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Abstract

Fuzzy rough set theory models both vagueness and indiscernibility in data,

which makes it a very useful tool for application to various machine learning

tasks. In this paper, we focus on one of its robust generalisations, namely or-

dered weighted average based fuzzy rough sets. This model uses a weighted

approach in the definition of the fuzzy rough operators. Although its efficacy

and competitiveness with state-of-the-art machine learning approaches has been

well established in several studies, its main drawback is the difficulty in choosing

an appropriate weighting scheme. Several options exist and an adequate choice

can greatly enhance the suitability of the ordered weighted average based fuzzy

rough operators. In this work, we develop a clear strategy for the weighting

scheme selection based upon the underlying characteristics of the data. The ad-

vantages of the approach are presented in a detailed experimental study. Rather

than to propose a classifier, our aim is to present a strategy to select a suitable

weighting scheme for ordered weighted average based fuzzy rough sets in gen-

eral. Our weighting scheme selection process allows users to take full advantage

of the versatility offered by this model and performance improvements over the

traditional fuzzy rough set approaches.
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1. Introduction

Uncertainty is a pervasive problem in real-world data. Any machine learning

method applied to such data must have a mechanism to handle it effectively.

One particular way to do so is to use a mathematical tool that models uncer-

tainty. Fuzzy rough set theory [12] offers such advantages. It was proposed as5

a hybrid form of fuzzy set theory [47] and rough set theory [26] and its central

idea is the approximation of fuzzy concepts by means of two fuzzy sets: the

fuzzy rough lower and upper approximations. The main limitation of the origi-

nal fuzzy rough set model is its high sensitivity to noise. In order to address this

shortcoming, several noise-tolerant fuzzy rough set models have been proposed10

in the literature (e.g. review [18]). Both the traditional model and its later ex-

tensions have been used successfully in many different areas of machine learning

[37], such as feature selection, instance selection, classification and clustering.

Context. In this paper, we focus on one of these robust extensions: ordered

weighted average (OWA) based fuzzy rough sets [10]. It addresses the noise sen-15

sitivity problem of the traditional model by replacing the strict minimum and

maximum in its fuzzy rough approximation definitions by appropriate OWA ag-

gregations [44], which represent softened versions of these operators. We focus

on this model because: (i) it was identified as the most interesting among the al-

ternatives compared in [11] and (ii) it has been employed with success for several20

machine learning tasks, such as imbalanced classification [28, 35, 41], instance

selection [33] and missing value imputation [1]. These methods rely on the

OWA-based fuzzy rough approximation operators to make class predictions or

derive instance or feature quality measures. Although the effectiveness of OWA-

based fuzzy rough sets for such techniques has been clearly demonstrated and25

methods using this model have been shown to outperform the state-of-the-art in

these domains, it is not as widely adopted as it could be. We suspect that one

of the reasons for this is the requirement to specify the OWA weighting scheme,
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the crucial component of this model defining the weights used in its fuzzy rough

approximation operators. Several options for these weights are encountered30

in the literature. However, to date, there are no documented guidelines on

which weighting scheme should be chosen within OWA-based fuzzy rough sets.

The need for a data-driven weighting scheme selection has been pointed out in

e.g. [35] and the optimal choice indeed depends on the data at hand.

Aim. In this work, we remedy exactly this situation and provide a transparent35

strategy for the weighting scheme selection process. Our research belongs to the

domain of meta-learning [24] and we study several existing weight definitions and

offer explanations as to why some definitions are preferred over others in specific

situations. This paper resolves the missing link in the literature between the

theoretical foundations and practical applications of OWA-based fuzzy rough40

set theory. In this way, we make OWA-based fuzzy rough set theory more

accessible to other researchers by removing the often cumbersome weighting

scheme selection step. Since it is based on simple dataset properties, there is no

true increase in computational cost by following our proposed strategy.

