representation, where L is the number of wavelet decomposition levels. That leads 

to increased computational requirements [99]. In addition, it does not solve the shortcoming 

of poor directional selectivity for diagonal features in 2D. This weakness of UDWT lowers 

the discrimination power of its texture features.  

The dual-tree complex wavelet transform (DTCWT), first introduced by Kingsbury in 1998 

[99-100], is approximately shift invariant and makes it possible to get directional wavelets in 

two and higher dimensions with only 2x redundancy in 1-D (2
d
 for d-dimensional signals, in 

general) [72]. It has been used in several research papers, especially for texture 

characterisation. For example, Costin and Ignat [101] discussed the effectiveness of the 

cosine similarity measure, the Pearson coefficient as well as the Frobenius norm applied to 
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the magnitudes of DTCWT coefficients of texture images in order to decide on their 

similarities. Other applications include content-based image retrieval [102-103], image 

segmentation [104] and texture classification [105-106]. 

Specific to textiles, Wang et al. [98] used the 2D dual-tree complex wavelet transform to 

separate the fabric texture and the pilling information from the image of the pilled nonwoven 

fabric. They then used that pilling information and a supervised neural network classifier for 

objective pilling evaluation. 

2.5 Model-based methods 

Model-based approaches seek to represent texture by a stochastic model. The model should 

be able to capture enough texture characteristics so that discriminating different textures 

based on the model becomes possible. The broadly used model for textured images 

representation is the Markov random field (MRF), introduced to the image processing 

community by Geman and Geman [107] in 1984.  

Markov random fields modelling assumes that the intensity at each pixel depends only on the 

intensity of neighbouring pixels. That is expressed by a conditional probability density 

described by (2.9).  

 ( ( )|               )  (2.9)  

where X (i) is the pixel intensity at location i. According to the Hammersley-Clifford theorem 

[108], a MRF, expressed by its local conditional probability, is equivalent to a Gibbs random 

field, expressed by the joint probability described by (2.10) 

 ( )  
 

 
   

 

 
  ( )

  (2.10) 

where X represents the joint event of all the pixels of the image, U(X) represents the energy 

function, T is a constant called temperature and Z is a normalising constant called partition 

function [109]. Examples of types of Markov random field models are the auto-logistic, auto-

binomial, multilevel logistic and auto-normal Markov random field models [109]. The auto-

normal MRF models are also called Gaussian Markov random fields (GMRF). 

In MRF modelling a texture is assumed to be a realisation of an MRF, and modelling a 

texture is equivalent to specifying the corresponding conditional probabilities or Gibbs model. 

Texture features correspond to the MRF model parameters and feature extraction is 

equivalent to parameter estimation [110]. 
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The Markov random field models have been used for texture analysis and fabric defect 

detection. For example, Chellappa and Chatterjee [111] used GMRF models to classify 

textures from the Brodatz album, while Cross and Jain [112] used the auto-binomial models 

to analyse and synthesise textures. Wang and Liu [110] proposed a multi resolution MRF 

models for texture classification. 

Cohen et al. [113] used GMRF to detect and locate the various kinds of defects that might be 

present in a given fabric sample based on its image. Because of the high computational cost of 

estimating the model parameters, they instead used the sufficient statistics associated with the 

models parameters which are easily computable. On their side Özdemir and Erçil [8] studied a 

model-based approach with MRF as texture model for the defect inspection of textile fabrics. 

They illustrated the results on real fabric images and implemented their method on a two 

TMS320C40-based parallel processing system. 

Al-Kadi [114] combined statistical and model based features to classify eight different texture 

images. The statistical methods were GLCM, GLRL and ACF (autocorrelation function) 

while the model-based methods were GMRF and fractional Brownian motion. They found 

that when each method was used individually GLCM performed the best. However, when the 

different methods were combined in pairs, the model-based approaches used together 

achieved the highest classification rate compared to each of the five methods individually and 

to each other combination.  

Compared to co-occurrence matrix-based approach, the model-based one is computationally 

more efficient. Similar to the co-occurrence matrix-based method, the texture model-based 

approaches are poor in discriminating small local defects, since a sufficiently large region is 

needed for a good estimation of the model parameters [16].  

It is expected that MRF-based approaches perform better in fabric defect detection, since 

MRF models carry more local texture information than co-occurrence matrices [16]. In fact, 

Özdemir et al. [18] compared six texture features consisting of MRF, KL transform, 2D 

lattice filters, Law filters, co-occurrence matrices and a FFT-based method and texture 

modelling using a high order (9
th
) MRF model gave the best detection result. However, these 

results seem to contradict the findings by Clausi and Yue [115] when applied to remote 

sensed ice images. They compared co-occurrence matrix-based features and MRF features for 

discriminating textures in remote sensed ice images and found that co-occurrence matrix-

based features had improved discriminating ability relative to MRF features with decreasing 

window size. Those findings are consistent with our own results as shown in chapter 8. 
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2.6 Summary 

In this chapter, we reviewed various defect detection methods found in literature. Those 

methods are generally categorised on the basis of the texture feature extraction techniques that 

they use. They have been classified into three main categories: (i) statistical, (ii) spectral and 

(iii) model-based methods. 

Statistical methods deal directly with statistics of grey level values of fabric image pixels. 

Among the statistical methods, one can distinguish those based on first order statistics from 

those based on second or higher order statistics. First order statistics methods deal with 

statistics of individual pixels. They are computationally simple, but they can detect only 

defects with a high contrast with respect to the defectless fabric background. 

Methods based on second order statistics deal with joint statistics of pairs of pixels. Among 

the most commonly used one can mention (i) the grey level co-occurrence matrix, (ii) the 

autocorrelation function and (iii) the grey level run length method. Second order statistics 

methods model better texture than first order statistics methods and they provide better defect 

detection performance. However, they suffer from some weaknesses that include the high 

computational cost incurred for their use. 

Spectral methods perform some filtering or transform operations on the raw fabric images 

before extraction features from the results of those operations. Several spectral methods exist. 

Among them we reviewed (i) those based on the Fourier transform, (ii) those based on Gabor 

filters and (iii) those based on the wavelet transform. 

The Fourier transform allows characterising the fabric texture in frequency domain and 

detecting fabric defects by monitoring its spectrum. However, the Fourier transform lacks 

spatial information and therefore makes the methods based on it unable to locate spatially the 

detected defects. 

Unlike Fourier transforms, Gabor filters offer simultaneous localisation of spatial and 

frequency information. They have been applied successfully to fabric defect detection. They 

show high performance as feature extractors for texture discrimination due to their multiscale 

and multidirectional ability, combined with their capability of capturing space-localised 

information about texture. However, typical Gabor filtering is either expensive to compute, is 

noninvertible or both. 

Similar to Gabor filters, wavelet transforms provide a way to perform multi resolution 

analysis of signals and images but at significantly lower computational cost. Wavelet 

transforms also provide information about both time (or spatial location) and frequency of a 
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signal. They have been used for fabric defect detection as either texture suppressors or as 

texture feature extractors. 

Numerous issues about wavelets need attention before their application for texture feature 

extraction. Among them is the choice of wavelet to use, the choice of the adequate number of 

decomposition levels and dealing with the problem of shift-variance of the wavelet transform. 

The problem of shift-variance should be solved for pattern recognition applications of wavelet 

transforms such as fabric defect detection. The most commonly used wavelet transform, 

called the discrete wavelet transform (DWT), is not shift-invariant. The solution that is 

traditionally used is the undecimated discrete wavelet transform (UDWT). However, UDWT 

is highly redundant and computationally expensive. The better solution is the dual-tree 

complex wavelet transform (DTCWT), which, in addition to being almost shift-invariant with 

a low rate of redundancy, offers high directional selectivity in two and higher dimensions. 

Model-based methods seek to represent texture by a stochastic model. One of the most used 

models for texture is the Markov random field (MRF) model. Texture feature extraction using 

a MRF model consists in choosing an appropriate model for the texture and then estimating 

the model parameters for that particular texture.  
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Chapter 3: Review of the methods employed in this thesis 

3.1 Introduction 

This chapter will present in detail conceptual information of the methods that will be 

employed in the experimental part of this thesis. The objective of the thesis is to combine grey 

level co-occurrence matrix, wavelet-based and Markov random field-based methods for 

improved fabric defect detection and classification. Therefore each of the three methods will 

be successively presented. These three tools are used for texture feature extraction. Once the 

features are extracted, they are fed into classifiers for decision about the presence of a defect 

or for categorising defects into predefined classes. Classifiers that will be used in this thesis 

will then be presented.  

3.2 Grey level co-occurrence matrix features 

3.2.1 Definition of grey level co-occurrence matrix 

The grey level co-occurrence matrix (GLCM) analysis was introduced by Haralick et al. [31] 

in 1973. It is a second order statistics method of texture analysis in the sense that it is based 

on the computation of statistics of pairs of neighbouring pixels in an image, separated by a 

given distance d in a given direction . 

A co-occurrence matrix is a square matrix whose elements are the number of occurrence of 

pairs of grey levels separated by the distance d in the direction . For an image with G grey 

levels, the grey level co-occurrence matrix P is a GxG matrix and its element Pd, (p, q) can be 

expressed by (3.11). 

    (   )   {((   ) (   ))   (   )     (   )   } (3.11)  

where       (   ) are the grey level values of the pixels, the symbol #{} denotes 

cardinality of a set. After computing all elements of the matrix, each of them is divided by 

their total sum to normalise the co-occurrence matrix. The obtained normalised co-occurrence 

matrix therefore represents the joint probability of pairs of pixels having certain values. 

Combinations of parameters d and  allow to obtain different GLCM matrices from a single 

image. Generally, four directions, =0
o
, =45

o
, =90

o
 and =135

o
, and different distances (d) 

have been used in literature [18, 21, 31, 37-38, 45]. 
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3.2.2 Compilation of a co-occurrence feature of a grey level image 

Figure 3-1 shows the compilation of the grey level co-occurrence matrix of a simple 4x4 

image with four grey levels for d=1 and =0
o
. A vector of length d and orientation angle  

scans the image from the top-left to the bottom-right of the image. The vector is positioned so 

that both its origin and end remain within the image. When the vector is positioned so that its 

origin is on a pixel with grey level value p and its end is on a pixel with a grey level value q, 

the co-occurrence matrix element (p, q) is incremented by 1. If the desired co-occurrence 

matrix is symmetric, the co-occurrence matrix element (q, p) is also incremented.  

This is illustrated in Figure 3-1 by (a) and (b). In this case the vector is horizontal (=0
o
) and 

its length is 1. It is positioned on pixels with grey levels 0 and 3, so the matrix elements (0, 3) 

and (3, 0) are incremented. In this case, the GLCM is symmetric. 

    

0 3 2 3 

1 1 2 3 

2 0 1 2 

3 1 3 3 

 (a)  

 

 0 1 2 3 

0    +1 

1     

2     

3 +1    

  (b)  

 

 0 1 2 3 

0 0 1 1 1 

1 1 2 2 2 

2 1 2 0 3 

3 1 2 3 2 

  (c) 
 

 0 1 2 3 

0 0.0000 0.0417 0.0417 0.0417 

1 0.0417 0.0833 0.0833 0.0833 

2 0.0417 0.0833 0.0000 0.1250 

3 0.0417 0.0833 0.1250 0.0833 

  (d) 

 

Figure 3-1: Construction of the co-occurrence matrix P
0
 for d=1 [116]. The original 

image (a) begins by having each of its neighbouring pairs examined. Image 

(b) shows the incremental stage that occurs when the outlined neighbouring 

pixels in (a) are examined. Image (c) shows the result of the horizontal co-

occurrence matrix for d=1, and (d) shows the final normalised co-occurrence 

matrix after dividing each element in (c) by 24, the sum of elements in (c). 

When the scanning vector has occupied all the possible positions, the compilation of the co-

occurrence matrix is completed. That corresponds to (c) in our illustrative example of Figure 

3-1.  

Finally, the raw co-occurrence matrix is normalised by dividing each of its elements by their 

total. The final normalised co-occurrence matrix contains the co-occurrence probabilities 

which are joint probabilities of pairs of pixels having certain values. That is illustrated by (d) 

in our example. 
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3.2.3 Co-occurrence matrix features 

To characterise texture, usually some statistics, which are called co-occurrence matrix 

features, are computed from the normalised GLCM. Haralick et al. [31] proposed fourteen 

such features, while some more have been proposed by other researchers [42, 44-47].  

In equations (3.12) through (3.42),  (   ) represents the (i, j)
th
 entry of the GLCM, and G 

represents the number of grey levels in the image. In the equations defining the features we 

will make use of the means (   and   ) and standard deviations (   and   ) for the rows and 

columns of the matrix that are given by (3.12) through (3.15). 
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We will also make use of the quantities   ,   ,      and      defined by (3.16) through 

(3.19). 
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 The fourteen GLCM features proposed by Haralick et al. [31] are as follows. 

1. Angular second moment, also called energy. It is defined by (3.20). That feature is a 

measure of the homogeneity of the image. In a homogeneous image there are very few grey 

tone transitions. Therefore the matrix P will have few entries of large magnitudes. The ASM 
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(f1) will be relatively high. On the other hand, a non-homogeneous image will have more grey 

tone transitions. The matrix P will have a larger number of small entries, and hence the ASM 

(f1) will be smaller. 
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2. Contrast, also called inertia. It defined by (3.21). It is a measure of the contrast or the 

amount of local variations present in the image. 
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3. Correlation. It is defined by (3.22). It is a measure of grey tone dependencies in the 

image. 
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where   ,   ,    and    are the means and standard deviations of    and    . 

4. Sum of squares: variance. It is defined by (3.23). 
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5. Inverse difference moment, also called homogeneity. It is defined by (3.24). 
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6. Sum average. It is defined by (3.25). 
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7. Sum variance. It is defined by (3.26). 
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8. Sum entropy. It is defined by (3.27). 
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9. Entropy. It is defined by (3.28). 
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10. Difference variance. It is defined by (3.29). 

yxpofVariancef 10  (3.29) 

11. Difference entropy. It is defined by (3.30). 

 





1

0

11 )(log)(
G

i

yxyx ipipf  (3.30) 

12., 13. Information measures of correlation. They are defined by (3.31) and (3.32). 
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Where HX and HY are entropies of    and   , and HXY, HXY1 and HXY2 are given by 

(3.33), (3.34) and (3.35) respectively. 
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14. Maximum correlation coefficient. It is defined by (3.36).  

    (                              )
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Where Q is a matrix given by (3.37). 
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Some of the other GLCM features found in literature are the dissimilarity [45-47] defined by 

(3.38), the cluster shade and cluster prominence features [42, 46, 47] defined by (3.39) and 

(3.40), and the maximum probability and the inverse difference [45-47] defined by (3.41) 

and (3.42). 
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Maximum probability=max(p(i, j))  for all (i, j)  (3.41) 
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3.2.4 Methods to improve the GLCM-related computational cost 

One of the main weaknesses of GLCM features is the high computational cost incurred in 

compiling the co-occurrence matrix, as well as extracting features from it [50, 117, 118]. 

Some researchers have proposed ways to alleviate that problem. 

The first solution taken by most researchers is the reduction of the number of grey levels in 

the image by quantising the original image. Several authors [18, 23, 31-35, 42, 43, 49] 

reduced the number of grey levels to 8, 16, 32 and 64 for their applications from 256 of their 

original images. That allows decreasing the computational cost as the size of the GLCM and 

therefore the required computational time increases with the square of the number of grey 

levels in the image. 

Miyamoto and Merryman [116] proposed a solution that optimises the code. This was done in 

two steps: (i) optimising the code for the construction of the co-occurrence matrix using 

techniques of recursive blocking algorithm, scalar replacement and unrolling, and (ii) 

optimising the feature calculation by combining loops for different features into one loop, by 

scalar replacement and by using log tables for probability values (0 to 1) instead of computing 

them. Their solution allowed increasing the system performance by a factor of approximately 

two. 
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Tahir et al. [117] proposed a hardware solution. They used reconfigurable hardware – a field 

programmable gate array (FPGA) co-processor – to accelerate the calculation of the GLCMs 

as well as the extraction of features from them. The proposed implementation took advantage 

of the inherent parallelism in the calculation of GLCMs, as well as their features. The 

performance of the FPGA implementation was five times faster than that of a Pentium 4 PC. 

Other researchers proposed solutions that made use of different representations of information 

in GLCM to speed up the calculation of features. Their rationale is that usually the GLCM is 

a highly sparse matrix, and therefore directly working on the matrix representation to extract 

features wastes a lot of time by adding and/or multiplying by zero values.  

In that regard, Clausi and Jernigan [118] proposed a method they called grey level co-

occurrence linked list (GLCLL) where only nonzero grey level probabilities were stored in a 

sorted linked list. Their method was improved by Svolos and Todd-Pokropek [119], who 

represented the same information in a tree data structure. Since GLCLL requires maintaining 

a sorted list, Clausi and Zhao [120] dropped the use of the sorted linked list and used instead 

the combination of a hash table and a linked data structure. They called the new improved 

method grey level co-occurrence hybrid structure (GLCHS). They then combined GLCHS 

and the grey level co-occurrence hybrid histogram (GLCHH) to get an improved method that 

they called grey level co-occurrence integrated algorithm (GLCIA) [121]. GLCHH is an 

implementation of the sum and difference histograms method proposed by Unser [122] in the 

GLCHS framework [121].  

The computational improvement obtained from adopting those methods can be read from 

[121]. Given a variety of window sizes and quantisation levels, the GLCLL method required 

0.20% to 18% of the computing time relative to the GLCM. The GLCHS is an improvement 

of the GLCLL, requiring 28% to 38% of the GLCLL computation time and 0.10% to 32% of 

the GLCM computation time depending on the quantisation and window size. Finally, 

experiments indicated that GLCIA requires 27% to 54% of the computation time compared to 

using GLCHS alone. The GLCIA computational time relative to that of the standard GLCM 

method ranges from 0.04% to 16% depending on the window size, quantisation and the 

features selected. 

In Section 5.8 of this thesis we will propose a modified GLCHS method for implementation 

with MATLAB. 
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3.3 Wavelet transform and wavelet transform features 

3.3.1 Introduction to wavelet transform 

A wavelet is a „small wave‟ which has its energy concentrated in time. It gives a tool for 

analysis of non-stationary signals such as short-time phenomena (wavelets are able to 

determine if a quick transient exists in a signal and if so localise it) [123]. The traditional 

signal processing tool, the Fourier transform, is poorly suited for analysing a signal which has 

abrupt transition. On the other hand, the wavelet transform has a multiresolution capability 

and provides information about both the position (time) and the frequency of a signal. 

The wavelet transform of a signal is obtained by convolving the signal with a shifted and 

scaled version of the original (mother) wavelet as described by (3.43) [78]. 
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Where Wf(s, u) denotes the continuous wavelet transform of the signal f(t) for the scale 

parameter s and time (position) parameter u. 

Therefore from a single variable function f(t) we get a two-variable wavelet transform 

Wf(s, u). Unlike the Fourier transform where the analysing function is sinusoidal, there are 

many different possible analysing functions (mother wavelets) for the wavelet transform and 

that constitutes one of its strengths as one can choose one that fits the best his application. 

To qualify as mother wavelet, a function  ( )     ( )
 

should fulfil the admissibility 

condition (3.44) [78] where  ̂( ) is the Fourier transform of  ( ). 
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For the integral in (3.44) to be finite, we should have  ̂( )    and that is why a wavelet 

must have a zero average as described by (3.45). 
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Figure 3-2 shows three examples of mother wavelets. 
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Morlet wavelet Meyer wavelet Mexican hat wavelet 

Figure 3-2: Examples of mother wavelets [124] 

3.3.2 Discrete wavelet transform 

The wavelet described by equation (3.43) is known as continuous wavelet transform (CWT). 

As specified earlier, the CWT transforms a 1D signal into a 2D signal and is therefore highly 

redundant.  

Discrete wavelets are not continuously scalable and translatable but can only be scaled and 

translated in discrete steps. The discrete wavelet transform (DWT) corresponding to a CWT 

function Wf(s, u) is obtained by sampling the coordinates (s, u) on a grid. The process, called 

dyadic sampling, in which the values of discrete scale as well as the corresponding sampling 

interval differ by a factor of two, is common. This leads to a modified wavelet representation 

given by (3.46) 
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where j, k are integers. 

Then the DWT of a function f(t) would be given by (3.47). 
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With a properly chosen wavelet  ( ), the family of functions {    ( )}
      

 can form an 

orthonormal basis of    ( ) [78]. In such cases, any finite energy signal f(t) can be 

decomposed into a sum of dilated and translated versions of  ( ) weighted by the wavelet 

coefficients   (   ) as shown by (3.48). 
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3.3.3 Multiresolution approximations 

The wavelet decomposition of a signal f(t) according to (3.48) allows multiresolution 

approximations of the signal. Specifically, the partial sum ∑ 〈      〉  
        ( ) can be 

interpreted as the difference between two approximations of f at resolutions 2
-j+1

 and 2
-j
. 

Formally, the approximation of a function at resolution 2
-j 

is an orthogonal projection on a 

space      ( )  where the subspace    regroups all possible approximations at the 

resolution 2
-j
. 

The formal definition of a multiresolution approximation is provided by Mallat [78] as 

follows: A sequence {  }   
 of closed subspaces of   ( ) is a multiresolution approximation 

if the properties (3.49) through (3.54) are satisfied. 
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                         * (   )+    is a Riesz basis of V0 (3.54) 

Once the properties (3.49) through (3.54) are satisfied, it has been proven [78] that there 

exists a unique function  ( )   ( ), called a scaling function, so that the family {    ( )  

 

√  
 .

     

  /}
   

 is an orthogonal basis of    for all    . 

Given such function then the approximation of a function  ( )   ( ) at resolution 2
-j
 can be 

expressed by (3.55). 
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Where the coefficients   , - provide the discrete approximation of   at resolution 2
-j
 and are 

given by (3.56) 
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Where  ̅ ( )  
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  / and * denotes the convolution operator. 
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with h0[k] given by (3.58). 
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The sequence h0[k] is interpreted as a discrete filter. 

The Fourier transform of (3.57) yields (3.59) 
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From (3.59) we get (3.60) and then (3.61) 
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Mallat [78] proved that for the infinite product in (3.61) to converge to the Fourier transform 

of a scaling function, the Fourier series of h0[k] must satisfy (3.62) and (3.63). 
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Discrete filters that satisfy (3.62) are called conjugate mirror filters. Therefore, from a 

conjugate mirror filter that satisfies (3.63), one can construct a scaling function by using 

(3.61). In Subsection 3.3.4, we will see that from the scaling function one gets a wavelet. 

3.3.4 Wavelet representations 

From a scaling function  ( ) and its corresponding conjugate mirror filter h0[k] one can 

construct a wavelet function  ( ) whose Fourier transform  ̂( ) satisfies (3.64) 
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with function  ̂ ( ) given by (3.65)  
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Let Wj denote the orthogonal complement of Vj on Vj+1. The detail signal of f(t) at resolution 

2
-j
 can be obtained by orthogonal projection of f(t) onto Wj. The family {    ( )  
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 where the Fourier transform of  ( ) is given by (3.64) is an orthogonal 

basis of    for all     and allows us to calculate that projection. Based on the orthogonal 

basis {    ( )}
   

 of   , the detail signal of f(t) at resolution 2
-j 

can be expressed by (3.66) 
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where the coefficients   , - characterise the detail signal of   at resolution 2
-j
 and are given 

by (3.67)  
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where  ̅ ( )  
 

√  
 .

  

  / and * denotes the convolution operator. 

Based on the multiresolution approximations and the difference of information between the 

approximations at two successive resolutions, a signal  ( )   ( ) can be described by 

orthogonal wavelet representations given by (3.68). 
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Figure 3-10: Example of wavelet transform of an image 

 

For multilevel decomposition, the approximation sub-image is further decomposed into 

approximation sub-image and horizontal, vertical and diagonal sub-images of the next level. 

One of the main differences between textile inspection and steel or paper inspection is that the 

textile image is rich in details when compared to steel or paper images. That is the reason why 

textile inspection requires attenuating the texture background and accentuating defects [25]. 

Wavelet transforms can be used to that effect. 

3.3.8 The dual-tree complex wavelet transform 

The discrete wavelet transform (DWT) and multiscale analysis as presented in subsections 

3.3.2 and 3.3.3 have proven to be useful in a wide range of applications. The primary reason 

is because they provide an extremely efficient representation for many types of signals that 

appear often in practice but are not well represented by the Fourier analysis [72].  

However, DWT suffers from two main drawbacks that makes it less suitable for applications 

such as pattern recognition: (i) it is not shift-invariant, meaning the same pattern in a signal or 

image may lead to different wavelet coefficients depending on its location in the signal or 

image, and (ii) its directional selectivity in two and higher dimensions is low. The latter 

setback refers, for instance, to the fact that DWT cannot distinguish features in an image that 

appear parallel to the main diagonal from those that appear parallel to the secondary diagonal. 

The dual-tree complex wavelet transform was proposed as a solution to the above-mentioned 

problems of DWT [99]. It represents a signal f(t) in a way similar to DWT as shown by (3.70) 
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where the wavelet approximation   ( ) and details   (   ) coefficients are computed by 

inner products shown in (3.71) and (3.72). 
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The difference with DWT is that the scaling function   ( ) and wavelet   ( ) are complex 

rather than real and can be written as (3.73) and (3.74). 
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)()()( tjtt ghc    (3.74) 

The real   ( ) and imaginary   ( ) parts of the scaling function, and the real   ( ) and 

imaginary   ( ) parts of the wavelet are designed so that they form approximate Hilbert pairs 

[72]. That means that the scaling function   ( ) and wavelet   ( ) are approximately 

analytic, that their Fourier transforms  ̂ ( ) and  ̂ ( ) are approximately single sided as 

described by (3.75) and (3.76). 
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Practically, the decomposition (3.70) is implemented using two real filter bank trees proposed 

by Kingsbury [99-100], hence the name dual-tree complex wavelet transform. Figure 3-11 

illustrates such decomposition. The coefficients obtained from tree-h and tree-g are 

interpreted respectively as real and imaginary parts of the transform. 

© Central University of Technology, Free State



© Central University of Technology, Free State



 

 52 

    (   )  .  ( )  ( )    ( )  ( )/   .  ( )  ( )    ( )  ( )/ (3.85) 

    (   )  .  ( )  ( )    ( )  ( )/   .  ( )  ( )    ( )  ( )/ (3.86) 

  (   )  .  ( )  ( )    ( )  ( )/   .  ( )  ( )    ( )  ( )/ (3.87) 

  (   )  .  ( )  ( )    ( )  ( )/   .  ( )  ( )    ( )  ( )/ (3.88) 

The implementation of 2D DTCWT consists of two steps; [126]  

(i) An input image is decomposed up to a desired level by two separable 2D DWT 

branches, with filters H0, H1, G0, G1 designed to meet the approximate Hilbert pair 

requirement. Then six high-pass subbands are generated at each level. 

(ii) Every two corresponding subbands which have the same passbands are combined 

by averaging or differencing. 

3.3.9 The wavelet transform features 

Once the wavelet coefficients are computed using an appropriate wavelet transform 

algorithm, some statistics, referred to as features, are computed from the coefficients of each 

channel to characterise the texture of the image.  

The most commonly used feature is the channel variance, which is the mean energy of 

wavelet coefficients of that channel as described by (3.89) [12, 16, 88] 
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where    is the variance for the k
th
 channel and     

  is (i, j)
th 

wavelet coefficient of k
th 

channel. 

It is to be realised that the channel variance is also the mean energy of wavelet coefficients 

because the sum of (detail) wavelet coefficients and therefore their mean is always zero [127].  

The mean absolute values of wavelet coefficients of wavelet channel, described by (3.90), are 

also used [96, 128].  
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Alternatively, the sum of squares or sum of absolute values of wavelet coefficients are also 

used [98, 129, 130].  
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Some authors combined the wavelet methods with second order statistical methods. They 

calculated GLCM features [21, 23, 130, 131] or features based on the grey level difference 

method (GLDM) [132] from wavelet coefficients. Others proposed entropy of magnitudes of 

wavelet coefficients [133], the principal components of wavelet coefficients [134] and a 

subset of the wavelet coefficients with the highest magnitude [135] as features for texture 

characterisation. 

For complex wavelet coefficients obtained using DTCWT, some of the features used are the 

means and standard deviations of the complex wavelet coefficients [102, 105, 136], the 

variance and entropy of magnitudes and relative phases of complex wavelet coefficients [137] 

and the Frobenius norm of magnitude of wavelet coefficients [101]. The Frobenius norm of a 

matrix is defined as the square root of the sum of the absolute squares of its elements as 

described by (3.91). 
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3.4 Markov random field model-based features 

3.4.1 What is a Markov random field? 

Let X represent a greyscale textured image. In the Markov random field model the greyscale 

value of each pixel as a random variable. By considering all the pixels, the corresponding 

random variables constitute together a random field. A Markov random field (MRF) is a 

random field that possesses the Markovian property – the value of a pixel depends directly 

only on the values of neighbouring pixels and on no other pixels [138]. That indicates that 

only neighbouring pixels have direct interaction with each other. 

3.4.2 Neighbourhood systems 

The sites (pixels in the case of an image) in a lattice S are related to one another via a 

neighbourhood system. A neighbourhood system for S is defined by (3.92) [109] 

N ={Ni |     S} (3.92) 

where Ni is the set of sites neighbouring i. The neighbouring relationship has the following 

properties: 

(i) A site is not neighbouring to itself:    Ni 

(ii) The neighbouring relationship is mutual:     Ni     Ni‟ 
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For a regular lattice S, the set of neighbours of i is defined as a set of sites within a radius of 

√  from i as given by (3.93). 

Ni = *      |,(    (                ) -        + (3.93) 

In a first order neighbourhood system every (interior) site has four neighbours, while in a 

second order neighbourhood system there are eight neighbours for every (interior) site. Figure 

3-12 shows neighbourhood systems up to the fifth order. The number n=1, 2,..., 5 indicates 

the outermost neighbouring sites in the n
th
 order neighbourhood system. 

 5 4 3 4 5  

 4 2 1 2 4  

 3 1 X 1 3  

 4 2 1 2 4  

 5 4 3 4 5  

Figure 3-12: Neighbourhood systems up to the fifth order 

 A clique c for (N, S) is defined as a subset of sites in S. It consists of either a single site c={i}, 

a pair of neighbouring sites c={i, i’}, a triple of neighbouring sites c={i, i’, i’’}, and so on. 

Figure 3-13 shows cliques for a second order neighbourhood system. 

 

Figure 3-13: Cliques for a second order neighbourhood system 

(a) Neighbourhood system (b) Single site (c) Horizontal 

and vertical pair-site cliques (d) Diagonal pair-site cliques 

(e) Triple-site cliques (f) Quadriple-site clique 
 

(a) 

(b) 

(c) (d) 

(e) 

(f) 

© Central University of Technology, Free State



 

 55 

3.4.3 Markov random field models 

For a given neighbourhood system, the Markovian property of a Markov random field can be 

expressed as (3.94). 

 (  |   * +)   (fi | fNi) (3.94) 

There are two approaches to specify an MRF: (i) in terms of conditional probabilities P(fi | fNi) 

and (ii) in terms of the joint probability P(f). A theorem by Hammersley-Clifford [108] 

establishes the equivalence between the two approaches. It states that F is an MRF on a lattice 

S with respect to a neighbourhood system N if and only if F is a Gibbs random field on S with 

respect to N.  

A set of random variables F is said to be a Gibbs random field on S with respect to N if and 

only if its configurations obey a Gibbs distribution [109]. A Gibbs distribution takes the form 

(3.95) 
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where Z, given by (3.96), is a normalising constant called the partition function. T is a 

constant called temperature (normally assumed to be 1) and U(f) is the energy function. 
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The energy function U(f) given by (3.97) is the sum of all clique potentials over all possible 

cliques C. 

When we consider cliques potentials of up to two sites, the energy takes the form given by 

(3.98). 
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When   (  )       (  ) and   (      )             , where Gi(.) are arbitrary functions and 

      are constants reflecting the pair-site interaction between i and i’, the energy is given by 

(3.99). 
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Such models are called auto-models [109]. 

