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Abstract—This paper proposes an approach based on fuzzy
rough set theory to improve nearest neighbor based classification.
Six measures are introduced to evaluate the quality of the
nearest neighbors. This quality is combined with the frequency
at which classes occur among the nearest neighbors and the
similarity w.r.t. the nearest neighbor, to decide which class to pick
among the neighbor’s classes. The importance of each aspect is
weighted using optimized weights. An experimental study shows
that our method, Quality, Frequency and Similarity based Fuzzy
Nearest Neighbor (QFSNN), outperforms state-of-the-art nearest
neighbor classifiers.

Keywords—Fuzzy Rough Set Theory, Classification, Nearest
Neighbors, Ordered Weighted Average

I. INTRODUCTION

Classification, one of the most studied fields in machine
learning, is the problem of labeling an instance based on
previously seen data. It has applications in diverse fields
like spam detection, speech recognition, health care, gene
classification and many more.
The K Nearest Neighbor (KNN, [1]) classifier is a widely used
and well-known classifier. To classify an instance, it considers
its K Nearest Neighbors and classifies it to the most frequently
occurring class among these neighbors. Although this classifier
has proven to be very useful in many real-world classification
problems, it can be improved in many ways.
In [2], the Fuzzy Nearest Neighbor (FNN) classifier was
presented. This classifier takes into account the similarity
between the neighbors and the instance that has to be classified.
Experimental studies, e.g. in [3] or at the end of this paper,
show that FNN significantly improves KNN.
Although FNN performs well, many authors have tried to
improve it further. The strategy that we focus on in this paper
is to improve FNN using fuzzy rough set theory [4], [5].
Some previous efforts to do this have been reported in litera-
ture. In [6], it was noted that FNN cannot adequately handle
imperfect knowledge. To address this problem, Sarkar [6]
introduced a so-called fuzzy rough ownership function that,
when plugged into the conventional FNN algorithm, produces
class confidence values that do not necessarily sum up to 1.
However, this method does not refer to the main ingredients

of rough set theory, i.e., lower and upper approximation.
Another attempt to improve FNN using fuzzy rough set theory
was made in [7], [8]. The authors proposed a nearest neigh-
bor algorithm that measures the extent to which the nearest
neighbors belong to the fuzzy lower and upper approximations
of a certain class to predict the class of the target instance.
In order to deal with noisy data, they took this fuzzy rough
nearest neighbour (FRNN) approach one step further and used
vaguely quantified rough sets (VQRSs, [9]). It was shown in
[3] that both FRNN and its VQRS version have some serious
shortcomings.
Finally, in [3], the Fuzzy Rough Positive Region based Nearest
Neighbor (POSNN) classifier was presented. This method uses
fuzzy rough set theory to measure the quality of the neighbors
of a test instance and plugs that quality measure into the FNN
method.
Although the main idea of POSNN, namely that the quality
of the neighbors should be taken into account, is promising,
POSNN in its current form cannot outperform FNN. Therefore,
we will try to improve it in this paper.
First, we study in more detail how we can improve the quality
measure used in POSNN.
POSNN uses the fuzzy rough positive region, which is based
on the fuzzy rough lower approximation. The fuzzy rough
lower approximation expresses to what extent instances that
are indiscernible from an instance belong to the same class
as that instance. In this work, we will additionally take
into account the fuzzy rough upper approximation, as this
measure expresses to what extent there exist instances that
are indiscernible from an instance and have the same class.
Summarizing, the lower approximation of an instance is high if
instances from a different class are discernible from it, and the
upper approximation is high if there are indiscernible instances
from the same class. Taking both approximations into account
will reveal more information about the quality of the instances.
Another problem with the quality measure used by POSNN is
that it is susceptible to noise: one instance can alter the quality
measure drastically. Therefore, we propose to use Ordered
Weighted Average (OWA) fuzzy rough sets [10]. These OWA
fuzzy rough sets use OWA operators [11] to soften the strict
infimum and supremum operators used in classical fuzzy rough