Methodology and contributions. In the experimental evaluation, we compare five45

different weighting schemes. These include four data-independent versions used

in previous studies and a new data-dependent setting proposed in this paper.

By including a data-dependent version, we can assess whether considering the

underlying data distribution can benefit the OWA-based fuzzy rough model.

We will show that this setting is useful overall and also the preferred choice50

for some challenging datasets, such as those containing only nominal-valued

features. Our evaluation demonstrates that no weighting scheme stands out

in general, such that no single approach can be selected as a default setting.

This reinforces the importance of our proposed selection strategy, that specifies

which scheme is preferred in which particular situation. We provide intuitive55

but thorough explanations for the behaviour of the five schemes. This offers

further insight into the mechanisms which underpin OWA-based fuzzy rough

sets, a second fundamental contribution of this work. Some conclusions drawn
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in this paper are expected to transfer to other applications of OWA operators

(including multi-criteria and multi-person decision making [46]) as well, where60

the weight selection process is always a critical step.

Structure. The remainder of this paper is organized as follows. In Section 2,

we recall the definitions of both traditional and OWA-based fuzzy rough sets.

Section 3 defines the weighting schemes and offers a comparison between them.

In Section 4, we present our proposed strategy for the OWA weight selection65

process and discuss the benefits and limitations of the different schemes. An

important point is the validation of our proposal. This is carried out in Sec-

tion 5 and includes the essential evaluation on a series of independent datasets

and in different machine learning applications. Finally, Section 6 draws some

conclusions.70

2. OWA-based fuzzy rough sets

In this section, we recall the motivation and definition of OWA-based fuzzy

rough sets. Section 2.1 describes the traditional fuzzy rough set model and

Section 2.2 details the OWA-based generalization. Section 2.3 summarizes how

the OWA-based model has been used in various machine learning methods.75

2.1. Fuzzy rough set theory

Fuzzy rough set theory was proposed in [12] as a hybrid model of fuzzy set

theory [47] and rough set theory [26]. Both deal with uncertainty in data, but

from different perspectives. Fuzzy set theory models vague or ill-defined con-

cepts (e.g. the set of young people) by allowing partial memberships of objects80

to a set. Such a partial membership degree is a real number between 0 and 1,

where the two extremes are interpreted as either complete exclusion from or in-

clusion in the set. Rough sets manage data indiscernibility, the situation where

the observed features are insufficient to sharply delineate a concept. Rough set

theory approximates such an incomplete concept A in two ways. The lower85
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approximation groups all objects certainly belonging to A, while the upper ap-

proximation consists of objects possibly belonging to A.

Fuzzy rough set theory introduces fuzziness into rough sets and allows the

approximated concept as well as the lower and upper approximations to be

modelled as fuzzy rather than crisp sets. To measure the similarity between90

two objects, a fuzzy relation R(·, ·) is used. We consider the implicator/t-norm

fuzzy rough set model [27]. An implicator I : [0, 1]2 → [0, 1] is a fuzzy operator

that is decreasing in its first argument, increasing in the second and satisfies

the boundary conditions I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0. A

triangular norm (t-norm) T : [0, 1]2 → [0, 1] is a commutative and associative95

fuzzy operator that is increasing in both arguments and satisfies the boundary

condition (∀a ∈ [0, 1])(T (a, 1) = a). Let A be the (fuzzy) set to approximate.

The membership degree of x to the lower approximation of A is defined as

A(x) = min
y∈X

[I(R(x, y), A(y))], (1)

where X is the full dataset. The membership degree to the upper approximation

is given by100

A(x) = max
y∈X

[T (R(x, y), A(y))]. (2)

In this paper (and others using fuzzy rough set theory in machine learning),

the set A corresponds to a decision class and is therefore non-fuzzy. The values

A(·) can only be 1 or 0, depending on whether or not an element belongs to A.