An auto-model is said to be auto-logistic if the fi ‟s take on values in the discrete label set {0, 

1} or {-1, +1}. The corresponding energy is of the form (3.100). 
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An auto-model is said to be an auto-binomial model if the fi ‟s take on values in {0,1, …, M-

1} and every fi has a conditional binomial distribution of M trials and probability of success q 

as given by (3.101) 
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The corresponding energy takes the form (3.102). 
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An auto-model is said to be auto-normal model, also called Gaussian MRF, if the label set is 

continuous (real line) and the joint distribution is multivariate normal. Its conditional density 

function is given by (3.103). 
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 (3.103) 

It is the normal distribution with conditional mean given by (3.104) and conditional variance 

given by (3.105), where       are the model parameters. 
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An auto-logistic model can be generalised to a multilevel logistic (MLL), also called a 

Strauss process or generalised Ising model [107]. There are M discrete labels in the label set 

{1, 2, …, M} and in this type of model a clique potential depends on type c (related to size, 

shape and possibly orientation) and on the local configuration. For cliques containing more 

than one site, the MLL clique potentials are defined by (3.106) 

  ( )  {
                                        
                                                                

  (3.106) 

where    is the potential for type c cliques. For single site cliques, the MLL clique potentials 

depend on the label assigned to the site (grey value of a pixel for images) as given by (3.107) 

  ( )    (  )             (3.107) 

where    is the potential for label value I. 

3.4.4 MRF texture modelling 

To model a texture as a Markov random field, one has first to choose the type of 

neighbourhood, and then choose a specific Markov model characterised by the local 

conditional probability function or by the energy function containing Gibbs clique potentials 

[138].  

The Gaussian Markov random fields (GMRFs) are commonly used for modelling textures. 

For example, Zhao et al. used them to classify high resolution spatial satellite imagery [139]. 

Chellappa and Chatterjee [111] used GMRF models to classify textures from the Brodatz 

album. Torres and Juan [140] compared the discriminating ability of GMRF features and 

features from Gabor convolution energies to classify land cover types in Synthetic Aperture 

Radar (SAR) imagery. Cohen et al. [113] used GMRF to detect and locate the various kinds 

of defects that might be present in a given fabric sample based on its image. In chapter 7 we 

will evaluate the performance of GMRF features for the purpose of fabric defect detection 

and classification. 

A GMRF model assumes that the local conditional probability that specifies the spatial 

dependencies of a pixel and its neighbouring pixels is Gaussian as given by (3.103). On the 

other hand, the grey value of the central pixel can be represented as a linear combination of 

values of neighbouring pixels and an additive noise [141] as given by (3.108) 
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where ei is a Gaussian noise sequence with zero mean and autocorrelation function given by 

(3.109). 
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The parameters       and the conditional variance    describe the GMRF model and 

characterise the texture. 

3.4.5 MRF texture features and feature extraction 

In MRF modelling, a texture is assumed to be a realisation of a MRF and to model a texture is 

to specify the corresponding conditional probabilities of Gibbs clique potentials. Texture 

features are then the MRF model parameters and feature extraction is equivalent to parameter 

estimation. 

Estimation of MRF model parameters given its realisation is difficult because the partition 

function Z depends on the parameters and yet the partition function is computationally 

intractable – it cannot be computed. Approximate parameters estimation can be done using 

methods such as (i) coding, (ii) maximum pseudo-likelihood and (iii) least squares parameter 

estimation (LSE) [109]. 

Using the coding method, the lattice S is divided into several disjoint set S
(k)

, called codings, 

so that no two sites in one S
(k)

 are neighbours. Under the Markovian assumption, the variable 

associated with the sites in an S
(k)

, given the labels of all the other sites, are mutually 

independent. Therefore the likelihood for each coding is given by (3.110), where θ represents 

the model parameters. 
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Maximising (3.110) gives coding estimates  ̂( ). Then the arithmetic average (3.111) is 

usually used to get the estimate of the model parameters  ̂. 
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For the maximum pseudo-likelihood method, the likelihood function given by (3.112) is 

approximated by the pseudo-likelihood defined by (3.113), where    denotes the set of points 

at the boundaries of S. 
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The pseudo-likelihood given by (3.113) does not involve the partition function Z() and 

therefore can be computed. The model parameters can be estimated by maximising the 

pseudo-likelihood as (3.114), or by equivalently maximising the log-likelihood as (3.115). 
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The LSE method is easy to implement and, in the case the GMRF model, the estimate  ̂ of 

the parameters       is given by (3.116), while the estimate  ̂  of the conditional variance is 

given by (3.117) [139] 
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where Q(i) is the column matrix whose elements are the sum of fi‟+f-i‟; the sum of pixel 

values diagonally opposed with respect to the central pixel. 

Speis and Healey studied the LSE method and concluded that it is consistent, more efficient 

than coding and computationally advantageous [142]. 

3.5 Classifiers 

3.5.1 Pattern recognition basic concepts 

Classifiers belong to the field of pattern recognition and classification. The underlying 

problem can be stated as follows. Given a number of predefined classes (or categories), a new 

object (or pattern) is to be assigned to one of them. Usually the classification decision will be 

based on the existence of some representative sample patterns of each of the classes, called 

training samples (or training patterns). 
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where    
  is the normalised feature value in the dataset, and        and        are 

respectively the maximum and minimum values of features Fj [144]. The results of scaling by 

(3.118) do not depend on the original data unit of measurements, and this linear scaling 

transforms the data to the range [0, 1]. 

The z-score standardisation transforms the feature component xi,j to a random variable with 

zero mean and unit variance as given by (3.119) 
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where    and    are the sample mean and the sample standard deviation of the feature Fj 

respectively [145]. If we assume that each feature is normally distributed, the probability of 

   
  being in the range [-1, 1] is 68%. 

3.5.3 Euclidean distance classifier 

For a Euclidean distance classifier, each pattern class ωj is characterised by a vector mj which 

is the mean vector of the features of the training patterns of that class as described by (3.120) 
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where Nj is the number of training pattern vectors for class ωj and the summation is taken 

over these vectors. 

Determining the class membership of an unknown pattern with feature vector x consists in 

computing the distance measures given by (3.121) and assigning x to the class ωi for which Di 

is the smallest distance. 

jj )(D mxx   j=1, 2, ..., W (3.121) 

where W is the number of classes.  

Figure 3-15 illustrates the principle of the Euclidean in a two-dimensional feature space. In 

this case the test sample is classified as belonging to class 1 because the Euclidean distance 

from test point to mean class 1 is shorter than the Euclidean distance from test point to mean 

class 2. 
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The above procedure of training the Euclidean distance classifier is called maximum 

likelihood (ML) training [16]. In this procedure for each pattern class a characteristic feature 

vector Λ is the mean vector of the corresponding feature vectors in the training set.  

 

Figure 3-15: Principle of the Euclidean distance classifier 

The minimum classification error (MCE) training [16, 146] allows one to find a better 

characteristic feature vector for each pattern class. The MCE training algorithm starts with the 

characteristic feature vectors obtained by the ML method and then adjusts them adaptively in 

order to achieve the highest classification rate of the feature vectors in the training set. That 

process is illustrated by Figure 3-16 for the defect detection experiments of this thesis. 
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The output of each neuron is computed taking the sum of the weighted inputs and the biases 

and passing it through the transfer function. The transfer function is typically a sigmoid 

function. 

Among the algorithm used for supervised training, the backpropagation has emerged as the 

most widely used and successful for image processing [150]. During the training phase, the 

feature vectors of the training set are presented at the inputs of the network and the resulting 

outputs are compared to the desired outputs. Then using a gradient descent optimisation 

algorithm the weights and the biases of the network are adjusted to minimise the mean square 

error between the network outputs and the desired outputs. 

Once trained, the network can be used to give reasonable answers when presented with inputs 

that the network has never seen. 

The problem of choosing the neural network topology is mainly about deciding the number of 

hidden layers and the number of neurons in each of them. One hidden layer generally 

produces excellent results. In fact, for many practical problems, there is no reason to use more 

than one hidden layer [149, 151].  

The number of neurons in the hidden layer must be chosen carefully. Using too few neurons 

in the hidden layers may result in underfitting. Underfitting occurs when there are too few 

neurons to adequately detect the signals in a complicated dataset. Using too many neurons in 

the hidden layer may result in overfitting. Overfitting occurs when the neuron network has so 

much training capacity that the limited amount of information in the training set is not enough 

to train all the neurons in the hidden layer. Furthermore, a large number of neurons in the 

hidden layers can increase the time it takes to train the network [151]. 

Heaton [151] provides some rule of thumb methods to determine the number of neurons to 

use in the hidden layer: 

 The number of hidden neurons should be between the size of the input layer and the 

size of the output layer. 

 The number of hidden neurons should be 2/3 the size of the input layer, plus the size 

of the output layer. 

 The number of hidden neurons should be less than twice the size of the input layer. 
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3.5.6 Multiclass classifiers 

Several successful methods have been developed to solve the problem of binary classification 

where the objects to be classified belong to only two different classes. The multiclass 

classification is more delicate as many of the algorithms were basically introduced to solve 

binary classification problems [152]. 

Three main approaches are usually proposed for solving the multiclass classification problem: 

(i) natural extension of binary classifiers to the multiclass case, (ii) converting the multiclass 

classification problem into a set of binary classification problems that are efficiently solved 

using binary classifiers and (iii) the hierarchical division of the output space with classes 

arranged into a tree with a simple classifier at each node [152]. 

All three classifiers previously described in this thesis can be naturally extended and used for 

multiclass classification. Reference [152] provides more details about binary classifiers that 

can be naturally extended to the multiclass case. 

Several methods have been proposed for the decomposition of multiclass classification 

problem into a set of binary classification problems. Among them, one can mention, the one-

versus-all (OVA) [153], all-versus-all (AVA) [154], error-correcting output-coding (ECOC) 

[155] and generalised coding [156] approaches. 

The OVA approach handles a K-class classification problem as follows. Each sample to 

classify is submitted to K binary classifiers with the K
th 

classifier trained with positive 

samples from class K and the negative samples from the other K-1 classes. When testing an 

unknown sample, the classifier producing the maximum output is considered the winner and 

its class label is assigned to the sample [152]. 

For the AVA approach, each class is compared to each other class. This requires K(K-1)/2 

classifiers. When testing a new sample a voting is performed among the classifiers, and the 

class with the maximum votes wins [152]. 

The ECOC approach operates by training N binary classifiers to distinguish between K 

different classes. It uses a KxN binary matrix M. Each row of M corresponds to a certain 

class, while each column corresponds to a certain classifier. Value 1 indicates the class where 

training samples are used as positive training samples for the corresponding classifier, while 

value 0 indicates the class with negative training samples. When testing a new unseen sample, 

the output codeword from the N classifiers is compared to the given K codewords, and the 

one with the minimum hamming distance is considered the class label of the sample [152]. 
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The generalised coding approach proposed by Allwein [156] is a unified approach that 

combines OVA, AVA and ECOC into a single strategy. Its coding matrix M is similar to the 

ECOC‟s, but it allows values in {-1, 0, +1}. The value of +1 in M(k, n) indicates that samples 

belonging to class k are considered as positive samples to classifier n. A value of -1 denotes 

that those samples are considered as negative samples. A value of 0 instructs the classifier not 

to use the corresponding class. When testing an unknown sample, the codeword closest to the 

output of that sample is chosen as the class label. 

3.6 Summary 

In this chapter, we reviewed the main concepts about the methods that will be used in this 

thesis. Those concepts are divided into two groups, namely (i) concepts about feature 

extractors and (ii) concepts about classifiers. 

The concepts about features extractors are (i) the grey level co-occurrence matrix, (ii) the 

wavelet transform and (iii) the Markov random fields, while the concepts reviewed about 

classified are those pertaining to classifiers we will use, with (i) the Euclidean distance 

classifier, (ii) the K-nearest-neighbour classifier and (iii) the feed-forward neural network 

classifier. 

A grey level co-occurrence matrix allows characterising the texture of a given image by 

computing the joint probabilities of occurrence of pairs of pixels separated by a given 

distance in a given direction. The resulting information is represented in a matrix form. Once 

the grey level co-occurrence matrix is compiled, a certain number of statistics called GLCM 

features are computed from it and are used to characterise the texture. Haralick et al. [31] 

proposed fourteen such features, but later other researchers proposed some more. Because 

compiling the GLCM and extracting features from it is computationally expensive, ways to 

accelerate the process have been proposed. Among them we reviewed (i) reducing the number 

of grey levels of the original image, (ii) optimising the software implementation, (iii) using 

specialised hardware such as FPGA and (iv) using other representations of information, such 

as linked lists and tree data structures, instead of matrices. 

Wavelet transforms allow decomposing a texture image at different resolutions. The resulting 

wavelet coefficients can be used to characterise the texture features in space and spatial 

frequency. In one dimension the wavelet transform of a signal is obtained by convolving the 

signal with a shifted and scaled version of the original (mother) wavelet. The result is the 

continuous wavelet transform and is highly redundant. The discrete wavelet transform is 

obtained by shifting and scaling the mother wavelet in discrete steps rather than continuously. 

The DWT can be efficiently computed by using the concept of filter banks. 
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The extension of the wavelet transform to two dimensions is done by performing the wavelet 

transform along the rows and then along the columns of the image. This results in an 

approximation sub-image A and three detail sub-images: vertical sub- image V1 (with vertical 

edges but no horizontal edges), horizontal sub-image H1 (with horizontal edges but no vertical 

edges) and diagonal sub-image V1 (with no horizontal nor vertical edges). 

The undecimated discrete wavelet transform is similar to DWT with the exception that the 

results of filtering the original signal are not downsampled. It has the advantage of being 

shift-invariant, but it is highly redundant. The dual-tree wavelet complex wavelet transform is 

less redundant and is almost shift-invariant. It is implemented using two real filter bank trees, 

one acting as the real part and the other as imaginary part of the complex wavelet transform. 

The filters used in the two filter bank trees should be designed so that the corresponding 

wavelets approximately form a Hilbert transform pair. 

Once the wavelet transform of a texture image is computed, features are calculated from the 

resulting wavelet coefficients. The mean energy, the mean absolute value, the variance and 

the entropy of magnitudes of wavelet coefficients are the most frequently used. 

Markov random fields (MRF) can be used to represent a fabric texture image by a stochastic 

model. The Markovian property is assumed. That means that the value of a pixel depends 

directly only on the values of neighbouring pixel. The size and shape of the assumed 

neighbourhood define the order of the model. 

Markov random fields are equivalent to Gibbs random fields, which define the joint 

probability of all the pixels of an image in terms of energy function. Auto-logistic, auto-

binomial, auto-normal and multilevel logistic are some of the types of MRF models that differ 

by how their corresponding energy function is defined. 

Texture feature extraction using a MRF is equivalent to choosing a type of MRF model to use 

and then estimating its parameters for the specific texture image under study. The model 

parameters constitute the texture features. Coding, maximum pseudo-likelihood and least 

squares estimation are some of the methods available for parameter estimation of MRF 

models. 

Once the features are extracted, using among others the above described methods, they are 

fed into a classifier for decision making. This may be, for example, declaring that a part of a 

fabric image is defective or not, or assigning a detected defect to one of the predefined 

classes. 
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Some types of classifiers are the Euclidean distance classifier, the K-nearest-neighbour 

classifier and feed-forward neural network classifier. All these classifiers need training before 

they can be used to classify unknown samples. Training means presenting to the classifiers 

features of known samples (known as training samples) along with their known true classes 

and letting the classifier memorise that information using a specific algorithm. 

A Euclidean distance classifier is trained by calculating the class mean feature vector of the 

training samples for each class among those it can handle. This is called maximum likelihood 

(ML) training. Once thus trained, it can classify a new unknown sample by computing the 

Euclidean distance of its feature vector to each of the class mean feature vectors of the 

training samples. The sample is then assigned to the class that yields the shortest distance. An 

ML-trained Euclidean distance classifier can be made more effective by adaptively 

readjusting the class mean feature vectors so that the misclassification of training samples is 

minimised. This is called minimum classification error (MCE) training. 

Training a K-nearest-neighbour classifier entails simply storing all the feature vectors of the 

training samples along with their true class labels. To classify an unknown new sample, the 

distance between its feature vector and each of the feature vectors of the training samples is 

calculated. The K training samples with the shortest distances are identified. The sample is 

then assigned to the class that has the highest number of representatives among the K nearest 

neighbours of the unknown sample. 

A feed-forward neural network classifier is made up of artificial neural cells modelled after 

neurons of the human brain. The neural cells are arranged in interconnected layers of neural 

cells that process information in parallel. The feed-forward neural network classifier is 

usually made up of an input layer, one or more hidden layers and an output layer. The number 

of inputs is equal to the number of features in the feature vector and each input receives a 

feature value. The values of input features are individually weighted and fed into the neural 

cells of the hidden layer. Finally, the weighted outputs of neural cells of the hidden layer are 

fed into the neural cells of the output layer. The cells in the output layers are properly coded 

to represent the classes involved in the classification task. 

When training a feed-forward neural network, the feature vectors of the training samples are 

consecutively presented at the inputs, then for each feature vector the resulting output of the 

neural network is compared to the desired output (corresponding to the class label of the input 

vector). The weights of the network are then adjusted according to an algorithm known as 

backpropagation in order to usually minimise the mean square error between the obtained 
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outputs and the desired outputs for the samples of the training set. Once trained, the feed-

forward neural network is able to classify unknown new samples. 

Multiclass classification can be done either directly or by combining many binary classifiers. 
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Chapter 4: Description of the experimental data 

4.1 Introduction 

The experiments pertaining to this thesis were done using the images of the standard dataset 

TILDA. It is a textile texture database developed by the Texture Analysis working group of 

the Deutsche Forschungsgemeinschaft, major research programme “Automatic Visual 

Inspection of Technical Objects” from the Technical University of Hamburg, Germany.  

One of the main advantages of using that dataset is the availability of a large number of 

samples from different fabric categories. That ensures high validity and reliability of the 

results of the tests done on it and allows expanding the scope of applicability of the derived 

conclusions. Furthermore, significant research work has been done using the entire or a part 

of that dataset [35, 53, 83, 134, 157-172]. That makes it possible to compare results from 

different researchers and from different methods. 

The dataset contains pictures from four different classes of fabrics defined by the regularity of 

the surface structure. Two representatives of each type are included. Figure 4-2 shows sample 

pictures of the two representatives for each of the four fabric classes. Fifty images per 

representative of defect-free surface are present in the dataset. Furthermore, seven defect 

types are defined within each class of fabric and the dataset contains fifty images 

representative of each type of defect. We will deal with only four of the seven types of defects 

because we realised that only those four types correspond to real fabric defects, while the 

three others correspond to image deformation due to lighting and camera tilting. Figure 4-1 

shows the structure of the dataset we used in our experiments, while Table 4-1 shows the 

detailed numbers of images from the dataset that we considered in this thesis. 

All images are monochrome with 256 grey levels. They are sized 768x512 pixels and are 

stored in the TIFF format. The images are arbitrarily rotated. This makes the methods of 

defect detection more difficult, but the successful detection methods become more robust. 

To facilitate the comparison of the dataset to the defect classes used in the textile industry 

standards, an additional twenty images from each category of commercially available fabric 

defects are presented. The dataset contains a total of 3 228 images. 
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Figure 4-1: Structure of the dataset used in this thesis 

 

Table 4-1: The TILDA images used in this thesis 

Fabric 

class 

Representa

tive 

Error type Number 

of images 

Fabric 

class 

Represent

ative 

Error 

type 

Number 

of 

images 

C1 R1 E1 50 C3 R1 E1 50 

E2 50 E2 50 

E3 50 E3 50 

E4 50 E4 50 

R3 E1 50 R3 E1 50 

E2 50 E2 50 

E3 50 E3 50 

E4 50 E4 50 

C2 R2 E1 50 C4 R1 E1 50 

E2 50 E2 50 

E3 50 E3 50 

E4 50 E4 50 

R3 E1 50 R3 E1 50 

E2 50 E2 50 

E3 50 E3 50 

E4 50 E4 50 

        

4.2 The fabric classes and defect types 

The four classes of fabrics present in the dataset are shown in Table 4-2. 

C3 

R3 

E4 E3 E2 E1 

C4 

R1 R3 R1 

C1 

R1 R3 

C2 

R2 R3 

Dataset 
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Table 4-2: Fabric classes in the TILDA dataset 

Class Description 

Class 1 

(C1) 

Very fine fabrics with or without visible external structure. Examples are 

non-printed rayon or silk. The first row of Figure 4-2 shows some examples. 

Class 2 

(C2) 

Fabrics with a low variance stochastic structure. The surface contains no 

imprints. Examples are wool or jute. The second row of Figure 4-2 shows 

some representatives. 

Class 3 

(C3) 

Fabrics with a periodic structure clearly visible. Examples are fabrics with a 

printed diamond pattern or curtains. Some representatives of that class are 

shown in the third row of Figure 4-2. 

Class 4 

(C4) 

Printed fabrics with no apparent periodicity. An example is viscose printed 

with some flowers of varying girth. The last row of Figure 4-2 shows some 

examples. 

  

The defect types used in the dataset were inspired by the approach proposed by the Institute 

of Textile Machinery and Textile Industry of the ETH Zurich [173]. A brief description of the 

observed defects included in the dataset is shown in Table 4-3.  

Table 4-3: Fabric defects observed in the TILDA dataset  

Defect type Description 

Defect E0 No defect in the fabric. 

Defect E1 Holes in the fabric and cuts caused by mechanical damage. 

Defect E2 Oil stain and colour fading. 

Defect E3 Thread error. Condensations of filaments (not mechanically induced 

cracks). Absence of individual threads in the fabric. 

Defect E4 Foreign body in the fabric (so-called flight) 

Defect E5 Wrinkles in the fabric (with no mechanical damage). 

Defect E6 Changing lighting conditions. 

Defect E7 Affine distortion by tilting the camera and changing the distance 

between the camera and the specimen.  

  

As explained earlier, only defect types E0 through E4 will be considered in this thesis.  
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4.3 Elementary experimental sample 

For all the defect detection or classification experiments of this thesis, the fabric image is 

divided into non-overlapping windows and then each window is independently classified as 

defective or defect-free. If the window is detected as defective it may be assigned to one of 

the four defect categories defined in Section 4.2. 

The choice of window size depends mainly on two considerations: 

i) The accuracy in localising the defects. The smaller the window, the more 

localised the defect. 

ii) The degree of representation of the texture by the data inside the window. 

The bigger the window, the more the data it contains represents the texture. 

A trade-off between the two considerations should be found. Yang [16] performed 

experiments on fabric images for the purpose of defect detection using window sizes of 

16x16, 32x32 and 64x64 pixels, and found 32x32 to be the best window size. Several other 

researchers [20, 8] used a 32x32 window which seems to be a good compromise between the 

two above-mentioned conflicting considerations. Therefore we will use 32x32 windows. Each 

fabric image will be divided into 32x32 non-overlapping windows and the elementary 

experimental sample will be each of those windows. Figure 4-3 illustrates the division of each 

image. 
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shown in Table 4-4. The reader should refer to Figure 4-1 for the folder names used in the 

algorithm.  

The algorithm was implemented using MATLAB and steps 5 and 7 were implemented using 

the MATLAB function ‘roipoly’. The choice of the defective area label in steps 7 and 9 is 

done according to the folder name where the image under consideration is stored (label 1 for 

images in folder E1 and labels 2, 3 or 4 for images in folders E2, E3 and E4 respectively). 

The threshold number (40) of defective pixels to decide whether a 32x32 window is defective 

or not was chosen empirically by looking at the subdivided image and the labelling results. 

Table 4-4: Algorithm for sample labelling 

1) For each of the eight fabric types (Folders C1\R1, C1\R3, C2\R2, C2\R3, C3\R1, 

C3\R3, C4\R1 and C4\R3) 

2) For each of the four defect types (Folders E1, E2, E3 and E4) 

3) For each of the 50 images 

4) Display the image to the user. 

5) Allow the user to encircle the defective area using the mouse. 

6) If there is another defective area go to step 5. 

7) Create a binary image of the same size as the original image where 

the pixels corresponding to defective areas have the value of the 

defect type number (1, 2, 3 or 4) and the remaining pixels have the 

value 0. 

8) Divide the binary image obtained in step 7 into 32x32 windows (we 

obtain a 16x24 array of such windows). 

9) Create a 16x24 label matrix and set each label to defective (1, 2, 3 

or 4) if the number of defective pixels is greater than 40 in the 

corresponding window. Otherwise set the label to defect-free (0). 

10) Save both the binary image obtained in step 7 and the label matrix 

obtained in step 9. 

11) Continue with the next image 

12) Continue with the next defect type 

13) Continue with the next fabric type 

 

4.5 Training and testing data sets 

The experimental samples we used in our experiments is a subset of all the elementary 

experimental samples as defined in Section 4.3 obtained from all the 1,600 images. The 

samples were chosen as follows. All the defective samples were included because the 

defective samples are much fewer than defect-free samples. The number of defective samples 

was 37,546. We decided to include the same number of defect-free samples chosen as 
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follows. From each image, the same number of defect-free as defective samples was taken. 

The defect-free samples were chosen randomly, but once selected they were recorded so that 

the same samples were used in all the experiments. That was done in order to make possible 

the comparison of the experimental results.  

After setting up the experimental dataset as described in the previous paragraph, it was 

divided into two parts of almost the same size, the training data set for training the classifiers 

and the testing dataset for assessing the performance of the trained classifier and the overall 

detection or classification system. One half of the defective samples from every image was 

included in the training set while the other half was included in the testing set. When the 

number of defective samples from an image was odd, the additional sample was included in 

the testing set. The same process was applied to the defect-free samples. Table 4-5 shows the 

detailed numbers of samples in the experimental dataset. In the table, C1 through C4 refer to 

the four classes of fabrics, E1 through E4 to the four types of defects as described in Table 

4-2 and Table 4-3, while TRN and TST refer to the training and testing set respectively. 

Table 4-5: Number of samples in the experimental dataset 

  

C1 C2 C3 C4 
Total 

    C1R1 C1R3 C2R2 C2R3 C3R1 C3R3 C4R1 C4R3 

E1 

TRN 480 576 830 1812 1000 526 800 432 6456 

TST 532 636 880 1870 1060 586 854 480 6898 

Total 1012 1212 1710 3682 2060 1112 1654 912 13354 

E2 

TRN 1170 700 1268 1748 1398 1130 1626 692 9732 

TST 1208 744 1326 1780 1448 1180 1680 722 10088 

Total 2378 1444 2594 3528 2846 2310 3306 1414 19820 

E3 

TRN 806 1236 1568 2492 1190 670 868 598 9428 

TST 836 1282 1632 2532 1236 722 926 648 9814 

Total 1642 2518 3200 5024 2426 1392 1794 1246 19242 

E4 

TRN 1468 1474 808 1912 1724 1310 1344 1106 11146 

TST 1496 1532 858 1960 1782 1362 1390 1150 11530 

Total 2964 3006 1666 3872 3506 2672 2734 2256 22676 

Total 

TRN 3924 3986 4474 7964 5312 3636 4638 2828 36762 

TST 4072 4194 4696 8142 5526 3850 4850 3000 38330 

Total 7996 8180 9170 16106 10838 7486 9488 5828 75092 

 

4.6 Performance evaluation 

In this section we define the performance measures for defect detection and defect 

classification used in this thesis. Let us denote by TP the number of defective samples 
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detected as defective, by TN the number of defect-free samples correctly detected as defect-

free, by FP the number of defect-free samples incorrectly detected as defective and by FN the 

number of defective samples incorrectly detected as defect-free.  

The detection rate is the ratio of the number of samples correctly detected to the total number 

of samples as expressed in (4.1). That ratio is normally expressed as a percentage. 

Detection rate 
Number of samples correctly detected

Total number of samples
  (4.1) 

The false alarm rate is the ratio of the number of non-defective samples detected as defective 

to the total number of the non-defective samples. This can be expressed by (4.2). In the 

similar way, that ratio is normally expressed as a percentage. 

False alarm rate 
FP

TN+FP
 (4.2) 

In defect classification experiments, we used the classification rate defined as the ratio of the 

number of samples correctly classified into their respective classes to the total number of 

samples. It is to be noted that the defect classification rate depends on the number of defect 

classes involved in the experiment. The more defect classes there are, the more likely the 

samples will be misclassified and the lower will be the classification rate for a given defect 

classification method. 

The confusion matrix allows representing the classification performance in a summarised 

form as shown in Table 4-6. 

Table 4-6: Confusion matrix 

  True class 

  ω1 ω2 … ωN 

P
re

d
ic

te
d

 c
la

ss
 

ω1 e11 e12 … e1N 

ω2 e21 e22 … e2N 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 . 

  . 

. 

. 

. 

 ωN eN1 eN1 … eNN 

 

The correct classification rate can be expressed as (4.3) 
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where N is the number of classes and eij is the number of samples. 

4.7  Summary 

The experiments of this thesis were performed using textile images from the TILDA dataset, a 

textile texture database developed by the Textile Analysis working group of the Deutsche 

Forschungsgemeinschaft in Germany. 

The dataset contains pictures of fabrics grouped into four different classes with two 

representatives per class. This resulted into eight different types of fabrics in the dataset. The 

fabric images contain defects of seven different types, but only four of them were used in this 

thesis. 

For the experiments for this thesis, the fabric images were divided into non-overlapping 

windows of size 32x32 pixels each. Those windows individually constitute our experimental 

samples. 

Since no labelling information (as defective or defect-free) of those experimental samples is 

directly available in the TILDA dataset, a semi-automatic way of visually assessing and 

labelling them was devised and implemented using MATLAB. 

The resulting final experimental dataset was made of 75,092 experimental samples (32x32 

image patches) properly labelled, extracted from eight different types of fabrics and 

containing defects of four different classes in addition to the defectless class. Those samples 

were then divided equally into the training and testing datasets. 

For fabric defect detection and classification performance evaluation, we defined and used the 

following metrics: (i) the detection rate, (ii) the false alarm rate, (iii) the classification rate and 

(iv) the confusion matrix. 
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Chapter 5: Exploration of grey level co-occurrence matrix features 

5.1 Introduction 

The objective of this chapter is to identify the most effective co-occurrence matrix features 

and to devise a fast algorithm to implement them. Various research results indicate that co-

occurrence matrix features are effective in discriminating texture [10, 30, 43]. However, the 

same research results point out that the extraction of those features is computationally 

expensive. Therefore, we want to identify the lowest number of those features that preserve 

the texture discriminating ability of the full set of the features. The assumption is that the 

fewer the features the less expensive they are to compute. 

The co-occurrence feature extraction from a texture image normally requires two phases, the 

compilation of the co-occurrence matrix and the computation of the features from the co-

occurrence matrix. As presented in subsection 3.2.4, Clausi and Zhao [120] devised the 

GLCHS representation that allows faster computation of the co-occurrence features. We 

propose a modified-version of GLCHS for implementation in MATLAB and use it for all our 

co-occurrence feature experiments.  

This chapter is organised as follows. In Section 5.2 we determine the number of optimal 

GLCM features when an ML-trained Euclidean distance classifier is used. In Section 5.3 we 

identify the actual GLCM features for the different types of fabrics when an ML-trained 

Euclidean distance classifier is used. Section 5.4 studies the variation of defect detection 

performance of the GLCM features as the quantisation level of the fabric images changes, 

while Section 5.5 studies that variation as the intersample distance parameter varies. In 

Section 5.6 we investigate the defect detection performance of GLCM features when the 

MCE-trained Euclidean distance, the K-nearest-neighbour (K=3) and the feed-forward neural 

network classifiers are used. Section 5.7 deals with the problem of defect classification using 

GLCM features, while Section 5.8 deals with the modified GLCHS algorithm for accelerating 

the computation of the GLCM features. We summarise the chapter in Section 5.9. 

5.2 Optimal number of the GLCM features for fabric defect detection 

5.2.1 Introduction 

Haralick et al. [31] proposed fourteen GLCM features for texture discrimination as described 

in Subsection 3.2.3. Normally those features are computed from co-occurrence matrices 

compiled for four different directions. The images from which our experimental samples were 

extracted were arbitrarily rotated and consequently the relative orientation of samples with 
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respect to each other is unknown. The advantage of using such experimental samples is that 

the defect detection methods that perform well on them are more robust. However, that 

requires the textural features used to be rotation invariant.  

