319 research outputs found

    Consensus Tracking for Multiagent Systems Under Bounded Unknown External Disturbances Using Sliding-PID Control

    Get PDF
    This paper is devoted to the study of consensus tracking for multiagent systems under unknown but bounded external disturbances. A consensus tracking protocol which is a combination between the conventional PID controller and sliding mode controller named sliding-PID protocol is proposed. The protocol is applied to the consensus tracking of multiagent system under bounded external disturbances where results showed high effectiveness and robustness

    Multi-consensus formation control by artificial potential field based on velocity threshold

    Get PDF
    This study proposes a multi-consensus formation control algorithm by artificial potential field (APF) method based on velocity threshold. The algorithm improves the multi-consensus technique. This algorithm can split a group of agents into multiple agent groups. Note that the algorithm can easily complete the queue transformation as long as the entire proxy group is connected initially and no specific edges need to be removed. Furthermore, collision avoidance and maintenance of existing communication connectivity should be considered during the movement of all agents. Therefore, we design a new swarm motion potential function. The stability of multi-consensus formation control has proven to be effective in avoiding collisions, maintaining connectivity, and generating formations. The final numerical simulation results show the role of the controller we designed

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Design and implementation of predictive control for networked multi-process systems

    Get PDF
    This thesis is concerned with the design and application of the prediction method in the NMAS (networked multi-agent system) external consensus problem. The prediction method has been popular in networked single agent systems due to its capability of actively compensating for network-related constraints. This characteristic has motivated researchers to apply the prediction method to closed-loop multi-process controls over network systems. This thesis conducts an in-depth analysis of the suitability of the prediction method for the control of NMAS. In the external consensus problem, NMAS agents must achieve a common output (e.g. water level) that corresponds to the designed consensus protocol. The output is determined by the external reference input, which is provided to only one agent in the NMAS. This agreement is achieved through data exchanges between agents over network communications. In the presence of a network, the existence of network delay and data loss is inevitable. The main challenge in this thesis is thus to design an external consensus protocol with an efficient capability for network constraints compensation. The main contribution of this thesis is the enhancement of the prediction algorithm’s capability in NMAS applications. The external consensus protocol is presented for heterogeneous NMAS with four types of network constraints by utilising the developed prediction algorithm. The considered network constraints are constant network delay, asymmetric constant network delay, bounded random network delay, and large consecutive data losses. In the first case, this thesis presents the designed algorithm, which is able to compensate for uniform constant network delay in linear heterogeneous NMAS. The result is accompanied by stability criteria of the whole NMAS, an optimal coupling gains selection analysis, and empirical data from the experimental results. ‘Uniform network delay’ in this context refers to a situation in which the agent experiences a delay in accessing its own information, which is identical to the delay in data transfer from its neighbouring agent(s) in the network In the second case, this thesis presents an extension of the designed algorithm in the previous chapter, with the enhanced capability of compensating for asymmetric constant network delay in the NMAS. In contrast with the first case—which required the same prediction length as each neighbouring agent, subject to the same values of constant network delay—this case imposed varied constant network delays between agents, which required multi-prediction lengths for each agent. Thus, to simplify the computation, we selected a single prediction length for all agents and determined the possible maximum value of the constant network delay that existed in the NMAS. We tested the designed control algorithm on three heterogeneous pilotscale test rig setups. In the third case, we present a further enhancement of the designed control algorithm, which includes the capability of compensating for bounded random network delay in the NMAS. We achieve this by adding delay measurement signal generator within each agent control system. In this work, the network delay is considered to be half of the measured total delay in the network loop, which can be measured using a ramp signal. This method assumes that the duration for each agent to receive data from its neighbouring agent is equal to the time for the agent’s own transmitted data to be received by its neighbouring agent(s). In the final case, we propose a novel strategy for combining the predictive control with a new gain error ratio (GER) formula. This strategy is not only capable of compensating for a large number of consecutive data losses (CDLs) in the external consensus problem; it can also compensate for network constraints without affecting the consensus convergence time of the whole system. Thus, this strategy is not only able to solve the external consensus problem but is also robust to the number of CDL occurrences in NMAS. In each case, the designed control algorithm is compared with a Proportional-Integral (PI) controller. The evaluation of the NMAS output performance is conducted for each by simulations, analytical calculations, and practical experiments. In this thesis, the research work is accomplished through the integration of basic blocks and a bespoke Networked Control toolbox in MATLAB Simulink, together with NetController hardware

