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Abstract

Quality inspection of textile products is an important issue for fabric manufacturers. It is
desirable to produce the highest quality goods in the shortest amount of time possible. Fabric
faults or defects are responsible for nearly 85% of the defects found by the garment industry.
Manufacturers recover only 45 to 65% of their profits from second or off-quality goods.

There is a need for reliable automated woven fabric inspection methods in the textile industry.

Numerous methods have been proposed for detecting defects in textile. The methods are
generally grouped into three main categories according to the techniques they use for texture
feature extraction, namely statistical approaches, spectral approaches and model-based

approaches.

In this thesis, we study one method from each category and propose their combinations in
order to get improved fabric defect detection and classification accuracy. The three chosen
methods are the grey level co-occurrence matrix (GLCM) from the statistical category, the
wavelet transform from the spectral category and the Markov random field (MRF) from the
model-based category. We identify the most effective texture features for each of those
methods and for different fabric types in order to combine them.

Using GLCM, we identify the optimal number of features, the optimal quantisation level of
the original image and the optimal intersample distance to use. We identify the optimal
GLCM features for different types of fabrics and for three different classifiers.

Using the wavelet transform, we compare the defect detection and classification performance
of features derived from the undecimated discrete wavelet and those derived from the dual-

tree complex wavelet transform. We identify the best features for different types of fabrics.

Using the Markov random field, we study the performance for fabric defect detection and
classification of features derived from different models of Gaussian Markov random fields of

order from 1 through 9. For each fabric type we identify the best model order.

Finally, we propose three combination schemes of the best features identified from the three
methods and study their fabric detection and classification performance. They lead generally
to improved performance as compared to the individual methods, but two of them need

further improvement.

iv
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Chapter 1: Introduction

1.1 Importance of textile fabrics in human life

Textile fabrics are found in every aspect of human life, from the basic needs of people to the

most advanced technological invention.

The basic needs of people are food, clothing and shelter. For example, in the food industry
fabrics are used to provide plant covers, absorbent liners in pre-packaged meats and reusable
cloth bags [1]. The most common use of fabrics is in clothing. They are used to provide
warmth, cover, protection and aesthetic properties. Fabrics are also used as shelter in form of
tents and umbrellas and are part of building materials.

Other uses of fabrics include carpets, conveyer belts in factories, fabric-supported hoses at
petrol stations, space suits for astronauts etc. It is difficult to imagine any sector of human life

that does not make use of textile fabrics.

1.2 Fabrics and the process of fabrication

According to Kadolph, a fabric is a pliable, plane-like structure that can be made into two- or
three-dimensional products that require some shaping and flexibility [2]. Most fabrics are
made from yarns and are either woven or knitted. Yarns themselves are continuous threadlike
strands composed of fibres that have been twisted together during a process known as
spinning. Fibres are the smallest part of the fabric; they are fine, hair-like substances,
categorised as either natural or manufactured [1]. Examples of natural fibres are cotton, wool
and silk. Manufactured fibres are formed from chemicals and comprise acrylic, nylon and

polyester.

Woven fabrics are made with two or more sets of yarns interlaced at right angles. Figure 1-1
shows the two basic components of a woven fabric; warp yarns and filling yarns. The yarns in
the length-wise direction are called warp yarns or ends while the yarns in the cross-wise

direction are called filling yarns, weft or picks.
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C T 1 T[] -I-
Iy e N -I Filling yarn

o ) e I or weft

warp yarn
or end

Figure 1-1: Basic components of a woven fabric [2]

Woven fabrics are produced on a loom. Figure 1-2 shows a simplified sketch of a two-harness
loom. The process of producing woven fabric is as follows [1]. The warp yarns are first set in
place from the warp beam through the harnesses to the cloth roll. The harness is a frame that
holds many thin vertical wires called heddles, each with a hole in the middle through which

passes a warp yarn.

Cloth Roll
Warp Beam Filling Yarn

Figure 1-2: A simplified sketch of a two-harness loom [1, 2]

During the weaving process one harness is raised with the other left in the down position
forming a V-like opening called shed. A filling yarn is then inserted in the shed and travels
across the width of the loom. passing over some warp yarns and under other warp yarns. The
reed, a comb-like device, then pushes the filling yarn into the body of the fabric. The woven
fabric is rolled onto the cloth roll or fabric beam as it is produced. Those steps of raising one

or more harnesses to separate the warp yarns and form a shed (shedding), inserting the filling
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yarn through the shed (picking), pushing the filling yarn into place in the fabric with a reed
(beating up) and winding the finished fabric onto the fabric beam (take-up) are repeated over

and over again.

1.3 Importance of fabric defect detection and classification

Quality inspection of textile products is an important problem for fabric manufacturers. Good
quality products increase profitability and customer satisfaction. Defects in textile fabrics
affect the appearance and the integrity of the fabric products and that leads to loss of customer
acceptance and confidence of the manufacturer. Therefore, good quality improves the
manufacturer competitiveness in the global market. In addition, fabric defects lead to a direct
loss in terms of money to the manufacturer. It has been estimated that the price of fabrics is
reduced by 45%-65% due to the presence of defects [3]. It is also estimated that fabric defects
are responsible for nearly 85% of the defects found by the garment industry [4].

Presently, most defects arising in the production process of a textile material are still detected
by human inspection [5]. However, that way of visual inspection has several weaknesses
including fatigue, boredom and inconsistent performance of human inspectors. The high cost
of human labour is also to be mentioned. More importantly, human defect detection rate in
fabrics is low. It has been reported that human inspectors do not detect more than 70% of
fabric defects and cannot deal with fabrics wider than 2 m and moving faster than 30 m/min
[6]. Yet, a typical web material is 1-3 m wide and is driven with speeds ranging from 20-200
m/min [6]. Therefore, automated detection of fabric defects, which would result in the
production of high-quality products at a high production speed is definitely desirable.

The traditional procedure for fabric quality inspection is manual and is carried out offline by
human inspectors. The fabric produced from the weaving machines is about 1.5-2 meters
wide, and rolls out at the speed of 0.3-0.5 meters per minute. When a human inspector notices
a defect on the moving fabric, he stops the motor that rotates the fabric roll, records the defect

with its location and starts the motor again [7, 8].

1.4 The fabric defects and their classes

The fabric defect can be defined as an abnormality in or on the fabric structure. Fabric defects
are caused by the yarn quality or/and malfunction during the weaving process. The yarn
defects themselves may come from the fibre defects or a malfunction during the spinning

process. Figure 1-3 shows a flowchart of woven fabric defects based on their source [9].

3
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Fibre defects Spinning defects
Yarn defects Weaving defects

Fabric defects
Figure 1-3: Flowchart of woven fabric defects based on their source [9]

Among the defects that may be due to the yarn quality one can name colour and width
inconsistencies, hairiness, slubs, broken ends etc [10]. The weaving defects include broken
end, broken pattern, double end, float, gout, hole or tear, missing end, oil or other stain etc
[11]. According to an industry survey conducted by Lewis et al. [4], broken picks, harness
drops and start marks top the list of the most frequently occurring defects, while broken ends,
broken picks, waste and coarse picks are the most costly defects in terms of penalty points
explained later in this section.

Table 1-1 lists the common defects in woven fabrics as well as their description.

The automatic classification of fabric defects into their categories is useful because the
information about a defect category may reveal the origin of the defect. For example, a high
occurrence rate of a certain type of defect may indicate malfunction of components of the
weaving machine. This would allow maintenance technicians to locate the faulty component
and repair it. Furthermore, statistics about each type of defects provide necessary information

for the quality grading of the fabric [12].