Taking this into account, expression (1) can be rewritten as

A(x) = min
y∈X

[I(R(x, y), A(y))]

= min

[
min
y∈A

[I(R(x, y), 1)],min
y/∈A

[I(R(x, y), 0)]

]
= min

[
1,min

y/∈A
[I(R(x, y), 0)]

]
= min

y/∈A
[I(R(x, y), 0)]

= min
y/∈A

[NI(R(x, y))], (3)

where NI : [0, 1] → [0, 1] is the induced negator of I, defined as (∀a)(NI(a) =105

I(a, 0)). In this derivation, we have used the fact that (∀a)(I(a, 1) = 1), which

5



is due to the boundary condition I(1, 1) = 1 and the implicator being decreasing

in its first argument. In a similar way, expression (2) reduces to

A(x) = max
y∈A

[R(x, y)]. (4)

The fuzzy relation used in this paper is defined as follows. Let x and y be

two elements in the dataset and F the feature set. The similarity between x110

and y is computed as

R(x, y) =
1

|F|
∑
f∈F

Rf (x, y). (5)

The relation Rf (·, ·) measures the similarity between elements based on feature

f . For a numeric feature, this relation is defined as Rf (x, y) = 1 − |xf−yf |
range(f) ,

where xf and yf are the values of x and y for feature f and the denominator

range(f) is its range. When f is a nominal feature, we set Rf (x, y) to 1 when115

xf = yf and to 0 otherwise. We have selected relation (5) because it has shown

a good behaviour in related studies (e.g. [11, 28, 32]). Some alternatives can be

found in e.g. [20]. As we will argue in Section 4.5, we believe that the conclusions

drawn in this paper carry over to those settings as well.

2.2. OWA-based model120

As evident from (3) and (4), the fuzzy rough approximations A(x) and A(x)

depend on the similarity of x with a single element y. This makes the traditional

fuzzy rough set model highly susceptible to noise. Several noise-tolerant fuzzy

rough set models have been proposed in the literature, including fuzzy variable

precision rough sets [48], vaguely quantified fuzzy rough sets [9], β-precision125

fuzzy rough sets [18] and a data distribution aware model [3]. In this paper, we

turn our attention to OWA-based fuzzy rough sets [10], which have been shown

to be a preferred alternative among noise-tolerant models [11, 39]. The noise

sensitivity of (3) and (4) is addressed by replacing the min and max operators

in these definitions by ordered weighted average (OWA,[44]) aggregations.130

Definition 1. Given a set of values V = {a1, a2, . . . , ap} and a weight vector

W = 〈w1, w2, . . . , wp〉 with (∀wi)(wi ∈ [0, 1]) and
∑p

i=1 wi = 1. The OWA
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aggregation of V using weight vector W is defined as OWAW (V ) =
∑p

i=1(wibi),

where bi is the ith largest value in V .

As Definition 1 indicates, the first step in an OWA process is to sort the135

values which are to be aggregated. Afterwards, the weights in W are assigned

to the values in the ordered sequence and a weighted average is computed. In the

OWA-based fuzzy rough set model, the minimum and maximum in (3) and (4)

are replaced by appropriate OWA aggregations with weight vectors WL and WU

respectively, such that orness(WU ) ≥ 1
2 ≥ orness(WL). The orness measure is a140

value between 0 and 1 and expresses how similar the weight vector is to the strict

maximum. The membership degree to the lower approximation is computed as

A(x) = OWAWL
({NI(R(x, y) | y /∈ A}). We use the standard negator (NI(x) =

1− x), which is the induced negator of such popular implicators as the Kleene-

Dienes,  Lukasiewicz and Reichenbach implicators [22]. Consequently, we derive145

A(x) = OWAWL
({1−R(x, y) | y /∈ A}). (6)

For the upper approximation, we find

A(x) = OWAWU
({R(x, y) | y ∈ A}). (7)

