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ABSTRACT 

___________________________________________________________________________ 

This thesis is concerned with the design and application of the prediction method in the NMAS 

(networked multi-agent system) external consensus problem. The prediction method has been 

popular in networked single agent systems due to its capability of actively compensating for 

network-related constraints. This characteristic has motivated researchers to apply the 

prediction method to closed-loop multi-process controls over network systems. This thesis 

conducts an in-depth analysis of the suitability of the prediction method for the control of 

NMAS.  

In the external consensus problem, NMAS agents must achieve a common output (e.g. 

water level) that corresponds to the designed consensus protocol. The output is determined by 

the external reference input, which is provided to only one agent in the NMAS. This agreement 

is achieved through data exchanges between agents over network communications. In the 

presence of a network, the existence of network delay and data loss is inevitable. The main 

challenge in this thesis is thus to design an external consensus protocol with an efficient 

capability for network constraints compensation.  

The main contribution of this thesis is the enhancement of the prediction algorithm’s 

capability in NMAS applications. The external consensus protocol is presented for 

heterogeneous NMAS with four types of network constraints by utilising the developed 

prediction algorithm. The considered network constraints are constant network delay, 

asymmetric constant network delay, bounded random network delay, and large consecutive 

data losses.  

In the first case, this thesis presents the designed algorithm, which is able to 

compensate for uniform constant network delay in linear heterogeneous NMAS. The result is 

accompanied by stability criteria of the whole NMAS, an optimal coupling gains selection 

analysis, and empirical data from the experimental results. ‘Uniform network delay’ in this 

context refers to a situation in which the agent experiences a delay in accessing its own 

information, which is identical to the delay in data transfer from its neighbouring agent(s) in 

the network.  
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In the second case, this thesis presents an extension of the designed algorithm in the 

previous chapter, with the enhanced capability of compensating for asymmetric constant 

network delay in the NMAS. In contrast with the first case—which required the same prediction 

length as each neighbouring agent, subject to the same values of constant network delay—this 

case imposed varied constant network delays between agents, which required multi-prediction 

lengths for each agent. Thus, to simplify the computation, we selected a single prediction length 

for all agents and determined the possible maximum value of the constant network delay that 

existed in the NMAS. We tested the designed control algorithm on three heterogeneous pilot-

scale test rig setups.  

In the third case, we present a further enhancement of the designed control algorithm, 

which includes the capability of compensating for bounded random network delay in the 

NMAS. We achieve this by adding delay measurement signal generator within each agent 

control system. In this work, the network delay is considered to be half of the measured total 

delay in the network loop, which can be measured using a ramp signal. This method assumes 

that the duration for each agent to receive data from its neighbouring agent is equal to the time 

for the agent’s own transmitted data to be received by its neighbouring agent(s). 

In the final case, we propose a novel strategy for combining the predictive control with 

a new gain error ratio (GER) formula. This strategy is not only capable of compensating for a 

large number of consecutive data losses (CDLs) in the external consensus problem; it can also 

compensate for network constraints without affecting the consensus convergence time of the 

whole system. Thus, this strategy is not only able to solve the external consensus problem but 

is also robust to the number of CDL occurrences in NMAS. 

 In each case, the designed control algorithm is compared with a Proportional-Integral 

(PI) controller. The evaluation of the NMAS output performance is conducted for each by 

simulations, analytical calculations, and practical experiments. In this thesis, the research 

work is accomplished through the integration of basic blocks and a bespoke Networked Control 

toolbox in MATLAB Simulink, together with NetController hardware.  
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1 INTRODUCTION 

As an introduction to the thesis, a brief overview and survey covering important aspects 

in the NMAS is given in this chapter. First, the rationale behind the application of multi-agent 

control structures in this research is discussed in Section 1.1. In Sections 1.2 to 1.4, the 

background of the consensus and the reviews on the existing related works to the consensus 

problems are presented. The conceptual idea of implementing the prediction strategy for multi-

agent system is laid out in Section 1.6. In Section 1.5, the motivations of the research are 

described followed by the general aim and objective in Section 1.7. This chapter is concluded 

with the description of the thesis layout. 
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1.1 Networked multi-agent system (NMAS) control structure 

A networked multi-agent system (NMAS) is a control system that is composed of multiple 

subsystems (called ‘agents’) that are physically separated. In this control structure, all agents 

communicate with each other (depending on the system’s topology) via their local controllers 

over the network.  

Based on the numbers of published research findings within the control community, 

NMAS-related studies have been noticeably active over the last few decades. The NMAS 

structure in particular has sparked the curiosity of researchers who are interested in finding a 

reliable control strategy, especially for large-scale process control systems that cover large 

geographical areas; these systems consist of many subsystems, sensors, and actuators. This 

structure increases the flexibility and scalability of the control system by allowing relatively 

easy and cheap expansion of the physical structure of the system.  

In terms of controller performance, the NMAS also helps to simplify large systems’ 

operations and makes them simpler and faster to accomplish. In other words, because it is a 

large system, performing a cooperative mission among a number of agents (rather than a solo 

mission) in handling the workload should theoretically help to ease the burden on the controller. 

Completing the task cooperatively is much more feasible and reliable this way, as the work is 

split into smaller components that are much easier to complete. Accordingly, with these smaller 

tasks, the system’s responsiveness is increased, which directly improves overall system 

efficiency (Negenborn 2007). All of these factors have motivated the utilisation of the NMAS 

structure in multi-disciplinary applications such as multi-robot systems (Shaw et al. 2010), 

power networks (Negenborn 2007), and district heating systems (Wernstedt 2005).  
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The basic structure of the NMAS is illustrated in Figure 1–1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1–1 The networked multi-agent system (NMAS) control structure. The dissimilar shapes of the agents 

represent the heterogeneous dynamic of NMAS agents.  

 

Figure 1–1 shows that the exchanged data usually consists of agents’ outputs and control 

inputs’ information. The agents communicate and cooperate amongst themselves under the 

same network in a particular environment in order to achieve their common goals.  

The utilisation of a communication network in the NMAS, however, inevitably 

introduces constraints caused by limited bandwidth or overhead in the network or in the 

communication nodes. The presence of network constraints (such as persistent network delay 

and/or data or packet loss) will lead to significant deteriorations of controller performance if 

either one or both network constraints are not properly managed. Accordingly, an effective 

mechanism has to be designed to ensure that the chosen control method is able to compensate 
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for these constraints without sacrificing NMAS performance. Thus, researchers have put 

significant effort into understanding and developing an effective solution for network 

constraints in NMAS applications.    

1.2 Consensus of NMAS 

One of the most common cooperative behaviours in the NMAS is ‘consensus’. Research on 

this consensus has become mainstream within the control system research community due to 

its desirable capacity within the distributed control system application.  

The term ‘consensus’ originally comes from the Latin word consentire, meaning an 

agreement. In the broad control system perspective, consensus represents the cooperating 

behaviour of the NMAS’s agents to converge to a consensus value by considering the state of 

every agent via information exchange through shared network communication. Various types 

of consensus are known in the NMAS, including ‘average’, ‘max-min’, ‘function’, and 

‘external’. Each represents the mechanism whereby the NMAS agents determine the consensus 

value. 

In the NMAS, each agent has its own local controller for executing any given task. In the 

NMAS consensus problem, agents have to identify the target trajectory and consensus value 

from their neighbouring agent(s) via data that is exchanged through the network. Each agent 

then updates its current value or state accordingly. The consensus problem thus is solved 

cooperatively among the agents, using both individual and neighbouring agents’ information. 

 

 

 

 

 

Figure 1-2 Directed (left) and undirected (right) agents’ connections. 

 

The communication graph in Figure 1-2 illustrates (on the left) the 

unidirectional/bidirectional flow of sending and receiving information between NMAS agents 

in general, as well as (on the right) undirected flow between agents. The NMAS agents are 
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represented by circles (nodes) labelled 1 to 4. The arrows indicate the direction of the 

information flow. In the directed graph on the left, the NMAS has bidirectional arrows between 

agents 1 and 3 and agents 2 and 4, which signifies that agents are able to send and receive data 

amongst themselves. The unidirectional information flow is illustrated between agents 1 and 2 

and agents 3 and 4. Agents 1 and 3 can only send information, while agents 2 and 4 can only 

receive information.  