sets.
The second improvement of QFSNN compared to previous
nearest neighbor classifiers is that it uses a different strategy
to combine the different aspects of the nearest neighbors.
Concretely, after determining the nearest neighbors of a test
instance t, three measures are calculated for each neighbor.
First, the frequency of the class of each neighbor among
all nearest neighbors is calculated. Next, we calculate the
similarity between each nearest neighbor and the test instance
t. Finally, we also calculate the quality of the neighbors using
(OWA) fuzzy rough set theory. Now, instead of multiplying
these values to obtain a final evaluation measure for the nearest
neighbors, we combine them in a weighted sum. As such, each
aspect is not taken equally into account: it can be that the
frequency should be taken more into account than the quality,
or the other way around. To find good weights, we calculate
the training accuracy corresponding to different combinations
of weights, and select the weights with the highest training
accuracy.
The remainder of this paper is structured as follows: In
Section II, we briefly discuss related work on nearest neighbor
classification. In Section III, we first discuss how we can
measure the quality of instances using (OWA) fuzzy rough
set theory and then propose our method, QFSNN. In Section
IV, we present the results obtained with QFSNN and compare
QFSNN with other nearest neighbor methods. We conclude in
Section V.

II. RELATED WORK

In this section we briefly recall nearest neighbor classifiers
on which our QFSNN technique is based, and against which
we will compare QFSNN in the experimental evaluation.

A. K Nearest Neighbor (KNN)

The classical KNN classifier [1] classifies a test instance t
as follows: it considers the K nearest training instances (called
the nearest neighbors) of t with respect to a certain distance
measure, generally the Euclidean distance, and then classifies
t to the class that is most common among those neighbors. In
case of ties, a class is picked at random.
An important drawback of KNN is that it considers all neigh-
bors equally important, that is, it does not take into account
the similarity of the neighbors with respect to the instance. As
a result, KNN will be highly dependent on the parameter K.

B. Fuzzy Nearest Neighbor (FNN)

To overcome the drawbacks of KNN, the FNN classifier
was developed by Keller [2]. This method also considers the
set NN of K nearest neighbors of the test instance t, and then
classifies t to the class C for which the following measure is
maximal: ∑

c∈NN R(x, t)C(x)∑
x∈NN R(x, t)

. (1)

In this formula, R(x, t) is the similarity between the instances
x and t, defined as follows:

1

deucl(x, t)2
, (2)

where deucl refers to the Euclidean distance function.
The class membership C(x) can be defined in two ways. The
approach suggested in [2] is to define it as follows:

C(x) =

{
0.51 + 0.49nC

K if the class of x is C;
0.49nC

K else. (3)

Here, nC is the number of nearest neighbors that are in class
C. Another option is to use

C(x) =

{
1 if the class of x is C;
0 else. (4)

As we found in [3] that the latter definition results in better
accuracy results, we will use this definition in the remainder
of this paper.
The main idea of the FNN method is that not only the
frequency at which a class occurs among the neighbors is
important, but that the class memberships have to be weighted
according to their similarity with respect to the test instance
at hand.

C. Fuzzy Rough Nearest Neighbor (FRNN) and Vaguely Quan-
tified Nearest Neighbor (VQNN) classification

In [7], [8], an attempt was made to improve FNN using
fuzzy rough set theory. The main idea of FRNN is that a test
instance t is assigned to the class C such that the sum of the
memberships of t to the lower and upper approximation of
this class C is maximal.
Although the idea in this paper is interesting, we showed
in [3] that FRNN has some shortcomings. It turns out that
FRNN classifies t to the class of the training instance x for
which R(x, t) is minimal. As a result, the classification of
t only depends on one instance, and the concepts of fuzzy
rough set theory are not fully exploited.
Another approach in [7], [8] to improve FNN is to use
Vaguely Quantified Rough Sets (VQRS, [9]). The idea is
the same as for FRNN: the test instance t is assigned to the
class C such that the sum of memberships of t to the lower
and upper approximation of this class C is maximal. The
difference is that VQRSs are used instead of classical fuzzy
rough sets.
In [3], we proved that VQNN and FNN return the same class
for a test instance t, provided that the same similarity measure
is used for both methods.