Typically, the finished fabric is inspected for faults according to industry standards [13]. For
example, in the standard four-point system of fabric inspection penalty points are given for
detected defects. The amount of the penalty depends on the length of the defect as follows: 1
penalty point is given to defects of 3 inches or less, 2 penalty points are being given to defects
of between 3 to 6 inches, 3 penalty points are given to defects of between 6 to 9 inches and 4
penalty points are given to defects of above 9 inches. Any defect of continuous nature is given
4 points for each yard in which it occurs. Severe defects such as hole are assigned the
maximum 4 points for each yard in which they occur. The quality of the batch of cloth is
described by the number of penalty points per 100 yards of inspected cloth. A penalty of up to
40 points is generally considered as an acceptable defect rate. Apart from the four-point
system described above, other standards, such as the more complicated ten-point system or

the Dallas System for knitted fabric, may be used to measure the quality of cloth.
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Table 1-1: Common fabric defects [9]

Defect Definition Reasons Severity
type
Floats A portion of ayarn in a It is caused by missing of Major fabric
fabric that extends or interlacement of two series of defect
floats, unbound, over two | threads.
or more adjacent ends or
picks
Weft A twisted weft thread It is caused by inserting a highly | Minor fabric
curling appears on the surface of | twisted weft thread or when the defect
the fabric weft thread is running too freely.
Slubs A local uneven fabric It is caused by an extra piece of Minor/major
thickness yarn that is woven into fabric. It | fabric defect
can also be caused by thick
places in the yarn or by fly waste
being spun in yarn during the
spinning process.
Holes A fabric area free of both | It is a mechanical fault caused by | Major fabric
of warp and weft threads | a broken machine part. defect
Oil stains | A fabric area contains oil | It is caused by too much oiling Minor/major
spots on loom parts or from other fabric defect
external sources.
Stitching A common fabric faultin | As the main purpose of the loom | Major fabric
which the ends and the is to interlace two sets of threads | defect
picks are not interlaced according to the correct order of
according to the correct the pattern, this defect is a result
order of the pattern of any undesired motion of the
main or auxiliary loom
mechanisms such as: shedding,
picking etc.
Rust A dirty area or when Stains are caused by lubricants Minor/major
stains/dirt | fabric contains stains and rust. Most of the stains can fabric defect
be traced back to poor
maintenance and material
handling.
Knots A fabric place where two | It is caused by tying spools of Minor fabric
ends of yarn have been yarn ends together. defect
tied together and the tails
of the knot are protruding
from the surface
Temple Marks or holes along It is caused by the temples or Minor fabric
marks/ fabric selvage pins which hold the fabric while | defect
pinholes it processes through tenter frame.
Snag A thread segment or It is created due to the friction Minor fabric
group of fibres pulled between the fabric and sharp or defect
from its normal pattern rough objects.
Tear Damaged fabric portions | It is created due to the friction Major fabric
differ from holes in that it | between the fabric and sharp or defect

has a random uneven
shape

rough objects.

5
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Table 1-1: Common fabric defects [9] (continued)

Defect Definition Reasons Severity

type

Gouts A local uneven fabric It is caused by masses of Major fabric
thickness differs from accumulated short fibre (fly) defect
slubs in that they are being drawn undrafted into the
characterised by a lumpy | filling yarn during the spinning
appearance while slubs process.
generally are symmetrical

Weft snarls | A short length of three It is caused due to insufficient Minor fabric
fold weft yarn of which twist setting which increases the | defect
two folds are inter-twisted | possibility of yarn severe rubbing

between the shuttle and the box
front plate

Moiré Presence of wavy areas in | It is caused due to a different Major fabric
a periodical sequence, compression of weft and/or warp | defect
where crushed and threads.
uncrushed threads reflect
light differently that
affects the fabric
appearance

Miss-end A warp thread is absent in | It is due to incorrect warping or Major fabric
the fabric for a short or by a broken warp thread that defect
long distance never replaced by another one.

Warp One or more faulty It is caused by scraping or Major fabric

stripes threads giving rise to rubbing between warp threads defect
zones of different aspect | and some parts of production

machines or due to inaccurate
reeding.

Tight/slack | A warp thread or pieces of | It is caused due to the incorrect Major fabric

warp warp thread which are tension applied on warp threads. | defect

thread tighter or slacker than the
other pieces/threads

Double- Two ends threaded inthe | It is caused by incorrect warping | Major fabric

ends same place as one or by a broken end wound on defect

another and takes the behaviour
of one thread.

Coarse-end | A warp thread or pieces of | It is caused due to the presence Major fabric
warp thread which are of a warp thread that has defect
coarser than the other different count (coarser thread)
pieces/threads than the other warp threads.

Smash Many ends or warp It is caused by a wrong timing of | Major fabric
threads are consequently | shedding, soft picking, defect
broken insufficient checking of shuttle in

the boxes, severe slough off, and
damaged or broken picking
accessories.

Openreed | Itis conspicuous on It is caused due to the bent reed Major fabric
fabrics that use different wires leaving a crack in the defect

coloured threads on wrap
and weft where the wrap
threads is held apart,

exposing the filling ones

fabric.
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Table 1-1: Common fabric defects [9] (continued)

Defect Definition Reasons Severity
type
Miss-pick | A weft thread is absent in | It is caused by incorrect picking | Minor/major
the fabric for a short or or if the weaver restarted the fabric defect
long distance loom after any stoppage without
adapting the position for the new
insertion.
Irregular A jammed or opened area | It is a mechanical fault caused by | Major fabric
pick formed in the fabric due an irregular beating up force. defect
density to uneven pick density
(number of picks per
inch)
Double- Two weft threads take the | It is caused by incorrect picking. | Major fabric
picks same place of one thread defect
Coarse- A weft thread or pieces of | It is caused due to the presence Major fabric
pick weft thread which are of a weft thread that has different | defect
coarser than the other count (coarser thread) than the
pieces/threads other weft threads.
Starting A visual light/dark effect | It is caused by a higher or lower | Major fabric
mark (weft | in weft direction weft density caused by the defect
bars) weaving machine.
Tight/slack | A weft thread or pieces of | It is caused due to the incorrect Major fabric
weft thread | weft thread which are tension applied on weft threads. | defect
tighter or slacker than the
other pieces/threads
Skew/bias | When the weft threads are | It is caused due to the variation Minor fabric
not square or of the beating up force value defect
perpendicular with warp after the insertion of weft
threads threads.

1.5 Commercial automatic defect detection systems

There is little published information about existing commercial fabric defect detection and
classification systems, probably because of trade secrecy. One such publication was provided
by Alfred Dockery.

According to Dockery [14] fabric inspection has proven to be the most difficult of all textile
processes to automate. However, some commercial automated optical fabric inspection
systems do exist. Examples of such systems include Cyclops manufactured by BMS (Belgium
Monitoring Systems, formerly Barco Vision), I-Tex by Elbit Vision System and Fabriscan by

Zellweger Uster.

Cyclops has a travelling scanning head and can be deployed on the weaving machine itself. It
can prevent the production of off-quality fabric by stopping the weaving process if it detects a
serious or running defect. After resolving the defect’s cause the weaver makes a declaration

on the loom terminal so that Cyclops releases the loom for further production. When
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connected to the QualiMaster system (a system of fabric inspection and reporting also from
BMYS) all defect information, pick and time stamped, is sent to a fabric quality database. This

allows producing defect maps and various types of quality reports [15].

The I-Tex system is capable of inspection speeds up to 300 metres per minute and can handle
fabric widths of up to 5 metres. The system’s proprietary software learns the normal pattern
of the fabric and detects changes. These changes in the pattern are then analysed by multiple
detection algorithms to separate real defects from random but normal variations in the fabric.
Once a defect is detected, the x-y location and the size of the defect are recorded in a defect
map. In addition, a digital image of the defect is saved for later review by the system operator
[14].