In contrast, the NMAS can also be represented by an undirected flow graph, as shown 

by the figure on the right. There are no arrow symbols at the edge of the connecting lines 

between agents, which indicates that all of the participating agents can send and receive 

information amongst themselves.  

Mathematically, the above directed graph is refer to be 𝒢 = (𝒱, ℰ,𝒜) for 𝑖 ∈ {1, 2, 3, 4} 

with four nodes or vertex 𝒱 = {𝜈1, 𝜈2, 𝜈3, 𝜈4} and edges ℰ =

{(𝑣1, 𝑣3), (𝑣3, 𝑣1), (𝑣1, 𝑣2), (𝑣3, 𝑣4), (𝑣2, 𝑣4), (𝑣4, 𝑣2)}. The node refer to agents while the 

edges refer to the information flow paths. For the undirected graph, an edge can be represented 

as (𝑣𝑖 , 𝑣𝑗) ↔ (𝑣𝑗 , 𝑣𝑖) indicating that information from i to j and j to i has no exact direction. 

Label  𝒜 refers to an adjacency matrix or also known as the connectivity matrix. This matrix 

provides a numerical representation of agents’ relationship and can be either a weighted or 

unweighted adjacency matrix. In this thesis, only undirected graph is considered for each 

proposed work. All edges have positive unweighted adjacency matrix 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 1 for all i, j. 

No self-loop is allowed, hence 𝑎𝑖𝑖 = 𝑎𝑗𝑗 = 0. The set of neighbours of agent i is denoted by 

𝑁𝑖 = {𝑗 ∈ 𝒱: (𝑗, 𝑖) ∈ ℰ}. The Laplacian matrix 𝐿 with respect to undirected graph 𝒢 can be 

simply obtained as  

𝐿 = [𝑙𝑖𝑗]𝑛×𝑛  

where 

𝑙𝑖𝑗 = {

|𝑁𝑖|, 𝑖 = 𝑗
−1, 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑣𝑖 𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

However, in this work, the Laplacian matrix 𝐿 has non-zero elements because the agents 

are assumed to be interconnected to one another. Clearly, all the row-sums of 𝐿 are zero. 

Therefore, 𝐿 always has a zero eigenvalue  𝜆1 = 0 and the second smallest eigenvalue of 𝐿 is 
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𝜆2 > 0 if and only if  𝒢  is connected and has a spanning tree (Ren et al. 2007). Thus, the 

eigenvalues of 𝐿 can be ordered as 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛. Further explanation regarding this 

theory that related to the consensus problem can be found in (Lewis et al. 2014).  

NMAS is said to achieve the consensus if lim
𝑡→∞

‖𝑦𝑖(𝑡) − 𝑦𝑗(𝑡)‖ = 0 for 𝑖, 𝑗 ∈

{1, 2, … , 𝑛}, 𝑖 ≠ 𝑗 where 𝑦𝑖(𝑡) and 𝑦𝑗(𝑡) are the output of agent i and j respectively. Thus, in 

order to satisfy that condition, the consensus protocol 𝑢𝑖(𝑡) is designed to meet that condition 

by using available information collected by each agent.  

1.3 Communication constraints 

Due to the application of network communication between agents within a system, networked 

control systems suffer from multi-network constraints during data transmission (Heemels et al. 

2010). Communications among agents throughout the network exhibit network-induced delay 

every time data is exchanged. The delay is worst with the occurrence of network data loss, 

which is marked by prolonged network-induced delay that exceeds a predetermined network 

delay threshold.  

Network delay and data loss are elemental ‘conditions’ in any control system that utilises 

network communication; even though they have been minimised with the introduction of 

superior hardware performance, a flawless network communication system is still absent in 

practical applications. A reliable and practical solution for network delay and data loss 

problems therefore has to be implemented in the NMAS in order to limit the effects of such 

problems whenever they occur. A few types of network delay characteristics are considered in 

this thesis, as listed in Table 1-1.  
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Table 1-1 Network delay characteristics 

Network delay 

characteristics 
Description  

Uniform 
Identical delay present for agent to access its own output 

and for exchanged output data from its neighbours. 

Asymmetric 
Different delay for each communication link due to 

different passing routes. 

Random / Time-

varying  

Non-identical delay present for agent to access its own 

output and for exchanged output data from its neighbours. 

 

The terms used to describe these different data loss situations are listed in Table 1-2.  

Table 1-2 Network data losses 

Term Description 

Consecutive  Series of losses  

Maximum 

consecutive 

Total number of losses (maximum) during any particular time 

period 

Uniform consecutive  Series of regular losses occurs at regular intervals 

Random consecutive Multi-series of losses occurs at irregular intervals 

 

1.4 Literature review on NMAS consensus  

This section reviews significant works that have been published on NMAS consensus. Interest 

in consensus problems for multi-agent systems through network communication has been 

growing in recent years, as seen by the number of research outcomes around the world. These 

works have yielded various kinds of analysis, depending on the authors’ interests in solving 

the consensus problem. According to the cited literature, the considerations or factors that are 

usually taken into account in analysing the consensus problem can be listed as follows Table 

1-3.  
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Table 1-3 Categories of NMAS characteristics reported in the existing literature 

NMAS 

characteristics 
Category considered  

Communication 

constraint 

Constant 

network 

delay 

Random 

network 

delay 

Data loss / 

dropout 
 

System dynamic Linear Non-linear 
Homogeneous 

/ identical 

Heterogeneous 

/ non-identical 

Order of the 

system 

Single -

integrator 

(1st order) 

Double -

integrator 

(2nd order) 

n-order system  

Network topology Fixed Switching Undirected Directed 

Type of consensus Average Max-Min Function External 

Consensus 

behaviour 
Leader -

follower 
Leaderless Tracking  

Consensus 

performance 

Convergence 

speed, time, 

rate 

Coupling 

strength / 

gain 

  

 

Various studies (Cao et al. 2013; Chen et al. 2015; Ren et al. 2005; Wang et al. 2014) 

provide a comprehensive overview of recent progress that has been made in the NMAS 

consensus research area, a basic consensus analysis with related theories, and a summary of 

theoretical development in the NMAS consensus problem.  

A few relevant earlier works address the consensus problem, with a focus on network 

topology and network constraints. For example, Olfati-Saber has published an extensive series 

of fundamental works on NMAS consensus that cover various aspects and considerations that 

underpin the development of this field. In 2003, Olfati-Saber and Murray conducted an in-

depth analysis in particular at directed graph and switching topology for integrator NMAS 

(Olfati-Saber & Murray 2003). The authors described the relationship between the second 

smallest eigenvalue of a Laplacian matrix and convergence speed for a directed graph to solve 

the average consensus problem. With the same dynamics, the following year the same authors 

investigated linear and nonlinear protocols with and without constant network delay in 

fixed/switching network topologies (Olfati-Saber & Murray 2004). In 2007, Olfati-Saber, Fax, 

and Murray extended this analysis to investigate the relationship between the second smallest 

eigenvalue of an associated Laplacian matrix and consensus convergence speed in both 
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discrete-time and continuous-time (Olfati-Saber et al. 2007).  

The general linear consensus protocol (without the consideration of network 

communication constraints) is obtained as follows: 

𝑢𝑖(𝑘) = ∑ 𝑎𝑖𝑗 (𝑥𝑗(𝑘) − 𝑥𝑖(𝑘))

𝑗∈𝑁𝑖

,        𝑖, 𝑗 ∈ {1,2, … , 𝑛}, 

where 𝑥𝑖(𝑘) is the state of agent i at time k. 

 

(1.1) 

All significant related literature corresponding to these authors’ concerning about 

solving the NMAS consensus problem are summarised in the following subsections. 