    Consensus-based Distributed Control for Accurate Reactive, Harmonic and Imbalance Power Sharing in Microgrids

    Get PDF

    Self-organising multi-agent control for distribution networks with distributed energy resources

    Get PDF
    Recent years have seen an increase in the connection of dispersed distributed energy resources (DERs) and advanced control and operational components to the distribution network. These DERs can come in various forms, including distributed generation (DG), electric vehicles (EV), energy storage, etc. The conditions of these DERs can be varying and unpredictably intermittent. The integration of these distributed components adds more complexity and uncertainty to the operation of future power networks, such as voltage, frequency, and active/reactive power control. The stochastic and distributed nature of DGs and the difficulty in predicting EV charging patterns presents problems to the control and management of the distribution network. This adds more challenges to the planning and operation of such systems. Traditional methods for dealing with network problems such as voltage and power control could therefore be inadequate. In addition, conventional optimisation techniques will be difficult to apply successfully and will be accompanied with a large computational load. There is therefore a need for new control techniques that break the problem into smaller subsets and one that uses a multi-agent system (MAS) to implement distributed solutions. These groups of agents would coordinate amongst themselves, to regulate local resources and voltage levels in a distributed and adaptive manner considering varying conditions of the network. This thesis investigates the use of self-organising systems, presenting suitable approaches and identifying the challenges of implementing such techniques. It presents the development of fully functioning self-organising multi-agent control algorithms that can perform as effectively as full optimization techniques. It also demonstrates these new control algorithms on models of large and complex networks with DERs. Simulation results validate the autonomy of the system to control the voltage independently using only local DERs and proves the robustness and adaptability of the system by maintaining stable voltage control in response to network conditions over time.Recent years have seen an increase in the connection of dispersed distributed energy resources (DERs) and advanced control and operational components to the distribution network. These DERs can come in various forms, including distributed generation (DG), electric vehicles (EV), energy storage, etc. The conditions of these DERs can be varying and unpredictably intermittent. The integration of these distributed components adds more complexity and uncertainty to the operation of future power networks, such as voltage, frequency, and active/reactive power control. The stochastic and distributed nature of DGs and the difficulty in predicting EV charging patterns presents problems to the control and management of the distribution network. This adds more challenges to the planning and operation of such systems. Traditional methods for dealing with network problems such as voltage and power control could therefore be inadequate. In addition, conventional optimisation techniques will be difficult to apply successfully and will be accompanied with a large computational load. There is therefore a need for new control techniques that break the problem into smaller subsets and one that uses a multi-agent system (MAS) to implement distributed solutions. These groups of agents would coordinate amongst themselves, to regulate local resources and voltage levels in a distributed and adaptive manner considering varying conditions of the network. This thesis investigates the use of self-organising systems, presenting suitable approaches and identifying the challenges of implementing such techniques. It presents the development of fully functioning self-organising multi-agent control algorithms that can perform as effectively as full optimization techniques. It also demonstrates these new control algorithms on models of large and complex networks with DERs. Simulation results validate the autonomy of the system to control the voltage independently using only local DERs and proves the robustness and adaptability of the system by maintaining stable voltage control in response to network conditions over time

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Hostile-based bipartite containment control of nonlinear fractional multi-agent systems with input delays: a signed graph approach under disturbance and switching networks

    Get PDF
    This article addresses the hostile-based bipartite containment control of nonlinear fractional multi-agent systems (FMASs) with input delays. Several fundamental algebraic criteria have been offered by the use of signed graph theory. To make the controller design more realistic, we assumed that the controller was under some disturbance. For the analysis of bipartite containment control, we used a fixed and switching signed network. The commonly used Lyapunov function approach and the Razumikhin technique were used. The use of these techniques can conquer the challenge brought on by switching, temporal delays, and fractional mathematics. To better elucidate the theoretical results, two examples are provided
    corecore