D. Positive Region based Nearest Neighbor (POSNN)

As FRNN and VQNN cannot improve FNN for classifi-
cation tasks using fuzzy rough set theory, we proposed an
alternative method POSNN in [3]. Instead of using the fuzzy
rough approximations directly to classify an instance t, as in
FRNN and VQNN, we used fuzzy rough set theory to measure
the quality of the nearest neighbors, and included that quality
as an extra weight for the class membership values. More
specifically, we classified an instance t to the class for which∑

c∈NN R(x, t)C(x)POS(x)∑
x∈NN R(x, t)

(5)

is maximal, where POS(x) is the fuzzy rough positive region
membership of x, a fuzzy rough measure for the quality of x.



Although the idea of POSNN is more consistent and mean-
ingful than the idea used in FRNN and VQNN, POSNN was
found to only slightly improve FNN.

III. QUALITY, SIMILARITY AND FREQUENCY BASED
FUZZY NEAREST NEIGHBOR (QFSNN) CLASSIFICATION

In this section we present our new nearest neighbor clas-
sification technique. We first discuss how we can measure the
quality of instances using fuzzy rough set theory and then
explain how we use it to improve FNN classification.

A. Using (OWA) fuzzy rough set theory to measure the quality
of instances.

In this work we will use the fuzzy rough lower and upper
approximation to measure the quality of instances. Before we
introduce our ideas, we will fix the notation. We work in a
decision system (X,A ∪ {d}) where X = {x1, . . . , xn} is a
set of instances and A = {a1, . . . , am} is the set of features.
The value of an instance x ∈ X for a feature a ∈ A is
denoted by a(x) and is normalized such that a(x) ∈ [0, 1].
The feature d /∈ A is a special feature: d(x) denotes the class
of the instance x ∈ X . In the classification context that we are
working in, d(x) is always nominal.
Fuzzy rough set theory revolves around the idea of indiscerni-
bility between instances. The indiscernibility relation Ind that
we will use is defined as follows:

∀x, y ∈ X : Ind(x, y) = min
i=1,...,m

Indai(x, y), (6)

where the indiscernibility relation w.r.t. one feature a ∈ A is
defined as:

∀a ∈ A : Inda(x, y) = 1− |a(x)− a(y)|. (7)

This indiscernibility relation can be used to approximate
concepts, which are sets of instances in our context. Given
a fuzzy set S : X → [0, 1], the lower approximation Ind ↓ S
of S by means of Ind is a mapping X → [0, 1] defined as
follows:

∀x ∈ X : (Ind ↓ S)(x) = inf
y∈X
I(Ind(x, y), S(y)). (8)

The mapping I is a fuzzy implicator, which is a mapping
[0, 1]2 → [0, 1] that is decreasing in the first, increasing in
the second argument and for which the border conditions
I(0, 0) = I(1, 1) = I(0, 1) = 1 and I(1, 0) = 0 hold. The
implicator that we will use in this work is the Lukasiewicz
implicator IL, given by:

∀a, b ∈ [0, 1] : IL(a, b) = min(1, 1− a+ b). (9)

The lower approximation of an instance x expresses to what
extent instances that are indiscernible from x belong to the
concept S. We now consider the lower approximation of a
particular concept, namely the instances [x]d that are in the
same class as x:

∀x ∈ X : [x]d = {y ∈ X|d(x) = d(y)} (10)

The value of the membership of x to the lower approximation
of the class [x]d is given by:

∀x ∈ X : (Ind ↓ [x]d)(x) = inf
y∈X
IL(Ind(x, y), [x]d(y)).

