3,092 research outputs found

    Fuzzy Rough Positive Region based Nearest Neighbour Classification

    Get PDF
    Abstract—This paper proposes a classifier that uses fuzzy rough set theory to improve the Fuzzy Nearest Neighbour (FNN) classifier. We show that previous attempts to use fuzzy rough set theory to improve the FNN algorithm have some shortcomings and we overcome them by using the fuzzy positive region to measure the quality of the nearest neighbours in the FNN classifier. A preliminary experimental evaluation shows that the new approach generally improves upon existing methods. I

    Fuzzy-rough-learn 0.1 : a Python library for machine learning with fuzzy rough sets

    Get PDF
    We present fuzzy-rough-learn, the first Python library of fuzzy rough set machine learning algorithms. It contains three algorithms previously implemented in R and Java, as well as two new algorithms from the recent literature. We briefly discuss the use cases of fuzzy-rough-learn and the design philosophy guiding its development, before providing an overview of the included algorithms and their parameters

    Fuzzy-Rough Nearest Neighbour Classification and Prediction

    Get PDF
    AbstractNearest neighbour (NN) approaches are inspired by the way humans make decisions, comparing a test object to previously encountered samples. In this paper, we propose an NN algorithm that uses the lower and upper approximations from fuzzy-rough set theory in order to classify test objects, or predict their decision value. It is shown experimentally that our method outperforms other NN approaches (classical, fuzzy and fuzzy-rough ones) and that it is competitive with leading classification and prediction methods. Moreover, we show that the robustness of our methods against noise can be enhanced effectively by invoking the approximations of the Vaguely Quantified Rough Set (VQRS) model, which emulates the linguistic quantifiers “some” and “most” from natural language

    EEG-Based Person Authentication Modelling Using Incremental Fuzzy-Rough Nearest Neighbour Technique

    Get PDF
    High level security has nurtured the arisen of Electroencephalograms (EEG) signals as a noteworthy biometrics modality for person authentication modelling. Modelling distinctive characteristics among individuals, especially in a dynamic environment involves incremental knowledge updates from time to time. K-Nearest Neighbour (KNN) is a well-known incremental learning method which applies First-In-First-Out (FIFO) knowledge update strategy. However, it is not suitable for person authentication modelling because it cannot preserve the representative EEG signals patterns when individual characteristics changes over time. Fuzzy-Rough Nearest Neighbours (FRNN) technique is an outstanding technique to model uncertainty under an imperfect data condition. The current implementation of FRNN technique is not designed for incremental learning problem because there is no update function to incrementally reshape and reform the existing knowledge granules. Thus, this research aims to design an Incremental FRNN (IncFRNN) technique for person authentication modelling using feature extracted EEG signals from VEP electrodes. The IncFRNN algorithm updates the training set by employing a heuristic update method to maintain representative objects and eliminate rarely used objects. The IncFRNN algorithm is able to control the size of training pool using predefined window size threshold. EEG signals such as visual evoked potential (VEP) is unique but highly uncertain and difficult to process.There exists no consistant agreement on suitable feature extraction methods and VEP electrodes in the past literature. The experimental comparison in this research has suggested eight significant electrodes set located at the occipital area. Similarly, six feature extraction methods, i.e. Wavelet Packet Decomposition (WPD), mean of amplitude, coherence, crosscorrelation, hjorth parameter and mutual information were used construct the proposed person authentication model. The correlation-based feature selection (CFS) method was used to select representative WPD vector subset to eliminate redundancy before combining with other features. The electrodes, feature extraction, and feature selection analysis were tested using the benchmarking dataset from UCI repositories. The IncFRNN technique was evaluated using a collected EEG data from 37 subjects. The recorded datasets were designed in three different conditions of ambient noise influence to evaluate the performance of the proposed solution. The proposed IncFRNN technique was compared with its predecessor, the FRNN and IBk technique. Accuracy and area under ROC curve (AUC) were used to measure the authentication performance. The IncFRNN technique has achieved promising results. The results have been further validated and proven significant statistically using paired sample ttest and Wilcoxon sign-ranked test. The heuristic incremental update is able to preserve the core set of individual biometrics characteristics through representative EEG signals patterns in person authentication modelling. Future work should focus on the noise management in data acquisition and modelling process to improve the robustness of the proposed person authentication model

    Dealing with imbalanced and weakly labelled data in machine learning using fuzzy and rough set methods

    Get PDF

    A scalable approach to fuzzy rough nearest neighbour classification with ordered weighted averaging operators

    Get PDF
    Fuzzy rough sets have been successfully applied in classification tasks, in particular in combination with OWA operators. There has been a lot of research into adapting algorithms for use with Big Data through parallelisation, but no concrete strategy exists to design a Big Data fuzzy rough sets based classifier. Existing Big Data approaches use fuzzy rough sets for feature and prototype selection, and have often not involved very large datasets. We fill this gap by presenting the first Big Data extension of an algorithm that uses fuzzy rough sets directly to classify test instances, a distributed implementation of FRNN-OWA in Apache Spark. Through a series of systematic tests involving generated datasets, we demonstrate that it can achieve a speedup effectively equal to the number of computing cores used, meaning that it can scale to arbitrarily large datasets

    Quality, Frequency and Similarity Based Fuzzy Nearest Neighbor Classification

    Get PDF
    This paper proposes an approach based on fuzzy rough set theory to improve nearest neighbor based classification. Six measures are introduced to evaluate the quality of the nearest neighbors. This quality is combined with the frequency at which classes occur among the nearest neighbors and the similarity w.r.t. the nearest neighbor, to decide which class to pick among the neighbor's classes. The importance of each aspect is weighted using optimized weights. An experimental study shows that our method, Quality, Frequency and Similarity based Fuzzy Nearest Neighbor (QFSNN), outperforms state-of-the-art nearest neighbor classifiers
    • …
    corecore