We adopted the method proposed by Haralick et al. [31] to get almost rotation invariant 

GLCM features. Firstly, we compiled four symmetric co-occurrence matrices P0, P45, P90 and 

P135 corresponding respectively to 0
o
, 45

o
, 90

o
 and 135

o 
for each of the experimental samples. 

Secondly, we extracted the fourteen features fi
1

, fi
2

, …, fi
14

 (i=0, 45, 90, 135) from each of the 

four co-occurrence matrices. Finally, we calculated the average    
  
 
    

 
    

 
     

 

 

 
and the 

range          (  
 
     

 
     

 
      

 
)     (  

 
    

 
    

 
     

 
) (j 1, 2, …, 14) of the same 

feature from the four co-occurrence features for each of the fourteen features. That led for 

each experimental sample to 28 features – fourteen average features and fourteen range 

features – which are invariant to any rotation by 0
o
, 45

o
, 90

o
, 135

o
, 180

o
, 225

o
, 270

o
 or 315

o
. 

The four last angle measures are justified by the symmetry of the co-occurrence matrix. 

It has also been shown that many of those features are correlated among each other [48]. 

Therefore, the objective of the experiment under this section is to find for each fabric type, 

the number of features that yields the best detection rate. As we have four classes of fabrics 

and two particular representatives of each class, the experiment was performed for each of the 

eight resulting fabric types. Those types were referred to using the names of the folders in 

which the corresponding images are stored as C1R1, C1R3, C2R2, C2R3, C3R1, C3R3, 

C4R1 and C4R3. That can be made clear by referring to Figure 4-1.  

The average feature and the range feature of the same feature were always considered 

together and we refer to such a pair as combined feature in this experiment. Therefore each 

sample has a feature vector made up of fourteen combined features. The objective of the 

current experiment is to find the optimal number of combined features for defect detection 

and identify for each fabric type the optimal combined features. 

Firstly, we evaluate the defect defection performance as the number of combined features 

considered increases. We find the best detection rate that can be achieved using a combined-

feature for each of the eight fabric types and for each of the four defect types. We then do the 

same for pairs of combined features and then for triplets and so forth until reaching all the 

fourteen combined features. As there are fourteen combined features, the number of 

combinations to be tried for each fabric type and each error type is only 

∑ (  
 
)    

   
   

  (    ) 
 =16383 and an exhaustive search was possible and therefore was 

performed. 
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5.2.2 Description of the experiment 

The steps of the experiment for each of the eight fabric types were as follows.  

1. For each of the samples in both the training and testing sets 

a. Compile the four co-occurrence matrices 

b. Calculate the fourteen features from each of the four co-occurrence 

matrices using the formulae provided in Subsection 3.2.3. 

c. Calculate the averages and the ranges of the fourteen features over the 

four co-occurrence matrices. That leads to a feature vector made up of 

fourteen average features numbered from 1 to 14 and fourteen range 

features numbered from 15 to 28. 

2. Once all the features are calculated, arrange the feature vectors per defect type 

into E1, E2, E3 and E4 groups. That is done for both the training and testing 

sets. That leads to an overall number of 64 groups as shown in Table 5-1. 

Table 5-1: Groups of samples and their respective number of elements 

Training set Testing set 

S/N Group 
Number of 

samples 
S/N Group 

Number of 

samples 

1 C1R1E1 480 33 C1R1E1 532 

2 C1R1E2 1170 34 C1R1E2 1208 

3 C1R1E3 806 35 C1R1E3 836 

4 C1R1E4 1468 36 C1R1E4 1496 

5 C1R3E1 576 37 C1R3E1 636 

6 C1R3E2 700 38 C1R3E2 744 

7 C1R3E3 1236 39 C1R3E3 1282 

8 C1R3E4 1474 40 C1R3E4 1532 

9 C2R2E1 830 41 C2R2E1 880 

10 C2R2E2 1268 42 C2R2E2 1326 

11 C2R2E3 1568 43 C2R2E3 1632 

12 C2R2E4 808 44 C2R2E4 858 

13 C2R3E1 1812 45 C2R3E1 1870 

14 C2R3E2 1748 46 C2R3E2 1780 

15 C2R3E3 2492 47 C2R3E3 2532 

16 C2R3E4 1912 48 C2R3E4 1960 

17 C3R1E1 1000 49 C3R1E1 1060 

18 C3R1E2 1398 50 C3R1E2 1448 

19 C3R1E3 1190 51 C3R1E3 1236 

20 C3R1E4 1724 52 C3R1E4 1782 

21 C3R3E1 526 53 C3R3E1 586 

22 C3R3E2 1130 54 C3R3E2 1180 

23 C3R3E3 670 55 C3R3E3 722 
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Training set Testing set 

S/N Group 
Number of 

samples 
S/N Group 

Number of 

samples 

24 C3R3E4 1310 56 C3R3E4 1362 

25 C4R1E1 800 57 C4R1E1 854 

26 C4R1E2 1626 58 C4R1E2 1680 

27 C4R1E3 868 59 C4R1E3 926 

28 C4R1E4 1344 60 C4R1E4 1390 

29 C4R3E1 432 61 C4R3E1 480 

30 C4R3E2 692 62 C4R3E2 722 

31 C4R3E3 598 63 C4R3E3 648 

32 C4R3E4 1106 64 C4R3E4 1150 

 

3. Organise the feature vectors of each group in a feature table. Table 5-2 shows 

the example of such a table for the group C1R1E1 of the training set. Each row 

contains all the features (feature vector) of a particular sample while each 

column contains the values of a particular feature for all the samples of that 

group. Besides the feature vector, a label is associated to each sample, 0 if the 

sample is defect-free and 1, 2, 3 or 4 if the sample is defective and belongs to 

the group E1, E2, E3 or E4 respectively.  

Table 5-2: Feature table of the samples of C1R1E1 group of the training set 

 Feature 1 Feature 2 … Feature j … Feature 28 

Sample 1 f1,1 f1,2 … f1,j … f1,28 

Sample 2 f2,1 f2,2 … f2,j … f2,28 
. . . 

. . . 
. . .  

. . . 
. . . 

. . . 

Sample i fi,1 fi,2 … fi,j  f2,28 
. . . 

. . . 
. . . … 

. . .  
. . . 

Sample 480 f480,1 f480,2 … f480,j … f480,28 

  

4. Normalise the features of each of the groups of the training set (groups 

numbered 1 to 32) using the min-max standardisation [145] as described in 

Subsection 3.5.2 according to the formula given by (5.1) 

    
  

    -     

      -      
  (5.1) 

Where fi,j is the original feature value, fi,j
*
 the normalised feature value, and fmin j and fmax j are 

the minimum and the maximum value of feature j in the training set of the group. 

5. Normalise the features of each of the groups of testing set (groups numbered 33 

to 64) using the min-max standardisation. Use (5.1) as well, but in this case fmin j 
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and fmax j refer to the minimum and the maximum value of the feature j in the 

corresponding training set group rather than the current testing set. 

6. For each of the groups in the training set, train a Euclidean distance classifier 

using the normalised feature vectors. As described in Subsection 3.5.3, that 

means calculating two mean normalised feature vectors, one of feature vectors 

of samples labelled as defect-free (label 0) and one of normalised feature 

vectors of samples labelled as defective (label 1, 2, 3 or 4). That can be 

expressed by (5.2) 





kk

k
N F

F
1

m , with ]f,,f,f,f[F *

i,28

*

i,3

*

i,2

*

i,1   (5.2) 

where  lk ,0  with l=1, 2, 3, 4 and Nk is the number of training sample of the 

class ωk. 

7. For each of the 64 groups in both the training and testing set, perform the 

Euclidean distance classification of the normalised features vectors considering 

in each case one combined feature and record the highest detection rate 

achieved as well as the combined feature used to achieve it. This procedure is 

detailed in pseudo-code in Table 5-3. 

Table 5-3: Algorithm for evaluating the highest detection performance obtained with a 

single GLCM feature 

1) For each of the eight fabric types (C1R1, C1R3, C2R2, C2R3, C3R1, C3R3, C4R1 

and C4R3) 

2) For each of the four defect types (E1, E2, E3 and E4) 

3) For each of the two sample sets (training and testing) 

4) Perform the Euclidean distance based detection using only one of 

the fourteen combined features. 

5) Record the highest detection rate obtained in step 4 as well as the 

corresponding combined feature. 

6) Continue with the next sample set 

7) Continue with the next defect type 

8) Continue with the next fabric type 

 

8. For each of the 64 groups in both the training and testing set, perform the 

Euclidean distance classification of the normalised features vectors considering 

in each case a pair of combined features and record the highest detection rate 
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achieved, as well as the pair of combined features used to achieve it. The 

detailed procedure is similar to the one illustrated in Table 5-3, with the 

difference that in step 4) we consider each time one of the 91 possible pairs of 

combined features. Note that as there are fourteen combined features, the 

number of possible pair combinations is .
  
 

/    . 

9. Repeat step 8, but use triplets of combined features instead of pairs. There are 

364 possible triplets of combined features.  

10. Do the same for quadruplets of features, then quintuplets and so forth until all 

fourteen combined features are used. 

5.2.3 Results and interpretation 

Table 5-4 shows the best detection rate obtained for the n-tuplets of combined features for all 

the 64 groups of samples (or feature vectors), as well as the mean of the best detection rates 

for all the groups. Here n refers to the number of combined features. Figure 5-1 graphically 

illustrates how the mean of the best detection rates changes as the number of combined 

features increases. 

 

Figure 5-1: Mean of best detection rates as function of the number of GLCM features 

for all the samples in the dataset 
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There is a significant improvement of the detection rate (about 3%) as the number of 

considered combined features is increased from one to two. There is additional improvement 

but lesser in magnitude as the number of combined features is increased from two to three. 

There is practically no improvement as the number of combined features is changed from 

three to four or from four to five. The mean value of best detection rates drops as the number 

of combined features is increased beyond five. 

Looking at Figure 5-2 that shows in graph how the averages of the best detection rate changes 

as the number n of combined features increases, one can see that the trend of variation of the 

best detection rate with respect to the number of combined features, is generally kept for the 

individual fabric types. 

Table 5-4: Average of best detection rates as function of the number of GLCM features 

 Fabric types 

M
E

A
N

 

V
A

L
U

E
 

Number of 

features 

C1 C2 C3 C4 

R1 R3 R2 R3 R1 R3 R1 R3 

 1 88.6 84.8 75.3 71.5 65.1 68.3 60.6 61.3 72.0 

 2 90.3 86.1 79.2 74.3 70.6 70.6 65.2 62.6 74.9 

 3 90.6 86.4 81.2 75.1 73.1 71.6 65.6 62.8 75.8 

 4 90.7 86.5 81.6 75.5 73.7 70.7 66.1 62.4 75.9 

 5 90.7 86.5 81.6 75.8 73.7 70.3 65.8 62.2 75.8 

 6 90.6 86.4 81.1 75.9 73.4 69.2 65.3 62.0 75.5 

 7 90.6 86.5 80.9 75.9 72.8 68.8 65.4 61.2 75.3 

 8 90.5 86.4 80.6 75.8 71.8 68.1 65.2 60.9 74.9 

 9 90.3 86.3 80.2 75.7 70.7 67.4 62.1 60.5 74.1 

 10 89.9 86.2 79.9 75.4 69.3 66.6 61.1 60.2 73.6 

 11 89.6 86.0 79.3 74.8 67.7 64.9 60.6 59.8 72.8 

 12 89.3 85.7 78.7 74.3 66.4 63.6 60.2 59.3 72.2 

 13 88.7 85.4 78.1 73.5 65.0 62.5 59.6 58.6 71.4 

 14 87.9 84.7 77.2 72.7 63.7 61.4 59.2 58.1 70.6 
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Figure 5-2: Average of best detection rates as function of the number of GLCM features 

for the different fabric types 

Given that we aim at minimising the number of combined features extracted, yet get a good 

detection rate, we conclude that the optimal number of combined features to use for defect 

detection is three.  

5.3 Optimal GLCM feature sets per fabric type 

5.3.1 Introduction 

From the previous discussion we concluded that the optimal number of GLCM features for 

fabric defect detection is three. We furthermore need to identify those actual features for each 

fabric type. Table 5-5 shows the best detection rates as well as the actual features for the 

different types of fabrics and different types of defects they contain when the number of 

combined features is three. 
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Table 5-5: Best triplets of GLCM features for defect detection in different types of 

fabrics 

Type of 

fabric 

Defect 

type 

Best triplets of features and corresponding 

defect detection rates 
GLCM features Training set Testing set 

Rate Triplet Rate Triplet 

C1R1 

E1 94.8 {f2, f10, f12} 94.4 {f8, f10, f14}  {f1}-Angular 

second moment 

(Also called 

energy) 

 {f2}-Contrast 

 {f3}-Correlation 

 {f4}- Sum of 

squares: 

variance 

 {f5}-Inverse 

second moment 

(also called 

homogeneity) 

 {f6}-Sum average 

 {f7}-Sum variance 

 {8}-Sum entropy 

 {f9}-Entropy 

 {f10}-Difference 

variance 

 {f11}-Difference 

entropy 

 {f12, f13}-

Information 

measures of 

correlation 

 {14}-Maximal 

correlation 

coefficient 

 

E2 92.1 {f8, f11, f14} 91.4 {f5, f11, f12} 

E3 87.1 {f3, f8, f12} 88.2 {f3, f5, f12} 

E4 88.9 {f9, f13, f14} 88.2 {f2, f4, f13} 

C1R3 

E1 95.0 {f5, f10, f12} 93.9 {f3, f10, f12} 

E2 83.6 {f7, f13, f14} 84.5 {f10, f11, 

f13} 

E3 87.9 {f5, f10, f13} 87.0 {f2, f11, f13} 

E4 80.0 {f5, f6, f13} 79.0 {f5, f7, f13} 

C2R2 

E1 84.0 {f2, f4, f12} 84.1 {f2, f5, f13} 

E2 85.3 {f4, f5, f12} 87.2 {f5, f7, f12} 

E3 75.8 {f5, f8, f12} 75.7 {f5, f8, f12} 

E4 80.2 {f2, f3, f14} 77.6 {f2, f5, f14} 

C2R3 

E1 78.0 {f3, f11, f14} 79.5 {f8, f13, f14} 

E2 76.7 {f5, f7, f12} 77.0 {f5, f6, f12} 

E3 74.3 {f5, f10, f11} 73.3 {f4, f5, f11} 

E4 71.4 {f4, f5, f12} 70.7 {f4, f7, f14} 

C3R1 

E1 67.7 {f2, f3, f9} 67.3 {f2, f3, f9} 

E2 80.5 {f1, f2, f13} 79.7 {f2, f4, f14} 

E3 70.9 {f1, f8, f11} 70.6 {f1, f2, f3} 

E4 74.4 {f2, f9, f11} 73.7 {f2, f9, f11} 

C3R2 

E1 71.9 {f1 ,f11 ,f14} 72.4 {f1 ,f11 ,f14} 

E2 70.0 {f2 ,f10 ,f14} 68.0 {f4 ,f7 ,f14} 

E3 73.3 {f9 ,f11 ,f14} 74.7 {f9 ,f11 ,f14} 

E4 71.5 {f1 ,f9 ,f14} 71.1 {f1 ,f9 ,f14} 

C4R1 

E1 66.0 {f1 ,f2 ,f5} 68.9 {f1 ,f2 ,f5} 

E2 62.6 {f2 ,f3 ,f13} 62.0 {f2 ,f3 ,f13} 

E3 74.3 {f5 ,f6 ,f11} 73.1 {f5 ,f6 ,f11} 

E4 59.1 {f6 ,f9 ,f14} 58.5 {f8 ,f11 ,f14} 

C4R3 

E1 58.6 {f2 ,f3 ,f11} 58.1 {f2 ,f5 ,f9} 

E2 73.4 {f6 ,f7 ,f11} 72.0 {f2 ,f4 ,f7} 

E3 59.0 {f2 ,f3 ,f11} 61.1 {f3 ,f5 ,f11} 

E4 58.5 {f2 ,f10 ,f11} 61.7 {f5 ,f10 ,f11} 

 

From Table 5-5 we can read that for a given fabric type the triplet of GLCM features that 

achieves the best defect detection rate is not necessarily the same for the different types of 

defects. Furthermore, we can read differences of those best triplets between the training and 
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the testing set. That means that if one could be sure that a fabric will have only one type of 

defect, he could optimise the feature extractor to that particular defect by extracting only its 

corresponding best triplet of GLCM features. However, it is not possible to know beforehand 

that only one type of defect will occur in a fabric during inspection. Therefore, one should 

find a triplet of GLCM features that would perform well for all known defects that are likely 

to occur during inspection. 

We propose to select the triplet of GLCM features that minimises the squared error of 

detection rates calculated from the best detection rates shown in Table 5-5. That squared error 

would be calculated using the training samples. 

5.3.2 The algorithm 

For each fabric type, we calculate for each of 364 triplets of GLCM features the defect 

detection rate for each of the four types of defects. The four obtained detection rates for each 

defect types are subtracted from their respective possible best rates (as given in Table 5-5) 

and the resulting differences are individually squared. The four resulting square errors are 

then added together to get the cumulative squared error (Cum Squared Error) for that triplet of 

GLCM features and for that fabric type. The diagram of Figure 5-3 illustrates that process for 

the C1R1 fabric type and the {f1,f2, f3} triplet.  

For a given fabric type the cumulative squared error is calculated for each of the 364 triplets 

of GLCM features and then the triplet that yields the lowest cumulative square error is chosen 

as the optimal triplet of features for that fabric type. The detailed algorithm is shown in the 

pseudo-code of Table 5-6. 
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Table 5-6: Algorithm for identifying the optimal triplet of GLCM features for each 

fabric type 

1) For each of the eight fabric types (C1R1, C1R3, C2R2, C2R3, C3R1, C3R3, 

C4R1 and C4R3) samples in the training set 

2) Initialise the Best Cum Squared Error to 40000 

3) Initialise the optimal triplet to {f1, f2, f3} 

4) For each of the 364 possible triplets GLCM features 

5) Initialise the Cum Squared Error to 0 

6) For each of the four defect types (E1, E2, E3 and E4) 

7) Perform the Euclidean distance based detection using the 

current triplet of the GLCM features. 

8) Calculate the detection rate for the current error type. 

9) Calculate the Squared Error that is equal to the square of the 

difference of the detection rate calculated in step 6) and the 

best detection rate of for the current fabric type and the current 

defect shown in Table 5-5. 

10) Add Squared Error to the previous Cum Squared Error. 

11) Continue with the next defect type 

12) If the current Cum Squared Error is lower than the current Best 

Cum Squared Error then set Best Cum Squared Error to the 

current Cum Squared Error and set Optimal triplet to current 

triplet. 

13) Continue with the next triplet 

14) Record the current optimal triplet as the optimal triplet for the current 

fabric type.  

15) Continue with the next fabric type 

 

5.3.3 Results and their evaluation 

Table 5-7 shows the obtained optimal triplets of GLCM features for each of the fabric types. 

We can see that the optimal triplet depends on the fabric type as the optimal triplets of the 

eight fabric types are all different. The most frequent and thus the most discriminative GLCM 

feature is the contrast {f2} which appears in five optimal triplets out of eight. The sum 

variance {f7} and the sum entropy {f8} are the least discriminative features as they do not 

appear in any of the optimal triplets for the eight fabric types used in the experiment. 

After finding the optimal triplets of features the next step was to verify whether they possess 

the desired attribute of being more capable of discriminating defective from defect-free fabric 

samples than the whole set of the GLCM features. This property is important because the 
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optimal triplets are limited in size (only three features instead of fourteen) and are therefore 

much faster to compute than the whole feature set. 

Table 5-7: Optimal GLCM features 

Fabric 

type 

Optimal 

feature set 

GLCM Features 

C1R1  {f9, f13, f14} {f1}-Angular second moment 

(Also called energy) 

{f2}-Contrast 

{f3}-Correlation 

{f4}- Sum of squares: variance 

{f5}-Inverse second moment 

(also called homogeneity) 

{f6}-Sum average 

 

{f7}-Sum variance 

{f8}-Sum entropy 

{f9}-Entropy 

{f10}-Difference variance 

{f11}-Difference entropy 

{f12, f13}-Information 

measures of correlation 

{f14}-Maximal correlation 

coefficient 

 

C1R3  {f5, f10, f13} 

C2R2  {f2, f5, f12} 

C2R3  {f2, f6, f12} 

C3R1  {f1, f2, f3} 

C3R3  {f9, f11, f14} 

C4R1  {f2, f4, f5} 

C4R3  {f2, f10, f11} 

 

Table 5-8, Figure 5-4 and Figure 5-5 show the results of the defect detection experiments 

performed using (i) the best triplet of GLCM features for each particular fabric type and each 

particular defect type, (ii) the optimal triplet of features for each particular fabric type and (iii) 

the whole set of fourteen GLCM features. 

It can be seen that apart from a few exceptions, the detection rate achieved by the optimal 

triplet of features lies between that obtained using a triplet optimised for a particular defect 

and that obtained using the whole set of the fourteen GLCM features. The few exceptions 

were observed for the samples of the fabric types (i) C1R3 (for the defect type E4 in the 

training set), (ii) C2R3 (for the defect type E1 in the training set), (iii) C3R1 (for the defect 

type E2 in the testing set), (iv) C3R3 (for the defect type E2 in the training set) and (v) C4R3 

(for the defect type E3 in the testing set). In these cases, the performance achieved by the 

optimal triplets are close to that obtained using the whole set of features; the highest 

difference is 2.1%. Therefore the optimal triplets of features do indeed possess the above-

mentioned desired attribute. 
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Training set Testing set 

C1R1 

  

C1R3 

  

C2R2 

  

C2R3 

  

Figure 5-4: Defect detection rate obtained using the best triplet, the optimal triplet as well 

as the whole set of fourteen GLCM features for the fabric types C1R1, C1R3, 

C2R2 and C2R3 
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 Training set Testing set 

C3R1 

  

C3R3 

  

C4R1 

  

C4R3 

  

Figure 5-5: Defect detection rate obtained using the best triplet, the optimal triplet as well 

as the whole set of fourteen GLCM features for the fabric types C3R1, C3R3, 

C4R1 and C4R4 
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Table 5-8: Detect performance of the optimal triplet of GLCM features with respect to 

the best GLCM triplet and the whole GLCM feature set 

 

Training Testing 

CRE Best Optimal All Best Optimal All 

C1R1E1 94.8 93.8 92.5 94.4 92.7 92.3 

C1R1E2 92.1 90.2 90.5 91.4 90.4 89.6 

C1R1E3 87.1 86.2 83.3 88.2 86.5 83.9 

C1R1E4 88.9 88.9 86.6 88.2 87.3 84.5 

C1R3E1 95.0 93.6 93.4 93.9 92.3 92.5 

C1R3E2 83.6 82.1 81.6 84.5 84.1 83.3 

C1R3E3 87.9 87.9 85.4 87.0 86.0 84.0 

C1R3E4 80.0 79.1 79.9 79.0 78.3 77.9 

C2R2E1 84.0 82.7 83.4 84.1 83.4 82.2 

C2R2E2 85.3 79.2 76.7 87.2 81.7 80.2 

C2R2E3 75.8 74.7 70.7 75.7 74.8 70.2 

C2R2E4 80.2 79.5 77.4 77.6 77.2 76.6 

C2R3E1 78.0 77.3 78.1 79.5 78.2 79.0 

C2R3E2 76.7 76.2 72.7 77.0 76.3 73.9 

C2R3E3 74.3 72.3 70.6 73.3 69.1 67.6 

C2R3E4 71.4 71.2 69.1 70.7 70.4 70.3 

C3R1E1 67.7 64.0 59.7 67.3 62.5 58.0 

C3R1E2 80.5 78.4 78.2 79.7 76.7 78.2 

C3R1E3 70.9 69.6 59.6 70.6 70.6 58.3 

C3R1E4 74.4 70.4 59.7 73.7 71.0 58.2 

C3R3E1 71.9 66.7 59.3 72.4 67.9 61.6 

C3R3E2 70.0 63.6 65.5 68.0 62.5 62.7 

C3R3E3 73.3 73.3 57.3 74.7 74.7 57.5 

C3R3E4 71.5 68.9 63.4 71.1 68.9 63.6 

C4R1E1 66.0 62.9 61.3 68.9 66.9 65.3 

C4R1E2 62.6 57.7 57.6 62.0 58.2 57.3 

C4R1E3 74.3 70.5 57.3 73.1 71.3 60.3 

C4R1E4 59.1 55.6 57.7 58.5 55.2 56.8 

C4R3E1 58.6 56.0 53.2 58.1 55.8 51.9 

C4R3E2 73.4 71.1 67.5 72.0 68.3 64.8 

C4R3E3 59.0 57.7 53.2 61.1 58.2 58.3 

C4R3E4 58.5 58.5 56.1 61.7 60.9 59.7 

 

5.4 Performance of the GLCM features as function of the quantisation level of the 

image 

5.4.1 Introduction 

If G is the number of grey levels (quantisation level) of an image then the size of its grey level 

co-occurrence matrix is G
2
. The computational cost to compile such a matrix and to extract 
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features from it increases rapidly with G. It is therefore important to decrease the number of 

grey levels of an image before compiling its grey level co-occurrence features in order to 

shorten the time required for feature extraction. However, such a reduction of the number of 

grey levels should not compromise the defect detection ability of the resulting features. 

The aim of the experiments under this section is to find the relationship between the number 

of grey levels of fabric images and the rate of detection of defects from them. That would 

allow making a suitable choice of the number of grey levels to be used for fast extraction of 

GLCM co-occurrence features without compromising the defect detection performance. 

5.4.2 Description of the experiment 

The experiment was performed using the optimal triplets of GLCM features for each fabric 

type as found in Section 5.3. The steps of the experiment were as follows: 

1. Quantise the grey levels of all images in the dataset from which the 

experimental samples were extracted using 16, 32, 64, 128 and 256 grey levels. 

The uniform quantisation algorithm [47] was used to that effect.  

Let f be the original image, fmax be the maximal value of f, fmin be the minimum 

value of f, G be the number of desired grey levels. The quantised image   is 

given by (5.3).  

  
      

         
(   )  (5.3) 

2. For each quantisation level G, compute the optimal triplets of GLCM features 

for all the samples from both the training and the testing set grouped by fabric 

type. 

3. For each quantisation level G, and for each fabric type, train a Euclidean 

distance classifier using the ML algorithm and perform the defect detection 

experiment for both the training and the testing sets. 

4. Record the defect detection rates and study for every fabric type their variation 

as the quantisation level G changes. 

5.4.3 Results and interpretation 

Table 5-9 and Table 5-10 show the variation of the defect detection rate as the quantisation 

level changes for each type of fabric, while Figure 5-6 and Figure 5-7 show the same 

information graphically. 
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Table 5-9: Detection rate (%) vs quantisation level for the training set 

Fabric 

type 

Quantisation level 

16 32 64 128 256 

C1R1 87.5 87.3 87.8 88.4 88.4 

C1R3 83.5 84.3 84.8 85.7 86.0 

C2R2 76.9 78.2 77.0 74.9 75.3 

C2R3 75.5 76.1 76.0 75.9 75.4 

C3R1 66.9 68.1 68.1 67.9 67.9 

C3R3 65.1 64.2 63.1 61.6 61.9 

C4R1 59.6 60.2 60.0 60.1 60.0 

C4R3 59.4 59.6 59.8 59.8 59.8 

 

 

Figure 5-6: Detection rate as function of the quantisation level for the samples in the 

training set and for different types of fabrics 

The results show that there is little variation of the average detection rate when the 

quantisation level changes. The highest variation is observed for the C3R3 fabric type, where 

the average detection rate shows a decrease of 3.9% (for the testing set) when the quantisation 

level changes from 16 to 256. The results show a similar order of magnitude for the variation 

of the average detection rate for C1R3 and C2R2. For all the other fabric types, the variation 

is under 1.2%. According to the results, a safe choice of the quantisation level is G=64. 

The same trend of variation in the detection rate is observed for both the training and the 

testing set. That means that the observations and conclusions made based on the training 

samples can be extended to unknown samples. 
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Table 5-10: Detection rate (%) vs quantisation level for the testing set 

Fabric 

type 

Number of grey levels 

16 32 64 128 256 

C1R1 87.8 87.8 88.7 89.0 88.4 

C1R3 82.9 83.9 84.3 85.3 85.3 

C2R2 75.9 77.9 77.9 75.5 75.8 

C2R3 76.1 76.0 75.8 75.7 75.6 

C3R1 66.1 66.5 66.7 66.5 66.6 

C3R3 65.5 65.2 63.2 61.8 61.6 

C4R1 60.8 60.4 60.9 60.4 60.1 

C4R3 59.2 59.8 59.9 60.1 60.3 

 

 

 

Figure 5-7: Detection rate as function of the quantisation level for the samples in 

the testing set and for different types of fabrics 

 

5.5 Performance of the GLCM features as function of the interpixel distance 

5.5.1 Introduction 

The interpixel distance d used to compile the GLCM matrix is an important parameter. In 

literature its choice is not always motivated and d=1 is usually selected [18, 21, 31, 37, 38, 

44].  

© Central University of Technology, Free State



 

 100 

The aim of the experiment under this section is to find out whether that choice is optimal or 

whether a better choice could be justified. 

5.5.2 Description of the experiment 

The experiment is performed using optimal feature sets as found in Section 5.3, using 64 grey 

levels as discussed in Section 5.4. The steps of the experiment were as follows: 

1. Extract the experimental samples from all the fabric images quantised using the 

64 grey levels. The experimental samples are exactly those described in Section 

4.5 (the same samples used in all the experiments of this thesis). 

2. Compile the GLCMs of each of the samples from both the training and the 

testing sets using the interpixel distance d=1, then using the interpixel distance 

d=2 and so forth up to the interpixel distance d=10. 

3. For each value of the interpixel distance parameter d, and for each fabric type, 

extract the optimal GLCM features that make up the optimal triplet of features 

for that particular fabric type. Then perform the defect detection experiment for 

both the training and the testing sets using the obtained features. 

4. Record the defect detection rates and study for every fabric type their variation 

as the interpixel distance value d varies from 1 to 10. 

5.5.3 Results and interpretation 

Table 5-11 and Table 5-12 show the variation of the defect detection rate as the quantisation 

level changes for each type of fabric, while Figure 5-8 and Figure 5-9 show the same 

information graphically. 

The results show that the defect detection rate decreases when the interpixel distance d is 

increased and that the best detection rates are recorded for d=1. The only exception is 

observed for the fabric type C3R3, which shows a slight increase in detection as the interpixel 

distance increases from 1 to 4 and then a slight decrease as d is further increased from 4 to 10. 

This is probably due the periodic nature of the pattern on the fabric of type C3R3 as shown in 

Figure 4-2. 