By actively including more than one element y in the calculation of A(x) and

A(x), the sensitivity to noise and outliers is reduced. This results in the su-

perior noise-tolerance of the OWA-based fuzzy rough set model compared to150

the traditional one. Most commonly, WL consists of increasing weights, such

that the largest weight is associated with the minimum, thereby softening the

min operator. For the same reason, WU usually contains decreasing weights. A

so-called weighting scheme provides the definitions of WL and WU . We list and

discuss several alternatives in Section 3.155

2.3. Applications

The survey paper [37] discusses applications of fuzzy rough set theory in

various machine learning domains. As noted in the introduction, the OWA-

based model has been used in, among others, classification, instance selection
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and missing value imputation. These methods internally rely on the OWA-based160

approximations (6) and (7).

• Classification: in [28] and [41], classifiers for imbalanced data were de-

veloped, focusing on two-class imbalanced datasets. They compute the

membership degree of a target instance to the OWA-based lower approx-

imation of both classes and assign it to the class for which the derived165

value is largest. The proposed methods deal with the class imbalance

problem by using class-dependent weighting schemes. The method of [28]

was extended to multi-class imbalanced classification in [38]. Recently, the

contribution of [36] proposed a multi-label classifier, applying an OWA-

based fuzzy rough neighbourhood consensus.170

• Instance quality: the proposals of [2], [33] and [35] compute the quality

of an instance based on its membership degree to the OWA-based lower

and upper approximations of its own class. In [35], the instance quality

values are used within a nearest neighbour classifier and assign a more

important vote to high quality instances in the class prediction step. The175

studies of [2] and [33] develop instance selection methods using wrapper

approaches.

• Missing value imputation: the authors of [1] proposed missing value

imputation methods based on the combination of three fuzzy rough set

models, including the OWA-based alternative, with a nearest neighbour180

classifier. The lower and upper approximations of classes are used inter-

nally in the nearest neighbour method, as done in [19].

3. OWA weighting schemes

Expressions (6) and (7) show that the OWA-based fuzzy rough lower and

upper approximations depend on weight vectors WL and WU respectively and185

the weighting scheme that defines them. We list some existing weight defini-

tions in Section 3.1 and introduce a new data-dependent version in Section 3.2.
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In Section 3.3, we offer a first comparison between the characteristics of the

different schemes.

3.1. Data-independent schemes190

Most weight definitions used in applications of OWA-based fuzzy rough sets

only depend on p, the length of the weight vector. We list four of them in this

section. For the lower approximation of A as defined in (6), p equals the size of

the complement of A. For the upper approximation (7), p equals the size of A.

In this section, for a fixed value of p, the vectors WL and WU are reversals of195

each other. Keeping this in mind, we only specify the definition of WL below.

Strict weights (Strict). As a first option, we include a weight setting that is equal

to the traditional model from Section 2.1, for which the lower approximation

weight vector is W strict
L = 〈0, 0, . . . , 0, 1〉. By only assigning a non-zero weight

to the last position, the exact minimum is obtained in (6). It should be clear200

that the traditional model (3) is indeed a special case of the OWA-based model.

Additive weights (Add). The weight vector for the lower approximation is given

by

W add
L =

〈
2

p(p+ 1)
,

4

p(p+ 1)
, . . . ,

2(p− 1)

p(p+ 1)
,

2

p+ 1

〉
. (8)

These weights are the normalized version of the vector 〈1, 2, . . . , p− 1, p〉. The

normalization was carried out to satisfy the conditions in Definition 1. Each205

weight wi+1 is obtained by adding the constant value 2
p(p+1) to the previous

weight wi. This means that every next value is assumed to have a constant

increase in its relevance to determine the aggregated value.

Exponential weights (Exp). The weight vector for the lower approximation is

given by210

W exp
L =

〈
1

2p − 1
,

2

2p − 1
, . . . ,

2p−2

2p − 1
,

2p−1

2p − 1

〉
. (9)

The weight wi+1 is determined by multiplying wi by the constant factor 2.