Fabriscan can inspect fabric at speeds of up to 120 meters per minute and can detect defects
down to a resolution of 0.3 millimetres. It can handle fabric widths from 110 to 440
centimetres. Fabriscan classifies defects in a matrix called Uster Fabriclass. That matrix has
two axes. The x-axis is for the length of the defect, while the y-axis is for the contrast of the
defect. This allows the system to tell the difference between disturbing versus non-disturbing
defects. Data on defects can also be stored in a relational database, allowing users to generate

any type of report that they need [14].

1.6 Research in the field of fabric defect detection and classification

As shown on the block diagram of Figure 1-4, fabric inspection generally implies two stages;
fabric defect detection and fabric defect classification. Fabric defect detection declares the
presence or absence of a defect, while defect classification puts the detected defects into their

corresponding predefined classes.
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Fabric image

Defect detection

L » Detection results

Fabric image
with potential
defects

A\ 4

Defect classification

1

Classification results

Figure 1-4: Block diagram of a fabric inspection system [16]

Figure 1-5 shows a more detailed block diagram. A fabric image is captured and then sent
into a preprocessing stage. That stage is used to reduce noise from captured images and to
eliminate the effect of uneven illumination. It can also be used to improve the contrast and the
dynamic range of grey level intensity by using processing methods such as histogram

equalisation.
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Figure 1-5: Detailed block diagram of a fabric inspection system [16]

The stage of feature extraction consists in calculating some texture descriptors of the image
textile areas that are then fed into a classifier/detector. A defect detection or classification

method is usually named after the feature extraction method used.

Various methods for automated detecting defects in textile fabrics have been proposed in
literature. In his survey, Kumar classified the various methods into 3 main categories, namely

statistical approaches, spectral approaches and model-based approaches [10].

Statistical texture analysis methods measure the spatial distribution of pixel values [17]. A
large number of spatial texture features have been proposed, ranging from first order statistics
to higher order statistics. Amongst others. histogram statistics, rank order approaches, co-
occurrence matrices, autocorrelation and local binary patterns have been applied to fabric
defect detection. Methods using low-order statistics (e.g. histogram-based analysis and rank

order approaches) are usually simple and fast but are not as a rule sufficient guarantee of high
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accuracy [18]. High-order statistics (e.g. co-occurrence matrices) provide much more accurate

models, but are characterised by huge memory and computational requirements [19].

The usage of spectral features for the detection of defects is based on the high degree of
periodicity of basic texture primitives, such as yarn in case of textile fabric. However, random
textured images cannot be described in terms of primitives and displacement rules, as the
distribution of grey levels in such images is rather stochastic. Therefore spectral approaches
are not suitable for detection of defects in random textured materials. In spectral-domain
approaches, the texture features are generally derived from the Fourier transform, Gabor

transform and wavelet transform [20].

Through various publications spectral approaches, in particular Gabor filtering, have been
more popularly applied in these areas. Spectral approaches are not suitable for detecting
defects in random textured materials. Model-based approaches are more suitable for those
randomly textured fabrics [17]. Markov random fields (MRF) have been popular for
modelling images. Ozdemir et al. [18] compared six texture features consisting of MRF, KL
transform, 2D lattice filters, Law filters, co-occurrence matrices and a FFT based method.

Texture modelling using a high (9") order MRF model gave the best detection result.

Some effort is still needed in the field of fabric defect detection to increase the quality and
performance of defect detection and classification systems. Authors such as Kumar suggest a
combination of statistical, spectral and model-based approaches for further research to obtain

better results than any one method individually [10].

There have been some attempts of combining wavelet transform with grey level
co-occurrence matrix (GLCM) for feature extraction. This was generally done by extracting
GLCM features from the wavelet transform sub-image for texture segmentation, which
proved to be successful [21-23]. However, such methods did not compare the obtained
detection performance with that obtained by using individual methods (GLCM or wavelet),
nor did such methods compare the obtained performance with the detection performance that

would be obtained by directly pooling together GLCM and wavelet features.

1.7 Outstanding problems (challenges) of fabric defect detection and classification

There has been a lot of research in the field of fabric defect detection and classification, but
there are still obstacles. The major challenges in fabric defect detection and classification
include [10, 16, 24, 25]:

1. There are numerous categories of fabrics [24].

2. The data throughput is enormous [16].
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3. Great number of fabric defect classes; at present there are more than 70 classes of
fabric defects [24] defined by the textile industry.

4. Defects within the same class may have different appearances in different fabric
materials and from different factories [16].

5. The diversity within each class of defect and the similarity among different classes of
defects [16].

6. Some classes of defects only have slight difference from non-defective fabric [16].

7. Unlike images of other materials such as steel and paper, textile images are rich in
details [25].

8. The stochastic variations in scale stretch and skew of fabric texture/defects,
predominantly due to the environment and the nature of weaving process [10].

9. Defects inspection is done on moving and vibrating fabric [16].

Even if many different fabric defect detection have been proposed in literature and different
detection success rates have been reported, it is rather difficult to compare the detection
success rates among them because the experiments have been generally performed on
different datasets. It is desirable to have a common dataset that could be used by different
researchers so that the methods that they propose can be easily compared to each other. To

emphasise that, Mahajan et al. [17] stated

‘... due to lack of uniformity in the image database, performance evaluation and the nature of
intended application, it is not prudent to explicitly declare the best available methods for
fabric defect detection. Therefore, the effective performance evaluation requires careful

selection of data sets along with its clear definition of scope’.

1.8 The objective of this thesis

The objective of this thesis is to devise new defect detection and classification methods by
combining existing statistical, spectral and model-based methods for improved performance.
It will not deal with details about image capturing, but will rather make use of an existing

fabric image dataset and focus on texture feature extraction and classification.

More specifically, this thesis will look into the combination of co-occurrence matrix feature-
based methods (from the category of statistical methods), wavelet-based methods (from the
category of spectral methods) and Markov random field-based methods (from the category of

model-based methods).

Pertaining to the classification stage, the thesis will compare the Euclidean distance, the K-

nearest-neighbour and the feed-forward neural network classifiers.
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1.9 The contribution of this thesis

Experiments involving various defect detection methods on a large, unique dataset allowing

for the comparison of their performances.
Identification of the optimal number of GLCM features for fabric defect detection.

Three combinations schemes of fabric defect detection and classification methods involving

statistical, spectral and model-based methods.

The use of complex wavelet transform to extract features that lead to improved performance

in fabric defect detection and classification.

1.10 The outline of this thesis

Chapter 1 presents background information about textiles and fabric defect detection and

classification. It also presents the objective, scope and contributions of this thesis.

Chapter 2 reviews the main published research in the area of fabric defect detection and
classification. The methods proposed by various authors are grouped into three categories:

statistical, spectral and model-based approaches.

Chapter 3 presents conceptual information about the methods that are used in the
experimental part of the thesis. GLCM, wavelet transforms and Markov random fields are

successively presented. Next, the classifiers that will be used are presented.

In chapter 4, we describe the experimental data. After the overall description of the types of
fabrics as well as the types of defects that the Textile texture database developed by the
Texture Analysis working group of the Deutsche Forschungsgemeinschaft in Germany
(TILDA) dataset contains, we define our elementary experimental sample and then describe
how the whole dataset was divided into elementary experimental samples. Next, we present
our method of labelling each sample with its respective class defect. We finally describe how

the samples were divided into two groups, namely the training and testing sets.

Chapter 5 experiments with the GLCM features. The objective is to find a small set of co-
occurrence matrix features that allows one to best discriminate the fabric defects and find an

algorithm that allows their fast extraction.

In chapter 6, we experiment with wavelet-based features. We are interested in the
undecimated wavelet transform and the dual-tree complex wavelet transform due to their

shift-invariance property. We compare their respective performance when applied to the
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detection and classification of defects in our dataset. Then, their best features for

discriminating the defects of fabric images in our dataset are identified.

