444 research outputs found

    Development of Fuzzy Applications for High Performance Induction Motor Drive

    Get PDF
    This chapter develops a sliding mode and fuzzy logic-based speed controller, which is named adaptive fuzzy sliding-mode controller (AFSMC) for an indirect field-oriented control (IFOC) of an induction motor (IM) drive. Essentially, the boundary layer approach is the most popular method to reduce the chattering phenomena, which leads to trade-off between control performances, and chattering elimination for uncertain nonlinear systems. For the proposed AFSMC, a fuzzy system is assigned as the reaching control part of the fuzzy sliding-mode controller so that it improves the control performances and eliminates the chattering completely despite large and small uncertainties in the system. A nonlinear adaptive law is also implemented to adjust the control gain with uncertainties of the system. The adaptive law is developed in the sense of Lyapunov stability theorem to minimize the control effort. The applied adaptive fuzzy controller acts like a saturation function in the thin boundary layer near the sliding surface to guarantee the stability of the system. The proposed AFSMC-based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed AFSMC-based IM drive at different operating conditions such as load disturbance, parameter variations, etc

    Induction Motor Performance Improvement using Super Twisting SMC and Twelve Sector DTC

    Get PDF
    Induction motor (IM) direct torque control (DTC) is prone to a number of weaknesses, including uncertainty, external disturbances, and non-linear dynamics. Hysteresis controllers are used in the inner loops of this control method, whereas traditional proportional-integral (PI) controllers are used in the outer loop. A high-performance torque and speed system is consequently needed to assure a stable and reliable command that can tolerate such unsettled effects. This paper treats the design of a robust sensorless twelve-sector DTC of a three-phase IM. The speed controller is conceived based on high-order super-twisting sliding mode control with integral action (iSTSMC). The goal is to decrease the flux, torque, the current ripples that constitute the major conventional DTC drawbacks. The phase current ripples have been effectively reduced from 76.92% to 45.30% with a difference of 31.62%. A robust adaptive flux and speed observer-based fuzzy logic mechanism are inserted to get rid of the mechanical sensor. Satisfactory results have been got through simulations in MATLAB/Simulink under load disturbance. In comparison to a conventional six-sector DTC, the suggested technique has a higher performance and lower distortion rate

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load

    Hybrid Speed Controller Design Based on Sliding Mode Controller Performance Study for Vector Controlled Induction Motor Drives

    Get PDF
    The discontinuous control of the sliding mode control (SMC) law causes chattering phenomenon in system trajectories (the oscillation around the desired value), which results in various unwanted effects such as current harmonics and torque ripples. Therefore, this study aims to investigate the performance of a sliding mode speed controller for a three-phase induction motor (IM) controlled by a rotor flux orientation technique to obtain optimum performance. The study results show that the experimental control gains found in the control law have a clear effect on limiting chattering and the system response speed. According to the study results, a hybrid controller is designed based on the fuzzy logic control (FLC) approach to optimally tune these gains. The designed hybrid controller is verified by experimental approximation of simulations using Matlab/Simulink. The simulation results show that the hybrid controller reduces the chattering phenomenon and improves the system’s dynamic performance

    Application of Sliding Mode Control in Indirect Field Oriented Control (IFOC) for Model Based Controller

    Get PDF
    Indirect Field Oriented Control (IFOC) is one of the vector control methods that can be applied to induction motor in the industrial world rather than Direct Field Oriented Control (DFOC) because of the flux is obtained from the formulation. However, IFOC can not guarantee the robustness and stability of the systems. Stability analysis such as Lyapunov Stability Theory can be used to make the system stable but not the robustness. Model based controller that can guarantee the stability and robustness such as sliding mode control (SMC) and fuzzy needs to be added in IFOC system to achieve proportional response system. Robust current regulator using sliding mode control was designed in this paper from state space model for model based controller. In transient response and under disturbance SMC shows better performance than PID in rising time and robustness at rotor speed and stator current

    Application of Sliding Mode Controller and Linear Active Disturbance Rejection Controller to a PMSM Speed System

    Get PDF
    Permanent magnet synchronous motor (PMSM) is a popular electric machine in industry for its small volume, high electromagnetic torque, high reliability and low cost. It is broadly used in automobiles and aircrafts. However, PMSM has its inherent problems of nonlinearity and coupling, which are challenges for control systems design. In addition, the external disturbances such as load variation and noises could degrade the systems performance. Both sliding mode control (SMC) and active disturbance rejection control (ADRC) are robust against disturbances. They can also compensate the nonlinearity and couplings of the PMSM. Therefore, in this thesis, we apply both SMC and ADRC to a PMSM speed system. Our control goal is to drive the speed outputs of the PMSM speed system to reference signals in the presences of nonlinearity, disturbance, and parameter variations. Simulation results verify the effectiveness of SMC and ADRC on the speed control for PMSM systems in spite of the presences of external disturbance and internal system uncertaintie

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Advanced Control Methods of Induction Motor: a Review

    Get PDF
    In this paper, various types of advanced control methods of the induction motor are discussed, and a comparision between these methods have been brought out. This paper also discusses about the application areas of these new methods. The objective of this review is to conclude which method is the best control scheme among all of these methods. The related block diagrams for various control schemes are also illustrated along with various steps involved in the implementation of those schemes. Advantages and disadvantages of the schemes are also presented
    corecore