(11)

This lower approximation can measure the quality of the
instance x because it expresses to what extent instances that
are indiscernible from x belong to the same class as x. Hence,
it measures how typical x is for its class.
As IL(a, 1) = 1 for all a ∈ [0, 1], we can rewrite Equation
(11) as follows when using IL:

∀x ∈ X : (Ind ↓ [x]d)(x) = inf
y∈X\[x]d

1− Ind(x, y) (12)

This makes the intuition to use the lower approximation to
measure the quality more clear: the membership to the lower
approximation of the own class of an instance is low if
instances from a different class of x are indiscernible from
x. Note that this definition corresponds to the positive region
of x, so this measure corresponds to the one that was used in
POSNN [3]. We will refer to this first quality measure as QL.
Apart from the lower approximation, a fuzzy rough set also
contains the upper approximation. Given a fuzzy set S : X →
[0, 1], the fuzzy rough upper approximation of S by means of
Ind is a mapping X → [0, 1] defined as follows:

∀x ∈ X : (Ind ↑ S)(x) = sup
y∈X
T (Ind(x, y), S(y)). (13)

The mapping T is a t-norm, a commutative, associative map-
ping T : [0, 1]2 → [0, 1] that is increasing in both arguments,
and for which ∀a ∈ [0, 1] : T (a, 1) = a holds. In our work,
we use the Lukasiewicz t-norm TL, defined as follows:

∀a, b ∈ [0, 1] : TL(a, b) = max(0, a+ b− 1). (14)

The upper approximation of an instance x expresses to what
extent there exist instances that are indiscernable from x
belonging to the concept S. As for the lower approximation,
we study the membership to the upper approximation of an
instance x with respect to its own class [x]d:

∀x ∈ X : (Ind ↑ [x]d)(x) = sup
y∈X
T (Ind(x, y), [x]d(y)).

(15)
At first sight, this measure expresses to what extent there exist
instances that are indiscernible from x and that are in the same
class as x. However, if we have a closer look at Equation (15),
we see that this value is always 1: there always exists at least
one instance that is indiscernable from x and that is in the
same class as x, namely x itself. Therefore, we slightly adapt
the definition of the upper approximation and use the following
quality measure QU :

∀x ∈ X : QU (x) = sup
y∈X\{x}

T (Ind(x, y), [x]d(y)). (16)

This measure can also be rewritten as follows:

∀x ∈ X : QU (x) = sup
y∈[x]d\{x}

Ind(x, y). (17)

That is, QU is high for x if there are instances (different from
x) of the same class as x that are indiscernible from x.
Both QL and QU are interesting to measure the quality of
instances. Therefore, we also consider QLU , defined as:

∀x ∈ X : QLU (x) = QL(x) +QU (x). (18)

This measure combines the two ideas captured in QL and QU :
the instance x is of high quality if there are instances from the
same class indiscernible from it, and if the instances that are
from a different class are indiscernible from it.



Although QL, QU and QLU seem to be good quality measures,
they are highly susceptible to noise. E.g., when there is one
instance y that is falsely labeled d(y) = d(x) and y is
indiscernbile from x, then the quality QU (x) will be high,
based on this single mislabeled instance y alone.
To overcome this weakness, we will use OWA fuzzy rough sets
[10] instead of classical fuzzy rough sets. The main reason why
classical fuzzy rough sets are susceptible to noise is that they
use the infimum and supremum operators. In OWA fuzzy rough
set theory, these operators are replaced by OWA operators [11].
Recall that, given a weight vector W = 〈w1, . . . , wp〉, the
OWAW operator aggregates p values {a1, . . . , ap} as follows:

OWAW (a1, . . . , ap) =

p∑
i=1

wibi, (19)

where bi = aj if aj is the ith largest value in {a1, . . . , ap}.
The idea is that the weights W are associated to ordered
positions: the higher values in {a1, . . . , ap} are assigned to the
first weights in W , the lower values are associated with the last
weights in W . Note that the OWA operator is a model for many
standard aggregation operators. E.g., when W = 〈0, . . . , 0, 1〉
is used, OWAW is the minimum operator, and OWAW with
W = 〈1/n, . . . , 1/n〉 is the average operator.
The OWA operator can be used to soften the infimum and
supremum operator. The supremum operator is the OWAW

operator with W = 〈1, 0, . . . , 0〉. To make this operator less
strict, we can use a weight vector Wsup with a decreasing range
of weights. As a result, lower values will get lower weights
than higher values, but are not totally ignored. Moreover, the
final aggregation will take into account all values and does not
depend on a single value. The weights that we will use in this
paper are Wsup = 〈w1, . . . , wp〉 with