Chapter 7 experiments with the Markov random field features. We deal with Gaussian
Markov random field models. For each of the different types of fabrics in our dataset, we

identify the model order that yields the best discriminating parameters for fabric defects.

In chapter 8, we propose combination schemes of features identified in chapters 5, 6 and 7.
Those combination schemes constitute new defect detection and classification methods that
are tested using our dataset.

The thesis is concluded in chapter 9. In that chapter we present the suggestions for future

research work.
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Chapter 2: Review of fabric defect detection literature

2.1 Introduction

This chapter aims at presenting the main approaches to fabric defect detection and
classification that are found in literature, highlighting their advantages as well as their

limitations.

The literature related to fabric defect detection and classification covers a large variety of
methods that have been attempted. Kumar [10] and Ngan et al. [24] provided recent reviews
of research in that field. Other reviews include [17, 18] and [26].

Most publications take the problem of fabric defect detection and classification as a texture
analysis problem and assume that a fabric defective region has texture that is different from a
sound fabric area. Therefore it becomes possible to detect fabric defects by identifying
regions where texture is different from the dominant background texture. The categorisation
of the various defect detection techniques is generally based on the texture feature extraction
method used by those techniques. Kumar [10] classified the fabric defect detection techniques
into three categories: statistical, spectral and model-based. Ngan et al. [24] extended the
number of categories to seven, adding the learning, structural, hybrid and motif-based
categories to the statistical, spectral and model-based approaches. We will adopt the
classification by Kumar. Specifically, the object of this thesis is to propose defect detection
and classification methods that combine methods from each of the three categories for
improved detection or classification performance. Studies [10, 17] have suggested the
combination of statistical, spectral and model-based methods for improved fabric defect

detection and classification.

The remaining part of this chapter will be organised as follows. Sections 2.2 and 2.3 review
the methods in the statistical category. Section 2.2 reviews methods that make use of first
order statistics, while Section 2.3 deals with methods that utilise second order statistics of
image pixels. Section 2.4 deals with spectral methods with special emphasis on wavelet-based
approaches. Section 2.5 deals with model-based methods with a particular emphasis on the

Markov random fields-based methods.

2.2 Methods based on first order statistics

Methods based on first order statistics are those that make use of statistics of individual image
pixels such as mean, variance, skewness and kurtosis. Usually a fabric image is divided into

blocks, some first order statistics are calculated from the image pixels of each block, and then
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each block is classified as defective or defect-free, comparing the calculated statistics to the
same statistics of defect-free blocks. The assumption made by such methods is that the first
order statistics remain the same within the defect-free region, but change drastically from a

defect-free to a defective region.

Elragal [27] combined first order statistical features and second order textural features for
improved detection and classification rates. He used a fuzzy C-mean clustering and adaptive
neural-fuzzy inference system (ANFIS) for classification. A similar approach was adopted by
Balakrishnan et al. [28] to classify defects in denim fabrics into four classes. Using first order
statistics features (mean, variance, skewness, kurtosis and entropy) they obtained a
classification rate of 70%. To improve the classification rate they combined the first order
classification features with second orders statistics features and got a classification rate of
93%.

In order to reduce the computational cost, Neubauer [29] used local histograms on a window
grid to detect defects in textile fabrics. The histograms were calculated on 10x10 and 20x20
windows. The number of grey levels for histograms was limited to 8 to reduce the amount of

data. Classification was done using a perceptron net trained by backpropagation.

Abouelela et al. [25] used local mean grey values and local variances to detect defects in
textiles. After a preprocessing stage to eliminate inhomogeneity due to illumination and to
filter out false defects, the fabric image was submitted to a smoothing operation and then
local variances were calculated. Defects were detected as fabric areas with high local

variances.

The advantage of methods based on first order statistics is their relative low computational
complexity and thus the defect detection is relatively fast. However, the first order statistics
and pixel-wise analysis are not able to efficiently define or model a texture [30]. Therefore,
statistical texture analysis methods usually employ higher order statistics and neighbourhood

properties of texture.

2.3 Methods based on second order statistics

Methods based on second order statistics deal with statistics of pairs of pixels related in some
manner. The most commonly used second order statistics methods for texture analysis are
grey level co-occurrence matrices (GLCM), autocorrelation function and grey level run length
(GLRL) [30].
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2.3.1 Grey level co-occurrence matrices

The grey level co-occurrence matrix of an image, originally described by Haralick et al. [31],
is used to describe the statistics of neighbouring pairs of pixels separated by a given distance
d in a given direction 6. Details of compilation of the co-occurrence matrix are given in
Subsection 3.2.2. In general, four such matrices are used to describe different orientations in
an image. More specifically, one co-occurrence matrix describes pixels that are adjacent to
one another horizontally, P, There are also co-occurrence matrices for the vertical direction

135
P

and both diagonal directions called P*, P* and respectively [32].

After the compilation of co-occurrence matrices, usually a set of textural features are derived
from them and those features are used to obtain the texture description. The commonly used
co-occurrence matrix features are energy (also called angular second moment), entropy,
correlation, local homogeneity (also called inverse difference moment) and inertia (also called
contrast). The definitions and details of calculation of those features and more other features
are provided in Subsection 3.2.3.

Several researchers have used the co-occurrence matrix and its features to detect and classify
defects in textile fabrics [33-38], to detect defects in texture from different sources [23-42] or
to classify texture in general [43]. Clausi [44] made an extensive analysis of co-occurrence
matrix features when applied to classifying images of Synthetic Aperture Radar (SAR) sea-

ice images.

One of the common issues when using co-occurrence matrices and their features is the choice
of the distance d and the direction 6 necessary for their compilation. These choices are not
always motivated, and the distance d=1 and four directions 6=0°, 6=45°, 6=90° and 6=135°are
usually used [18, 21, 31, 37-38, 44]. However, some researchers found ways of improving the

choice of the distance d or the directions 6.

Tsai et al. [33], for example, chose the distance d that maximised the angular second moment
and minimised the contrast features in the weft and warp directions for co-occurrence
matrices from images of defect-free fabrics. They assumed a periodic behaviour of grey level
values of pixels in the weft and warp directions, and using the fact that periodicity in the
direction 6 leads to large values of diagonal elements of the co-occurrence matrix compiled
for along that direction, they showed that the distance d that maximises the angular second

moment and minimises the contrast is the period of the grey value level signal.

Bodnarova et al. [32, 34] proposed a method of improving the choice of both the distance d

and the direction 0 that makes use of a y* significance test. A similar method was used by
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Murino et al. [35]. The optimal choice of parameters using the method proposed by those
authors depends on the specific feature to be extracted from the co-occurrence matrix. To
derive the optimal parameters d and 6 which would provide the maximum structural
information from the feature of interest, they performed a x? test on EFMs (elementary
feature matrices) corresponding to the considered feature. For different values of
displacement vector (d, 6), a x* score was computed on EFMs. The optimal displacement
vector (d, 8) was chosen as the one that produced the maximum value of the %2 score for that

particular feature.

Another issue with the co-occurrence matrix-based methods is the choice of specific features
to be used in a particular defect detection or classification task. Haralick al. [31] proposed 14
features that can be extracted from each co-occurrence matrix and some more features have
been proposed by others researchers [42, 45-47]. It has also been shown that many of those
features are correlated among each other [48]. Therefore there should be a method of
selecting a suitable subset of those features that need to be extracted. Furthermore, using a
small number of effective features allows decreasing the computational burden to extract the
required features.

As shown by numerous publications, the most frequently used features are contrast, energy,
entropy, homogeneity and correlation, or a subset of them [33-47]. However, most of those
publications do not justify the choice of the specific features that they use. Some authors
performed feature selection procedures for their specific applications. For example, Gomez et
al. [47] used the mutual information (MI) technique to rank and select the features extracted
from breast ultrasound images using the minimum redundancy maximum relevance (MRMR)

criterion. The selected features were then used to classify the breast lesions on the images.