1.4.1 Type of consensus value (Average, Max-Min, Function, and External) 

Consensus is achieved through the implementation of the consensus protocol that is designed; 

the consensus value is determined by the operation that is included within the designed 

algorithm. Different consensus values create different types of tasks for all agents within the 

NMAS. The most common consensus problem discussed in the literatures is ‘average’ 

consensus (Olfati-Saber & Murray 2003; Olfati-Saber et al. 2007; 2004; Wu & Shi 2012; J. 

Liu et al. 2013; Yu et al. 2014; Kecai et al. 2011; Huang 2012; Sakurama & Nakano 2011; 

Wang & Elia 2009; Xie & Wang 2007; Zhou & Xiao 2013). The consensus value for average 

consensus problem is obtained through the equation: 

𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑣𝑎𝑙𝑢𝑒, 𝛼 = 𝐴𝑣𝑒(𝑥𝑖(0)) =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1
,         𝑥𝑖(0) = 𝑥𝑖 

 

(1.2) 

Another type of consensus algorithm that is often found in the literature is ‘min-max’ 

consensus (Mulla et al. 2014). For example, Nejad, Attia, and Raisch provide the application 

of max-consensus for the case of minimum time rendezvous or leader election (Nejad et al. 

2009). They describe the decision value for max-consensus and min-consensus problems as 

follows: 

𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑣𝑎𝑙𝑢𝑒, 𝛼 = 𝑚𝑎𝑥𝑖𝑥𝑖 

𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑣𝑎𝑙𝑢𝑒, 𝛼 = 𝑚𝑖𝑛𝑖𝑥𝑖 

 

(1.3) 

Another type of consensus protocol that has been reported in the literature (Sayyaadi & 

Doostmohammadian 2011) is ‘consensus function’, where the consensus value is determined 

through the calculation of a unique equation or function. Cortés (Cortés 2008) models the 
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weighted power mean consensus function by a weighted and directed graph in switching 

topology. For example, Q. Li et al. (Li et al. 2014) vary the consensus value depending on the 

value of the weighting coefficient of agent i εi, in which the consensus function is formulated 

as:  

𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑣𝑎𝑙𝑢𝑒, 𝛼 =
∑ 𝑥𝑖(0)

1

𝜀𝑖

𝑛
𝑖=1

∑
1

𝜀𝑖

𝑛
𝑖=1

 

 

(1.4) 

Another type of consensus protocol that does not have any constraints on the initial 

value of its agent is called ‘external consensus’. S. Li et al. (S. Li et al. 2011) propose a 

consensus framework with an external input for a general (homogeneous or inhomogeneous) 

linear NMAS with a transfer function model. With the designed consensus protocol, the 

consensus value is independent of the initial value of the agents’ states or outputs. All agents 

must track the external set point or reference input that is given to one or more agents in the 

NMAS. In the S. Li et al. study, however, the derived stability criteria for each agent were 

examined independently, which unfortunately cannot guarantee the stabilisation of the NMAS 

as a whole. This problem was solved by Yang and Xu (Yang & Xu 2012), however, who 

studied and proved the whole NMAS stability by demonstrating a proposed algorithm with two 

heterogeneous systems under the proportional-integral (PI) controller. Their designed 

consensus protocol with external reference input 𝑅𝑖(𝑠) = 𝑅(𝑠) was given as: 

𝑈𝑖(𝑠) = −∑ 𝑎𝑖𝑗 (𝑋𝑖(𝑠) − 𝑋𝑗(𝑠)) − 𝑋𝑖(𝑠) + 𝑅(𝑠)

𝑗∈𝑁𝑖

 

𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑣𝑎𝑙𝑢𝑒, 𝛼 = 𝑅(𝑠) 

 

(1.5) 

Yet, Yang and Xu’s solution still has a few obvious limitations. The NMAS 

stabilisation is guaranteed if the denominator of the designed controller has external reference 

signal terms. As a result, the designed controller is dependent upon the type of external 

reference input that is given to the NMAS, which limits the controller’s capability. In addition, 

these results cannot be directly applied to the NMAS with network-induced constraints.  

Such limitations are the basis of our motivation to propose a new, more generic external 

consensus protocol in this thesis.   
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1.4.2 Consensus behaviour (Leader-follower & Leaderless) 

Various works in the literature have considered two common types of agent converging 

behaviour for reaching consensus. One is called ‘leader-follower’ behaviour, where the 

consensus value is achieved by all agents through direction from one or more leader agents 

(Ran & Wu 2013b; Ni et al. 2013; Ding et al. 2013; Ferrari-Trecate et al. 2009; Gong et al. 

2013a; Li et al. 2009; Liu et al. 2015).  In this type of consensus behaviour, leader agents can 

only transmit data to their neighbours. The other agents that are not connected directly to the 

leader agent will communicate and exchange data amongst themselves in order to track the 

leader’s direction. In (Ran & Wu 2013a), for example, Ran and Wu design the output feedback 

consensus protocol with leader-follower behaviour as:  

𝑢𝑖(𝑘) = 𝐾 [∑ (𝑦𝑗(𝑘) − 𝑦𝑖(𝑘)) − 𝑑𝑖(𝑦𝑖(𝑘) − 𝑦0(𝑘))

𝑗∈𝑁𝑖

] + 𝑢0,         𝑖, 𝑗

∈ {1,2, … , 𝑛} 

 

(1.6) 

where 𝑑𝑖 > 0 if agent i is a neighbour of a leader agent labelled as 0. In (Wang & Hu 2010), 

Wang and Hu design an observer-based leader-follower consensus protocol as:  

𝑢𝑖 = −𝐾 [∑ 𝑎𝑖𝑗(𝑥
𝑖 − 𝑥𝑗) + 𝛼𝑖(𝑥

𝑖 − 𝑥𝑙)

𝑗∈𝑁𝑖

] + �̂�𝑙
𝑖 ,           𝑖, 𝑗 ∈ {1,2, … , 𝑛} 

 

(1.7) 

where 𝑢𝑙 is not available for agent i; thus, each agent i has to estimate 𝑢𝑙, which is denoted as 

�̂�𝑙
𝑖. 

Another type of consensus behaviour considered in the published literature is 

‘leaderless’ consensus behaviour. In this type, data is exchanged between agents in the absence 

of a formal leader and converges to a common consensus value based on the designed 

consensus protocol. Examples of this type of consensus behaviour can be found in many works 

in the literature, such as (He & Cao 2011a; Wu & Shi 2012; Hu & Lin 2010; Hu et al. 2008).  

Leader-follower and leaderless behaviours can be seen in the average, max-min, and function 

types of consensus. A handful of studies cover both consensus behaviours (Liu et al. 2014; Kim 

et al. 2014; Su & Huang 2012). 

Unlike the consensus behaviour described earlier, in external consensus, all agents track 

the external reference input that is given to one or more agents in the NMAS. Any agents that 

are connected directly to the external reference input can both transmit and receive data from 
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their neighbouring agents.  

1.4.3 Types of NMAS 

In addition to consensus behaviour, many studies have also examined agents’ dynamic 

variation. Most related studies have presented their work in the context of integrator dynamics, 

i.e. single- or first-order integrators (Kecai et al. 2011; X.-L. Feng et al. 2013; Yu et al. 2014; 

Wu & Shi 2011; Wu & Shi 2012; Li et al. 2012; Li et al. 2014; J. Liu et al. 2013; Sun & Wang 

2009; Jin & Zheng 2009; Shida & Ohmori 2011; Sakurama & Nakano 2011; Olfati-Saber et 

al. 2007; Olfati-Saber & Murray 2004; Olfati-Saber & Murray 2003; Andreasson et al. 2013; 

Chang et al. 2011; Cao et al. 2013; Ferrari-Trecate et al. 2009; Wang et al. 2014; Wei et al. 

2010; Liu & Tian 2007; Seuret et al. 2008) and double- or second-order integrators (Eichler & 

Werner 2014; Hu & Lin 2010; X.-L. Feng et al. 2013; Gong et al. 2013a; Liu & Liu 2010; Xie 

& Wang 2012; Pan et al. 2014; Ferrari-Trecate et al. 2009; Andreasson et al. 2013; Ding et al. 