∀i ∈ {1, . . . , p} : wi =
2(p− i+ 1)

p(p+ 1)
. (20)

Completely analogously, we can define a soft infimum operator
OWAWinf

where Winf = 〈w1, . . . , wp〉 with

∀i ∈ {1, . . . , p} : wi =
2i

p(p+ 1)
. (21)

The resulting OWA fuzzy lower approximation is given by:

∀x ∈ X : (Ind ↓OWA S)(x) = OWAWinf
I(Ind(x, y), S(y))︸ ︷︷ ︸

y∈X

,

(22)
the OWA fuzzy upper approximation is defined by:

∀x ∈ X : (Ind ↑OWA S)(x) = OWAWsup
T (Ind(x, y), S(y))︸ ︷︷ ︸

y∈X

.

(23)
To measure the quality of instances using the OWA lower and
upper approximation, we use the following definitions:

∀x ∈ X : QOWA
L (x) = (Ind ↓OWA [x]d)(x) (24)

and
∀x ∈ X : QOWA

U (x) = (Ind ↑OWA [x]d)(x) (25)

Again, we can combine both definitions to define QOWA
LU :

∀x ∈ X : QOWA
LU (x) = QOWA

L (x) +QOWA
U (x) (26)

Summarizing, we introduced the following six quality mea-
sures to measure the quality of instances x ∈ X:

• QL(x) = inf
y∈X
I(Ind(x, y), [x]d(y))

• QU (x) = inf
y∈X
T (Ind(x, y), [x]d(y))

• QLU (x) = QL(x) +QU (x)

• QOWA
L (x) = OWAinfI(Ind(x, y), [x]d(y))︸ ︷︷ ︸

y∈X

• QOWA
U (x) = OWAsupT (Ind(x, y), [x]d(y))︸ ︷︷ ︸

y∈X

• QOWA
LU (x) = QOWA

L (x) +QOWA
U (x)

B. Quality, Similarity and Frequency Based Fuzzy Nearest
Neighbor (QFSNN) Classification

Using the quality measures discussed in the previous
subsection, we now introduce a method to improve the fuzzy
nearest neighbor classification.
To classify a test instance t, our method, QFSNN, first
determines the K nearest neighbors NN of t among the
training instances using the Euclidean distance measure, and
then calculates three measures for each neighbor x ∈ NN :

• The quality Q(x) of x, using one of the quality
measures described in the previous subsection.

• The frequency F (x) of the class of x among the
instances in NN . That is, if the class of x is C and
there are n instances in NN with class C, then the
frequency F (x) is given by n

K .

• The similarity S(x) = R(x, t) between x and t,
using the similarity measure proposed by Keller, as
in Equation (2).

These three aspects of the nearest neighbors are all important
for the classification. In [3], they were combined by multi-
plying the corresponding measures, but that approach did not
significantly improve the accuracy. A reason for that might
be that some aspects can be more important than others. We
illustrate this in Figure 1, where a two-class classification
problem is shown. Graphically, it is clear that the test instance
t should be assigned to the grey dot class. However, if we
apply state-of-the-art methods to this example with K = 7,
they will all return the black dot class. KNN returns the black
dot class because 4 out of the 7 nearest neighbors belong to
the black dot class. FNN also takes into account the similarity
between the test instance t and the nearest neighbors, but as
some of the black dot class neighbors are almost equally close
to t as the grey dot class neighbors, and there is one black dot
class neighbor more, FNN will return the black dot class as
well. POSNN also takes into account the quality of the nearest
neighbors. Using the fuzzy rough quality measure, the black
dot classes will be favored, as they are surrounded by many
instances of their class. As a result, two out of three aspects
that POSNN takes into account, namely frequency and quality,
favor the black dot class, so it is very likely that POSNN will
assign the test instance to the black dot class. It is clear that
in this example, the similarity is a more important aspect than



Fig. 1. Example of a two-class classification problem where KNN, FNN and
POSNN assign the test instance t to the black dot class, and QFSNN assigns
t to the grey dot class (K = 7).

the frequency or quality. For that reason, we associate a weight
with each of the aspects and obtain the following evaluation
measure E(x) for an instance x:

E(x) = wQQ(x) + wFF (x) + wSS(x) (27)

Our method QFSNN will return the class of the nearest
neighbor x ∈ NN for which E(x) is maximal.
The question remains of course which weights to use for the
evaluation function. To that goal, we consider a set of triplets of
weights, and calculate the training accuracy corresponding to
each triplet using a leave-one-out approach. The triplet that we
use for the final classification will be the triplet corresponding
to the highest training accuracy.
The triplets of weights that we use are constructed as follows.
We consider a certain range r ∈ N and consider all possible
triplets of weights where wQ, wF , wS ∈ {1, . . . , r}.
The procedure to calculate the training accuracy corresponding
to a given triplet of weights is listed in Algorithm 1. For each
training instance x, the nearest neighbors are calculated. Of
course, the instance x is excluded from the possible nearest
neighbors. Next, the nearest neighbors are evaluated using the
function E with the given triplet of weights, and the algorithm
keeps track of the nearest neighbor with the highest evaluation.
If this nearest neighbor has the same class as the training
instance, the training instance is classified correctly using these
weights, and the accuracy is raised by one. The final accuracy
returned is the number of correctly classified training instances
divided by the total number of training instances.

IV. EXPERIMENTAL EVALUATION

In this section we evaluate the QFSNN classifier. We first
discuss the set-up of the experiments and then present the
results.

A. Experimental Set-Up

To evaluate QFSNN, we use 40 datasets from the KEEL
dataset repository1. The datasets are listed in Table IV, together
with the number of features, instances and classes they cover.
We apply 10 fold cross-validation, that is, each dataset is
divided into 10 folds. To classify the instances in a fold, the
remaining 9 folds are used as training data. The final accuracy
reported for each dataset is the average accuracy over all folds.

1www.keel.es

Algorithm 1 Algorithm to calculate the training accuracy
corresponding to a triplet of weights using the leave-one-out
procedure.

1: input: Training instances X , parameter K, triplet of
weights (wQ, wF , wS).

2: Acc← 0
3: for x ∈ X do
4: NN ← K nearest neighbors of x in X \ {x}
5: MaxE ← 0
6: MaxN ← null
7: for y ∈ NN do
8: if E(y) = wQQ(y) + wFF (y) + wSS(y) ≥ MaxE

then
9: MaxE ← E(y) = wQQ(y) +wFF (y) +wSS(y)

10: MaxN ← y
11: end if
12: end for
13: if Class(y) == Class(MaxN) then
14: Acc← Acc+ 1
15: end if
16: end for
17: Output Acc/|X|

We use the folds that can be found on the KEEL website.
We recall that we can measure the quality of the instances
using the lower (QL), upper (QU ) or sum of lower and upper
(QLU ) fuzzy rough approximation. Moreover, we can use the
classical definition or the OWA extension (QOWA

L , QOWA
U ,

QOWA
LU ). We use 5 different ranges r for training QFSNN: 5,

10, 20, 50 and 100.

B. Results

In this section we present the results obtained performing
the experiments described in the previous subsection. The first
aspect that we want to discuss is which method is most suited
to measure the quality of the instances. First, we study if
using the OWA extension is beneficial. In Figure 2, we show
the average accuracy over all datasets of the QFSNN method,
using range r = 20.
In the upper figure, we compare the accuracy results of
QFSNN using QL and QOWA

L for measuring the quality of the
instances. For lower values of K, the OWA extension improves
the results clearly, when K increases, the difference is smaller.
In the next figure, we study the difference in accuracy between
QFSNN using QU or QOWA

U for the quality measure. We can
make the same conclusion as for QL and QOWA

L . The OWA
extension improves QFSNN, and the differences are smaller for
higher values of K. Note that the OWA extension influences
the results more than for the lower approximation.
In the last figure, the accuracy results for QLU and QOWA

LU are
shown. Again, the OWA extension improves the accuracy of
QFSNN. For high values of K, the differences are smaller, for
low values of K, the OWA extension improves the accuracy
of QFSNN to a greater extent.
We conclude that the OWA extension improves the accuracy
of the QFSNN classifier. We only showed the results for
range r = 20, but the results for other ranges are similar.
In the remainder of this work, we will only consider the OWA
extension of the fuzzy rough approximation to measure the
quality of the instances in the QFSNN classifier.