The number of grey levels in the input image is also an important issue. The input image is
generally coded using 8 bits per pixel, and therefore each pixel can have values from 0 to 255.
However such a great number of grey levels increases the computation cost of the co-
occurrence features. So, often the input image is quantised so that the co-occurrence matrices
are compiled from an image that allows less grey levels. An additional benefit of using a
reduced number of grey levels is reduction of noise [45-47], although that gain may not
compensate the loss of information as a result of quantisation. Several authors [18, 23, 31-35,
42, 43, 49] selected 8, 16, 32 and 64 grey levels for their applications, but most of them did

not justify their choice.

A few researchers performed studies of the effect of the number of grey levels on the

effectiveness of the co-occurrence matrix features. For example, Clausi [44] analysed the
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change of classification ability of various GLCM features as the number of grey levels
increased. He found that most of the features had poorer classification power with a high
number of grey levels while the opposite was expected. Using the dissimilarity and contrast
features, coarse quantisation (less than 24 grey levels) produced low classification results,
while quantisation with more than 24 grey levels provided quite consistent results with
minimal variability. The entropy, uniformity and maximum probability features all had a
strong decrease in classification accuracy with increasing number of grey levels. The inverse
difference and the inverse difference moment features had also decreasing classification with

an increasing number of grey levels.

Soh and Tsatsoulis [46] studied the effect of the number of grey levels on the effectiveness of
the GLCM features from SAR sea ice images. In their study, they used 8, 16, 32, 64, 128 and
256 grey levels obtained using the uniform quantisation scheme. They found that 8 grey
levels were inadequate to represent texture effectively. Furthermore, they showed that the
dissimilarity between two samples of different textures does not change systematically with
the number of grey levels. However, they found that for the same sample the GLCM results
obtained using a pair of quantisation levels (i.e. number of grey levels) were more consistent
as the number of quantisation levels increased. On his side Shohr [48] found that the
uniformity and entropy GLCM features of sea ice radar images were sensitive to the number
of grey levels and that the ice classes were more separable for 16 levels compared to 4 and 64
levels. Different findings were obtained by Gomez et al. [47], who found that the quantisation
level did not impact the discrimination power of GLCM features extracted from breast

ultrasound images

The main weaknesses of the co-occurrence-based approach to fabric defect detection are as

follows:

1) It is computationally costly to determine the co-occurrence matrices and to

compute features from them [50].

2) It has poor performance for textures constructed by large-sized primitives [24].
Therefore there is a requirement that the defective regions in a fabric be large in
order to discriminate between defective texture properties and non-defective

texture properties. Thus this method is not appropriate for small-sized defects.

3) The co-occurrence matrices are a highly redundant way of representing texture
[32] and therefore means of reducing redundancy by using optimal parameters

(d, 6) and by feature selection is highly desirable.
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4) Haralick et al. [31] proposed fourteen features that can be extracted from each
co-occurrence matrix, and some more features have been proposed by other
researchers [42, 44-47]. Therefore there is a feature selection problem of

choosing the most appropriate features from those that can be extracted.

2.3.2 Autocorrelation function

The autocorrelation function (ACF) of a digital image f(x,y) is defined as [51]

L L AGDIp )
Cq(p,q)= = = v N (2.1)
M-DN-0  $¥ 2

i=1 j=1

where M and N are the numbers of rows and columns in the image respectively. It measures
the correlation between the image itself and the image translated by a displacement vector
(p, ). Textures with strong regularity will exhibit peaks and valleys in the autocorrelation
function [52]. The autocorrelation function can also be used to assess the coarseness and
fineness of the texture. The autocorrelation function of a coarse texture drops off slowly and

vice versa [30].

A few authors attempted to use the autocorrelation function to detect defects in textile
materials. For example, Chetverikov and Hanbury [53] defined texture defects in terms of
regularity. They considered defects as regions of abruptly falling regularity. In their study,
they quantified pattern regularity by evaluating the periodicity of the autocorrelation function
and then analysed it to detect defects in texture images including fabric images from TILDA.
Wood [54] used an autocorrelation function in two dimensions to describe the translational

and rotational symmetry of an image of plain carpet.

The autocorrelation function is generally considered as unsuitable for random textures with

irregularly arranged textural elements [52].

2.3.3 Grey level run length method

This method compiles the number of grey level runs of various lengths. A grey level run is
defined as a set of linearly adjacent pixels in an image with the same grey level value [51].
The run length is the number of pixels within the run. A longer run length implies a coarser
texture and vice versa; also, a more uniformly distributed run length implies a more random
texture and vice versa [30]. The number of grey level run lengths is organised in grey level

run length matrices R(0)=[r(i,j|6)]. The matrix element r(i,j|0) specifies the number of times
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that a run length i of grey level j appears in the image in the direction 6. Normally four grey
level run length matrices are compiled from each image, for 6=0° 6=45° 6=0° and 6=135°
Texture features are then computed from the grey level run length matrices (GRLM) and used
for the purpose of classification.

Some research work made use of the grey level run length features for defect detection in
textiles. Siew et al. [55] used features extracted using four second order statistical methods,
including the grey level run length, to discriminate the degrees of wear in a wool carpet.
Sardy et al. [56] used textural features from the neighbouring grey level dependence matrix
(NGDM) and grey level run length matrix (GRLM) and a backpropagation-trained neural

network to identify three fabric types and detect defects from them.

Similar to the other methods based on second order statistics, GRLMSs represent texture better
than methods based on first order statistics. However, computing GRLMs is computationally
costly because run lengths should be computed for all grey levels and lengths, and for
different directions. Moreover, the texture discrimination ability of GRLM features is low
compared to the other well-known texture features. For example, Singh and Singh [57]
compared eight texture feature extraction methods including GRLM, grey level co-occurrence
matrix (GLCM) and autocorrelation function (ACF) on the same dataset and GRLM
performance was the lowest with about 43% correct classification, much lower than ACF
(76%) and GLCM (79%).

2.4 Spectral methods

Unlike the statistical methods that work directly on grey-scale values of the image, the
spectral methods perform some filtering or transform operations on the raw fabric images and
then extract features from the results of those operations for the detection or classification of
defects. In this section we review the spectral methods based on the Fourier transform, then
on the Gabor filters and finally on wavelet transforms. For the wavelet-transform based

methods we separate the real wavelet transform and the complex wavelet transform.

2.4.1 Methods based on the Fourier transform

Faultless fabric is a repetitive and regular global texture and therefore Fourier transform can
be applied to monitor the spectrum of the fabric and detect defects from it [58]. This method
is based on the assumption that the defects will modify significantly the spectrum of the fabric
image to enable sensing their presence. Among researchers who used this method, Castellini
et al. [59] used the optical Fourier transform to monitor the fabric structure, while Wood et al.

[54] used Fourier and associated transforms to characterise carpet patterns. Ravandi and
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Toriumi [60] used Fourier transform analysis to measure fabric appearance. They also
discussed the fabric surface characteristics of fill and warp yarns for plain weave cotton
fabric. Tsai and Hsieh [61] used the Fourier transform and the Hough transform to suppress
directional texture with periodic or almost periodic lines from images under inspection. They
then detected the defects using double thresholding. More recently, Malek [9] used the
discrete Fourier transform in a system to detect fabric defects online.

The main disadvantage of Fourier transform-based methods is the lack of spatial information
in the Fourier transform that makes it impossible to spatially locate the detected defects.