These considerations are consistent with the choice of interpixel d=1 adopted by numerous 

researchers and we therefore recommend it for fabric defect detection. 
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Table 5-11: Detection rate (%) vs interpixel distance for the training set 

Fabric 

type 

Interpixel distance (d) 

1 2 3 4 5 6 7 8 9 10 

C1R1 87.8 87.9 87.7 87.5 87.1 87.0 86.8 87.5 86.9 86.8 

C1R3 84.8 83.5 81.3 79.5 78.9 77.8 77.4 77.0 77.2 77.2 

C2R2 77.0 76.2 75.0 72.1 67.9 65.9 64.9 63.4 63.3 63.3 

C2R3 76.0 74.9 73.1 72.2 70.0 68.7 67.4 66.6 66.1 65.9 

C3R1 68.1 66.1 64.3 64.5 62.9 63.4 64.7 64.5 64.2 65.6 

C3R3 63.1 63.8 65.6 66.2 66.0 64.8 65.2 64.6 64.6 63.6 

C4R1 60.0 58.0 57.8 57.1 57.4 57.2 57.8 58.0 58.0 58.1 

C4R3 59.8 57.7 56.3 56.7 57.8 57.8 58.3 58.5 58.0 58.2 

 

 

Figure 5-8: Detection rate as function of the interpixel distance for the samples in the 

training set and for different types of fabrics 
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Table 5-12: Detection rate (%) vs interpixel distance for the testing set 

Fabric 

type 

Interpixel distance (d) 

1 2 3 4 5 6 7 8 9 10 

C1R1 88.7 88.4 88.2 87.4 87.6 88.1 87.9 87.8 87.9 87.6 

C1R3 84.3 83.2 81.9 79.4 79.5 78.1 77.9 78.1 77.5 78.1 

C2R2 77.9 76.8 75.4 72.1 67.8 65.9 64.5 63.4 63.3 63.2 

C2R3 75.8 74.9 72.9 71.8 70.2 67.9 66.6 65.9 65.5 65.3 

C3R1 66.7 65.3 63.6 64.1 63.5 64.4 64.8 64.5 63.7 65.4 

C3R3 63.2 64.3 65.1 66.4 66.4 64.2 63.9 63.9 64.4 64.1 

C4R1 60.9 59.3 59.0 58.4 58.0 57.6 58.3 57.0 56.9 57.4 

C4R3 59.9 57.9 56.7 56.8 57.6 58.6 59.0 59.0 59.0 58.9 

 

 

Figure 5-9: Detection rate as function of the interpixel distance for the samples in the 

testing set and for different types of fabrics 

 

5.6 Effect of the classifier on the performance of GLCM features 

5.6.1 Introduction 

We compare the performance of the GLCM features when used for fabric defect detection 

using (i) the Euclidean distance classifier trained using the maximum likelihood (ML) 

method, (ii) the Euclidean distance classifier trained using the minimum classification error 

(MCE), (iii) the K-nearest-neighbour classifier (K=3) and (iv) the feed-forward neural 

network distance classifier.  
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We first check the validity of the observations made under sections 5.2 and 5.3 regarding the 

optimal number of GLCM features, as well as the corresponding optimal triplets of features 

when classifiers other than the ML-trained Euclidean distance classifier are used. We then 

study the detection rates obtained when the different above-mentioned classifiers are used. 

Finally, we study the generalisation ability of those classifiers by comparing the difference of 

the detection rates between the samples of the training set and those of the testing set. A large 

difference indicates poor generalisation ability. 

5.6.2 Dependence of the optimal feature set on the classifier 

In sections 5.2 and 5.3 we concluded that the number of optimal GLCM features is three and 

that the specific features vary from one fabric type to the other. However, those observations 

were made using the ML-trained Euclidean distance classifier. We want to find out whether 

those conclusions still hold true when other classifiers are used. Therefore we perform the 

same experiments, but using (i) the MCE-trained Euclidean distance classifier, (ii) the K-

nearest-neighbour classifier (K=3) and (iii) the feed-forward neural network classifier.  

The characteristics of the neural network used were as follows: The number of inputs was 

twice the number of GLCM features because each GLCM was made up of two sub-features 

(the mean and the range). As explained in Subsection 3.5.5, we used one hidden layer where 

the number of neurons was given by (5.4) 

           .
 

 
        /    (5.4) 

where         is the number of neurons in the hidden layer,         is the number of inputs 

to the neural network while the fix(.) function represents the whole part of a positive real 

number. The output layer had two neurons (Neuron1 and Neuron2) to represent either the 

defect-free or defective state of the sample whose features were inputs to the neural network. 

The coding of the output neurons was as follows: Neuron1=0 and Neuron2=1 meant that the 

sample was defect-free, while Neuron1=1 and Neuron2=0 meant that the sample was 

defective. 

The feed-forward neuron network classifier was implemented using the MATLAB Neural 

Network Toolbox. The following training parameters were used: 

 Training strategy: Early stopping 

 Training function: Levenberg-Marquardt backpropagation (trainlm) 

 Maximum number of training epochs: 1000 
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To prevent the problem of undertraining that might result from the high training speed of the 

Levenberg-Marquardt algorithm, the training of the network was repeated after reinitialisation 

every time that the final mean square error was higher than 0.1. After twenty repeats with no 

mean square error lower than 0.1, the trained network with the lowest mean square error 

among the twenty was used. 

For each of the above-mentioned classifiers we performed the defect defection experiments 

using subsets of one, two, three and so forth up to fourteen GLCM features. For each 

classifier and for each cardinality of features we recorded the subset that yielded the highest 

detection rate as well as the obtained detection rate. For each cardinality of feature subsets 

(one through fourteen), the average of best detection rates across fabric types was calculated. 

Table 5-13 and Figure 5-10 show the results. 

We see that the same trend observed for the ML-trained Euclidean distance classifier (as 

shown in Figure 5-1) of an increase in detection rate with the increasing number of GLCM 

features, followed by a drop remains valid. However, we observe specific differences for each 

classifier. 

For the MCE-trained Euclidean distance classifier, we observe a substantial rise of the 

detection rate when the number of features is increased from one to two and then a lower rise 

when the number of features is increased from two to three. A further lower improvement is 

observed then the number of features goes from three to four and an even lower improvement 

when the number of features goes from four to five. There is negligible improvement with the 

change of number of features from five to eight, and then a drop of performance when the 

number of features is increased beyond eight. The drop of the detection rate is small in 

magnitude so that there is no big penalty in detection performance when we use the full set of 

fourteen GLCM features. However, using the full set of features would lead to unnecessary 

increase of computational cost. Therefore, considering both the defect detection performance 

and the computational cost, the optimal number of features to use when a MCE-trained 

Euclidean distance classifier is used is five. 

For the K-nearest-neighbour classifier (K=3) we observe from Figure 5-10 almost the same 

trend of change in the detection rate with respect to the number of GLCM features as the 

MCE-trained Euclidean distance classifier. However the detection rate for the K-nearest-

classifier is higher by an absolute amount of about 3%. In addition, the decrease of the 

detection rate beyond eight features is a slightly more pronounced for the K-nearest-

neighbour classifier than for the MCE-trained Euclidean distance classifier. The optimal 

number of GLCM features to be used for the K-nearest-neighbour classifier is also five. 
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For the feed-forward neural network classifier, Figure 5-10 shows that the best detection rate 

continues to rise with the number of GLCM features until the maximum of nine features is 

reached. Beyond nine features, the best detection rate slowly drops as the number of features 

increases. Therefore, the optimal number of GLCM features when a feed-forward neural 

network classifier is used is nine. 

 

Figure 5-10: Mean of the best detection rates as function of the number of GLCM 

features for all the samples in the dataset when the MCE-trained Euclidean 

distance classifier, K-nearest-neighbour classifier and feed-forward neural 

network classifier are used 

 

Table 5-13: Mean of the best detection rates as function of the number of GLCM 

features for different classifiers 

Classifier 
Number of GLCM features 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

MCE-trained 

Euclidean 

distance 

74.1 79.4 81.3 82.2 82.7 83.0 83.1 83.3 83.3 83.2 83.1 82.9 82.7 82.2 

K-nearest-

neighbour 
77.3 82.5 84.3 85.2 85.6 85.7 85.8 85.8 85.7 85.6 85.4 85.0 84.5 83.8 

Feed-forward 

neural 

network 

73.0 80.6 83.0 84.7 85.9 86.6 87.1 87.3 87.5 87.5 87.3 87.0 85.9 84.9 

 

Looking at the graph in Figure 5-11, showing the mean best detection rates versus the number 

of features for individual fabric types when the MCE-trained Euclidean distance classifier is 
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used, we can see that the conclusion of five optimal GLCM features holds for individual 

fabric types.  

 

Figure 5-11: Mean best detection rates as function of the number of GLCM features for 

the samples from the different types of fabric when a MCE-trained Euclidean 

distance classifier is used. 

The conclusion that there are five optimal features when a K-nearest-neighbour classifier 

holds also for individual fabric types as it can be seen from Figure 5-12.  
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Figure 5-12: Mean best detection rates as function of the number of GLCM features for 

the samples from the different types of fabric when a K-nearest-neighbour 

classifier is used. 

Figure 5-13 shows that similarly the observation of nine optimal GLCM features holds when 

a feed-forward neural network classifier is used. 

 

Figure 5-13: Mean best detection rates as function of the number of GLCM features for 

the samples from the different types of fabric when a feed-forward neural 

network classifier is used. 
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In short, the number of optimal GLCM features depends on the classifier used and the results 

seem to indicate that the better the detection accuracy of the classifier, the more capable it is 

of using more features for improved detection rate. Table 5-14 summarises these results. 

Table 5-14: Number of optimal GLCM features and average of the best detection rates 

for different classifiers 

Classifier 

Number of optimal 

GLCM features 

Average best detection 

rate (%) 

Euclidean (ML training) 3 75.8 

Euclidean (MCE training) 5 82.7 

K-nearest-neighbour (K=3) 5 85.5 

Feed-forward neural network 9 87.5 

 

After determining the number of optimal GLCM features when the MCE-trained Euclidian 

distance, K-nearest-neighbour and feed-forward neural network classifiers are used, we use 

the algorithm in Subsection 5.3.2 to identify the actual optimal GLCM feature set for each of 

those classifiers and for each of eight fabric types in our dataset. Table 5-15 shows the results. 
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Table 5-15: Optimal GLCM feature sets for different classifiers for the eight fabric 

types 

Classifier 

Euclidean 

(ML training) 
Optimal triplets 

Euclidean (MCE 

training) 

Optimal quintuplets 

K-nearest-

neighbour 
Optimal quintuplets 

Feed-forward neural 

network 

Optimal nonuplets 

C1R1 {f9, f13, f14} {f6, f10, f11, f13, f14} 
{f2, f6, f10, f11, 

f14} 

{f2, f5, f6, f7, f9, f10, 

f11, f13, f14} 

C1R3 {f5, f10, f13} {f2, f5, f7, f13, f14} {f5, f7, f8, f10, f11} 
{f1, f2, f5, f7, f8, f9, 

f10, f11, f14} 

C2R2 {f2, f5, f12} {f5, f8, f9, f11, f13} {f2, f6, f8, f11, f14} 
{f1, f2, f3, f4, f5, f10, 

f11, f12, f14} 

C2R3 {f2, f6, f12} {f2, f4, f11, f12, f14} 
{f1, f2, f11, f12, 

f13} 

{f2, f4, f5, f7, f9, f10, 

f11, f12, f14} 

C3R1 {f1, f2, f3} {f2, f6, f9, f11, f14} {f2, f4, f9, f11, f13} 
{f1, f2, f6, f8, f9, f10, 

f11, f12, f14} 

C3R3 {f9, f11, f14} {f2, f5, f9, f10, f14} {f1, f7, f8, f11, f14} 
{f2, f3, f4, f5, f6, f8, 

f10, f12, f13} 

C4R1 {f2, f4, f5} {f5, f10, f11, f13, f14} {f4, f8, f9, f11, f14} 
{f3, f5, f6, f7, f8, f9, 

f10, f11, f14} 

C4R3 {f2, f10, f11} {f2, f3, f7, f8, f10} 
{f1, f6, f10, f11, 

f14} 

{f2, f4, f6, f7, f9, f10, 

f11, f12, f14} 

GLCM features 

{f1}-Angular second moment 

(Also called energy) 

{f2}-Contrast 

{f3}-Correlation 

{f4}- Sum of squares: variance 

{f5}-Inverse second moment (also 

called homogeneity) 

{f6}-Sum average 

 

{f7}-Sum variance 

{f8}-Sum entropy 

{f9}-Entropy 

{f10}-Difference variance 

{f11}-Difference entropy 

{f12, f13}-Information measures 

of correlation 

{f14}-Maximal correlation 

coefficient 

 

 

5.6.3 Defect detection performance for different classifiers 

Under this subsection, we perform defect detection for all the samples in the dataset using the 

MCE-trained Euclidean distance, K-nearest-neighbour and feed-forward neural network 

classifiers. We compare the performance obtained using all the features in the dataset to that 

obtained using only the optimal subsets identified in Subsection 5.6.2. The experiments steps 

were as follows for each of the classifiers: 

1. GLCM feature extraction for all the samples in the dataset 

2. Normalisation of the features of the training samples for each fabric type and for each 

defect type. This normalisation step should also provide the normalisation parameters 

to be used for the samples of the corresponding testing set. This step varies from one 

classifier to the other. 
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3. Training of the classifier using the normalised GLCM features of the training set 

obtained from step 2. Training will be different for the different classifiers. 

4. Classification of each sample of the training set as defective of defect-free by feeding 

its normalised features into the trained classifier. Calculate the detection rate by 

dividing the number of the samples correctly classified by the total number of training 

samples of that fabric type with that particular defect type. 

5. Normalisation of the features of the testing samples for each fabric type and each 

defect type using the normalisation parameters obtained from step 2. 

6. Classification of each sample of the testing set as defective of defect-free by feeding 

its normalised features into the trained classifier. Calculate the detection rate by 

dividing the number of the samples correctly classified by the total number of testing 

samples of that fabric type with that particular defect type. 

All the steps are similar for all the classifiers apart from the step of feature normalisation, 

classifier training and feature classification that may vary from one classifier to the other. 

The type of feature normalisation to use will depend on the kind of classifier used. For the 

Euclidean distance classifiers, whether trained using the ML or MCE algorithms, and the K-

nearest-neighbour classifier, we will use the min-max normalisation as given by (3.118). For 

the feed-forward neural network classifier, we will use the min-max normalisation that 

linearly scales the input data into the range [-1, 1] rather than [0, 1] using the MATLAB 

function „mapminmax‟. That is because the sigmoid transfer functions used in our neural 

networks have input ranges that are symmetric with respect to 0.  

Classifier training also varies from one type of classifier to the other as described in Section 

3.5. For the ML-trained Euclidean distance classify, training is simply calculating the mean 

feature vector of each feature class of the training set. For the MCE-trained Euclidean 

distance classifier, the mean feature vectors of each feature class are changed adaptively to 

get a reference feature vectors (one for each class) that minimises the classification rate of the 

samples in the training set. We implemented the related optimisation process using the 

MATLAB optimisation function „fminunc‟. The K-nearest-neighbour classifier is trained by 

simply storing all the feature vectors of each class in the training set. The feed-forward neural 

network classifier is trained using the backpropagation algorithm as described in Subsection 

3.5.5.  

The results are shown in figures 5-14 through 5-16.  
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Figure 5-14: Compared detection rate of the optimal feature set to the full set (14 

features) when the MCE-trained Euclidean distance classifier is used 

From Figure 5-14 we see that for the MCE-trained Euclidean distance classifier, the detection 

rate of the optimal feature set is almost the same as that obtained using the full feature set for 

fine fabrics (C1R1, C1R3, C2R2 and C2R3), while for the remaining fabric types, the 

detection rate obtained using the full feature set is slightly higher than obtained using the 

optimal feature set. This is acceptable, given that the difference is small (the highest 

difference is of 2%), and because the final aim is to combine those features with others 

(wavelet and MRF-based). We prefer the optimal set because it contains fewer features (five 

instead of fourteen) and therefore takes much less time to extract. 
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Figure 5-15: Compared detection rate of the optimal feature set to the full set 

(fourteen features) when the K-nearest-neighbour classifier is used 

Figure 5-15 shows that using the K-nearest-neighbour classifier yields better detection rates 

of the optimal set than the full set for most of the fabric types with the exception of the fabrics 

with no apparent periodicity (C4R1 and C4R3). Even in that latter case, the difference of 

average detection rates is small (1% for C4R1 and 1.3% for C4R3).  

 

Figure 5-16: Compared detection rate of the optimal feature set to the full set 

(fourteen features) when the feed-forward neural network classifier is 

used 
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Figure 5-16 shows that using the feed-forward neural network classifier, the optimal feature 

set yields higher detection rates than those yielded by the full feature set for most of the fabric 

types. The two exceptions are the fabrics with a visible periodic structure (C3R1 and C3R3). 

In these cases, the difference of average detection rates between the full set and the optimal 

set is small (1.5% for C3R1 and 0.3% for C3R3). 

In conclusion, the use of the optimal GLCM feature set instead of the full feature set is 

advantageous because it allows for better, same or slightly lower defect detection rates while 

taking much less time to extract given their reduced number. 

5.6.4 Generalisation ability of classifiers 

Figure 5-17 compares the average detection rate for the training and testing set of different 

classifiers. We can see that the MCE-trained Euclidean distance classifier offers the best 

generalisation ability among the classifiers we used as the difference of average detection 

rates between the training and the testing set is the smallest (1.9%).  

The next best generalisation ability is obtained with ML-trained Euclidean distance classifier 

(difference=3.1%) followed closely by the feed-forward neural network classifier 

(difference=3.7%). The K-nearest-neighbour classifier offers the worst generalisation ability 

(difference=10.4%), because any sample of the training set has itself as its nearest neighbour 

and therefore has a high probability of being correctly classified. This tendency increases 

when the number K of neighbours used by the classifier decreases. We are using K=3. 

 

Figure 5-17: Generalisation ability of different classifiers 
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5.7 Defect classification using GLCM features 

5.7.1 Introduction 

In this section, we classify the experimental samples into defect classes using GLCM features. 

Five defect classes are available in the dataset for every fabric type; (i) E0: the defect-free 

class, (ii) E1: holes in the fabric and cuts caused by mechanical damage, (iii) E2: oil stain and 

colour fading, (iv) E3: thread errors: condensations of filaments (not mechanically induced 

cracks), absence of individual threads in the fabric and (v) E4: foreign body in the fabric. 

We perform the defect classification in two stages: (i) defect detection and (ii) defect 

classification. For each fabric type, the first stage consists in separating defective samples 

from defect-free samples. The second stage deals with samples classified as defective and 

assign them to one of the four defect classes (the defect-free class is not included). 

We compare the performance of the optimal sets of features with respect to the full set of 

GLCM features using four classifiers: (i) The Euclidean distance classifier trained using the 

ML algorithm, (ii) the Euclidean distance classifier trained using the MCE algorithm, (iii) the 

K-nearest-neighbour classifier and (iv) the feed-forward neural network classifier.  

5.7.2 Description of the experiment 

With this classification method, the defect classification stage is made up as a single 

multiclass classifier that assigns a defect type label among four to each feature vector fed into 

it. 

The steps of the experiments are as follows: 

1. Extract GLCM features for all the samples in the dataset. 

2. Normalise the features of the training samples for each fabric type and for all the 

defect types together. This normalisation step should also provide the normalisation 

parameters to be used for the samples of the corresponding testing set.  

3. For each fabric type, train a defect detector (binary classifier) using the normalised 

features of all the defect-free samples and the normalised features of all the defective 

samples, as well as their true class labels. This is the training phase of the defect 

detection stage. 
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4. Classify the samples of training set as defective or defect-free by feeding their 

normalised features into the detector trained in step 3. 

5. Normalise the features of the testing samples using the normalisation parameters 

obtained from step 2. 

6. Classify the samples of the testing set as defective or defect-free by feeding their 

normalised features into the defect detector trained in step 3. 

7. Train the defect classifier by using the normalised features of the defective samples of 

the training set as well as their true class labels. This classifier is trained to be able to 

discriminate the four types of defects. 

8. Classify each sample of the training set detected as defective in step 4 into one of the 

four types of defects. 

9. Classify each sample of the testing set detected as defective in step 6 into one of the 

four types of defects. 

10. Calculate the classification rate by dividing the number of samples of that fabric type 

correctly classified by the total number of samples of that fabric type in the dataset. 

11. Compile the confusion matrix for that defect classification experiment. 

The block diagram in Figure 5-18 illustrates how that classification is done once the two 

classifiers in the system are trained. 
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Table 5-16: Average defect classification rates (%) obtained using GLCM features 

Fabric 

type 

Classifier 

ML MCE KNN Neural 

All Opt All Opt All Opt All Opt 

C1R1 70.8 66.9 75.9 73.5 80.9 73.4 82.0 81.6 

C1R3 64.6 63.1 70.0 70.3 73.7 71.1 76.4 75.7 

C2R2 56.9 51.5 61.2 61.0 66.1 62.8 66.9 65.2 

C2R3 59.6 57.7 61.0 61.0 65.0 65.0 66.7 66.1 

C3R1 47.6 47.0 50.0 47.2 65.0 63.0 71.3 68.8 

C3R3 49.6 36.5 57.8 46.5 73.8 69.7 75.7 74.7 

C4R1 36.6 35.6 43.3 41.1 63.1 58.4 67.4 65.3 

C4R3 37.0 39.9 42.2 41.4 62.2 58.6 64.8 60.9 

 

 

Figure 5-19: Average classification rate (%) for different types of fabrics using 

different classifiers. Comparison between the classification performance 

of the full set of fourteen features and the optimal feature set identified 

for defect detection 

We can see from the results that the defect classification rates are lower than the defect 

detection rates found in previous sections of this chapter. This is normal, because the defect 

classifier has to discriminate among five classes, while the defect detector has to distinguish 

only two classes.  

Comparing classifiers we see from the results that the feed-forward neural network is the best 

classifier, followed by the K-nearest-neighbour classifier (K=3 for the detector and K=9 for 
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the classifier), the MCE-trained Euclidean distance classifier and the ML-trained distance 

classifier. This is in agreement with the findings about defect detection in Subsection 5.6.2. 

Comparing the defect classification rates of the optimal feature sets identified earlier for 

defect detection to those of the full set of fourteen features, the results show that the optimal 

features sets perform poorer that the full feature set. The only exceptions are for the fabric 

types C1R3 and C4R3, when the ML-trained Euclidean distance classifier is used. This means 

that those features are not optimal for defect classification. Therefore, the optimal features 

identified for defect detection should not be taken to necessarily also be optimal for defect 

classification. A new study should be undertaken to identify the optimal GLCM features for 

detect classification. 

Table 5-17 shows four sample confusion matrices corresponding to the best classification rate 

and the worst classification rate of the results in Table 5-16 and Figure 5-19. From the 

confusion matrices on the right side of the table we can see that the low classification rates are 

mainly due to the fact that the ML-trained Euclidean distance classifier has great difficulties 

in distinguishing defect-free samples of fabric type C4R1 from samples with defects of type 

E1. This is shown by the off-diagonal elements (E0, E1) with high values of 1557 and 1388. 

The samples with the other defects are also generally confused because the off-diagonal 

elements are of the same size and even higher than the corresponding diagonal elements. 

Looking at the confusion matrices on the left side of the table, we see that the off-diagonal are 

relatively low compared to the corresponding diagonal elements. This shows the ability of the 

classifier in discriminating the different defect types. Improvement efforts would focus first 

on differentiating better E2 from E4, as the confusion matrices show that many samples are 

classified as E4 when in fact they are E2.  
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Table 5-17: Sample confusion matrices for defect classification using GLCM features 

 Highest rate C1R1 using a feed-

forward neural network classifier 

Lowest rate C4R1 using a ML-trained 

Euclidean distance classifier 

O
p

ti
m

a
l 

fe
a
tu

re
 s

e
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when their true class is  when their true class is 

  

E0 E1 E2 E3 E4 

  

E0 E1 E2 E3 E4 

C
la

ss
if

ie
d

 a
s E0 4747 3 90 53 98 

C
la

ss
if

ie
d

 a
s E0 2267 1557 394 79 447 

E1 24 239 24 56 75 E1 217 495 64 29 22 

E2 167 4 801 14 98 E2 749 319 354 19 212 

E3 88 36 77 164 86 E3 386 335 55 86 35 

E4 227 22 189 40 574 E4 514 499 149 30 175 

 Classification rate: 81.6%  Classification rate: 35.6% 
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  when their true class is   when their true class is 

  

E0 E1 E2 E3 E4 

  

E0 E1 E2 E3 E4 

C
la

ss
if

ie
d

 a
s E0 4719 9 118 26 119 

C
la

ss
if

ie
d

 a
s E0 2123 1388 336 98 799 

E1 34 299 12 32 41 E1 191 484 51 34 67 

E2 146 7 860 7 64 E2 492 262 331 2 566 

E3 93 82 86 113 77 E3 390 326 30 101 50 

E4 224 43 191 25 569 E4 350 411 149 24 433 

 

Classification rate: 82.0%  Classification rate: 36.6% 

 

5.8 Modified GLCHS for fast computation of GLCM features 

The grey level co-occurrence matrix is generally a sparse matrix (with only a few nonzero 

elements). For example, a 32x32 pixels 64-grey level image patch has 64
2

 =4 096 elements, 

yet the number of nonzero elements cannot exceed 31x32=992. On the other hand, as shown 

by equations (3.20) through (3.42), the computation of any of the GLCM features involves the 

multiplication by the grey level co-occurrence probability and the summation over all 

elements of the GLCM. Therefore there would be a great computational gain if the 

information in the GLCM was represented in such a way that the calculations of the GLCM 

features are done only over nonzero elements. 

In this regard, Clausi and Jernigan [118] proposed a method they called grey level co-

occurrence linked list (GLCLL), where only nonzero grey level probabilities were stored in a 

sorted linked list. Their method was improved by Svolos and Todd-Pokropek [119], who 

represented the same information in a tree data structure. Since GLCLL requires maintaining 

a sorted list, Clausi and Zhao [120] dropped the use of the sorted linked list and instead used 

the combination of a hash table and a linked data structure. They called the new improved 

method grey level co-occurrence hybrid structure (GLCHS). 
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2. The matrix “DATA” has three columns, the first two columns contain the grey level 

pair (I, J), while the third column contains the number of times the grey pair appears 

in the image. Grey pairs that do not appear in the image are not represented in that 

matrix. 

3. At the beginning of the compilation of the co-occurrences probabilities, all the cells 

of the matrix “POINTERS” are initialised to zero. The matrix “DATA” is also 

created with the maximum possible number of rows (GxG), where G is the number of 

grey levels used to represent the image. All the cells of matrix “DATA” are also 

initialised to zero. A variable, „CurrentRowPointer‟, to contain the row number where 

new data is to be written is created and initialised to value 1. 

4. The algorithm continues as follows: 

a. The image (or image patch) is scanned from the top left corner to the bottom 

right corner, one line at a time from left to right. In this process, each pixel is 

considered along with the corresponding pixel that together makes up a grey 

level co-occurrence pair. For example, if the interpixel distance d=1 and the 

interpixel orientation =0
o
, then pixel (i, j) is considered along with pixel (i, 

j+1). The grey level values of the two pixels are read and used to update the 

matrices “POINTERS” and “DATA”. 

b. If it is the first time that the specific pair of grey level values is encountered, 

then the corresponding cell in the matrix “POINTERS” still has the value 0. 

If so, the grey level values of the pair are written in the first and second 

column of the current row of the matrix “DATA” (indicated by the variable 

„CurrentRowPointer‟), while the third column is set to 1 to indicate that so far 

there is one occurrence of that grey level pair. Thereafter, the relevant cell in 

the “POINTERS” matrix is set to the current value of the variable 

„CurrentRowPointer‟ and then that variable is incremented to point the next 

available row in the matrix “DATA”. 

c. If it is not the first time that the pair of grey level value is encountered, then 

the corresponding cell in the matrix “POINTERS” contains the row number 

of the corresponding entry in the matrix “DATA”. That information is used to 

access the row and increment the value of its third column. 

d. When all the pixels of the image have been considered, the unused rows of 

the matrix “DATA” are deleted. Thereafter, the sum of values in the third 
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column of that matrix is calculated. That sum is the total number of pixel 

pairs in the image. Each of the values of the third column of the matrix 

“DATA” are divided by their sum, and the result, which represents the 

relative occurrence (or co-occurrence probability) of the corresponding grey 

level pair, is stored in the same column replacing the absolute number of 

occurrences of the pair. 

5. The output of that algorithm is the matrix “DATA” with three columns. The first two 

columns contain the values of the grey level pairs while the third column contains 

their relative occurrence (co-occurrence probabilities) in the image. That information 

is then used to compute the co-occurrence features according to equations (3.20) 

through (3.37). 

The main difference between our algorithm and the original GLCHS is that the data structures 

are implemented using matrices rather than linked lists. This allows easier and faster 

implementation in MATLAB. 

The algorithm was used to calculate the fourteen GLCM features of 32x32 fabric image 

patches with 64 grey levels, and the average execution time was 42.3% of the corresponding 

implementation that uses the grey level co-occurrence matrix. 

5.9 Summary 

In this chapter we evaluated the performance of the texture features derived from the grey 

level co-occurrence matrix for fabric defect detection and classification. The objective was to 

identify, among the fourteen features proposed by Haralick et al. [31], the most suitable 

subset for defect detection for different types of fabrics. We also dealt with the problem of 

choosing appropriate parameters (quantisation level and intersample distance) for efficient 

extraction of GLCM features. 

For the problem of identifying the best feature set for each fabric type, we used the following 

procedure. After realising that the total number of possible combinations of GLCM features 

was not too high, we decided to perform an exhaustive search. Therefore, experiments to 

evaluate the defect detection rate using each of the fourteen features individually were 

performed and the feature that yielded the best detection rate for each fabric type and each 

type of defect was noted. We then performed similar experiments using all 91 possible pairs 

of features, recording the pair with the best rate for each fabric type and each type of defect, 

then using all the 364 possible triplets and noting the triplet that yielded the best rate. We 

continued this procedure until all the possible combinations of features were tried. After that, 
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we plotted a graph showing the variation of the average best detection rate (across different 

types of fabrics) with respect to the number of features constituting the experimental feature 

set. This allowed us to realise that the number of features that yields the best detection rate is 

three when a ML-trained Euclidean distance classifier was used. 

After determining the optimal number of features in a feature set, we devised a procedure to 

identify the actual features for each type of fabric. The optimal feature sets were then 

identified and recorded for each of the fabric types in the dataset. 

The above observations were made using a ML-trained Euclidean distance classifier. In order 

to verify their validity with different classifiers, we performed the same experiments with (i) a 

MCE-trained Euclidean distance classifier, (ii) a K-nearest-neighbour classifier (K=3), and 

(iii) a feed-forward neural network classifier. We realised that the optimal number of features 

was classifier dependent. That number was found to be five for both the MCE-trained 

Euclidean distance classifier and the K-nearest-neighbour classifier (K=3) and nine for the 

feed-forward neural network. These results seem to indicate that the more accurate a 

classifier, the more features it is capable of handling effectively. 

To identify the best quantisation level of the original image, we performed the defect 

detection experiments with original fabric images quantised using 16, 32, 64, 128 and 256 

grey levels and recorded the resulting defect detection rates. After analysing the results we 

observed that the optimal choice of quantisation is achieved with 64 grey levels. We also 

performed experiments to identify the best intersample distance for the compilation of the 

grey level co-occurrence matrices. Among ten distances from 1 through 10 pixels, the number 

1 emerged as the best choice for most of the fabric types. 

The classification related experiments revealed that the optimal features identified for the 

defect detection experiments were not necessarily the same for discriminating among the 

different types of defects. In fact, the optimal features identified during the defect detection 

experiments performed consistently poorer than the full set of features and for all the 

classifiers we used. More studies are needed to identify the best features for the classification 

experiments.  

Finally, we proposed the modified GLCHS algorithm for fast computation of GLCM features 

for implementation in MATLAB.  
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Chapter 6: Exploration of wavelet transform features 

6.1 Introduction 

The wavelet transform is viewed as the most promising tool for fabric defect detection and 

classification [16]. In this thesis we will combine texture features extracted using the wavelet 

transform with features extracted from the grey level co-occurrence matrix and Markov 

random field model-based features for the purpose of defect detection and classification. The 

objective is to find a method that is more effective in terms of detection and classification 

rates than any of those methods taken separately. In this chapter, we study the wavelet 

features so that we can select from them a minimum subset that can be quickly computed 

without sacrificing their texture discriminating ability.  

This chapter is organised as follows. In Section 6.2, we choose the type of wavelet transform 

to use. We choose the DTCWT and UDWT due to their shift-invariance property. Section 6.3 

deals with the design of the wavelets to implement UDWT, while Section 6.4 deals with the 

design of the complex wavelet for the DTCWT implementation. In Section 6.4 we investigate 

the wavelet features to be used, while in Section 6.6 we describe the algorithm for their 

extraction. Section 6.7 compares the defect detection performance of UDWT- and DTCWT-

based features on average and for each fabric type of our dataset. In sections 6.8 and 6.9, we 

study the variation of the defect detection rates achieved by wavelet features with respect to 

their wavelet size of support and with respect to the number of decomposition levels 

respectively. Section 6.10 summarises the findings of sections 6.7 through 6.9, identifying the 

best wavelet features for each type of fabrics. Experiments for sections 6.7 through 6.9 are 

done using the MCE-trained Euclidean distance classifier. In Section 6.11 we extend those 

experiments to the K-nearest-neighbour classifier and the feed-forward neural network 

classifier. Section 6.12 deals with the problem of defect classification using the wavelet 

features and Section 6.13 summarises the chapter. 