2013; B. Liu et al. 2013; Cheng et al. 2013; Zhang & Tian 2012a), which can be represented 

by continuous-time models, as in (1.8) and (1.9), respectively: 

�̇�𝑖(𝑡) = 𝑢𝑖(𝑡) (1.8) 

�̇�𝑖(𝑡) = 𝑣𝑖(𝑡) 

�̇�𝑖(𝑡) = 𝑢𝑖(𝑡) 

(1.9) 

Or agents with discrete-time models, as in (1.10) and (1.11), respectively: 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝜖𝑢𝑖(𝑘),        𝜖 = sampling period > 0 (1.10) 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝜖𝑣𝑖(𝑘), 

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) + 𝜖𝑢𝑖(𝑘), 

(1.11) 

In real-world applications, however, an agent’s dynamic is usually more complex than 

an integrator dynamic; researchers have thus devoted significant effort to enhancing the 

practicability of NMAS with a more general framework. For example, several studies (Su & 

Huang 2011; Zhang & Duan 2011; Namerikawa & Yoshioka 2008a; Tan & Liu 2013; Tan & 

Liu 2012; Tan & Liu 2011; Yang & Xu 2012; Liu et al. 2014; S. Li et al. 2011; Münz et al. 

2011; Tian & Zhang 2012; Ni et al. 2013; Mulla et al. 2014; Zhang & Tian 2012a; Zhao et al. 

2011; Zhongkui Li et al. 2011; Li et al. 2009; Li et al. 2010; Wang et al. 2008; Zhou & Xiao 

2013; He & Cao 2011a; Ran & Wu 2013b; Z. Li et al. 2011; Wang et al. 2011; Wieland et al. 
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2008; Xu et al. 2013; Shida & Ohmori 2011; Wen et al. 2013; Zeng & Hu 2013; Zhang & Tian 

2009) have presented a more complex form with any order or higher-order general linear 

dynamical system, in either state-space or transfer function forms. NMAS agents with a linear 

time-invariant dynamic can be described as follows: 

�̇�𝑖(𝑡) = 𝐴𝑥𝑖(𝑡) + 𝐵𝑢𝑖(𝑡),        𝑖 = 1,2, … , 𝑛 

  

(1.12) 

or in a discrete-time model: 

𝑥𝑖(𝑘 + 1) = 𝐴𝑥𝑖(𝑘) + 𝐵𝑢𝑖(𝑘)  

 

(1.13) 

where 𝐴 and 𝐵 are constant system matrices. 

In addition, in real-life applications, NMAS systems with homogeneous agents rarely 

exist, especially in process control manufacturing industries; these are relatively large in size 

in most cases, and consist of many subsystems with multi-purpose tasks. For practical reasons, 

heterogeneous or inhomogeneous (non-uniform or non-identical) agents’ dynamics should 

therefore be considered in NMAS consensus problems (Ren et al. 2005; Wang et al. 2014). 

This element, however, will add a degree of difficulty and complexity in the process of 

designing the consensus protocol and developing the stability and consensus analysis, as well 

as in implementing it on a real-world NMAS platform. The overall complexity of the developed 

control system may be even greater if network-induced constraints are also taken into 

consideration.  

The external consensus problem for distributed heterogeneous NMAS is studied in (S. 

Li et al. 2011; Yang & Xu 2012) within a similar framework, with a transfer function model as 

follows: 

𝐺𝑖(𝑠) =
𝑎

𝑏𝑠𝑚 + 𝑐𝑠𝑚−1 +⋯+ 𝑑𝑠 + 𝑒
 ,         𝑖 = 1,2, … , 𝑛 (1.14) 

where 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are the polynomial coefficients, and 𝑚 is the highest order of the 

polynomial denominator.  

In (C. Tan & Liu, 2012, 2013), consensus analysis is developed with discrete-time 

heterogeneous linear NMAS, in which the agents’ dynamics are represented as follows: 
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𝑥𝑖(𝑡 + 1) = 𝐴𝑖𝑥𝑖(𝑡) + 𝐵𝑖𝑢𝑖(𝑡)  

𝑦𝑖(𝑡) = 𝐶𝑖𝑥𝑖(𝑡) 

 

(1.15) 

where 𝐴𝑖, 𝐵𝑖, and 𝐶𝑖 are constant matrices of agent 𝑖. 

In (Wang & Sun 2015), by using the linear matrix inequality (LMI) technique, Wang 

and Sun solve both consensus and the 𝐻∞ consensus problem for heterogeneous NMAS with 

time-varying delay. The heterogeneous agents’ dynamics are encompassed with single and 

double integrators into NMAS. The authors studied the implementation of the prediction in the 

consensus protocol to compensate for the constant network delay.  

We conduct our simulation in this thesis by considering the NMAS agents as an 

approximated model of a real-laboratory test rig, which is represented in a transfer function 

form. This form has a higher degree of complexity compared to the integrator form, and was 

obtained from an identification method based on experimental data. The method also provides 

a generic form of the approximated agents’ dynamics, which can be used to model any actual 

processes in real life. Furthermore, we also consider the heterogeneity of the agents’ dynamics 

of the NMAS, represented by three water level process controls with different dynamics. These 

considerations are important to ensure that the works are applicable to a general framework of 

NMAS, whilst still being practical.  

1.4.4 Network constraint (Network delay) 

Establishing the validity of the consensus study in the NMAS without considering the network 

constraints is unrealistic. The constraints and challenges in control systems’ practical 

applications need to be taken into account in order to produce a sensible control protocol that 

is capable of performing well when implemented in a real-world environment (Wang et al. 

2014). As a result, many researchers, motivated to produce a practical and realistic NMAS 

consensus protocol, have considered various types of network-induced constraints within their 

proposed solutions to the consensus problem.  

Although network-communication-induced problems in networked control system 

applications come in many forms, two main types of network-induced problems that have 

gained a great deal of attention are network-induced delay and data or packet loss (i.e. dropout). 

In order to tackle network delay problems in a simplified manner, researchers often choose to 

assume network delay to be constant (Pan et al. 2014; Sayyaadi & Doostmohammadian 2011; 
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Liu & Tian 2007; Wei et al. 2010; Münz et al. 2007; Münz et al. 2011; Liu & Liu 2010). This 

constant value is usually determined by the upper bound of the measured time-varying network 

delay, or the maximum tolerable network delay (Tan & Liu 2013; Namerikawa & Yoshioka 

2008a). In (Olfati-Saber & Murray 2004), for example, Olfati-Saber and Murray present an 

analysis of determining the maximum allowable constant network delay from the largest 

eigenvalue of a Laplacian matrix for average consensus; the authors show that the robustness 

of the NMAS towards network delay is explicitly dependent upon the network topology in the 

case of undirected and static connection topologies. When they considered network-induced 

delay, the authors used the following linear consensus protocol: 

𝑢𝑖(𝑘) = ∑ 𝑎𝑖𝑗(𝑥𝑗(𝑘 − 𝜏𝑖𝑗) − 𝑥𝑖(𝑘 − 𝜏𝑖𝑗))

𝑗∈𝑁𝑖

,        𝑖, 𝑗 ∈ {1,2, … , 𝑛},  

(1.16) 

where 𝜏𝑖𝑗 > 0. If network delay is assumed to be a uniform and constant value, the above 

protocol can be simplified as: 

𝑢𝑖(𝑘) = ∑ 𝑎𝑖𝑗(𝑥𝑗(𝑘 − 𝜏) − 𝑥𝑖(𝑘 − 𝜏))

𝑗∈𝑁𝑖

,        𝑖, 𝑗 ∈ {1,2, … , 𝑛},  

(1.17) 

In order to achieve consensus, the value of 𝜏 must be within its tolerable range, as follows: 

0 ≤ 𝜏 <
𝜋

2𝜆𝑛
  

where 𝜆𝑛is the largest eigenvalues of a Laplacian matrix

In (Tan & Liu 2012), Tan and Liu study discrete-time NMAS with a uniform constant 

network delay under directed and static topology. ‘Uniform delay’ refers to a situation in which 

the agent experiences a delay in accessing its own information, which is identical to the delay 

in data transfer from its neighbouring agent(s) in the network. The authors designed the 

developed consensus protocol based on the relative outputs and aggregate relative state 

predictions between agents. They derived both sufficient and necessary conditions to clearly 

show the effectiveness of the designed consensus protocol in compensating for network delay. 

