503 research outputs found

    Fuzzy-Based Variable Speed Limits System Under Connected Vehicle Environment: A Simulation-Based Case Study in the City of Naples

    Get PDF
    This paper handles the problem of controlling speed limits on freeways in a connected traffic environment to reduce traffic congestion and improve both the operational and environmental performance of the road network. In order to achieve this objective, we present a Variable Speed Limit (VSL) system that utilizes fuzzy logic, which adjusts the speed limits that connected vehicles must comply with by leveraging traffic data such as vehicle flow, occupancy, and speed obtained from loop detectors installed along the road. To evaluate the effectiveness of the proposed Fuzzy-based VSL system and its potential benefits compared to the conventional rule-based VSL system in terms of traffic congestion and environmental impact, we conducted a simulation analysis using the microscopic traffic simulator, VISSIM. Specifically, three simulation scenarios are taken into account: i) no VSL, where the VSL system is not enabled; ii) Rule-based VSL system, where a typical a decision tree-based system is considered; iii) Fuzzy-based VSL system, where the herein proposed approach is appraised. The results demonstrate that the proposed approach enhances road efficiency by decreasing speed variation, increasing average speed and vehicle volume, and reducing fuel consumption

    A Novel Approach for Mixed Manual/Connected Automated Freeway Traffic Management.

    Get PDF
    Freeway traffic management and control often rely on input from fixed-point sensors. A sufficiently high sensor density is required to ensure data reliability and accuracy, which results in high installation and maintenance costs. Moreover, fixed-point sensors encounter difficulties to provide spatiotemporally and wide-ranging information due to the limited observable area. This research exploits the utilization of connected automated vehicles (CAVs) as an alternative data source for freeway traffic management. To handle inherent uncertainty associated with CAV data, we develop an interval type 2 fuzzy logic-based variable speed limit (VSL) system for mixed traffic. The simulation results demonstrate that when more 10% CAVs are deployed, the performance of the proposed CAV-based system can approach that of the detector-based system. It is demonstrated in addition that the introduction of CAVs may make VSL obsolete at very high CAV-equipment rates

    Kooperativno upravljanje priljevnim tokovima na urbanim autocestama zasnovano na strojnom učenju

    Get PDF
    To cope with today’s urban motorway congestions and the inability to increase motorway capacity in urban environments requires the implementation of advanced control methods. These methods are an integral part of Intelligent Transportation Systems (ITS). An ITS essentially integrates information and communication technology to solve the congestion problems. Ramp metering (RM) and Variable Speed Limit Control (VSLC) are some of the most widely used urban motorway traffic control methods. RM provide direct influence over the on-ramp flows by using specialized traffic lights, while the VSLC control speed of mainstream flow by using variable messaging signs. A dedicated algorithm for RM or VSLC uses sensory data form an urban motorway to compute actions that will have a positive impact on both types of traffic flow. This study will focus on the cooperation of an RM and a VSLC systems, and the integration of several different RM algorithms into a single algorithm called INTEGRA. The algorithm is created by using the Adaptive Neuro-fuzzy Inference System (ANFIS) as an instance of machine learning techniques. Furthermore, INTGERA is expanded in order to integrate its original functionality with a recurrent neural network for traffic demand prediction. As the final step, this doctoral thesis will provide evaluation of different criteria for learning dataset functional setup, based on which ANFIS neural network of INTEGRA will be learned. Results of all mentioned approaches will be compared and discussed in relation with other commonly used urban motorway control methods.Glavnina istraživanja u ovom doktorskom radu vezana je upravo za upravljanje priljevnim tokovima s posebnim naglaskom na kooperaciju s drugim sustavima upravljanja prometom, te primjeni strojnog učenja. Također, u kooperaciji s upravljanjem priljevnih tokova razmatrat će se druge upravljačke metode kao što su sustav zabrane prometovanja određenim prometnim trakama, te potpuno ili djelomično upravljanje vozilima opremljenim posebnim računalnim jedinicama. Od strane autora predložen je neuro-neizraziti okvir za učenje koji omogućuje integraciju različitih strategija upravljanja priljevnim tokovima. CTMSIM makro-simulacijski alat koji je izrađen u Matlab programskom okruženju korišten je u simulaciji odabranih metoda upravljanja prometom na urbanim autocestama. Simulator je proširen od strana autora kako bi podržao kooperativno upravljanje priljevnim tokovima, kao i sustav za promjenjivo ograničenje brzina vozila