6.2 Which wavelet transform to use? 

As described in Section 3.3, several types of wavelet transform exist and a few of them have 

been used in research related to fabric defect detection and classification.  

The continuous wavelet transform (CWT) leads to a continuous representation of a signal in 

the scale-time domain or of an image in the scale-space domain. Although it allows a fine 

exploration of the signal (or image) behaviour through a scale range, it is a highly redundant 

representation. Thus it is not suitable for images, as the computation cost of decomposition 

and reconstruction would be too high [174]. 
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For applications involving wavelet transform of images it is preferable to use the discrete 

wavelet transform (DWT) rather than CWT, and generally its simple dyadic version presented 

in (3.46) through (3.48) extended to two dimensions. However, the DWT in its dyadic version 

is not shift invariant and is not therefore appropriate for pattern recognition applications such 

as fabric defect detection and classification. For such application the undecimated version 

(UDWT) is more suitable. 

Even if the UDWT solves the problem of shift variance, it has a high redundancy rate of 3L+1 

for image representation, where L is the number of wavelet decomposition levels. That leads 

to increased computational requirements [99]. In addition, similar to DWT, UDWT has the 

shortcoming of poor directional selectivity for diagonal features in 2D. This weakness of 

UDWT lowers the discrimination power of its derived texture features. The dual-tree complex 

wavelet transform (DTCWT), first introduced by Kingsbury in 1998 [99-100], is 

approximately shift invariant and makes it possible to get directional wavelets in two and 

more dimensions with only 2x redundancy in 1-D (2
d
 for d-dimensional signals, in general) 

[72]. In addition, the DTCWT allows extracting features that are approximately rotationally 

invariant [72]. This is important when the orientation of images under study is not known a 

priori. The fabric images in our dataset are part of this case as they were arbitrarily rotated. 

In this chapter we will study the performance of the features from both the UDWT and 

DTCWT, making a comparison between the two types. We will study their performance in 

terms of fabric defect detection and classification rates considering three aspects: (i) the 

specific selected features, (ii) the size of wavelet support, and (iii) the number of wavelet 

decomposition levels as well as their combination. 

6.3 Design of the wavelet for the UDWT 

The UDWT is usually implemented using a two-channel nonsampled filter bank illustrated in 

Figure 6-1. H0(z) and F0(z) are the transfer functions of the low-pass decomposition and 

reconstruction filters respectively, while H1(z) and F1(z) are the transfer functions of the high-

pass decomposition and reconstruction filters respectively. X(z) is the z-transform of the input 

signal while Y(z) is the z-transform of the reconstructed signal. 
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As we wish to maximise N0+N1 for a given filter length L, then N0+N1=L. In this case the 

low-pass filter of the maximally flat pair H0(z) can be found by spectral factorisation of the 

product H0(z)H0(z
-1

) that is obtained using (6.5) 

  ( )  ( 
  )   (.

   

 
/ .
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where P(y) is the polynomial obtained using (6.6) 
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The roots of H0(z)H0(z
-1

) are necessarily pairs of reciprocals with one member of the pair 

inside or on the unit circle in the z plane, while the other is outside or on the unit circle. 

Spectral factorisation means that the polynomial is factorised into two factors so that the roots 

of one factor are the ones inside or on the unit circle, while the roots of the other factor are the 

ones outside or on the unit circle. 

The high-pass filter H1(z) is obtained by spectral factorisation of the polynomial obtained 

using (6.7). 
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Using the method described above we obtained the filter coefficients shown in Table 6-1 for 

an even length filter of length varying from 2 to 16. For each filter length L, N0 is chosen 

equal to N1 if L is even. We calculated even length filters only so that we can compare their 

performance with the dual-tree wavelet filters which are designed for even length only as 

shown in the next section. 
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Table 6-1: Decomposition filters h0 and h1 for UDWT wavelets 

Wavelet 0 Wavelet 1 Wavelet 2 Wavelet 3 

h0 h1 h0 h1 h0 h1 h0 h1 

0.5 0.5 0.341506 0.341506 0.235234 0.235234 0.162902 0.162902 

0.5 -0.5 0.591506 -0.59151 0.570558 -0.57056 0.505473 -0.50547 

Wavelet 7 
0.158494 0.158494 0.325183 0.325183 0.4461 0.4461 

h0 h1 

0.038478 0.038478 -0.09151 0.091506 -0.09547 0.095467 -0.01979 0.019788 

0.221234 -0.22123 
Wavelet 6 

-0.06042 -0.06042 -0.13225 -0.13225 
h0 h1 

0.477743 0.477743 0.05505 0.05505 0.024909 -0.02491 0.021808 -0.02181 

0.413908 -0.41391 0.280396 -0.2804 
Wavelet 5 

0.023252 0.023252 
h0 h1 

-0.01119 -0.01119 0.515574 0.515574 0.078871 0.078871 -0.00749 7.49E-03 

-0.20083 0.200829 0.332186 -0.33219 0.349752 -0.34975 
Wavelet 4 

h0 h1 

0.000334 0.000334 -0.10176 -0.10176 0.531132 0.531132 0.113209 0.113209 

0.091038 -9.10E-02 -0.15842 0.158418 0.222916 -0.22292 0.426972 -0.42697 

-1.23E-02 -1.23E-02 0.050423 0.050423 -0.15999 -0.15999 0.512163 0.512163 

-3.12E-02 3.12E-02 5.70E-02 -5.70E-02 -0.09176 0.091759 0.097883 -0.09788 

9.89E-03 9.89E-03 -0.02689 -2.69E-02 0.068944 6.89E-02 -0.17133 -0.17133 

6.18E-03 -6.18E-03 -1.17E-02 1.17E-02 0.019462 -1.95E-02 -0.0228 0.022801 

-3.44E-03 -3.44E-03 8.87E-03 8.87E-03 -2.23E-02 -2.23E-02 0.054851 5.49E-02 

-2.77E-04 2.77E-04 3.04E-04 -3.04E-04 0.000392 -3.92E-04 -0.00441 4.41E-03 

4.78E-04 4.78E-04 -1.27E-03 -1.27E-03 3.38E-03 3.38E-03 -0.0089 -8.90E-03 

-8.31E-05 8.31E-05 2.50E-04 -2.50E-04 -7.62E-04 7.62E-04 2.36E-03 -2.36E-03 

 

6.4 Design of the dual-tree complex wavelet filters 

6.4.1 Fundamentals of dual-tree complex wavelet design 

The dual-tree complex wavelet transform allows obtaining complex wavelet coefficients that 

are approximately shift-invariant. This is accomplished by using two real wavelets,   ( ) and 

  ( ). The two wavelets are designed so that   ( ) is approximately the Hilbert transform of 

  ( ). The resulting complex wavelet   ( ), described by (6.8) is therefore approximately 

analytic [72]. That means that its Fourier transform is approximately 0 for one half of the 

frequency axis. 

  ( )    ( )     ( ) (6.8) 
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Each of the two real wavelets   ( ) and   ( ) is implemented using a two-channel filter 

bank so that a multilevel wavelet decomposition is implemented by a dual-tree structure as 

shown in Figure 6-2. 

 

Figure 6-2: Implementation of 1D dual-tree complex wavelet transform using FIR real 

coefficient filters 

H0 and H1 are respectively the low- and high-pass decomposition filters for tree-h (real part of 

the complex wavelet) while G0 and G1 are respectively the low- and high-pass decomposition 

filters for tree-g (imaginary part of the complex wavelet). The first level filters (H0
(1)

, H1
(1)

) 

and (G0
(1)

, G1
(1)

) can be any set of orthogonal or biorthogonal wavelet filters [72]. 

The design of the filters should be done to satisfy the perfect reconstruction condition for both 

tree-h and tree-g, as well as the approximate Hilbert transform status of tree-g with respect to 

tree-h. Assuming that the first condition of perfect reconstruction is satisfied, it has been 

shown that to satisfy the second condition (Hilbert transform), one of the low-pass filters H0 

and G0 should be approximately a half-sample shift of the other as described by (6.9) . 

  , -    ,     - (6.9) 

The relation (6.9) in the time domain is equivalent to (6.10) in the frequency domain. 
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When written in terms of magnitude and phase (6.10) is equivalent to (6.11) and (6.12). 
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Therefore designing for the DTCWT is equivalent to designing two two-channel filter banks 

whose filters possess the following desired properties [72]: 

1. Approximate half-delay property 

2. Perfect reconstruction (orthogonal or biorthogonal) 

3. Finite support (FIR filters) 

4. Vanishing moments (good stopband) 

The best known among the proposed solutions are (i) linear phase biorthogonal solution [99-

100, 177-178], (ii) q-shift solution [179-180] and (iii) common-factor solution [181]. We will 

adopt the q-shift solution in this thesis because it allows a more symmetric subsampling 

structure [179] and is simpler to design – only one filter needs to be designed. In addition, the 

obtained filters are orthogonal, which makes the transform a tight frame which conserves 

energy from the signal to the transform domain [180]. 

6.4.2 Q-shift design solution 

With q-shift design the low-pass filters H0 and G0 are chosen to have even length and to be 

time reverse of each other as described by (6.13). 

  , -    ,     -, with N even (6.13) 

Under such conditions the magnitude condition (6.11) is exactly satisfied but the phase 

condition (6.12) is not. The q-shift solution approximates the phase condition by a single filter 

H0, designed to have a group delay of approximately ¼ sample and to satisfy the perfect 

reconstruction conditions. As filter G0 is the time reverse of H0, its group delay is 

approximately ¾ sample. This leads to the required difference of ½ sample. Kingsbury [180] 

proposed a design method that allows obtaining linear phase complex wavelets and scaling 

function, an important property for image processing applications. We will adopt this method 

in this thesis. 

To obtain the second property of perfect reconstruction with orthogonality and no aliasing for 

the filter bank, the standard conditions given by (6.14) through (6.17) are used. 

  ( )      (  ) (6.14) 

  ( )        (  ) (6.15) 

  ( )  ( )    (  )  (  )    (6.16) 
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  ( )     ( 
  ) (6.17) 

To obtain an approximate delay of ¼ sample for   ( ), a length 4N linear phase (symmetric) 

low-pass filter    ( ) is designed to operate at twice the required rate and then subsampled 

by 2:1. As the filter    ( ) has a delay of ½ its sample rate, the filter   ( ) will have half of 

its delay (¼ sample) and twice its bandwidth as long as the filter    ( ) has negligible gain 

between ¼ and ½ of its sample rate. The details of the design can be found in [180]. 

Using this design method as well as the MATLAB program provided by Kingsbury [182], 

filters of length 4 through 14 were designed. They are shown in Table 6-2. Only filters h0[k] 

as shown because filters g0[k] are simply the time-reversed versions of corresponding filters 

h0[k]. Once the filters are calculated, the extension to two dimensions is done as described in 

Subsection 3.3.8. 

Table 6-2: Filters h0 for different complex wavelets 

h0 for Wavelet 1 h0 for Wavelet 2 h0 for Wavelet 3 

0.163779031979466 -0.0857079630841502 -0.0690438428366266 

0.816139266740385 0.1913007969323510 -0.0506761525555254 

0.543327749207082 0.8218333624947300 0.2813666512150030 

-0.109032485553837 0.5288071149925820 0.7565668459089610 

h0 for Wavelet 6 -0.0290186182240319 0.5797556204871810 

0.0017398739681362 -0.0130011307383845 -0.0721944491507631 

-0.0027459325505043 h0 for Wavelet 5 -0.0849716476790101 

0.0130575675739475 0.0003832197815069 0.0734105369838758 

-0.0236356620546165 0.0264837358621132 h0 for Wavelet 4 

-0.1061549045771790 -0.0050247175139210 0.0406676426878204 

0.2450419775540350 -0.1004719196058730 -0.0100983326757664 

0.7811979647922610 0.2380935587694480 -0.1065465695674370 

0.5571491131791900 0.7869918742072030 0.2525439510986830 

0.0002074202558124 0.5539569455120210 0.7752771348740080 

-0.0814892321299389 -0.0068614508914790 0.5600544436286330 

0.0198978800325300 -0.0788381045593577 -0.0013357598095111 

0.0145845889663273 0.0009433604924234 -0.0915446472694999 

-0.0028390208589604 -0.0014641208031492 -0.0009556669983319 

-0.0017980717779448 0.0000211811221590 -0.0038486335955013 
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6.5 Which wavelet features to use? 

As discussed in Subsection 3.3.9, the most commonly used wavelet features are (i) the 

channel variances or mean energies of coefficients of a sub-image, (ii) the mean absolute 

values of wavelet coefficients, (iii) entropies of magnitudes of wavelet coefficients, (iv) mean 

magnitude of complex wavelet coefficients and (v) variance of magnitude of wavelet 

coefficients. 

The mean energies and the mean absolute values carry fundamentally the same information, 

and therefore it would not be useful to combine them. In our case, the sample size is limited 

to 32x32 pixels and thus the number of wavelet coefficients in a channel is at most 16
2
=256. 

Due to that small number of coefficients, we have realised that the entropy of coefficients 

does not vary much from one channel to another. Such a feature would not be discriminating 

enough. Therefore we will compare the performance of the two following sets of features: 

(i) the mean energies of wavelet coefficients combined with the variances of energy of 

wavelet coefficients, and (ii) the mean absolute values of wavelet coefficients combined with 

the variances of absolute values of wavelet coefficients. 

6.5.1 Feature sets for UDWT 

Every sample will be submitted to five levels of UDWT decomposition. As there are three 

wavelet channels per level of decomposition (horizontal, vertical and diagonal), the number 

of features extracted from each channel is to be multiplied by 15 to get the total number of 

extracted features for a given sample. Therefore, these chosen wavelet features can be 

expressed by (6.18) through (6.21) for the UDWT. 

In (6.18) through (6.21), k =1, 2, 3 denotes the wavelet channel, 1=horizontal and 2=vertical, 

3=diagonal. l   1, 2, … , 5 denotes the level of wavelet decomposition, while N=32 denotes 

the sample width in pixels. The wavelet coefficients are denoted by      
   

. 

 Mean energy of wavelet coefficients: 
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 Variance of energies of wavelet coefficients: 
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 Mean absolute values of wavelet coefficients: 
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 Variance of absolute values of wavelet coefficients: 
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The two feature sets to be compared in our experiments are given by (6.22) and (6.23). 

(i) Set r1: the means and variances of energies of wavelet coefficients. 

 kl

r

kl

r ffrSet ,

2

,

1 ,1 , l = 1, 2, … , 5 k = 1, 2, 3 (6.22) 

(ii) Set r2: the means and variances of absolute values of wavelet coefficients. 

 kl

r

kl

r ffrSet ,

4

,

3 ,2  , l = 1, 2, … , 5 k = 1, 2, 3 (6.23) 

6.5.2 Feature sets for DTCWT 

Similar to UDWT, every sample will be submitted to five levels of DTCWT wavelet 

decomposition. However, each level of decomposition produces six wavelet channels 

corresponding to the six orientations -75
o
, -45

o
, -15

o
, +15

o
, +45

o
 and +75

o
. Therefore, the 

number of features extracted per channel is to be multiplied by 30 to get the total number of 

features extracted per sample. 

The features we will use for DTCWT can be expressed by (6.24) through (6.27). In these 

equations, d=1, 2, … , 6 denotes the wavelet channel (i.e. orientation of the wavelet), 1=-75
o
, 

2= -45
o
, 3=-15

o
, 4=+15

o
,5= +45

o
 and 6=+75

o
. l   1, 2, … , 5 denotes the level of wavelet 

decomposition, while N=32 denotes the sample width in pixels. The complex wavelet 

coefficients are denoted by      
   

. 

 Mean energy of complex wavelet coefficients: 
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 Variance of energies of complex wavelet coefficients: 
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 Mean magnitude of complex wavelet coefficients: 
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 Variance of magnitudes of complex wavelet coefficients: 
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The two feature sets to be compared in our experiments are given by (6.28) and (6.29). 

(iii) Set c1: the means and variances of energies of complex wavelet coefficients. 
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1 ,1 , l = 1, 2, … , 5 d = 1, 2, … , 6 (6.28) 

(iv) Set c2: the means and variances magnitudes of complex wavelet coefficients. 
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c ffcSet ,

4

,

3 ,2  , l   1, 2, … , 5 d   1, 2, … , 6 (6.29) 

6.5.3 Feature normalisation 

After extraction, the wavelet features will be normalised as described in Subsection 3.5.2 

before being fed into a classifier. The type of normalisation to use will depend on the kind of 

classifier used.  

For the Euclidean distance classifiers, whether trained using the ML or MCE algorithms, and 

for K-nearest-neighbour classifier, we will use the min-max normalisation as given by 

(3.118). For the feed-forward neural network classifier, we will use the min-max 

normalisation that linearly scales the input data into the range [-1, 1] rather than [0, 1] using 

the MATLAB function „mapminmax‟. This is because the sigmoid transfer functions used in 

our neural networks have input ranges that are symmetric with respect to 0.  

6.6 Feature extraction algorithm 

Defect detection is done by extracting features from a sample and then feeding the extracted 

features into a classifier that decides whether the sample is defective or defect-free. In this 

subsection we deal with the feature extraction part, while the decision part will be dealt with 

subsequently. 
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Every fabric image has 384 elementary samples, but only a few of them are used in the 

experiments as previously explained in sections 4.3 through 4.5. However, for wavelet-based 

feature extraction the wavelet transform is done for the whole image and then only the 

wavelet coefficients corresponding to the elementary samples of interest are taken from the 

resulting subbands for feature calculation. That was done to avoid border problems that would 

have resulted from performing the wavelet transform from each elementary sample. 

6.6.1 Feature extraction algorithm for UDWT 

The algorithm we used for feature extraction from a sample using the undecimated wavelet 

transform is shown in Table 6-3 as pseudo code. That algorithm was performed for each of 

the eight wavelets designed in Section 6.3 because we used the results to compare the 

performance of the different wavelets.  

The UDWT wavelet decomposition in step 5) was implemented using the MATLAB function 

„ndwt2‟ which performs the 2D non-decimated wavelet decomposition of an image given the 

desired number of decomposition and the low-pass and high-pass decomposition filters h0 

and h1 respectively.  
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Table 6-3: Algorithm for feature extraction using UDWT 

1) For each of the eight fabric types (C1R1, C1R3, C2R2, C2R3, C3R1, C3R3, C4R1 

and C4R3) 

2) For each of the four defect types (E1, E2, E3 and E4) 

3) For each of the two sample sets (training and testing) 

4) For each of the 50 images 

5) Perform the five level UDWT decomposition of the image, 

obtaining the horizontal, vertical and diagonal subbands for 

each of the five levels as a result. 

6) For each of the five levels 

7) For each subband (horizontal, vertical and diagonal) 

8) Divide the subband into 32x32 non-

overlapping windows. 

9) Calculate the mean energy, variance energy, 

mean absolute value, and variance absolute 

value for each window. 

10) Continue with the next subband 

11) Continue with the next level 

12) Continue with the next image 

13) Continue with the next sample set 

14) Continue with the next defect type 

15) Continue with the next fabric type 

 

 

6.6.2 Feature extraction algorithm for DTCWT 

The algorithm for DTCWT feature extraction is similar to the UDWT feature extraction 

program and therefore we use the same pseudo code in Table 6-3 to describe it. The algorithm 

was performed for each of 6 wavelets designed under Section 6.4 because the results were 

used to compare the performance of the different wavelets.  

In step 5) we perform the five level DTCWT decomposition of the image, getting six 

subbands with complex coefficients for each of the five levels of decompositions. The six 

subbands corresponds to the six orientations -75
o
, -45

o
, -15

o
, +15

o
, +45

o
 and +75

o
. 

Step 7) is performed for each of the six subbands rather than three subbands as used for 

UDWT. In step 8) the size of the window is not 32x32, but rather depends on the level of 

decomposition as follows: for level 1 the size is 16x16, for level 2 the size is 8x8, for level 3 
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the size is 4x4, for level 4 the size is 2x2 and for level 5 the size is 1x1. This is due to the 

downsampling performed during the wavelet decomposition process. 

In step 9) the calculation done is for the mean energy, variance of energy, mean magnitude 

and variance of magnitude of complex wavelet coefficients. 

The 2D dual-tree wavelet decomposition in step 5) was performed using the MATLAB 

function „cplxdual2‟ provided by Polytechnic University, Brooklyn, NY [183]. Given the 

filters   
( )

 ,   
( )

,   
( )

,   
( )

,   ,   ,    and    as they appear in Figure 6-2, this function 

performs a multilevel 2D dual-tree complex wavelet decomposition of an image giving out 

the real and imaginary parts of the complex wavelet coefficients of the six channels for each 

level of decomposition. 

The filters   ,    and    are obtained from the filters    available from Table 6-2. Filters    

are time-reversed versions of the corresponding filters   . Filters    and    are the 

modulated versions of the corresponding filters    and    respectively. This means that, for 

instance, to get the coefficients of    from those of   , we keep unchanged the odd-

numbered ones while we multiply by -1 the even-numbered ones. 

6.7 Compared defect detection performance of DTCWT and UDWT 

We performed the defect detection experiments using DTCWT- and UDWT-based features 

and the MCE-trained Euclidean distance classifier. Figure 6-3 and Table 6-4 show the 

average defect detection rate of DTCWT- and UDWT-based features for the different 

wavelets designed in sections 6.3 and 6.4; the average is calculated over the whole dataset. 

We see that DTCWT features perform better than UDWT features. This was expected as 

DTCWT can separate features in six different directions, while UDWT can separate features 

in only three directions. In addition, the separation of features in the third direction (diagonal 

direction) is not complete, because UDWT is not able to distinguish features oriented parallel 

to the main diagonal (45
o
) from those oriented parallel to the secondary diagonal (-45

o
). 
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Figure 6-3: Comparison of detection rate of DTCWT- and UDWT-based features as the 

wavelet filter length increases 

From the same results we see that the difference of detection rate between DTCWT- and 

UDWT-based features increases as the filter length increases. This is due to the observation 

that the defect detection performance of UDWT-based features generally decreases as the 

filter length increases, while the defect performance of DTCWT-based features tends to 

increase. 

Table 6-4: Average detection rate (%) of DTCWT- and UDWT-based features as the 

wavelet filter length increases 

Wavelet 

Filter 

length DTCWT UDWT 

1 4 78.9 77.6 

2 6 78.9 77.5 

3 8 79.4 76.7 

4 10 79.6 76.6 

5 12 79.4 76.1 

6 14 79.3 75.0 

 

Figure 6-4 and Table 6-5 compare the defect detection performance of the DTCWT- and 

UDWT-based features for the different types of fabrics. Except for the fabrics of types C4R1 

and C4R3, the DTCWT-based features outperform the UDWT-based features. For these two 

types of fabrics the UDWT-based features produce much better defect detection rates than 

DTCWT-based features. One possible explanation is that, unlike the other fabric types in our 
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dataset, the fabric types C4R1 and C4R3 have texture with no apparent periodicity. The 

superiority of the DTCWT-based features over the UDWT-based features lies in their ability 

to represent texture in different orientations as explained earlier in this section. The fabric 

types C4R1 and C4R3 have no apparent periodicity and therefore low regularity in different 

directions. That could have resulted in the loss of the competitive attribute of the DTCWT-

features over the UDWT-based features to the point that the latter performed better for those 

specific fabric types. 

 

Figure 6-4: Comparison of detection rate of DTCWT- and UDWT-based features for the 

eight types of fabrics 

Figure 6-5 shows a detailed graph of the comparison for fabric types C4R1 and C4R3. It 

shows the variation of the fabric defect detection rate as the wavelet size of support changes 

for both UDWT- and DTCWT- based features. From these results it can be seen that the best 

detection performance for fabric type C4R1 is achieved using UDWT wavelet 3 (which uses 

filters of length 6), while for the fabric type C4R3 the best performance is achieved using 

UDWT wavelet 2 (filter size=4). 
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Table 6-5: Average detection rate (%) of DTCWT- and UDWT-based features for the 

eight fabric types 

Fabric type DTCWT UDWT 

C1R1 91.0 81.6 

C1R3 87.3 80.5 

C2R2 82.2 80.8 

C2R3 74.6 71.5 

C3R1 76.9 70.5 

C3R3 76.7 73.0 

C4R1 72.2 78.0 

C4R3 73.1 76.9 

 

 

Figure 6-5: Comparison of detection performance of DTCWT- and UDWT-based 

features for the fabrics of types C4R1 and C4R3 for different wavelet support 

sizes 

 

6.8 Defect detection performance of wavelet features vs the wavelet size of support 

6.8.1 DTCWT-based features 

Figure 6-6 and Table 6-6 show the results of detection of DTCWT-based features extracted 

using wavelets of different support sizes and for the eight fabric types. Two observations can 

be made from those results. 
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First, the detection performance does not depend much on the size of support of the wavelet. 

For all the wavelets used with filters sized from 4 to 14, and for all the eight fabric types, the 

highest difference in detection rate is 2.7% observed for the fabric type C4R1.  

 

Figure 6-6: Detection rate of DTCWT-based features as the wavelet filter length 

increases for the different types of fabric. 

Second, that small variation is such that short wavelets tend to perform better than long 

wavelet for fabrics with fine texture (C1R1, C1R3, C2R2 and C2R3), while long wavelets 

tend to perform better than short wavelets for fabrics with coarser texture (C3R1, C3R3, 

C4R1 and C4R3). For all these fabrics with fine texture the best detection performance is 

achieved by wavelet 1, which uses filters of length 4. For all these fabrics with coarser 

texture, the best detection performance is achieved by using wavelet 4, which uses filters of 

length 10. 
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Table 6-6: Average detection rate (%) of DTCWT-based features as the wavelet filter 

length increases for the eight types of fabrics. 

 Wavelet 1 2 3 4 5 6 

Fabric type Filter length 4 6 8 10 12 14 

C1R1 91.6 91.0 90.7 90.7 90.8 90.5 

C1R3 87.7 87.0 86.8 86.7 86.8 86.4 

C2R2 83.6 82.3 82.3 82.1 82.1 81.9 

C2R3 75.6 75.0 75.1 75.5 75.2 74.8 

C3R1 75.4 76.3 77.7 78.0 77.5 77.4 

C3R3 76.5 76.8 77.2 77.4 77.2 77.0 

C4R1 71.5 72.7 73.7 74.1 73.8 74.2 

C4R3 72.7 73.6 74.0 74.5 74.3 74.3 

 

6.8.2 UDWT-based features 

Figure 6-7 and Table 6-7 show the defect detection results of UDWT-based features for 

wavelets of different support sizes and for all eight types of fabrics present in our dataset. The 

following observations can be made. 

 

Figure 6-7: Detection rate of UDWT-based features as the wavelet filter length increases 

for the eight different types of fabric. 

For very fine fabrics (C1R1 and C1R3) and for fabrics with a periodic structure (C3R1 and 

C3R3) the detection rate decreases as the wavelet length increases. For all those cases, the 

best detection rate is observed for wavelet 0, which uses filters of length 2. Also, for these 

types of fabrics the variation of the detection rate with respect to the size of wavelet support is 
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great. For example, for fabric type C1R1 there is a difference on detection rate of 12.3% 

between the detection rate of 88.0% achieved using the shortest wavelet (wavelet 0) and the 

detection rate of 75.7% obtained using the longest wavelet (wavelet 7). Therefore, for these 

types of fabrics it is preferable to use wavelet 0, implemented with filters of length 2. This has 

the added advantage of lower computational load. 

Table 6-7: Average detection rate (%) UDWT-based features as the wavelet filter length 

increases for the 8 types of fabrics 

 Wavelet 0 1 2 3 4 5 6 7 

Fabric type 

Filter 

length 
2 4 6 8 10 12 14 16 

C1R1 88.0 86.4 84.2 79.2 78.8 78.0 76.4 75.7 

C1R3 82.7 81.9 81.0 80.0 79.0 78.0 76.6 74.9 

C2R2 80.0 81.0 80.7 80.2 80.1 79.8 79.2 79.1 

C2R3 69.9 71.1 71.8 71.8 71.5 71.2 70.6 70.2 

C3R1 74.4 70.5 69.6 70.1 69.9 69.2 67.4 66.3 

C3R3 77.0 73.5 73.9 73.5 72.2 71.1 70.4 69.9 

C4R1 75.4 76.7 77.9 78.3 77.9 76.8 76.0 75.5 

C4R3 73.5 76.2 77.3 77.1 76.9 76.7 76.7 76.4 

 

For fabrics with a low variance structure (C2R2 and C2R3), and for printed fabrics with no 

apparent periodicity (C4R1 and C4R3), the detection rate slightly increases with the wavelet 

size of support and then slightly decreases with it. That may be due to the fact that long 

wavelets involve distant pixels from each other which might be statistically unrelated. 

However, for these types of fabrics the overall variation in detection rate with respect to the 

wavelet size of support remains relatively small. The greatest variation of 3.8% is observed 

for fabric type C4R3 where wavelet 0 achieves 73.5%, while wavelet 2 achieves 77.3%. 

6.9 Defect detection performance of wavelet features vs the number of wavelet 

decomposition levels 

In this section we study the variation of detection performance as the number of 

decomposition levels increases. This will allow us to decide on the appropriate number of 

wavelet decomposition levels. 

Figure 6-8 shows how the average defect rate varies as the number of wavelet decomposition 

levels increases for both the DTCWT- and UDWT-based features. For DTCWT-based 

features the average defect detection rate increases significantly with the addition of every 

decomposition level. This means that all five the decomposition levels are very important. 
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Figure 6-8: Variation of average defect detection rate with respect to the number 

of wavelet decomposition levels 

In contrast, for UDWT-based features there is a significant increase in the average detection 

rate as the number of wavelet decomposition levels is increased from 1 to 2. After two levels 

of decomposition, the average defect detection rate continues increasing, but at a very low 

rate. There is little improvement of the average defect detection rate after three levels of 

wavelet decomposition.  

Particularly for fabric types C4R1 and C4R3, for which the detection performance is better 

for UDWT than DTCWT, we need to decide on the appropriate level of wavelet 

decomposition. Figure 6-9 shows that there is little improvement in detection rate by 

increasing the number of decomposition levels beyond three. As the computational cost for 

UDWT increases exponentially with the number of decomposition levels, it would be 

computationally wasteful to go beyond level three in these cases and therefore the selected 

number of decomposition level is three. 
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Figure 6-9: Variation of average defect detection rate with respect to the number of 

UDWT wavelet decomposition levels for fabric types C4R1 and C4R3 

 

6.10 Summary of best wavelet-based features per fabric types 

Table 6-8 provides the best wavelet-based features per fabric type obtained from the previous 

experiments. Remember that the MCE-trained Euclidean distance classifier was used for all 

the experiments. For fine texture fabrics (C1R1, C1R3, C2R2 and C2R3) these features are 

the means and variances of magnitudes of DTCWT complex wavelet coefficients (Set c2) 

obtained using short filters of length 4.  

For fabrics with a periodic structure (C3R1 and C3R3), the best wavelet-features obtained are 

based on DTCWT using filters of length 10. They are means and variances of magnitudes of 

DTCWT complex wavelet coefficients (Set c2) for C3R1 while they are means and variances 

of energies of DTCWT complex wavelet coefficients (Set c1) for C3R3. 

Finally, for fabrics with no apparent periodicity the best features obtained are based on 

UDWT using filters of length 8 or 6. The features themselves are means and variances of 

absolute values of wavelet coefficients (Set r2) for each of wavelet subbands obtained with 

three wavelet decomposition levels.  
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Table 6-8: Best wavelet-based features per fabric type 

Fabric 

type 

Wavelet 

transform 

type 

Wavelet 

filter length 

Number of 

decomposition 

levels 

Feature 

set 

Best average 

detection rate 

(%) 

C1R1 DTCWT 4 5 Set c2 91.8 

C1R3 DTCWT 4 5 Set c2 87.9 

C2R2 DTCWT 4 5 Set c2 83.6 

C2R3 DTCWT 4 5 Set c1 76.3 

C3R1 DTCWT 10 5 Set c2 78.0 

C3R3 DTCWT 10 5 Set c1 77.6 

C4R1 UDWT 8 3 Set r2 78.3 

C4R3 UDWT 8 3 Set r2 77.1 

 

6.11 Effect of the classifier on the performance of wavelet features 

The observations made and results obtained in sections 6.7 through 6.10 were based on the 

use of the MCE-trained Euclidean distance classifier. In this section we investigate whether or 

not the same observations can be made when other classifiers are used. We will use (i) the K-

nearest-neighbour classifier (K=3) and (ii) the feed-forward neural network. 