Their designed consensus protocol can be expressed as:  

𝑢𝑖(𝑡) = 𝐾𝑖𝜉𝑖(𝑡|𝑡 − 𝜏) (1.18) 

where 𝜉𝑖 denotes the aggregate relative states’ prediction sequence of agent i. 
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For the case of non-uniform network delay, heterogeneous delay is considered during 

information exchanges between agents and within the agent itself, as follows: 

𝑢𝑖(𝑡) = − ∑
𝑎𝑖𝑗
𝑑𝑖
(𝑦𝑖(𝑡 − 𝑇𝑗𝑖) − 𝑦𝑗(𝑡 − 𝜏𝑗𝑖))

𝑣𝑗∈𝑁𝑖(𝑡)

,        𝑖, 𝑗 ∈ {1,2, … , 𝑛},  

(1.19) 

 If the delay within the agent itself is negligible, then the consensus protocol can be designed 

as:  

𝑢𝑖(𝑡) = − ∑
𝑎𝑖𝑗
𝑑𝑖
(𝑦𝑖(𝑡) − 𝑦𝑗(𝑡 − 𝜏𝑖𝑗))

𝑣𝑗∈𝑁𝑖(𝑡)

,        𝑖, 𝑗 ∈ {1,2, … , 𝑛},  

(1.20) 

These protocols are discussed in (Ulrich et al. 2011; Shida & Ohmori 2011; Sakurama & 

Nakano 2011; Seuret et al. 2008); the impact of the neighbouring agents’ delay on the 

convergence rate is also discussed in (Seuret et al. 2008).  

More complex network delay conditions have been studied by considering NMAS with 

time-varying network delay. For example, in (Wu & Shi 2012), Wu and Shi design the 

consensus protocol with the effect of both bounded time-varying delay and data loss as: 

𝑢𝑖(𝑘) = −𝛾𝑐 ∑ 𝛾𝑖𝑗(𝑘)𝑎𝑖𝑗(𝑥𝑖(𝑘 − 𝑑(𝑘)) − 𝑥𝑗(𝑘 − 𝑑(𝑘)))

𝑗∈𝑁𝑖

,        𝑖, 𝑗 ∈ {1,2, … , 𝑛},  

(1.21) 

where 𝛾𝑖𝑗(𝑘) = 1 if no data loss occurs (and vice versa), 𝑑(𝑘) is the transmission delay at time 

k, and 𝛾𝑐 is the control gain; the value 𝛾𝑐 is determined by testing the feasibility of the derived 

LMI. Other solutions for this particular problem can be found in (Wang & Sun 2015; Tian & 

Zhang 2012; Zhang & Tian 2010; Blondel et al. 2005; Shida & Ohmori 2011; Lin & Jia 2009; 

J. Liu et al. 2013; Sun & Wang 2009; Wu & Shi 2011; Wu & Shi 2012; Hu & Lin 2010; Ding 

et al. 2013). 

1.4.5 Network constraint (Data loss) 

If the cooperation among NMAS agents is performed through a shared communication 

network, it is hard to ensure that all transmitted data will be successfully received by the 

neighbouring agent(s). In practical applications, because the network communication condition 

is highly dependent upon the rate of usage, it is not continuously stable, and the network can 

sometimes be inadvertently disabled for a few moments. It is thus common for transmitted data 
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to be lost while it is being transmitted. When information is delayed for a long period of time 

(exceeding the maximum allowable network delay), it is considered to be a situation of data 

loss or data dropout.  

Wang et al. consider the average consensus problem with uniform data loss (where all 

network connections within the system intermittently fail) in (S. Wang et al. 2010). They 

investigate consensus performance by comparing two consensus protocols: memory and 

memoryless consensus protocol. Their study proved that the memory consensus protocol yields 

better results (in terms of convergence rates) compared to the memoryless protocol. Kim, Choi, 

and Park propose the same approach in (Kim et al. 2014), in which they solve the consensus 

problem for heterogeneous NMAS with first- and second-order integrators with random link 

failures by utilising the latest stored previous value. They designed the consensus protocol as: 

𝑢𝑖(𝑘) = −𝑘1∑[{𝛼. 𝑎𝑖𝑗𝑥𝑗(𝑘) + (1 − 𝛼). 𝑎𝑖𝑗𝑥𝑗(𝑘 − 1)}

𝑛

𝑗=1

− 𝑎𝑖𝑗𝑥𝑖(𝑘)] ,        𝑓𝑜𝑟 𝑓𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟 𝑎𝑔𝑒𝑛𝑡 

 

(1.22) 

In (Zhou & Xiao 2013), Zhou and Xiao derive a new disagreement vector in order to 

solve the average consensus problem for linear NMAS with random packet loss. The authors 

prove the stability through the presentation of necessary and sufficient conditions where the 

mean-square consensus could be achieved if the union graph were connected. Two studies 

(Shaw et al. 2010; Klein et al. 2008) present the experimental results of the consensus problem 

with data loss for multi-robots and an unmanned autonomous vehicle (UAV), respectively. 

Differing from the approach of studies (Li et al. 2014; Guinaldo et al. 2012), these two studies 

introduce an event-based consensus control to solve the consensus problem with the occurrence 

of data loss. Other related work can be found in (Li et al. 2012; Zhang & Tian 2010; Zhang & 

Tian 2012a; Gong et al. 2013b; Wu & Shi 2012).  

Most studies have solved the network-induced problem by considering the 

homogeneous NMAS agents or the integrator dynamic agents; exceptions include (Kim et al. 

2014; Tan & Liu 2011; Tan & Liu 2013; Tan & Liu 2012), which consider a heterogeneous 

linear NMAS. In addition, Zhang and Tian (Tian & Zhang 2012) present an analytic solution 

for heterogeneous high-order NMAS, although the numerical simulation of the solution, where 

only homogeneous NMAS with integrator dynamics is presented, does not provide similar 

considerations. As such, the NMAS consensus problem with heterogeneous and non-integrator 

dynamics agents remains relatively unexplored, and is worthy of further investigation. 
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1.4.6 Network topology 

The data loss problem is caused by intermittent network failure, which frequently occurs in a 

random manner. In order to analyze this condition, many researchers have considered the 

NMAS consensus problem by using the switching connection topology. For example, in 

(Zhang & Duan 2011), Zhang and Duan consider both the static and switching interaction 

topologies with the implementation of a predictive algorithm by considering the agents’ input 

constraints in the consensus protocol. In (Wang et al. 2008), Wang, Cheng, and Hu study the 

switching topology case for any order of identical NMAS with local information–based 

decentralised controls. In (Olfati-Saber & Murray 2004; Olfati-Saber & Murray 2003), Olfati-

Saber and Murray develop the disagreement function, using simple Lyapunov theory stability 

analysis, in order to investigate the possibility of mobile networks in directed switching 

topology to reach average consensus.  

A great deal of consensus analysis in switching topology can also be found in (Ferrari-

Trecate et al. 2009; Münz et al. 2007; Sun & Wang 2009; Cortés 2008; Ghadami 2012; He & 

Cao 2011a; Lin & Jia 2009; Ni et al. 2013; Olfati-Saber & Murray 2003; Olfati-Saber & Murray 

2004; Sayyaadi & Doostmohammadian 2011; Shida & Ohmori 2011; Su & Huang 2011; Su & 

Huang 2012; Wang & Elia 2009; Wang et al. 2008; Wang et al. 2013; Wen et al. 2013; Xie & 

Wang 2007; Zhan & Li 2013; Zhao et al. 2014; Zhou & Xiao 2013; Zhu & Yuan 2014). In 

these publications, the researchers focus their analyses on deriving an appropriately sufficient 

condition for a specific topology, rather than developing a proper controller to solve the 

consensus problem. Even though this method is the most convenient for researchers in terms 

of proving the control theory, it is not the most effective way to pursue a practical solution for 

this particular situation, as failure occurrence is rarely predictable (Yu et al. 2014; Wang et al. 