2.4.2 Methods based on Gabor filters

One way to overcome the limitations of the Fourier transform based-methods is to use Gabor
filters. In the spatial frequency domain, a Gabor filter can be interpreted as a windowed or
short-time Fourier transform. Unlike the Fourier transform, which is a global frequency
content analyser, a Gabor filter performs a local analysis and returns the frequency contents of
the signal in the neighbourhood of a specific point. It can be tuned to a specific direction.

A 2D filter is characterised by its impulse response

[X_XOJZGL?*{V‘VOJZ“&

- 7T

G(x,y)=€

e— 27zj(x0u + yov) 22)

or by its transfer function
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Where u0 and vO are the filter central frequencies in x and vy directions,

o and o, are the filter standard deviations in x and y directions,

X, and yg are the horizontal and vertical displacements in the spatial domain.

0

Gabor filters are a traditional choice for obtaining localised frequency information. They offer

the best simultaneous localisation of spatial and frequency information [62].

Gabor filters showed high performance as feature extractors for texture discrimination [63-

65]. Levesque [66] used their ability to be tuned to a specific frequency band and orientation
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of image features to successfully segment some real and artificial textures. The images with
different textures where submitted to Gabor filtering and the magnitudes of the filter
responses were used to locate the areas occupied by each texture. The magnitude of the
channel output should be large when the texture exhibits the frequency and orientation

characteristics to which the Gabor channel is tuned.

More specifically, Gabor filters have been successfully applied to fabric defect detection. For
instance, Bodnarova et al. [67] used Gabor filters to detect defects in Jacquard fabrics. They
optimised their detection scheme by designing Gabor filters that maximise the Fisher cost
function of their responses when applied to non-defective texture. Escofet et al. [68] used a
set of 4x4 Gabor filters for detection of local defects in textile materials with periodic regular
texture. The filters corresponded to four frequency levels distributed in octaves and four
orientations (horizontal, vertical and two diagonals). The magnitudes of filter responses were
then used as inputs to the segmentation algorithms. A similar method was proposed by Kumar
and Pang [69]. Their unsupervised method used a Gabor filter bank of eighteen asymmetric
filters distributed at three scales and six orientations. They also proposed a supervised method
that made use of a single Gabor filter to isolate a particular class of defects. The Gabor filter
was selected automatically using a heuristic algorithm to optimally discriminate that
particular class of defects. Finally they proposed a defect detection method that used only the
imaginary Gabor function in a bid to reduce the computational cost. More recently Mak and
Peng [70] proposed a method to solve the problem of Gabor filter parameter selection for the
purpose of fabric defect detection. They proposed a system based on a Gabor wavelet network
consisting of three real-valued filters: (i) two real-valued Gabor filters and (ii) one smoothing
filter. Jing et al. [71] used features extracted using Gabor filters for defect detection and

features obtained using the local binary patterns and Tamura methods for defect classification.

The main advantage of using Gabor filters lies in its multiscale and multidirectional ability,
combined with the ability of capturing space-localised information about textures. That
allows effective defect detection of textures. However, disadvantages include the fact that a
typical Gabor filtering is either expensive to compute, is noninvertible or both [72]. That
disadvantage can be overcome using the dual-tree complex wavelet transform as described
later in Subsection 3.3.8. Another problem with methods based on Gabor filtering is that the
outputs of filter banks are not mutually orthogonal and therefore may result in a significant
correlation between texture features [22]. Gabor filters have two other main limitations. The
maximum bandwidth of a Gabor filter is limited to approximately one octave, and Gabor

filters are not optimal if one is seeking broad spectral information with maximal spatial
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localisation [62]. To overcome those limitations log-Gabor filters have been proposed [73-
76].

2.4.3 Methods based on wavelet transforms

Similar to Gabor filters, wavelet transforms provide a way to perform multiresolution analysis
of signals and images, but at significantly lower computational cost [77]. Another advantage
of wavelet transform over Gabor filtering is that the filters (low-pass and high-pass) used in
the computation of the wavelet transform remain the same for the different scales, while the
Gabor filtering requires filters of different parameters [22]. The wavelet transforms provide
information about both the frequency and time (or spatial location) of a signal. The wavelet-
based defect detection methods belong to the category of spectral methods and appear to be

the most promising for fabric defect detection and classification [16].

The wavelet transform of a signal f(t) € L%(R) is obtained by convolving the signal with a
shifted and scaled version of the original mother wavelet as described by the equation (2.4)
[78].

+ o0 *
Wf(s,u):<f,y/s1u>:i Oof(t)w (=Yt (2.4)

Js

Where Wf(s, u) denotes the continuous wavelet transform of the signal f(t) for the scale

parameter s and time (position) parameter u, * denotes the complex conjugate operator and

<> denotes inner product operation. The mother wavelet function 1 (t) e L2(R) should

satisfy the admissibility condition described by (2.5), where 1) (w) is the Fourier transform of

(D).

—~ 2
+oo [Pp(w)
Cy=1J__ %dw < (2.5)

The admissibility condition (2.5) imposes that the wavelet function must have a zero average
as described by (2.6).

[Zy®dt =0 (26)

The wavelet described by equation (2.4) with a continuous scale parameter s and continuous
time parameter u is known as continuous wavelet transform (CWT) and it is highly redundant.
The discrete wavelet transform (DWT) allows computing the transform with no redundancy
by selecting just enough discrete scale parameter values and discrete time parameter values.

Therefore the DWT corresponding to a CWT function W1(s, u) is obtained by sampling the
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coordinates (s, u) on a grid. The process called dyadic sampling, in which the values of
discrete scale as well as the corresponding sampling interval differ by a factor of 2, is
common. This leads to a modified wavelet representation given by equation (2.7) where j and

k are integers.

1 (t—k.2!
l//,-,k(t)=F( 5 ] 2.7)

Then the DWT of a function f(t) would be given by equation (2.8).

W (j,k) = (w4 K) = [, (0 F (D)t (2.8)
More details on wavelet transforms are provided in Section 3.3.

Wavelet transforms have been used by numerous authors for the purpose of texture
classification in general and fabric defect detection and classification in particular. Generally,
the wavelet transform was used as either texture feature extractor or as texture suppressor.
The use of wavelet transform as texture suppressor is based on the rationale that for a given
texture, textural information is dominantly located in a limited band of frequencies.
Removing that band of frequencies from the results of the wavelet transform and performing
the inverse wavelet transform make it possible to effectively suppress that texture from the
original image. When used as texture suppressor, non-texture based methods are used to

complete the defect detection task.

For instance, Sari-Sarraf and Goddard [40] used the wavelet transform as a preprocessing tool
to attenuate the background of fabric images and accentuate the defects. That was done by
performing a M-level wavelet decomposition using the Daubechies’ wavelet. The optimal
number of decomposition level M was selected manually by observing the output for a
handful of fabric images. After wavelet decomposition they submitted the ‘details’ (sub-
images) to a fusion scheme. The fused output was then submitted to histogram equalisation
and then measurements based on correlation dimension were extracted from the result of the
histogram equalisation. The thresholding operation on the fused image based on the global
homogeneity measure produced a binary image that was then submitted to a two-pass blob
analysis. Once the blob analysis was completed, the segmented defects could be classified
into meaningful classes based on a few extracted features such as size, orientation and

intensity profile.
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Tsai and Hsiao [79] also used the wavelet transform as texture suppressor and then applied
binary thresholding to separate defects from the background. To suppress texture, the fabric
image under test was decomposed at certain levels of wavelet transform and then the image
was reconstructed from selected detail images and approximation image in order to eliminate
all regular, repetitive textures in the reconstructed image. The number of decomposition
levels and the decomposed sub-images used for image reconstruction were determined from a
texture model. After experimenting with a few orthogonal wavelets, including Haar, Daublets,
Symmlets, and B-spline biorthogonal wavelets (BS2.2 and BS3.9), the authors concluded that
orthogonal wavelets with compact support length such as D4 and S8 were preferable in order
to avoid leaked subtle anomalies and have fast computation. They also found that the number
of wavelet decomposition between three and four was generally sufficient to remove regular,

repetitive textures and to enhance defects in the restored images.