    Kooperativno upravljanje priljevnim tokovima na urbanim autocestama zasnovano na strojnom učenju

    Get PDF
    To cope with today’s urban motorway congestions and the inability to increase motorway capacity in urban environments requires the implementation of advanced control methods. These methods are an integral part of Intelligent Transportation Systems (ITS). An ITS essentially integrates information and communication technology to solve the congestion problems. Ramp metering (RM) and Variable Speed Limit Control (VSLC) are some of the most widely used urban motorway traffic control methods. RM provide direct influence over the on-ramp flows by using specialized traffic lights, while the VSLC control speed of mainstream flow by using variable messaging signs. A dedicated algorithm for RM or VSLC uses sensory data form an urban motorway to compute actions that will have a positive impact on both types of traffic flow. This study will focus on the cooperation of an RM and a VSLC systems, and the integration of several different RM algorithms into a single algorithm called INTEGRA. The algorithm is created by using the Adaptive Neuro-fuzzy Inference System (ANFIS) as an instance of machine learning techniques. Furthermore, INTGERA is expanded in order to integrate its original functionality with a recurrent neural network for traffic demand prediction. As the final step, this doctoral thesis will provide evaluation of different criteria for learning dataset functional setup, based on which ANFIS neural network of INTEGRA will be learned. Results of all mentioned approaches will be compared and discussed in relation with other commonly used urban motorway control methods.Glavnina istraživanja u ovom doktorskom radu vezana je upravo za upravljanje priljevnim tokovima s posebnim naglaskom na kooperaciju s drugim sustavima upravljanja prometom, te primjeni strojnog učenja. Također, u kooperaciji s upravljanjem priljevnih tokova razmatrat će se druge upravljačke metode kao što su sustav zabrane prometovanja određenim prometnim trakama, te potpuno ili djelomično upravljanje vozilima opremljenim posebnim računalnim jedinicama. Od strane autora predložen je neuro-neizraziti okvir za učenje koji omogućuje integraciju različitih strategija upravljanja priljevnim tokovima. CTMSIM makro-simulacijski alat koji je izrađen u Matlab programskom okruženju korišten je u simulaciji odabranih metoda upravljanja prometom na urbanim autocestama. Simulator je proširen od strana autora kako bi podržao kooperativno upravljanje priljevnim tokovima, kao i sustav za promjenjivo ograničenje brzina vozila

    Kooperativno upravljanje priljevnim tokovima na urbanim autocestama zasnovano na strojnom učenju

    Get PDF
    To cope with today’s urban motorway congestions and the inability to increase motorway capacity in urban environments requires the implementation of advanced control methods. These methods are an integral part of Intelligent Transportation Systems (ITS). An ITS essentially integrates information and communication technology to solve the congestion problems. Ramp metering (RM) and Variable Speed Limit Control (VSLC) are some of the most widely used urban motorway traffic control methods. RM provide direct influence over the on-ramp flows by using specialized traffic lights, while the VSLC control speed of mainstream flow by using variable messaging signs. A dedicated algorithm for RM or VSLC uses sensory data form an urban motorway to compute actions that will have a positive impact on both types of traffic flow. This study will focus on the cooperation of an RM and a VSLC systems, and the integration of several different RM algorithms into a single algorithm called INTEGRA. The algorithm is created by using the Adaptive Neuro-fuzzy Inference System (ANFIS) as an instance of machine learning techniques. Furthermore, INTGERA is expanded in order to integrate its original functionality with a recurrent neural network for traffic demand prediction. As the final step, this doctoral thesis will provide evaluation of different criteria for learning dataset functional setup, based on which ANFIS neural network of INTEGRA will be learned. Results of all mentioned approaches will be compared and discussed in relation with other commonly used urban motorway control methods.Glavnina istraživanja u ovom doktorskom radu vezana je upravo za upravljanje priljevnim tokovima s posebnim naglaskom na kooperaciju s drugim sustavima upravljanja prometom, te primjeni strojnog učenja. Također, u kooperaciji s upravljanjem priljevnih tokova razmatrat će se druge upravljačke metode kao što su sustav zabrane prometovanja određenim prometnim trakama, te potpuno ili djelomično upravljanje vozilima opremljenim posebnim računalnim jedinicama. Od strane autora predložen je neuro-neizraziti okvir za učenje koji omogućuje integraciju različitih strategija upravljanja priljevnim tokovima. CTMSIM makro-simulacijski alat koji je izrađen u Matlab programskom okruženju korišten je u simulaciji odabranih metoda upravljanja prometom na urbanim autocestama. Simulator je proširen od strana autora kako bi podržao kooperativno upravljanje priljevnim tokovima, kao i sustav za promjenjivo ograničenje brzina vozila