2014; Wu & Shi 2012).  

In this thesis, we develop a distributed consensus algorithm that has the capability of 

compensating data loss within different topologies. We find this solution to be more practical 

than previous efforts in this area, since the algorithm’s capability of compensating for the data 

loss problem is not restricted to any one type of NMAS topology.  

1.4.7 Consensus performance (Convergence speed, Coupling weight, and Gain) 

In the consensus problem, the length of time for each agent to reach its consensus value (known 

as ‘speed of convergence’, ‘convergence time’, or ‘convergence rate’) is an essential consensus 
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performance indicator (Wang et al. 2014). The shortest convergence time or highest 

convergence speed (rate) is important in order to achieve desirable NMAS consensus 

performance. Unfortunately, among the detrimental effects of network delay and data loss in 

the NMAS are the increments that are used in convergence time, which is certain to degrade 

the consensus performance significantly. Convergence performance has thus become a focal 

point of many NMAS-related studies.  

Olfati-Saber and Murray establish the relationship between convergence speed and 

algebraic connectivity (the second smallest eigenvalues of a Laplacian matrix) in (Olfati-Saber 

& Murray 2004); the authors also discuss the trade-off between convergence speed and the 

consensus protocol robustness to constant network delay. Tan, Liu, and Guan apply the same 

approach in (Tan et al. 2009), where the maximum network delay is determined in order to 

maintain convergence performance. In (Eichler & Werner 2014), Eichler and Werner find the 

optimisation of convergence speed for double-integrator NMAS by determining the proper 

value for three parameters: two parameters that were obtained from the analytic solution (which 

depended on the largest and smallest eigenvalues of a Laplacian matrix) and a third parameter 

that was derived from LMI conditions.  

Other authors take a different approach (in (Liu et al. 2014; Z. Li et al. 2011)); these 

studies analyse the relationship between convergence speed and the largest negative real part 

of the eigenvalues of the closed loop system. The consensus protocol based on relative outputs 

between agents is designed as follows: 

𝑢𝑖 = 𝑐𝐾 ∑ 𝑎𝑖𝑗(𝑦𝑗 − 𝑦𝑖)

𝑗∈𝑁𝑖

,      𝑖, 𝑗 ∈ {1,2, … , 𝑛} (1.23) 

From the protocol, by designing a suitable feedback control gain matrix 𝐾 and coupling gain 

𝑐 > 0 that conforms to the developed relationship, the consensus of the system can be reached 

with the initially prescribed convergence speed.  

In (Clark et al. 2013),  Clark, Bushnell, and Poovendran propose a unifying framework 

for encompassing both leader-follower and leaderless systems in order to minimise converging 

time. The authors achieve this by choosing a suitable leader and finding an optimal weight for 

each of the interaction links; they prove this technique to be a good combination in minimising 

convergence time. In (Pan et al. 2014; Yu et al. 2014), they make the consensus convergence 

comparison between the common linear consensus protocol and the consensus protocol based 
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on second-order neighbours’ information. By utilising the second-order neighbours’ 

information, the authors prove that the convergence speed can be accelerated. Their consensus 

protocol is designed as:  

𝑢𝑖(𝑡) = ∑ 𝑎𝑖𝑗 [(𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)) + ∑ 𝑎𝑖𝑘(𝑥𝑘(𝑡) − 𝑥𝑖(𝑡))

𝑘∈𝑁2(𝐺,𝑖)

]

𝑗∈𝑁(𝐺,𝑖)

 

 

(1.24) 

where 𝑁2(𝐺, 𝑖) denotes the second-order neighbours of agent i.  

Another common approach to achieving a higher convergence rate is through the 

optimisation of the weight or gain at the communication link between agents (Sheng & Ding 

2013; Zhu & Yuan 2014). In (Zhu et al. 2009),  Zhu, Tian, and Kuang introduce coupling gains 

into the second-order consensus protocol to maximise the convergence speed; they determine 

suitable values for the gains from the largest and smallest eigenvalues of a Laplacian matrix. 

In (Zhang & Tian 2012b; Zhang & Tian 2009), Zhang and Tian suggest that in discrete-time 

NMAS, the coupling weight should be treated as a control parameter, where the static state 

feedback consensus protocol is designed as: 

𝑢𝑖(𝑡) = 𝐾 ∑ 𝑎𝑖𝑗(𝑡)𝑤𝑖𝑗 (𝑥𝑗(𝑡) − 𝑥𝑖(𝑡))

𝑗∈𝑁𝑖(𝑡)

,      𝑖, 𝑗 ∈ {1,2, … , 𝑛}  

(1.25) 

where 𝐾 is the static state feedback gain and 𝑤𝑖𝑗 is the weight. These parameters must be 

properly designed in order to achieve consensus. In (Ning et al. 2012), Ning, Ren, and Zhao 

study the modified Vicsek model with a proposed time-varying coupling weight; they find that 

improvements in convergence time can be obtained by adjusting the weight between agents, 

which minimises the agents’ state differences.  

From the abovementioned studies, we can see that most works have successfully 

improved the consensus convergence to various degrees, depending on the connectivity of the 

network topology (Xie & Wang 2007). Yu, Zhang, and Sun clearly show in (Yu et al. 2010) 

that higher connectivity leads to faster convergence rates. 

In (Wei et al. 2010; Y. Feng et al. 2013; He & Cao 2011a), the authors use the selection 

of appropriate controller parameters or a suitable control method for consensus protocol to 

improve convergence speed. For example, in (Wei et al. 2010), Wei, Fang, and Wang use the 

proportional-derivative (PD) terms to design a consensus protocol that can improve the 

convergence performance; the protocol is designed as: 
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𝑢𝑖(𝑡) = ∑ 𝑎𝑖𝑗(𝑡) (𝑥𝑗(𝑡 − 𝜏𝑖𝑗) − 𝑥𝑖(𝑡 − 𝜏) + 𝜂�̇�𝑖(𝑡 − 𝜏))

𝑣𝑗∈𝑁𝑖

,      𝑖, 𝑗

∈ {1,2, … , 𝑛} 

 

(1.26) 

where 𝜂 > 0 denotes the PD feedback density. 

Other than optimisation of the coupling weight between agents and the controller’s 

parameters, the consensus algorithm with memory has also been proven to improve the 

consensus convergence (X.-L. Feng et al. 2013). Feng et al.’s designed consensus protocol can 

be presented as: 

𝑢𝑖(𝑡) = 𝑎𝑖𝑗(𝑡) ∑ (𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)) − 𝑥𝑖(𝑡 − 𝜏) + 𝑥𝑖(𝑡)

𝑗∈𝑁𝑖(𝑡)

,

𝑓𝑜𝑟  𝑡 ∈ [−𝜏, 0)    𝑖, 𝑗 ∈ {1,2, … , 𝑛} 

 

(1.27) 

Adding an opposite sign to the last two terms in the above protocol, however, could 

lead to a slower convergence speed.  

In (Gao et al. 2015), Gao et al. study the combination of proportional-integral (PI) 

controller with a two-hop network. Based on the presented analytical and numerical results, 

this combination provides the control system with a fast convergence speed. Shang uses a 

difference approach in (Shang 2014), where a non-uniform external control input is introduced 

in the consensus protocol to obtain a fast convergence speed. Other related work on 

convergence studies can be found in (Xiao et al. 2014; Blondel et al. 2005; Sayyaadi & 

Doostmohammadian 2011).  It is worth mentioning that optimal convergence for general linear 

NMAS is still an open problem (Cao et al. 2013).  