The characteristics of the neural network used were as follows. The number of inputs was 54 

for DTCWT-based features and 30 for UDWT-based features. As explained in Subsection 

3.5.5, we used one hidden layer with 38 neurons for DTCWT-based features and 22 for 

UDWT-based features. 

As we did for all our defect detection experiments involving a feedforward neural network 

classifier, two neurons were used in the output layer to represent the defect-free and defective 

states of the sample under study. The neural network classifier was implemented as described 

in Subsection 5.6.2 using the Matlab Neural Network Toolbox with the same training 

parameters and the same strategy to prevent the problem of undertraining. 

The main observations we seek to confirm or reject are as follows. 

(a) DTCWT performs better than UDWT for fabric types C1R1, C1R3, C2R2, C2R3, 

C3R1 and C3R3, while UDWT performs better for fabric types C4R1 and C4R3. 

(b) There is a decreasing trend of detection performance for UDWT and an increasing 

trend for DTCWT as the wavelet filter length increases when the defect detection rate 

is averaged across different types of fabrics. 
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(c) When DTCWT is used for fine fabrics the shortest wavelet (wavelet 1, filter 

length=4) performs best, while for coarser fabrics the best detection performance is 

achieved by using wavelet 4, which uses filters of length 8. 

(d) For most fabric types the shortest wavelet (wavelet 0, filter length=2) performs the 

best (C1R1, C1R3, C3R1 and C3R3). For the other fabric types wavelets 2 (filter 

length=6) or wavelet 3 (filter length=8) performs the best with UDWT. 

(e) For DTCWT all the five decomposition levels are useful as they increase significantly 

the defect detection rate, while for the UDWT three levels of decompositions are 

enough. 

6.11.1 Comparison of  UDWT vs DTCWT for different fabric types when the KNN 

and the neural network classifiers are used 

Figure 6-10 and Figure 6-11 show the comparison of the average defect detection rates of 

DTCWT- and UDWT-based features for the eight fabric types when respectively the K-

nearest-neighbour and the feed-forward neural network classifiers are used. From both figures 

we can see that the average defect detection rate of DTCWT-based features is higher than the 

UDWT-based features for fabric types C1R1, C1R3, C2R2, C2R3, C3R1 and C3R3, while 

the reverse is true for fabric types C4R1 and C4R3. Therefore observation (a) remains valid 

for all three classifiers. 

 

Figure 6-10: Comparison of detection rate of DTCWT- and UDWT-based features for 

the eight types of fabrics using the K-nearest-neighbour classifier 
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Figure 6-11: Comparison of detection rate of DTCWT- and UDWT-based features for 

the eight types of fabrics using the feed-forward neural network classifier 

6.11.2 Dependence of the defect detection rate on the wavelet size of support when 

the KNN and the neural network classifiers are used 

 

Figure 6-12: Comparison of detection rate of DTCWT- and UDWT-based features as 

the wavelet filter length increases when a K-nearest-neighbour classifier is 

used 
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We can read from both figures  6-12 and 6-13 that the average defect detection rate of 

UDWT-based features decreases when the wavelet reference number increases whether the 

K-nearest-neighbour classifier or the feed-forward neural network is used. We can also see 

from both figures the same slight increase trend of average defect detection rate of the 

DTCWT-based features as we observed in Figure 6-3 when the MCE-based classifier was 

used. One is reminded that the wavelet reference number we used increased with the size of 

support and the wavelet filter length as shown in Tables 6-1 and 6-2. Therefore 

observation (b) remains valid for all three classifiers. 

 

Figure 6-13: Comparison of detection rate of DTCWT- and UDWT-based features as 

the wavelet filter length increases when a feed-forward neural network 

classifier is used 

6.11.3 Best wavelet filter length for different fabric types when the KNN and the 

neural network classifiers are used 

Figures 6-14 through 6-17 and tables 6-9 through 6-12 show the variation of the average 

defect detection rates of wavelet-based features both for DTCWT and UDWT when the K-

nearest-neighbour and the feed-forward neural network classifiers are used. From these and 

earlier results for the MCE-trained Euclidean distance classifier (figures 6-6 and 6-7 and 

tables 6-6 and 6-7) we get the summarised information about the best wavelet filter length for 

the different fabric types shown in Table 6-13. 
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Figure 6-14: Detection rate of DTCWT-based features as the wavelet filter length 

increases for the different types of fabric when a KNN classifier is used 

 

Table 6-9: Average detection rate (%) of DTCWT-based features as the wavelet filter 

length increases for the eight types of fabrics when a K-nearest-neighbour 

classifier is used 

 Wavelet 1 2 3 4 5 6 

Fabric type 

Filter 

length 
4 6 8 10 12 14 

C1R1 92.3 91.9 91.3 91.1 91.2 91.1 

C1R3 88.5 87.6 87.8 87.9 87.8 87.6 

C2R2 83.1 82.5 82.7 82.4 82.5 82.7 

C2R3 80.3 79.6 80.3 80.0 79.8 79.8 

C3R1 80.4 81.6 82.6 82.9 82.4 82.7 

C3R3 81.0 81.8 82.7 82.7 82.4 82.7 

C4R1 75.9 76.3 77.6 77.6 77.2 77.1 

C4R3 75.8 75.7 76.5 77.1 76.7 76.5 
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Figure 6-15: Detection rate of DTCWT-based features as the wavelet filter length 

increases for the different types of fabric when a feed-forward neural 

network classifier is used 

 

Table 6-10: Average detection rate (%) of DTCWT-based features as the wavelet filter 

length increases for the eight types of fabrics when a feed-forward neural 

network classifier is used 

 Wavelet 1 2 3 4 5 6 

Fabric type 

Filter 

length 
4 6 8 10 12 14 

C1R1 91.9 91.2 91.3 91.2 91.0 90.9 

C1R3 88.9 88.5 88.5 88.8 88.1 87.2 

C2R2 83.8 82.2 82.5 82.3 81.8 82.9 

C2R3 80.4 81.2 81.1 80.8 80.8 80.7 

C3R1 79.7 80.4 82.2 83.2 82.3 82.7 

C3R3 82.5 84.0 83.9 85.8 85.6 85.9 

C4R1 75.5 77.1 77.7 75.4 77.8 76.5 

C4R3 75.6 76.5 76.7 76.5 77.5 76.2 
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Figure 6-16: Detection rate of UDWT-based features as the wavelet filter length 

increases for the different types of fabric when a KNN classifier is used 

 

Table 6-11: Average detection rate (%) of UDWT-based features as the wavelet filter 

length increases for the eight types of fabrics when a K-nearest-neighbour 

classifier is used 

Fabric 

type 

Wavelet 0 1 2 3 4 5 6 7 

Filter 

length 
2 4 6 8 10 12 14 16 

C1R1 89.4 86.3 84.6 83.1 82.7 82.0 81.3 80.1 

C1R3 84.2 83.2 82.5 82.4 80.6 79.8 78.5 77.2 

C2R2 79.7 81.1 81.0 80.8 81.0 80.3 80.3 80.1 

C2R3 76.7 77.1 77.1 76.6 76.4 76.6 76.4 76.2 

C3R1 80.7 75.7 73.1 73.5 73.4 72.9 71.2 70.4 

C3R3 81.6 78.4 77.1 75.8 74.5 74.0 74.3 73.0 

C4R1 77.7 80.9 81.8 80.9 80.8 80.6 80.4 80.2 

C4R3 78.0 79.0 79.2 78.7 78.8 78.4 78.7 78.5 
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Figure 6-17: Detection rate of UDWT-based features as the wavelet filter length 

increases for the different types of fabric when a feed-forward neural 

network classifier is used 

 

Table 6-12: Average detection rate (%) of UDWT-based features as the wavelet filter 

length increases for the eight types of fabrics when the feed-forward neural 

network classifier is used 

Fabric 

type 

Wavelet 0 1 2 3 4 5 6 7 

Filter 

length 
2 4 6 8 10 12 14 16 

C1R1 90.4 89.2 87.8 86.3 85.9 85.1 82.2 81.6 

C1R3 86.2 85.5 83.8 83.9 83.7 82.8 79.6 79.4 

C2R2 81.0 82.7 82.4 81.7 81.8 80.7 80.2 80.3 

C2R3 77.6 76.7 76.4 76.1 76.7 75.8 75.9 75.5 

C3R1 81.1 78.1 76.1 75.5 74.5 73.9 72.5 72.1 

C3R3 84.3 80.4 80.2 78.3 77.2 75.9 74.4 73.3 

C4R1 81.4 83.5 84.0 82.8 82.1 82.1 80.6 80.3 

C4R3 80.4 81.8 82.0 80.7 80.7 80.4 80.0 78.1 

 

From Table 6-13 we can see that for the UDWT the shortest wavelet (wavelet 0, filter 

length=2) performs the best for the most types of fabrics (C1R1, C1R2, C3R1 and C3R3), 

while for the remaining fabrics types wavelet 2 (filter length = 6) or wavelet 3 (filter length = 

8) perform the best. This is true when any of the three classifiers is used and confirms 

observation (d) when the K-nearest-neighbour and the neural network classifiers are used. 
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From the same table we also see that for the DTCWT the shortest wavelet used (wavelet 1, 

filter length = 4) performs best for fine fabrics (C1R1, C1R3, C2R2 and C2R3), while for the 

coarser fabrics wavelet 4 (with filter length = 10) performs the best. This is also true when 

any of the three classifiers is used. The exception is when the neural network classifier is used 

for fabric types C2R3, C4R1 and C4R3, where respectively wavelet 2 (filter length = 6), 

wavelet 3 (filter length = 8) and wavelet 5 (filter length = 12) perform best. This confirms that 

observation (c) remains valid when the K-nearest-neighbour and the neural network 

classifiers are used.  

Table 6-13: Best wavelet-filter length when the three different classifiers are used (MCE 

refers to MCE-trained Euclidean distance classifier, KNN refers to the K-

nearest-neighbour classifier, while Neural refers to the feed-forward neural 

network classifier) 

Fabric type 
UDWT DTCWT 

MCE KNN Neural MCE KNN Neural 

C1R1 2 2 2 4 4 4 

C1R3 2 2 2 4 4 4 

C2R2 6 4 4 4 4 4 

C2R3 8 4 2 4 4 6 

C3R1 2 2 2 10 10 10 

C3R3 2 2 2 10 10 10 

C4R1 8 6 6 10 10 8 

C4R3 6 6 6 10 10 12 

 

6.11.4 Defect detection performance of wavelet-based features with respect to the 

number of wavelet decomposition levels when the KNN and the neural network 

classifiers are used 

Figures 6-18 and 6-19 show the variation of the average detection rate as the number of 

wavelet decomposition levels is increased when respectively the K-nearest-neighbour (K=3) 

and the feed-forward neural network classifiers are used. We can see from both figures that 

for DTCWT the average detection rate increases significantly after each level of 

decomposition is added, although at a lower rate after two levels. However, for the UDWT 

the average detection rate increase is very little after the third level of decomposition and does 

not justify the additional computational cost. It should be noted that the amount of data to be 

processed doubles from one level to the next and therefore it is these last decomposition 

levels that are computationally costly. Therefore, and in agreement with observation (e), all 
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the five DTCWT wavelet decompositions are required, while only three levels of 

decomposition levels are required for UDWT.  

 

Figure 6-18: Variation of average defect detection rate with respect to the number of 

wavelet decomposition levels when a K-nearest-neighbour classifier is used 

 

 

Figure 6-19: Variation of average defect detection rate with respect to the number of 

wavelet decomposition levels when a feed-forward neural network classifier is 

used 
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6.11.5 Summarised comparison of the best-based wavelet features per fabric type 

for the three classifiers 

Table 6-14 summarises the best wavelet features as shown by their defect detection 

performance by using the three different classifiers. 

The detection rates from Table 6-14 are shown graphically in Figure 6-20 and allow us to 

compare the classifiers‟ ability to detect fabric defects from wavelet-based features. We can 

see from the figure that the feed-forward neural network classifier performs the best among 

the three types of classifiers we used. 

Table 6-14: Best wavelet filter features for different fabrics using the three classifiers 

(BAVR (%) refers to best average detection rate (%)) 

Fabric type 

Classifier 

MCE-trained 

Euclidean distance 

classifier 

K-nearest-neighbour 

classifier 

Feed-forward neural 

network classifier 

C1R1 

(DTCWT) 

Filter length  4 Filter length  4 Filter length  4 

Feature set Set c2 Feature set Set c2 Feature set Set c2 

BAVR (%) 91.8 

 

BAVR (%) 92.3 

 

BAVR (%) 91.9 

 

C1R3 

(DTCWT) 

Filter length  4 Filter length  4 Filter length  4 

Feature set Set c2 Feature set Set c2 Feature set Set c2 

BAVR (%) 87.9 

 

BAVR (%) 88.5 

 

BAVR (%) 88.9 

 

C2R2 

(DTCWT) 

Filter length  4 Filter length  4 Filter length  4 

Feature set Set c2 Feature set Set c2 Feature set Set c2 

BAVR (%) 83.6 

 

BAVR (%) 83.1 

 

BAVR (%) 83.8 

 

C2R3 

(DTCWT) 

Filter length  4 Filter length  4 Filter length 6 

Feature set Set c1 Feature set Set c2 Feature set Set c2 
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Fabric type 

Classifier 

MCE-trained 

Euclidean distance 

classifier 

K-nearest-neighbour 

classifier 

Feed-forward neural 

network classifier 

BAVR (%) 76.3 

 

BAVR (%) 80.3 

 

BAVR (%) 81.2 

C3R1 

(DTCWT) 

Filter length  10 Filter length  10 Filter length  10 

Feature set Set c2 Feature set Set c2 Feature set Set c2 

BAVR (%) 78.0 BAVR (%) 83.0 BAVR (%) 83.2 

C3R3 

(DTCWT) 

Filter length  10 Filter length  10 Filter length  10 

Feature set Set c1 Feature set Set c2 Feature set Set c2 

BAVR (%) 77.5 BAVR (%) 82.7 BAVR (%) 85.7 

C4R1 

(UDWT) 

Filter length 8 Filter length 6 Filter length 6 

Feature set Set r2 Feature set Set r2 Feature set Set r2 

BAVR (%) 78.3 BAVR (%) 81.1 BAVR (%) 82.7 

C4R3 

(UDWT) 

Filter length 8 Filter length 6 Filter length 6 

Feature set Set r2 Feature set Set r2 Feature set Set r2 

BAVR (%) 77.1 BAVR (%) 79.8 BAVR (%) 80.7 
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Figure 6-20: Comparison of the classifiers about their defect detection capability from 

wavelet-based features 

 

6.12 Fabric defect classification using wavelet features 

In this section we investigate the variation of the defect classification rate for different types 

of fabrics when the size of support of the wavelet changes. The objective is to identify for 

each fabric type the wavelet that provides the features that yield the highest classification rate. 

We use five wavelet decomposition levels for DTCWT and three wavelet decomposition 

levels for UDWT as found during the defect detection related experiments in Section 6.9.  

The defect classification is done in two stages, as shown earlier in Figure 5-18, with the 

difference that in this case we use wavelet-based features rather than GLCM features. The 

first stage is the defect detection stage to discriminate defective from defect-less samples. The 

samples identified as defective are then submitted to the second classification stage to assign 

each of them to one of the four types of defects. 

Three different classifiers are used: (i) the MCE-trained Euclidean distance classifier, (ii) the 

K-nearest-neighbour classifier and (iii) the feed-forward neural network classifier. Pertaining 

to K-nearest-neighbour classifier, we used K=3 for implementing the defect detection stage, 

and K=9 for the defect classification stage. For the neural network classifier we used the 

topology shown in Table 6-15, depending on the stage in the classification process and the 

type of wavelet features. 
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Table 6-15: Topology of the neural network classifier used for wavelet-based defect 

classification 

  Number 

of inputs 

Number of neurons in 

the hidden layer 

Number of 

output neurons 

Defect 

detection 

stage 

UDWT-based 

features 
30 22 2 

DTCWT-based 

features 
54 38 2 

Defect 

classification 

stage 

UDWT-based 

features 
30 24 4 

DTCWT-based 

features 
54 40 4 

  

The training parameters and procedure for the neural network classifier are explained in 

Section 6.11. 

6.12.1 Defect classification results of UDWT-based features 

Figures 6-21 through 6-23 as well as tables 6-16 through 6-18 show the variation of the defect 

classification rates obtained from UDWT-based features for different types of fabrics with the 

increasing wavelet size of support (or the corresponding filter length) when respectively the 

MCE-trained Euclidean distance classifier, the K-nearest-neighbour classifier and the feed-

forward neural network classifiers are used.  

The defect classification rates obtained from the MCE-trained Euclidean distance classifier 

(Figure 6-21) have similar variation trends as those obtained from the K-nearest-neighbour 

classifier (Figure 6-22). However, the defect classification rates obtained from the K-nearest-

neighbour classifier are higher. Two observations require attention: (i) there is a decreasing 

trend of classification rate as the wavelet size of support increases, apart for the printed 

fabrics with no apparent periodicity (C4R1 and C4R3) where that trend is less visible; and (ii) 

the defect classification rates for the printed fabrics with no apparent periodicity (C4R1 and 

C4R3) are as good as those for the other types of fabrics. This contrasts with the defect 

detection rates which were consistently lower than those of the other fabric types. 
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When the feed-forward neural network classifier is used (Figure 6-23), there is a general 

decreasing trend of the defect classification rates as the wavelet size of support increases for 

all the types of fabrics in our dataset. The defect classification rates are in the same range as 

those obtained using the K-nearest-neighbour classifier. 

 

Figure 6-21: Detection classification rate of UDWT-based features as the wavelet 

filter length increases for the different types of fabric when a MCE-

trained Euclidean distance classifier is used 

Table 6-16: Average defect classification rate (%) of UDWT-based features as the 

wavelet filter length increases for the eight types of fabrics when a MCE-

trained Euclidean distance classifier is used 

Fabric 

type 

Wavelet 0 1 2 3 4 5 6 7 

Filter 

length 
2 4 6 8 10 12 14 16 

C1R1 58.3 53.2 43.9 45.3 47.0 47.7 47.7 47.8 

C1R3 46.9 48.4 50.1 50.2 48.9 48.2 47.3 46.0 

C2R2 56.3 58.3 56.7 52.8 53.1 53.5 52.4 50.3 

C2R3 43.0 45.1 46.6 47.9 47.8 45.8 43.1 41.6 

C3R1 52.8 48.6 45.4 44.6 43.6 42.8 42.5 42.1 

C3R3 49.7 47.7 49.0 49.5 49.8 49.0 49.3 49.5 

C4R1 41.7 47.4 49.5 53.2 54.1 54.4 53.4 52.9 

C4R3 47.6 50.9 52.4 53.2 52.4 52.3 51.3 50.9 
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Figure 6-22: Detection classification rate of UDWT-based features as the wavelet 

filter length increases for the different types of fabric when a K-

nearest-neighbour classifier is used 

 

Table 6-17: Average defect classification rate (%) of UDWT-based features as the 

wavelet filter length increases for the eight types of fabrics when a K-nearest-

neighbour classifier is used 

Fabric 

type 

Wavelet 0 1 2 3 4 5 6 7 

Filter 

length 
2 4 6 8 10 12 14 16 

C1R1 75.6 67.3 68.6 69.3 70.3 69.9 70.0 69.8 

C1R3 68.7 69.2 68.7 67.6 66.4 65.8 64.1 62.3 

C2R2 65.1 65.8 63.5 62.8 63.7 63.7 62.2 62.6 

C2R3 60.7 62.4 62.5 63.2 62.7 61.8 60.8 59.5 

C3R1 62.6 58.6 56.7 56.7 57.0 54.6 55.1 55.1 

C3R3 70.6 64.7 64.2 61.0 59.0 59.1 58.5 58.3 

C4R1 62.9 60.5 61.4 63.7 63.9 63.4 63.1 62.9 

C4R3 59.9 59.8 59.8 61.1 61.4 60.8 61.0 60.3 
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Figure 6-23: Detection classification rate of UDWT-based features as the wavelet 

filter length increases for the different types of fabric when a feed-

forward neural network classifier is used 

 

Table 6-18: Average defect classification rate (%) of UDWT-based features as the 

wavelet filter length increases for the eight types of fabrics when a feed-

forward neural network classifier is used 

Fabric 

type 

Wavelet 0 1 2 3 4 5 6 7 

Filter 

length 
2 4 6 8 10 12 14 16 

C1R1 78.4 77.9 77.0 76.6 75.0 73.6 72.3 70.0 

C1R3 71.9 73.3 72.8 71.1 70.6 68.4 68.1 66.1 

C2R2 65.7 66.5 65.7 65.1 63.9 62.6 62.0 61.7 

C2R3 62.5 62.6 63.2 62.7 61.1 61.0 60.9 59.9 

C3R1 67.5 63.1 61.5 57.4 57.7 57.5 57.0 55.8 

C3R3 72.7 69.0 67.5 63.5 64.3 60.1 59.9 59.0 

C4R1 66.3 68.5 69.4 68.2 66.1 65.2 63.8 63.7 

C4R3 61.3 66.2 66.6 64.5 65.1 64.3 63.5 62.6 

 

6.12.2 Defect classification results of DTCWT-based features 

Figures 6-24 through 6-26 and tables 6-19 through 6-21 show the variation of the defect 

classification rates obtained from DTCWT-based features for different types of fabrics with 

the increasing wavelet size of support (or the corresponding filter length) when respectively 
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the MCE-trained Euclidean distance classifier, the K-nearest-neighbour classifier and the 

feed-forward neural network classifiers are used. 

 

Figure 6-24: Detection classification rate of DTCWT-based features as the 

wavelet filter length increases for the different types of fabric when 

MCE-trained Euclidean distance classifier is used 

 

Table 6-19: Average defect classification rate (%) of DTCWT-based features as the 

wavelet filter length increases for the eight types of fabrics when MCE-

trained Euclidean distance classifier is used 

Fabric 

type 

Wavelet 1 2 3 4 5 6 

Filter 

length 
4 6 8 10 12 14 

C1R1 74.2 74.1 73.5 74.7 74.5 74.5 

C1R3 66.9 66.0 64.6 64.5 64.7 64.0 

C2R2 57.3 58.3 59.1 59.6 59.3 59.3 

C2R3 48.0 49.0 49.4 49.3 49.2 49.1 

C3R1 52.9 54.0 55.5 55.7 55.5 55.3 

C3R3 53.2 53.0 53.0 53.4 53.6 53.4 

C4R1 41.5 41.3 42.0 43.0 42.7 42.8 

C4R3 48.1 49.1 50.2 50.6 50.4 50.6 

 

Generally, there is little variation in the defect classification rates with respect to the size of 

support of the wavelet. Exceptions are seen for fabrics with a clearly visible periodic structure 

(C3R1 and C3R3) for which a clearly visible increasing trend is observed when the K-
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nearest-neighbour and the feed-forward neural network classifiers are used. To a lesser degree 

a similar trend is observed for the printed fabrics with no apparent periodicity (C4R1 and 

C4R3). 

 

Figure 6-25: Detection classification rate of DTCWT-based features as the 

wavelet filter length increases for the different types of fabric when a 

K-nearest-neighbour classifier is used 

 

Table 6-20: Average defect classification rate (%) of DTCWT-based features as the 

wavelet filter length increases for the eight types of fabrics when a K-nearest-

neighbour classifier is used 

Fabric 

type 

Wavelet 1 2 3 4 5 6 

Filter 

length 
4 6 8 10 12 14 

C1R1 82.4 82.2 82.8 82.7 82.8 82.4 

C1R3 76.6 76.4 77.1 77.2 77.3 76.9 

C2R2 67.4 66.5 67.7 67.3 66.7 66.4 

C2R3 66.4 67.0 67.3 67.5 67.3 67.2 

C3R1 67.8 69.7 71.5 71.8 70.8 71.0 

C3R3 71.7 72.4 74.2 75.3 74.1 74.5 

C4R1 58.3 59.7 61.1 60.7 60.4 60.4 

C4R3 61.7 61.5 62.8 62.1 61.8 62.4 

 

Comparing the defect classification performance of the three different classifiers used in this 

thesis, the K-nearest-neighbour classifier and the feed-forward neural network classifiers have 
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classification rates in the same range and higher than those obtained using the MCE-trained 

Euclidean distance classifier. 

 

Figure 6-26: Detection classification rate of DTCWT-based features as the 

wavelet filter length increases for the different types of fabric when a 

feed-forward neural network classifier is used 

Table 6-21: Average defect classification rate (%) of DTCWT-based features as the 

wavelet filter length increases for the eight types of fabrics when a feed-

forward neural network classifier is used 

Fabric 

type 

Wavelet 1 2 3 4 5 6 

Filter 

length 
4 6 8 10 12 14 

C1R1 80.6 80.5 80.2 80.5 80.3 80.1 

C1R3 77.7 78.3 78.7 79.4 79.2 79.0 

C2R2 67.0 65.9 67.2 67.5 66.2 65.4 

C2R3 66.2 67.7 68.6 67.2 68.4 67.6 

C3R1 68.7 69.3 72.5 74.2 71.9 72.1 

C3R3 71.3 73.7 72.4 76.7 72.1 73.0 

C4R1 57.0 57.7 58.6 59.3 58.5 61.0 

C4R3 56.4 59.2 59.5 59.0 59.2 60.9 

 

6.12.3 Summary of best wavelet-based features for defect classification 

Table 6-22 summarises the information on the best wavelet-based features for defect 

classification when three different classifiers are used. DTCWT-based features are best for 

most of the fabric types. The exception is printed fabrics, with no apparent periodicity for 
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which UDWT-based features generally perform best. The same observation was made for the 

defect detection results in Section 6.7. 

Table 6-22: Comparison of best wavelet-based defect classification performance of three 

different classifiers  

Fabric 

type 

MCE-trained Euclidean 

distance classifier 
K-nearest-neighbour classifier 

Feed-forward neural network 

classifier 

Transform 

type 
Wavelet 

Best 

class. 

rate (%) 

Transform 

type 
Wavelet 

Best class. rate 

(%) 

Transform 

type 
Wavelet 

Best 

class. 

rate (%) 

C1R1 DTCWT 4 74.7 DTCWT 3 82.8 DTCWT 1 80.6 

C1R3 DTCWT 1 66.9 DTCWT 5 77.3 DTCWT 4 79.4 

C2R2 DTCWT 4 59.6 DTCWT 3 67.7 DTCWT 4 67.5 

C2R3 DTCWT 3 49.4 DTCWT 4 67.5 DTCWT 3 68.6 

C3R1 DTCWT 4 55.7 DTCWT 4 71.8 DTCWT 4 74.2 

C3R3 DTCWT 5 53.6 DTCWT 4 75.3 DTCWT 4 76.7 

C4R1 UDWT 5 54.4 UDWT 4 63.9 UDWT 2 69.4 

C4R3 UDWT 3 53.2 DTCWT 3 62.8 UDWT 2 66.6 

 

 

Figure 6-27: Detection classification rate of DTCWT-based features as the 

wavelet filter length increases for the different types of fabric when 

feed-forward neural network classifier is used 
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Table 6-23: Average defect classification rate (%) of DTCWT-based features as the 

wavelet filter length increases for the eight types of fabrics when a feed-

forward neural network classifier is used 

Fabric 

type 

Wavelet 

1 2 3 4 5 6 

C1R1 80.6 80.5 80.2 80.5 80.3 80.1 

C1R3 77.7 78.3 78.7 79.4 79.2 79.0 

C2R2 67.0 65.9 67.2 67.5 66.2 65.4 

C2R3 66.2 67.7 68.6 67.2 68.4 67.6 

C3R1 68.7 69.3 72.5 74.2 71.9 72.1 

C3R3 71.3 73.7 72.4 76.7 72.1 73.0 

C4R1 57.0 57.7 58.6 59.3 58.5 61.0 

C4R3 56.4 59.2 59.5 59.0 59.2 60.9 

 

6.13 Summary 

In this chapter we studied the performance of wavelet-based features for fabric defect 

detection and classification. Due to the fact that pattern recognition applications of wavelet 

transforms such as fabric defect detection and classification require the use of shift-invariant 

wavelet transforms, we chose both the undecimated discrete wavelet transform (UDWT) and 

the dual-tree complex wavelet transform (DTCWT), the two best known solutions for the 

problem of shift-variance of the wavelet transform. 

We first designed the filters required for implementation of both UDWT and DTCWT. As we 

wanted to study the effect of filter length (or wavelet size of support) on the defect detection 

performance of the derived features, the design was done for different filter lengths from 2 

through 16 in increments of two for UDWT and from 4 through 14 in increments of two for 

the DTCWT.  

Experimental defect detection results showed that there is a clearly visible decreasing trend in 

the defect detection rate as the filter length (or the wavelet size of support) increases for 

UDWT. For DTCWT the variation of the defect detection rate with respect to the length of 

the filters was less evident, although a slight increasing trend could be noticed. However, 

these general observations, made from the averaged defect detection rates across different 

types of fabrics, were not uniform for individual fabric types. 

The comparison of defect detection performance of UDWT- and DTCWT-based features 

showed that DTCWT-based ones outperformed those based on UDWT for most types of 

fabrics, with the exception of the printed fabrics with no apparent periodicity (class C4) where 
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UDWT-based features performed better. A possible explanation is the low regularity of those 

types of fabrics in different directions as explained in Section 6.7. 

Regarding the number of levels of wavelet decomposition, experimental results showed that 

all five levels of decomposition were useful for DTCWT-based features, while three levels 

were enough for UDWT-based features. The two additional levels of UDWT decomposition 

would be too computationally expensive for the small increment in the resulting detection 

rates. 

All the above observations were made based on experimental results obtained using the MCE-

trained Euclidean distance classifier. To verify their validity with different classifiers, we 

performed the same experiments, but using (i) the K-nearest-neighbour classifier (with K=3) 

and (ii) the feed-forward neural network classifier. The results revealed that those 

observations remained valid. This suggests that they could be independent of classifiers, but 

more experiments with more classifiers are required to confirm this possibility. 

When used for defect classification the same decreasing trend of the UDWT-based features 

with respect to the wavelet filter length can be observed. However, this trend is less consistent 

from one classifier type to another. DTCWT-based features generally show little variation in 

defect classification performance with respect to the wavelet filter length, apart from for 

fabric types C3R1, C3R3, C4R1 and C4R3, where an increasing trend is observed. Similar to 

the defect detection results, the DTCWT-based features outperform the UDWT-based features 

in the defect classification results for most fabric types apart from the printed fabrics with no 

apparent periodicity (Class C4). 
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Chapter 7: Exploration of Markov random field-based features 

7.1 Introduction 

Model-based texture analysing methods such as Markov random fields (MRF) attempt to 

model texture as a stochastic process. This approach has the advantage that it is capable of 

synthesising textures that match the observed textures from models [20]. This contrasts with 

methods such as grey level co-occurrence matrix (GLCM) and wavelets, which are essentially 

feature-based with no intention of producing texture from the model. This suggests that the 

resulting features have better texture discriminating ability. 

In this chapter we investigate the performance of MRF features for fabric defect detection and 

classification. The objective is to select MRF features that can be combined with GLCM and 

wavelet features for improved fabric defect detection and classification. 

This chapter will be organised as follows. In Section 7.2 we decide which MRF model to use. 

In Section 7.3 we present the MRF feature extraction algorithm. Section 7.4 studies the defect 

detection performance of MRF features as function of the model order. Section 7.6 deals with 

the problem of fabric defect classification using MRF features, while Section 7.7 summarises 

the chapter. 

7.2 Which Markov random field model? 

As described in Subsection 3.4.3, many different types of Markov random field models can be 

set up by choosing a form of the energy function U (f) given by (3.97). However, the auto-

models are the most frequently used in practice. 

In this chapter, we will use the Gaussian Markov random field (GMRF) model because it is 

the most widely used for the modelling of various man-made and natural textures [184]. 