Next, we study which strategy is best to measure the quality of
instances: using the lower, upper fuzzy rough approximation
or the sum of both. In Table I, we show the average accuracy
results over all datasets for different values of K. We now
distinguish between different ranges for r because the trends
are different for different values of r. For each range r and
value K, the best result is highlighted.
Except for some ranges and values of K, QOWA

L has the
worst results, although the differences are not large. In general,
QOWA

U performs well for low values of K, and QOWA
LU

performs better for high values of K.
In the remainder of the discussion we will use QOWA

LU to
measure the quality of the instances, as the results of QFSNN
are slightly more often better when using this quality measure.
Another aspect that we are interested in is which range is
better. When the range r is higher, the running time is of
course longer, so we prefer to use low values of r. In Table I
We see that a higher value of r does not automatically lead to
better accuracy values, on the contrary, for r = 50 or r = 100
the results are mostly worse than for lower ranges r. This is
probably due to overfitting. In general, the results are best for
r = 10, so we will use this range in the remainder of this
paper.
Finally, we of course want to know if we succeeded in
improving the FNN classifier. We use QFSNN where QOWA

LU is
used to measure the quality of the instances and where range
r = 10 is used to train the weights. We compare QFSNN
against KNN and FNN for different values of K in Figure 3.
The accuracy results are shown in Table IV for K = 3. Due to
space constraints we cannot show the results for other values
of K.
We see that QFSNN, POSNN and FNN clearly improve KNN.
Moreover, QFSNN is better than FNN and POSNN for all
values of K. The difference is bigger for lower values of K.
To test if the differences between FNN and QFSNN are
significant, we perform the statistical Wilcoxon test [12]. This
is a non-parametric pairwise test that aims to detect significant
differences between two sample means; that is, the behavior
of the two implicated algorithms in the comparison. For each
comparison we compute R+, the sum of ranks of the Wilcoxons
test in favor of QFSNN, R-, the sum of ranks in favor of FNN,
and also the p-value obtained for the comparison. The observed
values of the statistics are listed in Table II. We perform the
test at the 10 percent significance level.
QFSNN is significantly better than FNN for K = 3 and
K = 4. For the other values of K, we previously showed
in Figure 3 that QFSNN is better on average then FNN, but
this result is not significant.

C. Time complexity

It can be verified that, when n is the number of instances
and m the number of attributes, the time complexity for
classifying one test instance using KNN, FNN and POSNN
is O(nm). When l is the number of test instances, the time
complexity for the whole test dataset is O(nml).
Unfortunately, the increase in accuracy of QFSNN comes with
an increase in time complexity. When r is the range, the
number of considered triplets is r3. For each triplet, each
of the n training instances has to be classified. Classifying
one training instance has time complexity O(nm), so the total
time complexity to train the weights of QFSNN is O(r3n2m).

Fig. 2. Average accuracy of QFSNN with range r = 20 over all datasets
for different values of K, comparing fuzzy rough approximations with their
OWA extensions.

Fig. 3. Average accuracy of QFSNN with range r = 10 and using QOWA
LU

for the quality measure, FNN and KNN over all datasets for different values
of K.



TABLE I. AVERAGE ACCURACY OF QFSNN OVER ALL DATASETS FOR DIFFERENT VALUES OF K AND r, COMPARING THE QUALITY MEASURES
QOWA

L , QOWA
U AND QOWA

LU .

