1,086 research outputs found

    Design and Implementation of Takagi-Sugeno Fuzzy Tracking Control for a DC-DC Buck Converter

    Get PDF
    This paper presents the design and implementation of a Takagi-Sugeno (T-S) fuzzy controller for a DC-DC buck converter using Arduino board. The proposed fuzzy controller is able to pilot the states of the buck converter to track a reference model. The T-S fuzzy model is employed, firstly, to represent exactly the dynamics of the nonlinear buck converter system, and then the considered controller is designed on the basis of a concept called Virtual Desired Variables (VDVs). In this case, a two-stage design procedure is developed: i) determine the reference model according to the desired output voltage, ii) determine the fuzzy controller gains by solving a set of Linear Matrix Inequalities (LMIs). A digital implementation of the proposed T-S fuzzy controller is carried out using the ATmega328P-based Microcontroller of the Arduino Uno board. Simulations and experimental results demonstrate the validity and effectiveness of the proposed control scheme

    Backstepping Controller for Mobile Robot in Presence of Disturbances and Uncertainties

    Get PDF
    The objective of this work is to devise an effective control system for addressing the trajectory tracking challenge in nonholonomic mobile robots. Two primary control approaches, namely kinematic and dynamic strategies, are explored to achieve this goal. In the kinematic control domain, a backstepping controller (BSC) is introduced as the core element of the control system. The BSC is utilized to guide the mobile robot along the desired trajectory, leveraging the robot’s kinematic model. To address the limitations of the kinematic control approach, a dynamic control strategy is proposed, incorporating the dynamic parameters of the robot. This dynamic control ensures real-time control of the mobile robot. To ensure the stability of the control system, the Lyapunov stability theory is employed, providing a rigorous framework for analyzing and proving stability. Additionally, to optimize the performance of the control system, a genetic algorithm is employed to design an optimal control law. The effectiveness of the developed control approach is demonstrated through simulation results. These results showcase the enhanced performance and efficiency achieved by the proposed control strategies. Overall, this study presents a comprehensive and robust approach for trajectory tracking in nonholonomic mobile robots, combining kinematic and dynamic control strategies while ensuring stability and performance optimization

    A novel fault-tolerant control strategy for near space hypersonic vehicles via least squares support vector machine and backstepping method

    Get PDF
    Near Space Hypersonic Vehicle (NSHV) could play significant roles in both military and civilian applications. It may cause huge losses of both personnel and property when a fatal fault occurs. It is therefore paramount to conduct fault-tolerant research for NSHV and avoid some catastrophic events. Toward this end, this paper presents a novel fault-tolerant control strategy by using the LSSVM (Least Squares Support Vector Machine)-based inverse system and Backstepping method. The control system takes advantage of the superiority of the LSSVM in solving the problems with small samples, high dimensions and local minima. The inverse system is built with an improved LSSVM. The adaptive controller is designed via the Backstepping which has the unique capability in dealing with nonlinear control systems. Finally, the experiment results demonstrate that the proposed method performs well

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Decentralised control for complex systems - An invited survey

    Get PDF
    © 2014 Inderscience Enterprises Ltd. With the advancement of science and technology, practical systems are becoming more complex. Decentralised control has been recognised as a practical, feasible and powerful tool for application to large scale interconnected systems. In this paper, past and recent results relating to decentralised control of complex large scale interconnected systems are reviewed. Decentralised control based on modern control approaches such as variable structure techniques, adaptive control and backstepping approaches are discussed. It is well known that system structure can be employed to reduce conservatism in the control design and decentralised control for interconnected systems with similar and symmetric structure is explored. Decentralised control of singular large scale systems is also reviewed in this paper

    Advanced Kalman Filter-based Backstepping Control of AC Microgrids: A Command Filter Approach

    Get PDF
    • …
    corecore