Moreover, its effectiveness has been shown in various publications [20, 111]. We will use the 

model to study its effectiveness in detecting defects in fabric images as the order of the model 

increases from 1 through 9. We will also use it for defect classification and the observations 

we obtain from the experiments will allow us to choose the features that will be combined 

with GLCM and wavelet features for improved effectiveness in defect detection and 

classification. 

7.3 MRF feature extraction algorithm 

As described in Subsection 3.4.5, MRF feature extraction of a texture image is equivalent to 

parameter estimation of the MRF model of that image.  
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Figure 7-1 shows the neighbourhood of a pixel X. In the number identifying each pixel of the 

neighbourhood, the first digit refers to the order of the model, while the second digit is the 

serial number of the pair of symmetric pixels with respect to X.  

  91 82 72 62 73 83 92   

  81 51 42 32 43 52 84   

  71 41 21 12 22 44 74   

  61 31 11 X 11 31 61   

  74 44 22 12 21 41 71   

  84 52 43 32 42 51 81   

  92 83 73 62 72 82 91   

Figure 7-1: Neighbourhood of point X 

As described in Subsection 3.4.3, a GMRF model may be represented as a non-causal 

autoregressive model given by (3.108) and (3.109). Let   ̅ be the image obtained after 

subtracting from the original image   its mean value   as given by (7.1). 

 ff  (7.1) 

Then (3.108) can be rewritten as (7.2) for the first order model 

    nmnmnmnmnmnm efffff ,,1,1121,1,11,     (7.2) 

where (m, n) are coordinates of the central pixel and      is the value of the Gaussian noise at 

pixel (m, n).     and     are the model parameters. 

The second order model (3.108) can be rewritten as (7.3). 

   
    nmnmnmnmnm

nmnmnmnmnm

effff

fffff

,1,11,1221,11,121

,1,1121,1,11,












 (7.3) 

Equations similar to (7.2) and (7.3) can be easily written for higher order models. 

To estimate the model parameters for each model order from 1 through 9 we used the 

algorithm shown in Table 7-2 in form of pseudo code. 

In step 5) of the pseudo code, the number of parameters      depends on the order of the 

GMRF model as shown in Table 7-1. 
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Table 7-1: Number of GMRF model parameters 

Order of the GMRF model 1 2 3 4 5 6 7 8 9 

Number of parameters      2 4 6 10 12 14 18 22 24 

 

In step 7) solving the system of overdetermined linear equations by LSE is equivalent to 

linear regression [185] and therefore the MATLAB function „regress‟ was used to estimate 

the parameters      as well as the residual error     .  

The calculation of the predicted value of a pixel  ̂(   ) given its neighbourhood (step 9) is 

performed using (7.4) for first order models and (7.5) for second order models. Similar 

equations are used for higher order models. 

   nmnmnmnmnm fffff ,1,1121,1,11,
ˆˆˆ

    (7.4) 

   

   1,11,1221,11,121

,1,1121,1,11,

ˆˆ

ˆˆˆ









nmnmnmnm

nmnmnmnmnm

ffff

fffff




 (7.5) 

Where  ̂    are the estimates of the model parameters      found in step 7).  
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Table 7-2: Algorithm for GMRF feature extraction from a given image f and for a given 

model order 

1) Calculate the mean grey scale value   of the image f. 

2) Calculate   ̅by using (7.1). 

3) Symmetrically extend image   ̅so that the central pixel in the neighbourhood in 

Figure 7-1 (for the given order) can occupy all the positions of the original 

image and keep all the neighbourhood pixels within the image. 

4) For each pixel   ̅   consider its neighbourhood as shown in Figure 7-1, where 

  ̅   is   e central pixel. 

5) Write equations similar to (7.2) and (7.3) for the given model order.      is 

the unknown to be estimated,   ̅   is value of the current central pixel, and 

the coefficients of the unknown      are the sums of corresponding pixel 

values which are symmetrically opposed with respect to the central pixel. In 

Figure 7-1 such pixels are similarly numbered. The Gaussian noise is not 

considered in this step. 

6) Continue with the next pixel. 

7) After completing steps 4), 5) and 6) for all the pixels of  ,̅ the obtained 

equations form an overdetermined system of linear equations where the model 

parameters are the unknowns      to be determined. Solve the equations using 

the LSE method. 

8) For each pixel position (m, n)  

9) Calculate the model estimate of central pixel  ̂(m, n) using equation similar 

to (7.4) or (7.6) for the given model. 

10) Calculate the residual error      as        ̅    ̂    

11) Continue with the next pixel position. 

12) After completing the steps 8) through 11) for all the pixel positions in f, 

calculate the variance of the residual errors       (    ) 

13) Consider the set {      ̂   + as the GMRF features of the texture image f. 

 

7.4 Defect detection performance as function of the model order 

Defect detection experiments were performed using features derived from the MRF models of 

orders from 1 through 9 for all eight fabric types in our dataset. The MCE-trained Euclidean 

distance classifier was used. 

The results are shown in Figure 7-2 and Table 7-3. We can read from the results that the first 

order MRF is by far the most effective model for detecting defect in fine fabrics (C1R1, 

C1R3, C2R2 and C2R3) compared to the models of the other orders. For these types of 

fabrics the defect detection performance tends to decrease as the order of the model increases. 
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For fabrics with a periodic structure (C3R1 and C3R3) the average defect detection rate 

remains low (below 67%) and does not change much from one model order to the next. The 

best average detection rate is 66.6% for fabric type C3R1, recorded when the first order 

model is used, and 64.6% for fabric type C3R3 recorded when the seventh order model is 

used. 

For printed fabrics with no apparent periodicity (C4R1 and C4R3) the defect detection 

performance tends to slowly increase with the model order, even though the second order 

seems to be an exception for fabric type C4R1 and the third order seems to be an exception 

for fabric type C4R3. The best average defect detection rate of 67.5% is observed for fabric 

type C4R1 when the model order is 2, and 71.1% observed for fabric C4R3 when the model 

order is 9. However, in the latter case we see that the features obtained using the MRF model 

of order 3 performs almost equally well (70.7%). Therefore, in combination experiments done 

in chapter 8, we will use the features obtained using the third model because they are much 

faster to compute than those from the ninth order model. 

Table 7-4 summarises the best MRF features for the different fabric types. 

 

Figure 7-2: Defect detection performance of MRF features as the order of the model 

changes for different fabric types. 
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Table 7-3: Average defect detection rate (%) for different fabric as the order of the 

MRF model used to find texture features varies from 1 through 9 

 Order of the MRF model 

Fabric type 1 2 3 4 5 6 7 8 9 

C1R1 87.8 75.4 71.6 72.0 72.2 73.8 71.4 72.5 71.9 

C1R3 84.6 79.6 70.1 71.4 69.0 69.9 68.5 68.9 68.7 

C2R2 80.8 75.4 76.3 76.4 75.9 75.7 76.0 75.3 75.6 

C2R3 72.4 69.9 70.0 68.8 69.0 68.5 68.6 68.5 68.6 

C3R1 66.6 65.5 63.5 64.5 65.0 65.3 64.9 63.8 63.8 

C3R3 61.9 63.4 63.2 62.8 62.1 64.5 64.6 63.7 64.4 

C4R1 65.0 67.5 64.0 65.4 65.3 65.3 66.4 66.2 66.1 

C4R3 68.0 68.6 70.7 69.7 70.4 70.0 70.1 70.2 71.1 

 

Table 7-4: Best MRF-based features per fabric type 

Fabric 

type 

MRF model 

order 

Best average 

detection rate (%) 

C1R1 1 87.8 

C1R3 1 84.6 

C2R2 1 80.8 

C2R3 1 72.4 

C3R1 1 66.6 

C3R3 7 64.6 

C4R1 2 65.5 

C4R3 3 70.7 

 

7.5 Effect of the classifier on the performance of MRF features 

The observations made in Section 7.4 about the dependence of the MRF features on the order 

of the model were based on the use of the MCE-trained Euclidean distance classifier. We 

specifically identified the best model order to use for each of the eight fabric types in our 

dataset. In this section we investigate whether or not the same observations hold when a K-

nearest-neighbour classifier (K=3) and a feed-forward neural network classifier are used. We 

also compare the best defect detection performance obtained when each of the three 

classifiers are used. For the neural network classifier the number of inputs is equal to the 

number of MRF-based features and varies from 4 to 26 depending on the order of the model. 

For the number of neurons in the hidden layer, we used the formula given by (5.4). We used 

the training parameters and procedure for the neural network classifier as explained in 

Subsection 5.6.2.  
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Figure 7-3 and Table 7-5 show how the average defect detection rate varies as the order of the 

GMRF model increases when a K-nearest-neighbour classifier is used, while Figure 7-4 and 

Table 7-6 show the same information when a feed-forward neural network classifier is used. 

We can see from both sets of results that, for fine fabrics (C1R1, C1R3, C2R2 and C2R3), the 

same trend of decreasing detection performance as the order of the model used is increased is 

still maintained.  That observation was made in Section 7.4 when a MCE-trained classifier is 

used. The first order is also still the best model for those types of fabrics, with the exception 

of the fabric type C2R3 for which the best detection performance is observed for the fourth 

model when a feed-forward neural network classifier is used. The overwhelming performance 

of the first order with respect to the other models is observed only for the K-nearest-

neighbour classifier and for only the very fine fabrics (C1R1 and C1R3), not for the feed-

forward neural network classifier.  

 

Figure 7-3: Defect detection performance of MRF features as the order of the model 

changes for different fabric types when a K-nearest-neighbour classifier 

is used 
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Table 7-5: Average defect detection rate (%) for different fabric as the order of the 

MRF model used to find texture features varies from 1 through 9 and when a 

K-nearest-neighbour classifier is used 

 Order of the MRF model 

Fabric type 1 2 3 4 5 6 7 8 9 

C1R1 87.7 79.9 78.8 76.0 74.5 75.8 74.1 73.1 72.9 

C1R3 85.4 76.3 75.5 73.5 72.2 72.3 71.6 68.6 70.5 

C2R2 81.9 79.5 80.9 79.7 78.7 78.6 77.6 76.3 77.3 

C2R3 76.7 76.6 74.3 72.8 71.1 71.6 69.7 69.6 69.6 

C3R1 72.7 72.2 69.6 70.5 69.1 69.4 68.9 68.5 68.0 

C3R3 71.0 73.9 71.9 71.5 70.9 71.3 69.7 69.5 69.9 

C4R1 71.7 75.0 71.8 72.9 71.3 71.7 71.7 71.7 70.8 

C4R3 75.9 76.2 75.8 75.8 75.1 75.5 75.2 75.3 75.6 

 

For fabrics with a periodic structure (C3R1 and C3R3), low-order models (first and second 

order) perform better  when the K-nearest-neighbour classifier is used, while the dependence 

of the performance on the model order is less regular when a feed-forward neural network 

classifier is used.  

Finally, for fabrics with no apparent periodicity (C4R1 and C4R3), we observe the same 

increasing trend of the defect detection rate as the order of the model increases when the feed-

forward neural network is used, but not when the K-nearest-neighbour classifier is used. That 

indicates greater ability of neural networks in conjunction with high-order MRF models to 

capture statistical relationship of pixels of bigger texture primitives present in fabric types of 

class 4.  In the latter case of the K-nearest-neighbour classifier, we observe a relatively high 

performance for the second order model for fabric type C4R1, and an almost constant 

performance for all nine model orders for fabric type C4R3. 
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Figure 7-4: Defect detection performance of MRF features as the order of the model 

changes for different fabric types when a feed-forward neural network 

classifier is used 

 

Table 7-6: Average defect detection rate (%) for different fabric as the order of the 

MRF model used to find texture features varies from 1 through 9 and when a 

feed-forward neural network is used 

 Order of the MRF model 

Fabric type 1 2 3 4 5 6 7 8 9 

C1R1 87.4 85.9 82.3 86.2 86.3 86.9 82.4 80.4 79.2 

C1R3 85.3 84.7 78.0 83.9 82.0 82.6 77.9 74.4 71.3 

C2R2 83.1 78.9 82.8 82.4 79.9 79.7 79.3 79.8 79.3 

C2R3 76.2 75.8 75.2 77.0 73.1 75.1 72.7 72.5 72.4 

C3R1 69.6 69.2 68.0 68.3 67.9 68.4 69.5 68.5 67.6 

C3R3 68.5 69.4 71.9 71.6 70.0 71.3 72.8 71.8 69.2 

C4R1 68.8 71.3 70.5 70.9 69.4 70.6 73.6 72.9 71.3 

C4R3 73.0 73.5 75.6 76.0 76.8 76.0 77.2 77.3 77.0 

 

Table 7-7 compares the defect detection performance of the MCE-trained Euclidean distance 

classifier, K-nearest-neighbour classifier and the feed-forward neural network classifiers fed 

with MRF-based features. In this comparison the best detection rate across different orders of 

the GMRF models is used. The three classifiers perform almost equally, apart from the MCE-

trained Euclidean distance classifier which shows lower performance than the two other 
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classifiers for fabrics with a periodic structure and for fabrics with no apparent periodicity 

(C3R1, C3R3, C4R1 and C4R3). 

Table 7-7: Comparison of best MRF-based defect detection performance of three 

different classifiers  

Fabric 

type 

MCE-trained 

Euclidean distance 

classifier 

K-nearest-neighbour 

classifier 

Feed-forward neural 

network classifier 

MRF 

model 

order 

Best average 

detection rate 

(%) 

MRF 

model 

order 

Best average 

detection rate 

(%) 

MRF 

model 

order 

Best average 

detection rate 

(%) 

C1R1 1 87.8 1 87.7 1 87.4 

C1R3 1 84.6 1 85.4 1 85.3 

C2R2 1 80.8 1 81.9 1 83.1 

C2R3 1 72.4 1 76.7 4 77.0 

C3R1 1 66.6 1 72.7 1 69.6 

C3R3 7 64.6 2 73.9 7 72.8 

C4R1 2 65.5 2 75.0 7 73.6 

C4R3 3 70.7 2 76.2 8 77.3 

 

7.6 Fabric defect classification using MRF features 

In this section we perform experiments in order to identify for each fabric type the GMRF 

model order that provides features able to best discriminate the four defect classes in addition 

to the defect-free class. 

For each model order from 1 through 9, and for each the eight fabric types, the defect 

classification experiment illustrated in Figure 5-18 is performed. The experiment is done 

using (i) the MCE-trained Euclidean distance classifier, (ii) the K-nearest-neighbour classifier 

and (iii) the feed-forward neural network. The defect classification rates for each type of 

fabric are then recorded and analysed. 
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Figure 7-5: Defect classification performance of MRF features as the order of the 

model changes when a MCE-trained Euclidean distance classifier is used 

Table 7-8: Average defect classification rate (%) for different fabric as the order of the 

MRF model changes when a MCE-trained Euclidean distance classifier is 

used 

 Order of the MRF model 

Fabric type 1 2 3 4 5 6 7 8 9 

C1R1 60.8 50.5 48.0 52.0 51.1 55.9 49.5 52.8 50.2 

C1R3 61.0 48.2 49.2 44.2 46.7 49.8 44.7 44.6 42.3 

C2R2 59.6 58.8 55.5 54.3 53.7 53.2 53.0 53.5 53.9 

C2R3 49.2 42.7 48.4 42.7 42.5 44.6 41.2 42.2 41.4 

C3R1 48.4 41.0 42.4 46.0 42.4 43.3 44.1 43.4 42.8 

C3R3 45.6 48.6 47.2 46.5 44.8 46.7 47.9 48.3 48.5 

C4R1 39.6 37.0 38.9 43.5 44.3 44.5 44.4 45.5 46.0 

C4R3 48.5 41.4 43.2 46.6 47.4 48.5 48.4 48.4 48.5 

 

The results from Figure 7-5 and Table 7-8 show that the classification rates are generally low; 

the highest is 61.0%, obtained for fabric type C1R3 using features from the first order model. 

That is normal as classification experiments involve five classes while detection experiments 

involve only two classes. The results also show that the first order model provides the best 

features for defect classification, and the only exceptions are fabric types C3R3 and C4R1 

where the best features are provided by the second and the ninth model respectively. This 

generally agrees with the detection results shown previously in this chapter. 
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Figure 7-6: Defect classification performance of MRF features as the order of the 

model changes when a K-nearest-neighbour classifier is used 

Table 7-9: Average defect classification rate (%) for different fabric as the order of the 

MRF model changes when a K-nearest-neighbour classifier is used 

 Order of the MRF model 

Fabric type 1 2 3 4 5 6 7 8 9 

C1R1 73.4 69.2 66.1 66.1 64.2 66.9 64.1 62.2 62.0 

C1R3 68.0 61.9 58.5 57.4 58.1 59.3 56.8 54.5 55.3 

C2R2 67.4 66.8 62.6 64.9 63.6 61.7 63.1 60.4 63.1 

C2R3 60.4 58.0 58.0 55.6 53.8 54.5 53.5 52.3 52.4 

C3R1 56.9 54.0 52.5 52.1 50.8 51.5 51.1 50.5 49.6 

C3R3 58.6 59.6 59.7 58.5 57.3 58.8 57.1 56.7 57.0 

C4R1 55.2 55.9 56.9 56.7 55.0 55.3 55.2 55.1 54.4 

C4R3 58.3 58.4 54.7 56.9 57.5 56.9 58.5 57.5 57.5 

 

Figure 7-6 and Table 7-9 show that the same trend is kept when a K-nearest-neighbour 

classifier is used as the features derived from the first order model perform the best for most 

fabric types. However, the detection rates are higher than those obtained using the MCE-

trained Euclidean distance classifier. 
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Figure 7-7: Defect classification performance of MRF features as the order of the 

model changes when a feed-forward neural network classifier is used 

Table 7-10: Average defect classification rate (%) for different fabric as the order of the 

MRF model changes when a feed-forward neural network classifier is used 

 Order of the MRF model 

Fabric type 1 2 3 4 5 6 7 8 9 

C1R1 75.2 74.3 70.3 75.6 74.9 76.5 74.4 72.1 67.9 

C1R3 67.2 67.4 64.5 70.1 69.0 69.7 68.7 67.2 59.9 

C2R2 65.2 62.9 66.4 66.3 64.8 64.5 63.7 63.9 64.5 

C2R3 60.9 61.6 59.1 62.4 59.5 60.3 58.8 55.4 56.6 

C3R1 55.1 54.8 52.5 53.7 52.8 54.1 51.7 51.7 50.9 

C3R3 51.4 53.2 56.7 57.2 55.6 59.2 59.1 58.8 55.5 

C4R1 51.5 52.3 51.7 52.9 53.1 53.8 58.2 54.7 54.5 

C4R3 50.9 51.0 54.6 55.8 57.0 57.2 57.9 57.2 57.5 

 

When we look at the defect classification rates obtained using the feed-forward neural 

network shown in Figure 7-7 and Table 7-10, we notice that the defect classification rates are 

generally in the same range are those obtained using the K-nearest-neighbour classifier, but 

the best performing features are no longer the same for the different types of fabrics. Features 

derived from model orders between 3 and 7 perform the best. These results suggest that the 

best performing features for defect classification may depend not only on the features 

themselves but also on the classifier used. 
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Table 7-11 summarises the best performing features when the three different classifiers are 

used.  

Table 7-11: Comparison of best MRF-based defect classification performance of three 

different classifiers  

Fabric 

type 

MCE-trained 

Euclidean distance 

classifier 

K-nearest-neighbour 

classifier 

Feed-forward neural 

network classifier 

MRF 

model 

order 

Best average 

classification 

rate (%) 

MRF 

model 

order 

Best average 

classification 

rate (%) 

MRF 

model 

order 

Best average 

classification 

rate (%) 

C1R1 1 60.8 1 73.4 6 76.5 

C1R3 1 61.0 1 68.0 4 70.1 

C2R2 1 59.6 1 67.4 3 66.4 

C2R3 1 49.2 1 60.4 4 62.4 

C3R1 1 48.4 1 56.9 1 55.1 

C3R3 2 48.6 3 59.7 6 59.2 

C4R1 9 46.0 3 56.9 7 58.2 

C4R3 6 48.5 7 58.5 7 57.9 

 

7.7 Summary 

In this chapter we studied the defect detection and classification performance of features 

derived from the Markov random field models. We chose the Gaussian Markov random field 

models and studied the variation of the defect detection rate as the model order varied from 1 

through 9 for the different types of fabrics in our dataset. 

The results obtained using three different classifiers, (i) the MCE-trained Euclidean distance 

classifier, (ii) the K-nearest-neighbour classifier (K=3) and (iii) the feed-forward neural 

network classifier, revealed that features from the low-order models (1, 2, 3) – especially the 

first order – performed best for most of the fabric types. The exceptions were fabric type 

C3R3, where the defect detection rate of the seventh order model provided the best features 

when the MCE-trained classifier was used, and C4R1 and C4R3 (printed fabric with no 

apparent periodicity) for which respectively the seventh and the eighth
 
order models scored 

the highest. That may be due to the fact that high order models involve distant pixels that 

might be more statistically related in fabric types C3R3, C4R1 and C4R3 than in other fabric 

types. 

The defect classification results using MRF-based features show the same trend of low-order 

models providing the best features for most of the fabrics when the MCE-trained Euclidean 

distance and the K-nearest-neighbour classifiers are used. However, when the feed-forward 
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neural network classifier is used, the features from model orders between 3 and 7 perform 

best. 
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Chapter 8: Combination schemes and their performance 

8.1 Introduction 

As stated earlier the objective of this thesis is to propose fabric defect detection and 

classification methods by combining the GLCM, wavelet and MRF-based methods. In 

chapters 5, 6 and 7 we discussed the performance of fabric defect detection and classification 

of each of the three methods individually and identified the most effective features for each of 

the fabric types in our experimental dataset. 

In this chapter we propose three combination schemes of these methods that lead to more 

accurate defect detection and classification than each of the methods individually. In the first 

combination scheme, which we will refer to as CS1, we pool together the GLCM, wavelet-

based and MRF-based best features for each type of fabric and perform some dimensionality 

reduction on them before feeding them into a classifier. 

In the second combination scheme, referred to as CS2, the fabric images under study are 

submitted to a three-level DTCWT-wavelet decomposition, then the best identified GLCM 

and MRF features are extracted from the wavelet sub-images. After dimensionality reduction 

performed separately on GLCM and MRF features, the resulting features are fed into a 

classifier. 

The third combination scheme, referred to as CS3, is similar to CS2 with the exception that 

the GLCM and MRF features are not extracted from the wavelet coefficients themselves but 

from the reconstructed images from the wavelet coefficients. 

In all the experiments in this chapter we started with the MCE-trained Euclidean distance 

classifier and then performed the same experiments using the K-nearest-neighbour classifier 

and feed-forward neural classifier. That is in line with the procedural order of experiments 

performed on individual features in previous chapters where the MCE-trained Euclidean 

distance classifier was used to make primary observations on their performance for defect 

detection and classification and then the K-nearest-neighbour and the feed-forward neural 

network classifiers were used to check the validity of the observations made as the classifier 

changes. 

This chapter is organised as follows. In sections 8.2 through 8.4 we study the combination 

schemes CS1, CS2 and CS3 for fabric defect detection using the MCE-trained Euclidean 

distance classifier. In Section 8.5 we compare the defect detection performance of the three 

combination schemes using the MCE-trained Euclidean distance classifier for the different 
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types of fabrics in our dataset. Section 8.6 extends the study to the use of the K-nearest-

neighbour and the feed-forward neural network classifiers. Section 8.7 deals with the problem 

of fabric defect classification using the combined schemes, while Section 8.8 summarises the 

chapter. 

8.2 Direct combination of the best selected features (CS1) 

8.2.1 Introduction 

For the MCE-trained Euclidean distance classifier, we concluded in Section 5.6 that the 

optimal number of GLCM features for fabric defect detection is five, and we identified the 

five features for each of the eight fabric types in our dataset. In Section 6.10 we identified for 

each fabric types the most effective wavelet-based features in terms of type of wavelet 

transform ( DTCWT or UDWT), wavelet size of support (among the six we proposed) and 

feature set (among two). Finally, in Section 7.4 we identified for each of the eight fabric types 

the most effective MRF features in terms of the MRF order model among nine. Table 8-1 

summarises the results. 

Table 8-1: Most effective features for the fabric defect detection methods to be combined 

when a MCE-trained Euclidean distance classifier is used 

Fabric 

type 

GLCM Wavelet MRF 

Optimal quintuplets of 

feature set 

Wavelet 

transform 

type 

Wavelet 

filter length 

Number of 

levels 

Feature 

set 

Model 

order 

C1R1 {f6, f10, f11, f13, f14}  DTCWT 4 5 Set c2 1 

C1R3 {f2, f5, f7, f13, f14}  DTCWT 4 5 Set c2 1 

C2R2 {f5, f8, f9, f11, f13}  DTCWT 4 5 Set c2 1 

C2R3 {f2, f4, f11, f12, f14}  DTCWT 4 5 Set c1 1 

C3R1 {f2, f6, f9, f11, f14}  DTCWT 8 5 Set c2 1 

C3R3 {f2, f5, f9, f10, f14}  DTCWT 8 5 Set c1 7 

C4R1 {f5, f10, f11, f13, f14} UDWT 8 3 Set r2 2 

C4R3 {f2, f3, f7, f8, f10} UDWT 8 3 Set r2 3 

 

Experiments in this section directly combine the features shown in Table 8-1 in order to 

improve defect detection accuracy. The number of GLCM features is ten because each feature 

in Table 8-1 represents a pair of sub-features (the mean and the range). The number of 

wavelet features is either 54 when the DTCWT is used or 30 if the UDWT is used. The 

number of MRF features depends on the order of the model, four for order 1, six for order 2, 

eight for order 3 and twenty for order 7. Due to the large number of wavelet-based features, 

we performed principal component analysis (PCA) [186] on them to reduce their 

dimensionality before combining them with GLCM and MRF features. 
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8.2.2 Experimental steps 

The block diagram in Figure 8-1 shows how the GLCM-, wavelet- and MRF-based fabric 

defect detection methods are combined according to the first combination scheme. Blocks I 

and II were implemented as explained in chapter 5. Blocks III and IV were implemented as 

explained in chapter 6, while block VI was implemented as explained in chapter 7. Block VII 

regards the MCE-trained Euclidean distance classifier explained in Subsection 3.5.3. 

The PCA in block V is a linear transformation that makes it possible to convert potentially 

correlated variables into a set of values (or new features) of linearly uncorrelated variables 

called principal components. The principal components are ordered so that the first few retain 

most of the variation present in the original features [186]. Therefore the classification 

accuracy should increase rapidly with the number of the retained principal components and 

then stabilise.  

 

Figure 8-1: Block diagram of the first combination scheme (CS1) 

The PCA was implemented using the MATLAB function „processpca‟. In the training stage it 

takes the training features in matrix form and returns all the principal components of those 

features, as well as the settings used to perform the transform. These settings are then used by 
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the same function („processpca‟) with the testing features to return all the principal 

components of the testing features. 

8.2.3 Results and interpretation 

Figure 8-2 and shows the average detection rate obtained using the combined method CS1 as 

the number of principal components of wavelet features is increased from 0 through 30. We 

can see that the number of principal components to retain varies from one fabric type to the 

other. However, we can see that 30 principal components give the highest detection rate for 

all the fabric types in our dataset. Therefore, we decided to use 30 principal components of 

the wavelet-based features regardless of the fabric type.  

 

Figure 8-2: Defect detection performance of CS1 features for different fabric types 

as number of principal components of wavelet features changes 
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Table 8-2: Average defect detection rate (%) of CS1 features for different fabric types as 

number of principal components of wavelet features changes 

Number of 

principal 

components of 

wavelet features 

Fabric types 

C1R1 C1R3 C2R2 C2R3 C3R1 C3R3 C4R1 C4R3 

1 92.7 88.3 84.0 80.2 81.6 81.8 77.8 77.1 

5 93.1 88.3 84.1 80.3 82.8 82.0 80.9 79.3 

10 93.1 88.6 84.9 80.8 83.8 83.5 82.0 80.9 

15 93.4 88.8 84.8 81.2 84.5 83.9 82.1 81.2 

20 93.6 89.0 85.1 81.5 85.0 84.2 82.1 81.2 

25 93.6 89.1 85.5 81.6 85.0 84.4 82.1 81.2 

30 93.7 89.1 85.6 81.8 85.0 84.6 82.1 81.2 

 

Figure 8-3 and Table 8-3 compare the defect detection performance of individual methods 

based on GLCM, wavelet and MRF features to that of the combined method CS1. Concerning 

the individual methods, we observe that the GLCM features perform the best, followed 

closely by the wavelet features, while the MRF features lag behind. This is true for most of 

the fabric types in our dataset. The exception is observed for fabric type C4R1 and C4R3, for 

which wavelet features perform better than both GLCM and MRF features. Our observations 

are similar to those made by Clausi [187] where he compared co-occurrence, Gabor and MRF 

features for classification of SAR sea ice imagery.  

More importantly, we observe that the combined method CS1 performs better than any of the 

individual methods and that for all the fabric types in our dataset. We can therefore conclude 

that combining the GLCM, wavelet and MRF features according to the combination scheme 

CS1 effectively improves the defect detection performance.  
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Figure 8-3: Average defect detection performance of combined method 

CS1 compared to the individual methods 

Table 8-3: Average defect detection rate (%) of combined method CS1 compared to the 

individual GLCM-, wavelet- and MRF-based methods 

Fabric type GLCM Wavelet MRF CS1 

C1R1 92.1 91.8 87.8 93.7 

C1R3 87.8 87.9 84.6 89.1 

C2R2 83.8 83.6 80.8 85.6 

C2R3 79.8 76.3 72.4 81.8 

C3R1 81.2 78.0 66.6 85.0 

C3R3 82.0 77.6 64.6 84.6 

C4R1 75.5 78.9 65.5 82.1 

C4R3 69.5 77.4 70.7 81.2 

 

8.3 GLCM and MRF features from DTCWT wavelet coefficients (CS2) 

8.3.1 Description of the method and the experiment 

In the second combination scheme we use the DTCWT wavelet method to decompose the 

fabric image containing the samples under study into multiscale and multidirectional sub-

images. Next the GLCM and MRF features are extracted from the wavelet coefficients 

corresponding to the samples under study. Then dimensionality reduction using PCA is 

performed separately on both GLCM and MRF features. The resulting retained principal 

components are then fed into the MCE-trained Euclidean distance classifier for decision 

making. The block diagram of Figure 8-4 in illustrates this process. 
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Figure 8-4: Block diagram of the second combination scheme (CS2) 

In block I the fabric image containing the sample to be classified as defective or defect-free is 

submitted to a three-level DTCWT wavelet decomposition using the appropriate wavelet for 

the fabric type as identified in Subsection 6.8.1. The choice of three levels of decomposition 

is motivated by the need to have many levels of decompositions for maximising the 

information from multiple scales, and yet keeping the size of the sample sub-image large 

enough for GLCM and MRF processing. As the original sample size is 32x32 pixels, and each 

of the two sides is divided by two by each level of DTCWT decomposition, the size of the 

sample sub-image at level three is 4x4. 

The total number of sub-images generated by the three-level DTCWT wavelet decomposition 

is twenty, because each level generates six „details‟ sub-images corresponding to the 

orientations of -75
o
, -45

o
, -15

o
, +15

o
, +45

o
 and +75

o
. In addition, there are two approximation 

sub-images that are left after the three-level wavelet decomposition. 

The components of block II have been explained previously in chapters 5 and 7. However, it 

is to be noted that in this case the GLCMs are compiled from the magnitudes of wavelet 

coefficients which must be properly quantised. In agreement with our observations in 

Subsection 5.4.3, we quantised them into 64 levels using the uniform quantisation algorithm 

[47]. 
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The features generated by each of the twenty blocks of type block II are ten from GLCM 

processing and four, six, eight or twenty (depending on the order of the MRF model, which 

depends on the fabric type) from the MRF processing. This leads to a total number of features 

of 280, 320, 360 or 600, and therefore dimensionality reduction is necessary due to the high 

number of features. To give the same importance to MRF and GLCM features, we used two 

separate instances of PCA processing (block III), one for each type of feature, and retain the 

same number of principal components from each of them. Finally, in block IV the MCE-

trained Euclidean distance classifier was implemented as previously explained in Subsection 

3.5.3. 