1.4.8 Existing control strategies 

Based on the cited literature, most studies have focussed on deriving the sufficient and 

necessary conditions for the NMAS to achieve consensus with or without network-induced 

constraints. These conditions are derived mainly to provide information about the maximum 

allowable network delay or data loss probability for the designed consensus protocol to achieve 

consensus.  

While a significant number of studies have concentrated on providing a theorem or 

criterion in choosing the suitable coupling strength, gain, or weight parameter that can be used 

to improve or adjust consensus performance, very few studies have designed an appropriate 
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controller that can drive the NMAS to achieve consensus value. Below are a few significant 

publications that have provided a designed controller, depending on the authors’ chief focus:  

 A controller based on state or output feedback is designed based on the designed 

feedback gain matrix, observer gain matrix, or controller parameters. Several authors 

have developed and derived theorems or conditions to design the feedback gain matrix, 

observer gain matrix, and controller parameters for the consensus protocol. The chosen 

values of gain matrices and parameters have to satisfy the developed conditions in order 

for the NMAS to reach consensus. Common related theories include Riccati’s algebra 

equation, the Lyapunov function, and linear matrix inequality (Ding et al. 2013; 

Namerikawa & Yoshioka 2008b; Z. Li et al. 2011; Liu et al. 2014; Yu et al. 2014; Ni 

et al. 2013; Liu & Liu 2010; He & Cao 2011b; Zhou & Xiao 2013; Su & Huang 2011; 

Zhang & Tian 2009; Hu et al. 2015; Zhao et al. 2011; Wu & Shi 2012; Zhang & Tian 

2012a). 

 The controller is designed to consist of second-order neighbours’ information in order 

to accelerate the consensus convergence speed (M. Yu et al., 2014).  

 The output-feedback gain matrices are designed through the pole-assignment method  

(Wang et al. 2011; Ran & Wu 2013c). 

 The controller is designed based on the predictive method; the observer-based 

predictive controller is designed using states and relative states prediction (Tan & Liu 

2011; Tan & Liu 2013; Tan & Liu 2012; Tan et al. 2015; Yang & Liu 2014; Zhang & 

Zhang 2014).  

 The controller transfer function is designed to contain a reference input term at the 

denominator of the controller’s transfer function. The proposed controller is thus fully 

dependent upon the reference input (Yang & Xu 2012). 

 The controller is designed to impose proportional-derivative (PD) terms represented by 

the scalar value called ‘PD feedback density’. This value is used to improve the 

consensus convergence speed (Wei et al. 2010). 

 The controller is designed based on an event-triggered control strategy (Hu et al. 2015; 

Li et al. 2014; Guinaldo et al. 2012) 

 The controller is designed based on the adaptive control strategy (Yucelen et al. 2015; 

Radenkovic & Tadi 2015) 
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We can conclude from this that the consensus problem with an optimal control method 

is still worthy of investigation.  

Over the last few decades, several studies have reported that the application of a 

prediction strategy in the networked single-agent structure shows a promising capability of 

compensating for network-induced constraints (Liu 2009; Liu 2005; Liu, Xia, et al. 2005a; Liu, 

Xia, et al. 2005b; Liu et al. 2005; Liu et al. 2005; Liu et al. 2004; Onat et al. 2008; 

Srinivasagupta et al. 2004; Xia & Fu 2010; Zhan & Li 2013; Mill et al. 2008; Liu, Xia, Chen, 

et al. 2007; Ulusoy et al. 2007; Liu 2010; Caruntu & Lazar 2011; Chai et al. 2008; Miklovicova 

& Mrosko 2012; Istanbul 2006; Zhe et al. 2006; Xueyan & Zhongjie 2010). This scenario has 

thus motivated us to adopt this strategy in this thesis in the context of NMAS application; we 

therefore explore the application of prediction strategy to the external consensus problem. 

The prediction strategy algorithm for external consensus protocol developed in this thesis 

is inspired by simple single agent prediction strategy founded by Chai et al. 2008. The 

predicition strategy algorithm capability has been fundamentally enhanced to enable solving 

the multi-agents NMAS within external consensus problem. The proposed algorithm involves 

relatively simple mathematical equations, which helps reduce the burden of hardware 

requirements in large-scale applications, and increases the probability for the control system to 

be implemented in real-world practical applications. The details of the proposed prediction 

algorithm is presented in Chapter 3 to 6. 

1.5 Motivations and contributions 

An analysis of the consensus reached in related studies indicates that nearly all studies have 

focussed on theoretical frameworks, which usually consist of highly complex equations that 

are unfeasible to be embedded in real-world hardware platforms. In addition, the results and 

the designed consensus algorithms are generally only tested and demonstrated through 

mathematical analyses, and are validated using numerical simulations. The actual capability 

and performance of NMAS consensus in real-world practical applications is therefore still 

questionable, since (to the best of our knowledge) the studies have provided experimental 

verification. Simulation results through mathematical models can only predict the outcome of 

the control system; they will never be able to provide an exact picture of actual practical 

conditions. Only a handful of papers have investigated the consensus problem with a practical 

implementation (Klein et al. 2008; Namerikawa & Yoshioka 2008a; Shaw et al. 2010). From 

the beginning, the work in this thesis has thus been consciously steer ed towards producing 
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practical and feasible solutions for the NMAS in a real-world application. 

In this thesis, the main motivation for this research is thus to provide a practical solution 

to the NMAS external consensus problem in the presence of network-induced constraints, with 

comprehensive validation through practical experimentation. By presenting the empirical 

results from the experiments to support the designed solutions, we hope that it will become a 

solid foundation for NMAS technology to be integrated into real-world practical applications. 

In this thesis, the works presented are related to the development of a distributed 

cooperative algorithm for the external consensus problem in heterogeneous linear NMAS with 

network-induced constraints. The proposed consensus protocol is designed to be capable of 

managing complex conditions such as network constraints, heterogeneity, and complexity in 

agents’ dynamics, while being theoretically proven and practically feasible. To the best of our 

knowledge, no analysis or practical work has been done on this subject to date.  

It is a monumental challenge to combine several related theoretical works with 

experimental implementations on each designed control system within one general research 

study such as this. Every stage of the research demands multifaceted knowledge. Extensive 

theoretical understanding is essential on topics that include overall control methodology, 

communication technology (network topology and intranet-based communication technology), 

and related mathematical analyses. In addition, working knowledge related to computational 

software and applications, and general engineering skills in setting up and performing the 

experimental works, are also vital for ensuring overall research success. The combination of 

this knowledge is crucial for ensuring that the proper considerations regarding the designed 

controller practicality, and compatibility to the available experimental hardware, can be 

incorporated into the development of the theoretical solutions during the early stages of the 

research process.  

Authors of earlier related works have generally preferred to focus on deriving a sufficient 

condition for NMAS to achieve consensus with or without network-induced constraints, rather 

than designing a suitable controller to solve the consensus problem. Furthermore, some of the 

solutions that authors have provided - for example in (Blondel et al. 2005; Wang & Elia 2009) 

- have only been presented in analytical format, without any corresponding proof via numerical 

simulation. Thus far, because very limited research has been published on heterogeneous linear 

NMAS, most of the new developments in the NMAS field with constraints have been confined 

to academia; there has been little impact on practical applications.  
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Although various published studies have documented the advantages of prediction 

strategy for networked controlled single-agent systems, very few studies have explored the 

application of prediction strategy in NMAS. Methods of solving the consensus problem with 

prediction strategy are presented in (Droge & Egerstedt 2013; Zhang & Duan 2011; Ferrari-

Trecate et al. 2009; Roshany-Yamchi et al. 2011; Tan & Liu 2011; Tan & Liu 2013; Tan & Liu 

2012).  The application of prediction strategy in NMAS has significant potential, as several 

studies have proved its capability in compensating for network-induced constraints, such as 

delay and packet loss for a single-agent systems (Liu, Xia, Rees, et al. 2007; Liu, Xia, Chen, et 

al. 2007; Liu 2010; Chai et al. 2008; R. Wang et al. 2010). While several varieties of prediction 

approaches have been developed for single-agent systems, many are too mathematically 

demanding to be implemented within NMAS. Thus, in this thesis, we prove that by carefully 

selecting a suitable prediction algorithm, the prediction strategy can be successfully applied in 

the NMAS with manageable mathematical complexity, which allows for comprehensive 

empirical testing.  