Yang, Pang and Yung [80] adopted the undecimated wavelet decomposition and thresholding
for defect detection. The coefficients of the wavelet filter were adjusted adaptively to the
fabric texture during the training stage in order to maximise the ratio of wavelet transform
energy between the defect area and the defect-free background at a certain scale. The
separation of defects was done by thresholding on energy of wavelet coefficients and the
threshold was selected as p+3.56, where p and o are the mean and standard deviation of the
energy of the same wavelet transform on defect-free area. The choice of the undecimated
wavelet transform over the orthogonal wavelet transform was motivated by its translation
invariance property and the more degrees of freedom it offers on the wavelet design with
respect to the orthogonal wavelets. This method was further improved by designing a specific
adaptive wavelet for each defect so that eight different adaptive wavelets were designed to

classify defects into eight classes [81].

Other methods sought to optimise wavelet coefficients for defect detection by using a genetic
algorithm [82, 83]. They used a genetic algorithm to find the wavelet filter coefficients that
minimised entropy in the wavelet transform of images of woven fabrics. Minimising entropy
in images tends to filter out fabric texture while highlighting fabric defects. After obtaining
the optimised wavelet filter coefficients, they used them to perform a wavelet transform on
fabric images. They then isolated fabric defects by submitting the wavelet sub-images to

double thresholding.

Rallo et al. [84] used Gabor wavelets and binary thresholding for detecting defects in textile
fabrics. The image was submitted to a four-level wavelet decomposition using the complex
Gabor wavelet. Ngan et al. [85] combined the wavelet transform method and a method they

called golden image subtraction (GIS) for defect detection on pattern textiles.
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Han and Shi [86] combined the wavelet transform and grey level co-occurrence matrix
(GLCM) methods. The input fabric image was decomposed at various levels by wavelet
transform. After each level of decomposition, the GLCM of the approximation sub-image was
compiled. Then the homogeneity feature was calculated from the GLCM. By analysing the
homogeneity features at different levels of wavelet decomposition, the appropriate level at
which the approximation sub-image can be reconstructed into a non-texture image was
determined. Once the non-texture image was reconstructed, they used the Otsu thresholding
as detection technique, but also used the mean shift segmentation for complicated images
where the thresholding techniques were invalid.

When used for feature extraction normally the texture image is submitted to wavelet
transform operation, and then the features are calculated from the ‘detail’ and/or
‘approximation’ wavelet coefficients. The calculated features are then fed into a classifier for

decision making.

One of the main issues concerning that use of the wavelet transform for texture
characterisation is the choice of the wavelet to be used. Generally wavelets are characterised
by properties such as orthogonality, size of support, regularity, symmetry, degree of shift
variance, directionality in two and higher dimensions, and the number of vanishing moments,
which could possibly influence their texture discrimination ability and therefore their
performance in detecting defects in textile fabrics. However, few authors motivated the
choice of the wavelet they used in their publications on defect detection or classification.
Yang, Pang and Yung [12, 87-88] used the undecimated discrete wavelet transform because it
is shift-invariant and allows more flexibility in design than the orthogonal wavelet. Karras et
al. [89] extracted features from detail wavelet coefficients for the purpose of defect detection
in textile fabrics. They tried several wavelet bases including Haar, Daubechies, Coiflet,
Symmlet etc., as well as with Meyer's and Kolaczyk's wavelet transforms. However, only the
Haar wavelet transform exhibited the expected and desired properties. All the other
orthonormal, continuous and compactly supported wavelet bases smoothed the images so

much that the defective areas did not appear in the sub bands.

For texture classification in general Mojsilovic et al. [90] suggested that the degree of shift
variance is more important than regularity, with wavelets with low degree shift-variance
performing better. They also suggested that regularity, number of vanishing moments and
overall quality of high-pass filters do not have much influence on texture discrimination.
Ahuja et al. [91] studied the properties determining the choice of mother wavelet in different
applications and proposed the B-spline wavelet family for wavelet-image sequence super

resolution.
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The other issue relating to the use of wavelet transform for texture feature extraction is the
choice of the adequate number of levels of wavelet decomposition. Also, the fact that each
level of wavelet decomposition produces four sub bands leads to the problem of choice
among the sub bands. Generally, the more is the number of wavelet decomposition levels, the
more is the information in the extracted features but the more is the computational cost. The

number of decomposition levels used by numerous authors varies from one to five [92-97].

Important in fabric defect detection and other pattern recognition applications of wavelet
transform is the issue of shift-variance. That refers to the fact that the same texture pattern in
the original image may lead to different wavelet coefficients depending on the pattern
location. Wavelet bases as implemented by the DWT algorithm [78] are shift variant and
therefore not suitable for pattern recognition applications such as fabric defect detection.
Shift-variance is introduced by the down sampling process that is part of the DWT algorithm.
Various authors have dealt with that problem in different ways. For instance, Sari-Sarraf and
Goddard [40] used a variant of wavelet transform called multiscale wavelet representation
(MSWAR) which is shift-invariant. Yang, Pang and Yung [12, 87-88] used the undecimated
discrete wavelet transform which is also shift-invariant. More recently, Wang et al. [98] used
the 2D dual-tree complex wavelet transform which is almost shift invariant and has other

interesting properties as described in Subsection 3.3.8.

2.4.4 Methods based on the dual-tree complex wavelet transform

As mentioned previously, the discrete wavelet transform (DWT) in its critically-sampled form
suffers from the problem of shift variance that makes it unsuitable for pattern recognition
applications such as fabric defect detection [78]. The solution that has been usually used is the
undecimated discrete wavelet transform (UDWT) [12, 87-88].

Even if the UDWT solves the problem of shift variance, it has a high redundancy rate of 3L+1
for image representation, where L is the number of wavelet decomposition levels. That leads
to increased computational requirements [99]. In addition, it does not solve the shortcoming
of poor directional selectivity for diagonal features in 2D. This weakness of UDWT lowers

the discrimination power of its texture features.

The dual-tree complex wavelet transform (DTCWT), first introduced by Kingsbury in 1998
[99-100], is approximately shift invariant and makes it possible to get directional wavelets in
two and higher dimensions with only 2x redundancy in 1-D (2 for d-dimensional signals, in
general) [72]. It has been used in several research papers, especially for texture
characterisation. For example, Costin and Ignat [101] discussed the effectiveness of the

cosine similarity measure, the Pearson coefficient as well as the Frobenius norm applied to
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the magnitudes of DTCWT coefficients of texture images in order to decide on their
similarities. Other applications include content-based image retrieval [102-103], image

segmentation [104] and texture classification [105-106].

Specific to textiles, Wang et al. [98] used the 2D dual-tree complex wavelet transform to
separate the fabric texture and the pilling information from the image of the pilled nonwoven
fabric. They then used that pilling information and a supervised neural network classifier for
objective pilling evaluation.

2.5 Model-based methods

Model-based approaches seek to represent texture by a stochastic model. The model should
be able to capture enough texture characteristics so that discriminating different textures
based on the model becomes possible. The broadly used model for textured images
representation is the Markov random field (MRF), introduced to the image processing
community by Geman and Geman [107] in 1984.

