6,479 research outputs found

    Modeling Historical Social Networks Databases

    Get PDF
    Historical social networks are analyzed using prosopographical methods. Prosopography is a branch of historical research that focuses on the iden-tification of social networks that appear in historical sources. It aims to represent and to interpret histori-cal data, sourced from texts. Conceptual modeling imparts the capability to process these large data sets. This paper outlines a conceptual approach to design-ing a prosopographical database encompassing un-certainty. Our contribution is threefold: i) a generic certainty-based prosopographical conceptual model; ii) two meta-models with a mapping between them; iii) an illustrative example generating a customized pros-opographical relational model. Unlike past ap-proaches, our design process helps us to integrate disparate points of view as expressed in the proso-pography community. We apply our approach to the prosopographical database Studium Parisiense dedi-cated to members of Paris schools and university be-tween the twelfth and sixteenth centuries. This instan-tiation validates the usefulness of our approach

    The DIGMAP geo-temporal web gazetteer service

    Get PDF
    This paper presents the DIGMAP geo-temporal Web gazetteer service, a system providing access to names of places, historical periods, and associated geo-temporal information. Within the DIGMAP project, this gazetteer serves as the unified repository of geographic and temporal information, assisting in the recognition and disambiguation of geo-temporal expressions over text, as well as in resource searching and indexing. We describe the data integration methodology, the handling of temporal information and some of the applications that use the gazetteer. Initial evaluation results show that the proposed system can adequately support several tasks related to geo-temporal information extraction and retrieval

    Monitoring land use changes using geo-information : possibilities, methods and adapted techniques

    Get PDF
    Monitoring land use with geographical databases is widely used in decision-making. This report presents the possibilities, methods and adapted techniques using geo-information in monitoring land use changes. The municipality of Soest was chosen as study area and three national land use databases, viz. Top10Vector, CBS land use statistics and LGN, were used. The restrictions of geo-information for monitoring land use changes are indicated. New methods and adapted techniques improve the monitoring result considerably. Providers of geo-information, however, should coordinate on update frequencies, semantic content and spatial resolution to allow better possibilities of monitoring land use by combining data sets

    The Relationship between Fuzzy Reasoning and Its Temporal Characteristics for Knowledge Management

    Get PDF
    The knowledge management systems based on artificial reasoning (KMAR) tries to provide computers the capabilities of performing various intelligent tasks for which their human users resort to their knowledge and collective intelligence. There is a need for incorporating aspects of time and imprecision into knowledge management systems, considering appropriate semantic foundations. The aim of this paper is to present the FRTES, a real-time fuzzy expert system, embedded in a knowledge management system. Our expert system is a special possibilistic expert system, developed in order to focus on fuzzy knowledge.Knowledge Management, Artificial Reasoning, predictability

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives
    corecore