 We achieve further improvement of the proposed prediction algorithm’s performance 

through the application of a suitable designed coupling gain, which is also one of our main 

contributions in this thesis. Motivated by our observations, we put forward a novel prediction-

based distributed external consensus protocol by modifying and enhancing the predictive 

controller that Chai et al. present in (Chai et al. 2008).  

Most of the presented works in the cited literature have the obvious limitation of 

considering the integrator dynamic in the NMAS consensus problem. The integrator dynamic 

represents a simple agent’s dynamic, which is rarely present in real-world practical systems; 

thus it cannot provide a general solution that can truly represent the characteristics of NMAS 

agents in most real-world applications. Bearing in mind that our research objective is to 

produce a practical solution, we developed the NMAS agent models used in this thesis using a 

system identification process through off-line empirical data obtained via open-loop 

experimentation. In addition, we propose a general framework for an external consensus 

protocol by considering the heterogeneous linear dynamics of NMAS agents. This general 

framework has the flexibility to be expanded further in order to represent homogeneous linear 

NMAS.  

When dealing with network communications, it is obvious that network-induced 

constraints are inevitable. A consideration of network constraints in the designed consensus 
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protocol is thus vital to ensure that the control protocol performs well in practical applications. 

This thesis therefore considers three types of network delay. First, we consider a uniform 

constant network delay, where identical delay is present within the agent itself, both when it 

accesses its own data and during data transmission from its neighbour(s). Second, we consider 

an asymmetric constant network delay, where identical delay is present within the agent itself 

when it accesses its own data, as well as during data transmission from its neighbouring 

agent(s), but the value of the delay varies for each passing route where data is transmitted. 

Finally, we consider bounded random network delay, where a random value of delay is present 

within an allowable range at every network link between the agents. The three cases are 

reported in Chapter 3, 4, and 5, respectively.  

For the case of data or packet loss, earlier published works have focussed on data loss 

probability percentage, which usually occurs only during optimal operating conditions (Zhang 

et al. 2006). In this thesis, however, we consider the worst-case scenario by analysing a large 

number of consecutive data losses (CDL), presented in Chapter 6. We propose a prediction 

algorithm combined with a coupling gain–based ‘gain error ratio’ (GER) formula to solve this 

problem. The proposed method has not only solved the external consensus problem but has 

also significantly reduced the consensus convergence time. 

By taking into account all of the practical considerations at every stage of the research 

work, this thesis successfully provides solutions for a general framework for external consensus 

protocol for linear NMAS with network-induced constraints. All of the proposed solutions are 

proven through mathematical analyses, substantiated through numerical simulations, and 

demonstrated in practical experiments.  

1.6 The proposed external consensus protocol 

The distributed cooperative protocol is proposed to solve the external consensus problem for 

linear heterogeneous NMAS in the presence of two types of network-induced constraints: 

network delay and data loss. External consensus is defined as a group of agents that cooperate 

through data exchange in order to achieve their common target, which is the external reference 

input (consensus value). The external consensus protocol is represented by a distributed 

cooperative algorithm that directs all agents in the NMAS to converge to an external reference 

input that is given to only one of the agents (Agent 1) via a local communication network. In 

cooperative control systems, agents share information about their common objectives along a 

trajectory to the consensus value, which requires each agent to communicate and update its 
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own and its neighbours’ states or outputs in order to reach consensus. As a result, even though 

the agents are physically separated, the agents’ behaviour is coupled with that of neighbouring 

agents in order to accomplish their tasks.  

External consensus is unique when compared to the other consensus type, as it does not 

depend on the initial condition of any of the participating agents. All of the other consensus 

types, in contrast, do rely heavily on the initial condition of the participating agents, since the 

NMAS consensus values are obtained based on the agents’ initial values or states.  

In this thesis, the consensus value is water level (in centimetres [cm]). Each agent in the 

NMAS is represented by a unique water level process control test rig. Within the scope of this 

thesis, the general task for the agents is thus to attain the given water level set point introduced 

by the operator. As the system is set as external consensus, the set point value is given only to 

one agent which is selected by the operator and represents Agent1. Other agents have to 

communicate with Agent1 and their neighbouring agents concurrently in order to complete 

their tasks.  

The main aspiration of this thesis is to further unleash the potential that NMAS 

technology has for practical applications. As such, it is vital that the proposed solution must be 

not only theoretically strong and well proven: it also must be feasible in practice.  

Several criteria need to be taken into account when developing a practical solution for 

the NMAS with network-induced constraints: 

 Complex mathematical equations must be avoided, as these will be untenable with 

a large number of agents in practical applications;  

 A simple and practical algorithm should be implemented in the hardware;  

 The solution should be highly efficient in compensating for network-induced 

constraints.  

For these criteria, we propose a model-based prediction control strategy in this thesis. 

Model-based prediction means that the NMAS agents use the prediction model to predict the 

behaviour of the system over a certain prediction length; the prediction value is then used to 

compensate for the network-induced constraints between the agents. 
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1.7 Aims and objectives 

The aim of this study is to develop a practicable control algorithm that can solve the NMAS 

external consensus problem with network-induced constraints. In order to achieve this, several 

integral research objectives have been created:  

 A novel external consensus protocol for heterogeneous linear NMAS which is 

capable of solving the external consensus problem in the context of network-induced 

constraints.

         Develop corresponding theoretical analysis on the stability of the whole NMAS.

         Develop corresponding theoretical analysis on consensus convergence performance.

         Empirically validate the external consensus protocol.

  

Based on these aims and objectives, the general aspiration of this research is to bring 

the vast potential of the theoretical knowledge about NMAS technology into real-world 

practical applications. With this mind-set, the whole research process has been focused on 

developing a practical control algorithm for the NMAS that not only has a sound theoretical 

foundation and is mathematically provable, but that can also be successfully demonstrated in 

practical applications.  

1.8 Thesis outline 

The following chapters of this thesis are organised into six main chapters and lists of references 

and publications. The layout of each chapter is described as follows.  

Chapter 2 presents detailed descriptions of the hardware and software that were used in 

this research. For the experimental test, a unified experimental NMAS framework consisting 

of three dissimilar water level process control test rigs was set up. The software we used 

includes MATLAB Simulink and NetConTop. In addition, the chapter also describes the 

calibration of the test rigs, model identification, and network delay measurement.  

In Chapter 3, we solve the external consensus problem for heterogeneous NMAS with 

uniform constant network delay by utilising the recursive prediction algorithm. In addition, we 

derive the stability criterion to guarantee the whole NMAS stability. Chapter 3 also presents 

the novel criterion in selecting the optimal coupling gains. The results of this chapter have been 

published in (Mohd Subha & Liu 2013; Mohd Subha & Liu 2015).  
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In Chapter 4, we consider the external consensus problem for heterogeneous NMAS 

with asymmetric constant network delay. This condition generalised the network delay 

situation, where the connection link between agents is not subjected to an identical network 

traffic condition during transmission. The results of this chapter have been published in (Mohd 

Subha & Liu 2014). 

Chapter 5 further expands the scope of the developed control algorithm from Chapter 

4. We investigate the NMAS external consensus problem with bounded random network delay 

by including an additional network delay measurement signal generator into the NMAS 

structure. We demonstrate the performance of the developed control algorithm through 

simulation and experimentation on the NMAS with two agents.  

Chapter 6 investigates the occurrence of large numbers of consecutive data or packet 

losses (CDLs) in NMAS. In this chapter, we improve consensus performance by implementing 

the combination of prediction strategy and the gain error ratio (GER) formula into the designed 

consensus protocol. The results in this chapter have been provisionally accepted for publication 

in the journal IET Control Theory & Applications. 

Chapter 7 concludes this thesis and presenting the list of the contributions in the 

presented works, as well as brief discussions of possible future research directions.  
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