    A framework for smart traffic management using heterogeneous data sources

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Traffic congestion constitutes a social, economic and environmental issue to modern cities as it can negatively impact travel times, fuel consumption and carbon emissions. Traffic forecasting and incident detection systems are fundamental areas of Intelligent Transportation Systems (ITS) that have been widely researched in the last decade. These systems provide real time information about traffic congestion and other unexpected incidents that can support traffic management agencies to activate strategies and notify users accordingly. However, existing techniques suffer from high false alarm rate and incorrect traffic measurements. In recent years, there has been an increasing interest in integrating different types of data sources to achieve higher precision in traffic forecasting and incident detection techniques. In fact, a considerable amount of literature has grown around the influence of integrating data from heterogeneous data sources into existing traffic management systems. This thesis presents a Smart Traffic Management framework for future cities. The proposed framework fusions different data sources and technologies to improve traffic prediction and incident detection systems. It is composed of two components: social media and simulator component. The social media component consists of a text classification algorithm to identify traffic related tweets. These traffic messages are then geolocated using Natural Language Processing (NLP) techniques. Finally, with the purpose of further analysing user emotions within the tweet, stress and relaxation strength detection is performed. The proposed text classification algorithm outperformed similar studies in the literature and demonstrated to be more accurate than other machine learning algorithms in the same dataset. Results from the stress and relaxation analysis detected a significant amount of stress in 40% of the tweets, while the other portion did not show any emotions associated with them. This information can potentially be used for policy making in transportation, to understand the users��� perception of the transportation network. The simulator component proposes an optimisation procedure for determining missing roundabouts and urban roads flow distribution using constrained optimisation. Existing imputation methodologies have been developed on straight section of highways and their applicability for more complex networks have not been validated. This task presented a solution for the unavailability of roadway sensors in specific parts of the network and was able to successfully predict the missing values with very low percentage error. The proposed imputation methodology can serve as an aid for existing traffic forecasting and incident detection methodologies, as well as for the development of more realistic simulation networks

    Adaptive performance optimization for large-scale traffic control systems

    Get PDF
    In this paper, we study the problem of optimizing (fine-tuning) the design parameters of large-scale traffic control systems that are composed of distinct and mutually interacting modules. This problem usually requires a considerable amount of human effort and time to devote to the successful deployment and operation of traffic control systems due to the lack of an automated well-established systematic approach. We investigate the adaptive fine-tuning algorithm for determining the set of design parameters of two distinct mutually interacting modules of the traffic-responsive urban control (TUC) strategy, i.e., split and cycle, for the large-scale urban road network of the city of Chania, Greece. Simulation results are presented, demonstrating that the network performance in terms of the daily mean speed, which is attained by the proposed adaptive optimization methodology, is significantly better than the original TUC system in the case in which the aforementioned design parameters are manually fine-tuned to virtual perfection by the system operators

    Computational Intelligence in Highway Management: A Review

    Get PDF
    Highway management systems are used to improve safety and driving comfort on highways by using control strategies and providing information and warnings to drivers. They use several strategies starting from speed and lane management, through incident detection and warning systems, ramp metering, weather information up to, for example, informing drivers about alternative roads. This paper provides a review of the existing approaches to highway management systems, particularly speed harmonization and ramp metering. It is focused only on modern and advanced approaches, such as soft computing, multi-agent methods and their interconnection. Its objective is to provide guidance in the wide field of highway management and to point out the most relevant recent activities which demonstrate that development in the field of highway management is still important and that the existing research exhibits potential for further enhancement
    corecore