Markov random fields modelling assumes that the intensity at each pixel depends only on the
intensity of neighbouring pixels. That is expressed by a conditional probability density
described by (2.9).

p(X(i)|Neighbours of i) (2.9)

where X (i) is the pixel intensity at location i. According to the Hammersley-Clifford theorem
[108], a MRF, expressed by its local conditional probability, is equivalent to a Gibbs random

field, expressed by the joint probability described by (2.10)

1
p(X) =2e X (2.10)

where X represents the joint event of all the pixels of the image, U(X) represents the energy
function, T is a constant called temperature and Z is a normalising constant called partition
function [109]. Examples of types of Markov random field models are the auto-logistic, auto-
binomial, multilevel logistic and auto-normal Markov random field models [109]. The auto-

normal MRF models are also called Gaussian Markov random fields (GMRF).

In MRF modelling a texture is assumed to be a realisation of an MRF, and modelling a
texture is equivalent to specifying the corresponding conditional probabilities or Gibbs model.
Texture features correspond to the MRF model parameters and feature extraction is

equivalent to parameter estimation [110].
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The Markov random field models have been used for texture analysis and fabric defect
detection. For example, Chellappa and Chatterjee [111] used GMRF models to classify
textures from the Brodatz album, while Cross and Jain [112] used the auto-binomial models
to analyse and synthesise textures. Wang and Liu [110] proposed a multi resolution MRF

models for texture classification.

Cohen et al. [113] used GMRF to detect and locate the various kinds of defects that might be
present in a given fabric sample based on its image. Because of the high computational cost of
estimating the model parameters, they instead used the sufficient statistics associated with the
models parameters which are easily computable. On their side Ozdemir and Ergil [8] studied a
model-based approach with MRF as texture model for the defect inspection of textile fabrics.
They illustrated the results on real fabric images and implemented their method on a two
TMS320C40-based parallel processing system.

Al-Kadi [114] combined statistical and model based features to classify eight different texture
images. The statistical methods were GLCM, GLRL and ACF (autocorrelation function)
while the model-based methods were GMRF and fractional Brownian motion. They found
that when each method was used individually GLCM performed the best. However, when the
different methods were combined in pairs, the model-based approaches used together
achieved the highest classification rate compared to each of the five methods individually and

to each other combination.

Compared to co-occurrence matrix-based approach, the model-based one is computationally
more efficient. Similar to the co-occurrence matrix-based method, the texture model-based
approaches are poor in discriminating small local defects, since a sufficiently large region is

needed for a good estimation of the model parameters [16].

It is expected that MRF-based approaches perform better in fabric defect detection, since
MRF models carry more local texture information than co-occurrence matrices [16]. In fact,
Ozdemir et al. [18] compared six texture features consisting of MRF, KL transform, 2D
lattice filters, Law filters, co-occurrence matrices and a FFT-based method and texture
modelling using a high order (9") MRF model gave the best detection result. However, these
results seem to contradict the findings by Clausi and Yue [115] when applied to remote
sensed ice images. They compared co-occurrence matrix-based features and MRF features for
discriminating textures in remote sensed ice images and found that co-occurrence matrix-
based features had improved discriminating ability relative to MRF features with decreasing

window size. Those findings are consistent with our own results as shown in chapter 8.

30

© Central University of Technology, Free State



: Central University of
Technology, Free State

In this chapter, we reviewed various defect detection methods found in literature. Those

2.6 Summary

methods are generally categorised on the basis of the texture feature extraction techniques that
they use. They have been classified into three main categories: (i) statistical, (ii) spectral and

(iii) model-based methods.

Statistical methods deal directly with statistics of grey level values of fabric image pixels.
Among the statistical methods, one can distinguish those based on first order statistics from
those based on second or higher order statistics. First order statistics methods deal with
statistics of individual pixels. They are computationally simple, but they can detect only

defects with a high contrast with respect to the defectless fabric background.

Methods based on second order statistics deal with joint statistics of pairs of pixels. Among
the most commonly used one can mention (i) the grey level co-occurrence matrix, (ii) the
autocorrelation function and (iii) the grey level run length method. Second order statistics
methods model better texture than first order statistics methods and they provide better defect
detection performance. However, they suffer from some weaknesses that include the high

computational cost incurred for their use.

Spectral methods perform some filtering or transform operations on the raw fabric images
before extraction features from the results of those operations. Several spectral methods exist.
Among them we reviewed (i) those based on the Fourier transform, (ii) those based on Gabor

filters and (iii) those based on the wavelet transform.

The Fourier transform allows characterising the fabric texture in frequency domain and
detecting fabric defects by monitoring its spectrum. However, the Fourier transform lacks
spatial information and therefore makes the methods based on it unable to locate spatially the

detected defects.

Unlike Fourier transforms, Gabor filters offer simultaneous localisation of spatial and
frequency information. They have been applied successfully to fabric defect detection. They
show high performance as feature extractors for texture discrimination due to their multiscale
and multidirectional ability, combined with their capability of capturing space-localised
information about texture. However, typical Gabor filtering is either expensive to compute, is

noninvertible or both.

Similar to Gabor filters, wavelet transforms provide a way to perform multi resolution
analysis of signals and images but at significantly lower computational cost. Wavelet

transforms also provide information about both time (or spatial location) and frequency of a
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signal. They have been used for fabric defect detection as either texture suppressors or as

texture feature extractors.

Numerous issues about wavelets need attention before their application for texture feature
extraction. Among them is the choice of wavelet to use, the choice of the adequate number of

decomposition levels and dealing with the problem of shift-variance of the wavelet transform.

The problem of shift-variance should be solved for pattern recognition applications of wavelet
transforms such as fabric defect detection. The most commonly used wavelet transform,
called the discrete wavelet transform (DWT), is not shift-invariant. The solution that is
traditionally used is the undecimated discrete wavelet transform (UDWT). However, UDWT
is highly redundant and computationally expensive. The better solution is the dual-tree
complex wavelet transform (DTCWT), which, in addition to being almost shift-invariant with
a low rate of redundancy, offers high directional selectivity in two and higher dimensions.

Model-based methods seek to represent texture by a stochastic model. One of the most used
models for texture is the Markov random field (MRF) model. Texture feature extraction using
a MRF model consists in choosing an appropriate model for the texture and then estimating

the model parameters for that particular texture.
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Chapter 3: Review of the methods employed in this thesis

3.1 Introduction

This chapter will present in detail conceptual information of the methods that will be
employed in the experimental part of this thesis. The objective of the thesis is to combine grey
level co-occurrence matrix, wavelet-based and Markov random field-based methods for
improved fabric defect detection and classification. Therefore each of the three methods will
be successively presented. These three tools are used for texture feature extraction. Once the
features are extracted, they are fed into classifiers for decision about the presence of a defect
or for categorising defects into predefined classes. Classifiers that will be used in this thesis

will then be presented.

3.2 Grey level co-occurrence matrix features
3.2.1 Definition of grey level co-occurrence matrix

The grey level co-occurrence matrix (GLCM) analysis was introduced by Haralick et al. [31]
in 1973. It is a second order statistics method of texture analysis in the sense that it is based
on the computation of statistics of pairs of neighbouring pixels in an image, separated by a

given distance d in a given direction 6.

A co-occurrence matrix is a square matrix whose elements are the number of occurrence of
pairs of grey levels separated by the distance d in the direction 6. For an image with G grey
levels, the grey level co-occurrence matrix P is a GXG matrix and its element P44 (p, ) can be

expressed by (3.11).

Paio(p, @) = #{((G, k), (m,n)): £(j k) = p,f(m,n) = q} (3.11)

where 0 < p,q < (G — 1) are the grey level values of the pixels, the symbol #{} denotes
cardinality of a set. After computing all elements of the matrix, each of them is divided by
their total sum to normalise the co-occurrence matrix. The obtained normalised co-occurrence

matrix therefore represents the joint probability of pairs of pixels having certain values.

Combinations of parameters d and 6 allow to obtain different GLCM matrices from a single
image. Generally, four directions, 6=0° 6=45°, 6=90° and 6=135°, and different distances (d)
have been used in literature [18, 21, 31, 37-38, 45].
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