8.3.2 Results and interpretation 

Figure 8-5 and Table 8-4 show the variation of the average defect detection rate for the 

different types of fabric as the number of the principal components of the GLCM and MRF 

features increases. We can see from the graph that the average detection rate increases rapidly 

with the number of principal component and then stabilises. With 76 principal components of 

GLCM and MRF features, the average detection rate is practically stable. Therefore we chose 

76 as the number of principal components of GLCM and MRF features to retain.  

 

 

Figure 8-5: Defect detection performance of combined method CS2 for different 

fabric types as number of principal components of wavelet features 

changes 
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Table 8-4: Average defect detection rate (%) of combined method CS2 for different 

fabric types as number of principal components of GLCM and MRF changes 

Number of 

principal 

components of 

GLCM and 

MRF features 

Fabric types 

C1R1 C1R3 C2R2 C2R3 C3R1 C3R3 C4R1 C4R3 

1 74.7 66.1 72.0 62.0 64.6 61.7 61.1 66.0 

6 90.1 84.1 79.7 72.3 71.7 70.1 72.2 75.8 

11 91.1 85.1 81.0 73.0 74.2 76.4 73.7 77.3 

16 91.8 86.0 81.3 73.7 75.6 78.9 74.8 78.1 

21 91.9 86.3 82.2 74.4 76.1 79.5 75.7 79.3 

26 92.2 86.6 82.7 74.5 76.4 79.7 76.5 79.5 

31 92.3 86.6 83.6 74.8 76.9 80.3 77.2 81.0 

36 92.5 87.3 84.3 74.9 77.2 80.8 77.9 81.0 

41 92.7 87.4 84.6 75.6 77.3 81.6 78.4 81.5 

46 92.8 87.6 84.7 76.0 77.8 81.7 78.9 82.1 

51 92.8 87.5 84.8 76.3 78.3 81.6 79.4 82.7 

56 92.9 87.6 85.2 76.4 78.3 82.0 79.5 83.3 

61 93.0 87.6 85.2 76.6 78.6 82.1 80.0 83.2 

66 93.1 87.6 85.2 76.8 78.9 82.3 80.0 83.7 

71 93.4 87.7 85.1 76.6 79.0 82.1 79.9 83.9 

76 93.4 87.9 85.3 77.0 79.1 82.3 80.2 83.7 

 

The comparison of the defect detection performance of CS2 to the individual methods is 

shown in Figure 8-6 and Table 8-5. The improvement of the defect detection performance 

varies with the fabric type. There is significant improvement for fabric types C4R3, C1R1, 

C4R1 and C2R2. There is practically no improvement for fabric type C1R3, for which the 

detection performance is almost the same as that of GLCM or wavelet alone. Similarly, no 

improvement is observed for fabric type C3R3, for which the detection performance is almost 

the same as that of GLCM alone. For fabric types C2R3 and C3R1 there is significant drop in 

detection rate, as CS2 is outperformed by GLCM alone. 

In short the CS2-method should be tested carefully on a particular fabric type before being 

used, as there is no assurance it would lead to improved performance. However, for most of 

the fabric types in our dataset the defect detection performance of CS2 was at least the same 

as the best of the individual methods. 
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Table 8-5: Average defect detection rate (%) of combined method CS2 compared to the 

individual GLCM-, wavelet- and MRF-based methods 

Fabric type GLCM Wavelet MRF CS2 

C1R1 92.1 91.8 87.8 93.4 

C1R3 87.8 87.9 84.6 87.9 

C2R2 83.8 83.6 80.8 85.3 

C2R3 79.8 76.3 72.4 77.0 

C3R1 81.2 78.0 66.6 79.1 

C3R3 82.0 77.6 64.6 82.3 

C4R1 75.5 78.9 65.5 80.2 

C4R3 69.5 77.4 70.7 83.7 

 

8.4 GLCM and MRF features from DTCWT reconstructed images (CS3) 

8.4.1 Description of the method and the experiment 

The third combination scheme, CS3, is similar to the second with the difference that the 

GLCM and MRF features are not extracted from the wavelet coefficients, but from the fully 

reconstructed sub-images at different scales and different directions. 

 

Figure 8-6: Defect detection performance of combined method CS2 compared to the 

individual methods 
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The block diagram in Figure 8-7 shows the flow and processing of information for that 

particular combination scheme. The fabric image containing the sample under study is 

submitted to a three-level DTCWT wavelet decomposition using the appropriate wavelet 

filters for the particular fabric type (block I). This gives complex wavelet coefficients in 

eighteen “details” subbands and two approximation subbands.  

Each of the twenty subbands is reconstructed separately (block II). This is accomplished by 

taking all the wavelet coefficients of the original image, setting to zeros all the wavelet 

coefficients apart from those that are part of the current subband, and then performing a three-

level wavelet reconstruction. The DTCWT wavelet decomposition and reconstruction are 

done by respectively using the MATLAB functions „cplxdual2‟ and „icplxdual2‟ provided by 

Polytechnic University, Brooklyn, NY [183]. 

 

Figure 8-7: Block diagram of the third combination scheme (CS3) 
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After reconstruction of the sub-images, the appropriate GLCM and MRF features of the 

sample under study are extracted (block IV). The MRF and GLCM features are then 

submitted separately to PCA processing (block II), and 76 principal components of each of 

the two types of features are fed into a MCE-trained classifier for decision making (block V). 

The steps in blocks III, IV and V are exactly as described for the combination scheme CS2 in 

Subsection 8.3.1. 

8.4.2 Results and interpretation 

Figure 8-8 and Table 8-6 show the defect detection performance of the combined method CS3 

compared to the individual methods. We observe that for all the fabric types in our dataset the 

combined method CS3 performs better than any individual method alone. The improvement is 

significant for all the fabric types in our dataset, apart from C2R3 where the average detection 

of combined method CS3 is almost the same as GLCM. We can therefore conclude that 

combined method CS3 effectively improves the defect detection performance.  

 

Figure 8-8: Defect detection performance of combined method CS3 compared to the 

individual methods 
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Table 8-6: Average defect detection rate (%) of combined method CS3 compared to the 

individual GLCM-, wavelet- and MRF-based methods 

Fabric type GLCM Wavelet MRF CS3 

C1R1 92.1 91.8 87.8 93.6 

C1R3 87.8 87.9 84.6 90.1 

C2R2 83.8 83.6 80.8 86.1 

C2R3 79.8 76.3 72.4 79.9 

C3R1 81.2 78.0 66.6 82.9 

C3R3 82.0 77.6 64.6 85.5 

C4R1 75.5 78.9 65.5 80.7 

C4R3 69.5 77.4 70.7 83.8 

 

8.5 Comparison of the three combination schemes 

Figure 8-9 and Table 8-7 compare the defect detection performance of combined methods 

CS1, CS2 and CS3 when the MCE-trained Euclidean distance classifier is used. We 

recommend the suitable combined method based on the average detection rate and the 

complexity of the method for each fabric type. 

For fabric type C1R1 the combined methods CS1 and CS3 have almost the same average 

detection rate, while the average detection rate for CS2 is lower. For this fabric type we 

recommend the combined method CS1 because it is simpler than CS3. 

We recommend the combined method CS3 for fabric types C1R3, C2R2 and C3R3 because it 

performs better than the two others. 

For fabric types C2R3, C3R1 and C4R1 the recommended combined method is CS1 because 

of its higher detection performance and relative simplicity. 

Finally, for fabric type C4R3 the average detection rate of CS2 is almost the same as the 

detection rate of CS3, while that of CS1 is much lower. In this case we recommend CS2 

because it is simpler than CS3. 

Table 8-8 summarises the recommended combined method for each of the fabric types. 
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Figure 8-9: Comparison of defect detection performance of the three combined 

methods 

Table 8-7: Compared average defect detection rates (%) of the three combined methods 

Fabric type CS1 CS2 CS3 

C1R1 93.7 93.4 93.6 

C1R3 89.1 87.9 90.1 

C2R2 85.6 85.3 86.1 

C2R3 81.8 77.0 79.9 

C3R1 85.0 79.1 82.9 

C3R3 84.6 82.3 85.5 

C4R1 82.1 80.2 80.7 

C4R3 81.2 83.7 83.8 
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Table 8-8: Recommended defect detection combined method for each fabric type 

Fabric type 
Recommended 

combined method 

Average 

detection 

rate (%) 

C1R1 CS1 93.7 

C1R3 CS3 90.1 

C2R2 CS3 86.1 

C2R3 CS1 81.8 

C3R1 CS1 82.9 

C3R3 CS3 85.5 

C4R1 CS1 82.1 

C4R3 CS2 83.7 

 

8.6 Effect of different classifiers 

Thus far all the experiments involving combined methods have been performed using the 

MCE-trained Euclidean distance classifier. In this section we perform the same experiments, 

but using the K-nearest-neighbour and the feed-forward neural network classifiers. The 

objective is to confirm the observations made or to identify any departure from them due to 

the use of different classifiers. Especially, we want to assure the improvement of the defect 

detection performance of the combined methods with different classifiers. 

8.6.1 Combined schemes using the KNN classifier 

To evaluate the performance of the combination schemes using the KNN classifier we 

performed exactly the same experiments as we did under sections 8.2 through 8.5, but using 

the K-nearest-neighbour classifier instead of the MCE-trained Euclidean distance classifier. 

We also changed the set of best features to use those identified for the K-nearest-neighbour 

classifier as shown in Table 8-9. 
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Table 8-9: Most effective features for the fabric defect detection methods to be combined 

when K-nearest-neighbour classifier is used 

Fabric 

type 

GLCM Wavelet MRF 

Optimal quintuplets 

of feature set 

Wavelet 

transform 

type 

Wavelet 

filter 

length 

Number 

of levels 

Feature 

set 

Model 

order 

C1R1 {f2, f6, f10, f11, f14}  DTCWT 4 5 Set c2 1 

C1R3 {f5, f7, f8, f10, f11}  DTCWT 4 5 Set c2 1 

C2R2 {f2, f6, f8, f11, f14}  DTCWT 4 5 Set c2 1 

C2R3 {f1, f2, f11, f12, f13}  DTCWT 4 5 Set c2 1 

C3R1 {f2, f4, f9, f11, f13}  DTCWT 10 5 Set c2 1 

C3R3 {f1, f7, f8, f11, f14}  DTCWT 10 5 Set c2 2 

C4R1 {f4, f8, f9, f11, f14} UDWT 8 3 Set r2 2 

C4R3 {f1, f6, f10, f11, f14} UDWT 8 3 Set r2 2 

 

The obtained results are shown in Figure 8-10 and Table 8-10. We can see that combined 

method CS1 improves the defect detection performance for only fabric types C1R1, C2R2 

and C4R3. In all the other cases either GLCM or wavelet-based features perform better.  

The observations regarding combined methods CS2 and CS3 are that neither of the two 

improves the detection performance when the K-nearest-neighbour classifier is used. 

 

Figure 8-10: Defect detection performance of combined methods CS1, CS2 and CS3 

compared to the individual GLCM-, wavelet- and MRF-based methods 

when the K-nearest-neighbour classifier is used 
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Table 8-10: Average defect detection rate (%) of combined methods CS1, CS2 and CS3 

compared to the individual GLCM-, wavelet- and MRF-based methods when 

the K-nearest-neighbour classifier 

Fabric type GLCM Wavelet MRF CS1 CS2 CS3 

C1R1 92.5 92.3 87.7 93.4 79.5 77.9 

C1R3 88.8 88.5 85.4 87.9 74.6 74.3 

C2R2 84.3 83.1 81.9 85.3 70.2 68.1 

C2R3 80.2 80.3 76.7 77.0 64.8 64.4 

C3R1 83.8 83.0 72.7 79.1 66.8 67.1 

C3R3 84.4 82.7 73.9 82.3 67.8 68.8 

C4R1 77.3 81.1 75.0 80.2 67.1 69.6 

C4R3 77.8 79.8 76.2 83.7 69.5 69.1 

  

8.6.2 Combined schemes using the feed-forward neural network classifier 

We evaluate the performance of the combination schemes using the feed-forward neural 

network by performing the same experiments as we did under Sections 8.2 through 8.5 but 

using the feed-forward neural network classifier instead of the MCE-trained Euclidean 

distance classifier. We also change the GLCM-, wavelet- and MRF-based best features to use 

those identified specifically for the feed-forward neural network classifier as shown in 

Table 8-11. For CS1 we used twenty principal components of the wavelet-based features, 

while for CS2 and CS3 we used 60 principal components of GLCM and MRF features.  
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Table 8-11: Most effective features for fabric defect detection methods to be combined 

when the feed-forward neural classifier is used 

Fabric 

type 

GLCM Wavelet MRF 

Optimal nonuplets of 

feature set 

Wavelet 

transform 

type 

Wavelet 

filter 

length 

Number 

of levels 

Feature 

set 

Model 

order 

C1R1 

{f2, f5, f6, f7, f9, f10, 

f11, f13, f14} 
DTCWT 4 5 Set c2 1 

C1R3 

{f1, f2, f5, f7, f8, f9, 

f10, f11, f14} 
DTCWT 4 5 Set c2 1 

C2R2 

{f1, f2, f3, f4, f5, f10, 

f11, f12, f14} 
DTCWT 4 5 Set c2 1 

C2R3 

{f2, f4, f5, f7, f9, f10, 

f11, f12, f14} 
DTCWT 6 5 Set c2 4 

C3R1 

{f1, f2, f6, f8, f9, f10, 

f11, f12, f14} 
DTCWT 10 5 Set c2 1 

C3R3 

{f2, f3, f4, f5, f6, f8, 

f10, f12, f13} 
DTCWT 10 5 Set c2 7 

C4R1 

{f3, f5, f6, f7, f8, f9, 

f10, f11, f14} 
UDWT 6 3 Set r2 7 

C4R3 

{f2, f4, f6, f7, f9, f10, 

f11, f12, f14} 
UDWT 6 3 Set r2 8 

 

The obtained results are shown in Figure 8-11 and Table 8-12. These results show that 

combined method CS1 significantly improves the defect detection performance for all the 

fabric types in our dataset apart from the fabric type C3R3 for which CS1 is slightly 

outperformed by GLCM- and wavelet-based features. 

Neither CS2 nor CS3 improves the defect detection performance when the feed-forward 

neural network classifier is used. That observation is valid for all the fabric types in our 

dataset although CS3 performs equally well as GLCM features for the fabric type C1R1. 
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Figure 8-11: Defect detection performance of combined methods CS1, CS2 and CS3 

compared to the individual GLCM-, wavelet- and MRF-based methods 

when the feed-forward neural network classifier is used 

Table 8-12: Average defect detection rate (%) of combined methods CS1, CS2 and CS3 

compared to the individual GLCM-, wavelet- and MRF-based methods when 

the feed-forward neural classifier is used 

Fabric type GLCM Wavelet MRF CS1 CS2 CS3 

C1R1 92.7 91.9 87.4 93.2 87.0 92.7 

C1R3 88.2 88.9 85.3 89.3 83.7 86.9 

C2R2 84.0 83.8 83.1 85.8 79.9 83.4 

C2R3 81.9 81.2 77.0 83.3 74.8 78.7 

C3R1 84.8 83.2 69.6 88.0 80.5 83.1 

C3R3 85.7 85.7 72.8 85.2 74.3 84.4 

C4R1 81.7 82.7 73.6 84.0 77.6 81.3 

C4R3 80.9 80.7 77.3 83.2 76.2 79.2 

 

8.7 Defect classification using the combined methods 

In this section we compare the defect classification performance achieved with the features 

from the combination schemes CS1, CS2 and CS3 to that achieved by GLCM-, wavelet- or 

MRF-based features individually. This will allow assessing the effectiveness of the combined 

schemes for fabric defect classification. 

Figure 8-12 and Table 8-13 show the obtained results when the MCE-trained Euclidean 

distance classifier is used. They show that combined method CS1 significantly improved the 
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defect classification rates for all the fabric types in our dataset apart from the fabric types 

C2R3 and C4R1. Table 8-14 shows the confusion matrices that provide details of the 

improvement for fabric type C1R1. Combined method CS2 improves the defect detection 

rates of individual methods for fabric types C3R1, C3R3 and C4R3. Combined method CS3 

only improves the defect classification rates for fabric types C4R3 and C3R3. It is also 

interesting to notice that all three combined methods outperform any of the individual 

methods for fabric types C3R3 and C4R3, while none do for the fabric types C2R3 and C4R1. 

 

Figure 8-12: Defect classification performance of combined methods CS1, CS2 and 

CS3 compared to the individual GLCM-, wavelet- and MRF-based 

methods when the MCE-trained Euclidean distance classifier is used 

 

Table 8-13: Average defect classification rate (%) of combined methods CS1, CS2 and 

CS3 compared to the individual GLCM-, wavelet- and MRF-based methods 

when the MCE-trained Euclidean distance classifier is used. 

Fabric type GLCM Wavelet MRF CS1 CS2 CS3 

C1R1 75.9 74.7 60.8 80.4 74.9 75.3 

C1R3 70.0 66.9 61.0 74.6 65.8 69.0 

C2R2 61.2 59.6 59.6 62.9 56.4 56.3 

C2R3 61.0 49.4 49.2 58.9 48.5 48.3 

C3R1 50.0 55.7 48.4 59.2 54.7 56.8 

C3R3 57.8 53.6 48.6 64.9 60.6 58.5 

C4R1 43.3 54.4 46.0 50.2 50.0 53.2 

C4R3 42.2 53.2 48.5 53.3 54.9 55.4 
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Table 8-14: Confusion matrices comparing defect classification for fabric type C1R1 

using GLCM features and CS1 combined features using the MCE-trained 

Euclidean distance classifier 
(There are less misclassified samples i.e. off-diagonal elements in the 

confusion matrix (b)) 

GLCM features (a) CS1 Combined features (b) 

  

when their true class is  when their true class is 

  

E0 E1 E2 E3 E4 

  

E0 E1 E2 E3 E4 

C
la

ss
if

ie
d

 a
s E0 4532 4 153 62 240 

C
la

ss
if

ie
d

 a
s E0 4669 10 158 18 136 

E1 42 276 6 45 49 E1 13 305 20 37 43 

E2 144 28 525 35 352 E2 245 5 672 30 132 

E3 102 62 48 151 88 E3 129 30 41 202 49 

E4 218 62 144 46 582 E4 260 37 140 37 578 

 Classification rate: 75.9%  Classification rate: 80.4% 

 

The obtained results when the K-nearest-neighbour classifier is used can be read from Figure 

8-13 and Table 8-15. They show that combined method CS1 significantly improves the defect 

classification rates for all the fabrics in our dataset. They also show that CS2 and CS3 do so 

for only fabric type C4R3. For all the other fabric types CS2 and CS3 are outperformed by 

either GLCM, wavelet-based method, or both. 

 

Figure 8-13: Defect classification performance of combined methods CS1, CS2 and 

CS3 compared to the individual GLCM-, wavelet- and MRF-based 

methods when the K-nearest-neighbour classifier is used 
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Table 8-15: Average defect classification rate (%) of combined methods CS1, CS2 and 

CS3 compared to the individual GLCM-, wavelet- and MRF-based methods 

when K-nearest-neighbour classifier is used. 

Fabric type GLCM Wavelet MRF CS1 CS2 CS3 

C1R1 80.9 82.8 73.4 86.0 76.4 79.0 

C1R3 73.7 77.3 68.0 80.8 71.0 76.9 

C2R2 66.1 67.7 67.4 70.2 63.1 62.2 

C2R3 65.0 67.5 60.4 69.7 61.9 63.4 

C3R1 65.0 71.8 56.9 76.0 63.7 68.3 

C3R3 73.8 75.3 59.7 76.5 71.3 73.1 

C4R1 63.1 63.9 56.9 70.7 60.9 63.6 

C4R3 62.2 62.8 58.5 65.2 63.8 65.4 

 

Finally, Figure 8-14 and Table 8-16 show the obtained results when the feed-forward neural 

network classifier is used. We can see that CS1 improves the defect classification rates for 

fabric types C2R2, C3R1, C4R1 and C4R3, while CS2 and CS3 do not improve classification 

rates for any of the fabric types. However, CS3 achieves almost the same performance as 

wavelet-based features (the best for that fabric type) for C2R2. 

 

Figure 8-14: Defect classification performance of combined methods CS1, CS2 and 

CS3 compared to the individual GLCM-, wavelet- and MRF-based 

methods when the feed-forward neural network classifier is used 
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Table 8-16: Average defect classification rate (%) of combined methods CS1, CS2 and 

CS3 compared to the individual GLCM-, wavelet- and MRF-based methods 

when feed-forward neural network classifier is used 

Fabric type GLCM Wavelet MRF CS1 CS2 CS3 

C1R1 82.0 80.6 76.5 81.0 66.3 78.2 

C1R3 76.4 79.4 70.1 77.5 60.9 73.2 

C2R2 66.9 67.5 66.4 70.3 58.7 67.6 

C2R3 66.7 68.6 62.4 65.4 45.9 57.6 

C3R1 71.3 74.2 55.1 76.4 52.6 72.3 

C3R3 75.7 76.7 59.2 72.2 51.3 70.8 

C4R1 67.4 69.4 58.2 71.7 48.8 63.9 

C4R3 64.8 66.6 57.9 69.3 50.2 61.4 

 

In short, for fabric defect classification only combined method CS1 shows good results. 

Methods CS2 and CS3 improve the defect classification results only in a few cases of fabric 

types and classifiers. However, these two combined methods are based on sound grounds of 

features extraction from multiple scales. This implies that more research could lead to their 

improved performance for both fabric defect detection and classification. 

8.8 Summary 

In this chapter we devised combination schemes of the best GLCM-, wavelet- and MRF-

based features for different types of fabrics identified in chapters 5, 6 and 7 respectively and 

then tested their defect detection and classification performance using three different types of 

classifiers, namely (i) the MCE-trained Euclidean distance classifier, (ii) the K-nearest-

neighbour classifier and (iii) the feed-forward neural network classifier. 

In the first combination scheme (CS1), we pooled together the best features identified in 

previous chapters and fed them into the classifier. Due to the higher number of wavelet-based 

features, we submitted them to dimensionality reduction using PCA before feeding them into 

a classifier along with the GLCM- and MRF-based features. 

In the second combination scheme (CS2), we submitted the fabric images to a three-level 

DTCWT decomposition and then the best GLCM- and MRF-based features were extracted 

from the magnitude of wavelet coefficients. We submitted the resulting GLCM- and MRF-

based features separately to dimensionality reduction using PCA and then fed the resulting 

features into a classifier. 
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In the third combination scheme (CS3), we submitted the fabric images to a three-level 

DTCWT decomposition, then the sub-images for each of the three levels and each of the six 

directions were reconstructed from the sub-image wavelet coefficients by inverse DTCWT 

transform. Then the best GLCM- and MRF-based features were extracted from the resulting 

twenty images for each fabric image. The obtained GLCM- and MRF-based features were 

then submitted separately to dimensionality reduction using PCA before feeding them into a 

classifier. 

The fabric defect detection results obtained using the MCE-trained classifier show that 

methods CS1 and CS3 perform better than any individual method (i.e. GLCM-, wavelet- or 

MRF-based) for all the fabric types in our dataset. Method CS2 performed at least equally 

well as the best individual feature set, apart for fabric types C2R3 and C3R1 for which 

GLCM features performed better. 

However, the improvement for the fabric defect detection may depend on the classifier used. 

For example, when the K-nearest-neighbour classifier is used only CS1 improves the fabric 

defect detection performance. This improvement is observed for only a few types of fabrics. 

When the feed-forward neural network classifier is used CS1 improves the defect detection 

performance for most of the types of fabrics, but CS2 and CS3 do not. 

Defect classification results using the combined methods showed that only combined method 

CS1 shows good results. Methods CS2 and CS3 improve the defect classification results only 

in a few cases of fabric types and classifiers.  
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Chapter 9: Conclusions and future work 

9.1 Conclusions 

In this thesis we studied the detection and classification performance of three different 

methods and then combined them for improved performance. The concerned methods are (i) 

the grey level co-occurrence matrix (chapter 5), (ii) the wavelet transform (chapter 6) and (iii) 

the Markov random field models (chapter 7). 

To this effect we studied the methods individually in order to identify the most effective 

features of each of them and then the identified features were combined (chapter 8). To 

evaluate the validity of the defect detection and classification observations across classifiers, 

the methods were applied using three different classifiers, namely (i) the MCE-trained 

Euclidean distance classifier, (ii) the K-nearest-neighbour classifier and (iii) the feed-forward 

neural network classifier. 

9.1.1 Conclusions regarding GLCM features 

The objective was to find the most effective features for fabric defect detection and 

classification. The other objective was to identify the values of parameters of GLCM feature 

extraction that allow alleviating the related computational load.  

In this respect we set out to find the optimal number of GLCM features among the fourteen 

proposed by Haralick et al. [31]. Once the number of optimal features was determined, we 

identified the actual features for each of the fabric types in our dataset. 

We made the following observations: 

(i) The optimal number of features is classifier-dependent and for the classifiers we 

used we found that it is three for the ML-trained Euclidean distance classifier, 

five for both the MCE-trained Euclidean distance and the KNN  (K=3) classifiers, 

and nine for the feed-forward neural network classifier. 

(ii) The actual features for different fabric types in our dataset were identified using 

the procedure that we proposed. 

(iii) Since reducing the number of quantisation levels of the original image reduces 

the time required for GLCM feature extraction, we studied the variation of the 

defect detection accuracy with regard to the number of quantisation levels. We 
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found that 64 grey levels were optimal for accelerating the feature extraction 

without affecting the defect detection accuracy too much. 

(iv) The best intersample distance for compiling the co-occurrence matrices was 

found to be 1 pixel for the fabric types we used. 

(v) The feed-forward neural network classifier provided the best defect detection and 

classification rates among the classifiers we used. 

(vi) We proposed the modified GLCHS algorithm for faster GLCM feature extraction 

for implementation in MATLAB. 

9.1.2  Conclusions regarding wavelet features 

To determine the most effective wavelet-based features we compared the defect detection and 

classification performance of features derived from two shift-invariant wavelet transforms: (i) 

the undecimated discrete wavelet transform, and (ii) the dual-tree complex wavelet transform. 

For each of the two types of wavelet transform we investigated the defect detection 

performance of derived features with regard to the wavelet size of support and the number of 

wavelet decomposition levels. 

We made the following observations: 

(i) The defect detection rate of the UDWT-based features tends to decrease as the 

wavelet size of support increases. 

(ii) For the DTCWT-based features the effect of the wavelet size of support is less 

pronounced than that of the UDWT-based features. However, a slight increasing 

trend is noticed. 

(iii) General observations (i) and (ii) are not uniform for different fabric types. 

(iv) These observations seem to be classifier-invariant based on the results from the 

three different classifiers that we used; the MCE-trained Euclidean distance 

classifier, the KNN classifier (K=3) and the feed-forward neural network 

classifier. 

(v) The feed-forward neural network classifier provided the best detection and 

classification rates among the classifiers we used. 
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We compared the defect detection and classification performance of UDWT-based features to 

that of the DTCWT-based features for different fabrics and made the following observations: 

(i) DTCWT-based features perform better than UDWT-based ones for most of the 

fabric types, apart from the printed fabrics with no apparent periodicity in their 

texture for which the UDWT-based features performed better. 

(ii) For each fabric type in our dataset we identified the best wavelet features in terms 

of the type of wavelet transform (UDWT or DTCWT) and the wavelet size of 

support. Short wavelets seem to perform better than long ones and DTCWT 

generally performs better than UDWT. 

9.1.3 Conclusions regarding MRF features 

We studied the defect detection and classification performance of features derived from 

Gaussian Markov field models of fabric images. We specifically investigated the variation of 

the defect detection rate of the derived features as the order of the model varied from one 

through nine for different fabric types. We made the following observations: 

(i) The texture features extracted using the first order MRF model are the most 

effective for defect detection in fine fabrics (C1R1, C1R3, C2R2 and C2R3). 

(ii) For these fine fabrics the defect detection performance tends to decrease as the 

order of the model increases. 

(iii) For coarser fabrics (C3R1, C3R3, C4R1 and C4R3) the defect detection 

performance seems either to have low dependence with respect to the order of the 

model or to slightly increase as the order of the model increases. 

(iv) When used for defect classification, the features extracted from low-order MRF 

models perform the best, especially for the fine fabrics. 

(v) For defect detection from MRF-based features the three classifiers we used 

seemed to perform equally well, while for defect classification the feed-forward 

neural network classifier performed better than the K-nearest-neighbour 

classifier, and the K-nearest-neighbour classifier better than the MCE-trained 

Euclidean distance classifier. 

© Central University of Technology, Free State



 

 211 

9.1.4 Conclusions regarding combination schemes 

We combine the best identified GLCM-, wavelet- and MRF-based features using three 

combination schemes – these constitute new defect detection and classification methods. 

In CS1 we pool together the most effective GLCM-, wavelet- and MRF-based features 

identified for each fabric type in our dataset. We submit the wavelet features to PCA 

dimensionality reduction, then feed the resulting features, along with the GLCM- and MRF-

based features, into a single classifier (case of defect detection) or into a cascade of two 

classifiers (case of defect classification). The resulting defect detection and classification 

methods lead to improved defect detection and classification performance in most of the cases 

(combinations fabric type-classifier). 

In CS2 we submit the fabric images to a three-level DTCWT wavelet decomposition. We then 

calculate the magnitude of the resulting complex wavelet coefficients. Then the GLCM and 

MRF features are extracted from the resulting sub-images. After the PCA dimensionality 

reduction of the two sets of features they are fed together into a single classifier or a cascade 

of two classifiers. The resulting defect detection method generally improves the defect 

detection performance when the MCE-trained Euclidean distance classifier is used, but fails 

to do so when the K-nearest-neighbour classifier or the feed-forward neural network are used. 

The resulting defect classification method leads to improved defect classification only for a 

few cases of printed fabrics with no apparent periodicity. 

In CS3 we also submit the fabric images to a three-level DTCWT wavelet decomposition. We 

then reconstruct the individual sub-images from the complex wavelet coefficients using the 

DTCWT inverse wavelet transform. The GLCM and MRF features are then extracted from 

each of the resulting sub-images. After the PCA dimensionality reduction of the two sets of 

features they are fed into a single classifier or a cascade of two classifiers for defect detection 

or defect classification respectively. The resulting defect detection method improves the 

defect detection performance for all the fabric types in our dataset when the MCE-trained 

Euclidean distance classifier is used, but fails to do so when either the K-nearest-neighbour 

classifier or the feed-forward neural network is used. The resulting defect classification 

method leads to improved defect classification only for a few cases of printed fabrics with no 

apparent periodicity (C4R3), and for cases of fabrics with clearly visible periodicity when a 

MCE-trained Euclidean distance classifier is used. 
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9.2 Recommendations for future work 

Combined methods CS2 and CS3 lead to improvement in fabric defect detection when a 

Euclidean distance classifier is used, but fail to do so when the K-nearest-neighbour classifier 

(K=3) and the feed-forward neural network classifiers are used. In most cases the two 

combined methods also fail to improve the defect classification performance. Since they are 

based on sound grounds of features extraction from multiple scales and multiple directions, 

research focusing on finding why they perform poorly could be conducted to realise 

improvement. 

Combining different methods may lead to improved defect detection and classification rates, 

but may also lead to greater complexity in the system. The unwanted consequence is the 

increased computational load. Research focusing on the effect of feature combination on the 

computation time and the related solutions involving massively parallel algorithms can be 

undertaken. This is relevant as defect detection and classification algorithms are well suited to 

parallel computing, and the future of computing performance seems to be parallel processing 

rather than increasing clock frequencies [188]. This promises cheap heavily parallel computer 

systems.  

The double density dual-tree wavelet transform [189] is also almost shift-invariant and has 

more free parameters than the dual-tree complex wavelet transform. Future research could 

seek a way of designing an adaptive double density dual-tree wavelet transform that would 

optimise the detection rate for a particular type of fabric. 

The fabric types from categories C3 and C4, with coarser texture than fabric types from 

categories C1 and C2, showed consistently low defect detection and classification rates. This 

was due to the fact that the assumption of the texture uniformity within the study window is 

less valid for these types of fabrics. Research focusing on the modelling of such fabrics using 

hierarchical Markov random fields [109], modelling micro textures within macro textures, 

may lead to better defect detection and classification rates. 
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