K 3 4 5 6 7 8 9 10

r = 5 QOWA
L 0.7890 0.7941 0.7952 0.7943 0.7970 0.7966 0.7938 0.7938

QOWA
U 0.7893 0.7923 0.7967 0.7984 0.7977 0.7939 0.7921 0.7942

QOWA
LU 0.7903 0.7928 0.7960 0.7965 0.7992 0.7946 0.7947 0.7947

r = 10 QOWA
L 0.7901 0.7944 0.7948 0.7960 0.7986 0.7950 0.7930 0.7925

QOWA
U 0.7906 0.7944 0.7968 0.7985 0.7974 0.7940 0.7936 0.7951

QOWA
LU 0.7906 0.7930 0.7960 0.7973 0.7984 0.7947 0.7943 0.7955

r = 20 QOWA
L 0.7899 0.7944 0.7951 0.7945 0.7980 0.7941 0.7939 0.7920

QOWA
U 0.7899 0.7937 0.7968 0.7979 0.7977 0.7950 0.7938 0.7943

QOWA
LU 0.7905 0.7923 0.7968 0.7960 0.7984 0.7962 0.7958 0.7956

r = 50 QOWA
L 0.7885 0.7934 0.7958 0.7952 0.7968 0.7935 0.7942 0.7937

QOWA
U 0.7910 0.7929 0.7959 0.7968 0.7977 0.7944 0.7952 0.7942

QOWA
LU 0.7904 0.7921 0.7971 0.7951 0.7984 0.7949 0.7958 0.7948

r = 100 QOWA
L 0.7891 0.7943 0.7962 0.7941 0.7969 0.7944 0.7939 0.7935

QOWA
U 0.7900 0.7929 0.7965 0.7961 0.7970 0.7946 0.7935 0.7941

QOWA
LU 0.7893 0.7922 0.7964 0.7954 0.7974 0.7953 0.7959 0.7940

KNN 0.7518 0.7522 0.7561 0.7555 0.7566 0.7537 0.7479 0.7482

FNN 0.7769 0.7854 0.7906 0.7920 0.7954 0.7905 0.7912 0.7914

POSNN 0.7630 0.7713 0.7762 0.7783 0.7813 0.7800 0.7808 0.7807

TABLE II. OBSERVED VALUES OF THE NON-PARAMETRIC WILCOXON TEST FOR THE DIFFERENT VALUES OF K , COMPARING QFSNN TO FNN.

K 3 4 5 6 7 8 9 10
R + 537 535 476.5 499.5 419.5 446.5 441 448.5
R - 283 285 343.5 320.5 360.5 333.5 379 331.5
p-value 0.086 0.091 0.368 0.226 0.675 0.426 0.671 0.41

TABLE III. RUNNING TIMES FOR KNN, FNN, POSNN AND QFSNN
OVER ALL DATASETS

Method Running time (in s)
KNN 167
FNN 170
POSNN 303
QFSNN, QOWA

LU , r = 5 374
QFSNN, QOWA

LU , r = 10 386
QFSNN, QOWA

LU , r = 20 445
QFSNN, QOWA

LU , r = 50 923
QFSNN, QOWA

LU , r = 100 4347

After the weights are determined, classifying all test instances
has time complexity O(nml). The total time complexity of
QFSNN is O(nm(l + r3n)).
In practice, however, the running time of QFSNN is acceptable
for low values of r. In Table III, we show the running
times needed to apply KNN, FNN, POSNN and QFSNN with
different values for r to all 40 datasets. Recall that QFSNN
with r = 5 and r = 10 lead to the best accuracy results. Their
running times are only double of the running times of KNN
and FNN. For higher values of r, the running time increases
drastically.

V. CONCLUSION AND FURTHER WORK

In this work we introduced a new nearest neighbor clas-
sifier, QFSNN. When classifying a test instance, it considers
three aspects to evaluate its nearest neighbors. As in KNN,
it considers the frequency of the classes among the nearest

neighbors, and as in FNN, it considers the similarity between
the test instance and the neighbors. In addition, it also measures
the quality of the nearest neighbors, using six measures based
on (OWA) fuzzy rough set theory. These three aspects are
combined by weighting them, the weights are optimized using
a leave-one-out training procedure.
An experimental study shows that our method, QFSNN, im-
proves the state-of-the-art nearest neighbor classifiers KNN
and FNN. QFSNN is significantly better than FNN for low
values of K.
In this work, we used a fixed weight vector for the OWA fuzzy
rough quality measures, but in the future we want to investigate
other weightings and automatic data-driven determination of
weights. Another path we would like to explore in the future
would be to test the performance of QFSNN for prediction
tasks.
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