Every value is deemed twice as relevant for the aggregation as the previous one.
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Inverse additive weights (Invadd). The weight vector for the lower approxima-

tion is given by

W invadd
L =

〈
1

pDp
,

1

(p− 1)Dp
, . . . ,

1

2Dp
,

1

Dp

〉
, (10)

with Dp =
∑p

i=1
1
i , the pth harmonic number. This vector is the normalized215

version of 〈 1p ,
1

p−1 , . . . ,
1
2 , 1〉. For this setting, as opposed to the other two dis-

cussed above, the relation between wi and wi+1 depends on i. To obtain wi+1,

wi is multiplied with the factor p−i+1
p−i , which increases with i.

3.2. Data-dependent schemes

The four settings detailed in Section 3.1 only depend on the aggregation220

length and do not take the values to be aggregated into consideration. Although

equal-sized sets can contain very different values, the weights used to aggregate

them will be the same. In this section, we propose an alternative setting, called

Mult, which bases its weights on the values to be aggregated.

Let V = 〈v1, . . . , vn〉 be the sorted set of values to aggregate. This implies225

that vn is the smallest value among them. For any other value, its similarity

with vn can be computed as s(vi) = 1−|vi−vn|. Since all values in V belong to

the unit interval, all values s(vi) do so as well. Based on these similarity values,

we can define a function (for v1 to vn−1)

m(vi) =

1 if vi = vi+1,

s(vi) if vi 6= vi+1.

(11)

Mult constructs its weights from wn to w1, that is, from the largest to the230

smallest weight. As a first step, wn is set to 1. Next, wi is calculated by

multiplying wi+1 by the factor m(vi). The vector obtained by this procedure is

Wmult∗
L =

〈
n−1∏
i=1

m(vi),

n−1∏
i=2

m(vi), . . . ,m(vn−2) ·m(vn−1),m(vn−1), 1

〉
. (12)

In order to satisfy the conditions in Definition 1, the final vector Wmult
L is the

normalized version of Wmult∗
L .235
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As in Invadd, consecutive weights differ by a factor that depends on i. To

determine wi, weight wi+1 is multiplied by m(vi). By using m(vi) rather than

s(vi), we ensure that when the values vi and vi+1 are the same, they are assigned

the same weight. If the two values differ, wi+1 is multiplied by the factor s(vi).

This factor decreases when i decreases, because values earlier in the ordered240

sequence V are less similar to the minimum value vn. The decreasing factor

means that the weights drop more rapidly toward the beginning of the vector.

This is a desirable property, as we expect that the first values in V are far less

relevant to the aggregation (a softened minimum) than the later ones.

Mult is the only data-dependent weight setting included in our study. We245

can find some advances on learning OWA weights from data in the literature,

although not in the context of OWA-based fuzzy rough sets. In [25], an OWA

weight generation procedure is proposed that maximizes the dispersion of the

weights for a given orness value. An analytic solution is offered in [15]. An orness

value needs to be specified. Alternatively, the weights can be calculated when250

a number of samples, in the form of p values and their associated aggregation

outcome, are provided. Examples of this approach can be found in [4, 5, 14,

31, 45]. Although interesting, these methods are of no use to us here, because

we cannot train the weights with a given orness value or known aggregation

outcomes, simply because it is not clear how these parameters should be set.255

A dependent OWA weight vector was proposed in [43]. This method models

a weighted mean of the aggregation values instead of a minimum. The weight of

a value is related to its distance to the mean of all values. In [6], a cluster-based

OWA aggregation was proposed. To aggregate a set of values, the reliability of

each value to the entire set is evaluated based on a clustering of all values. A260

shortcoming of this procedure is its high computational cost as a result of the

clustering step. This was pointed out by [7], which proposed a more efficient

procedure to determine the reliability of a value. Like Mult, these methods

compute their weights based on the values to be aggregated. Nevertheless, we

cannot use them within the OWA-based fuzzy rough approximations, because265

they do not act as a softened minimum, but model averages instead.
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3.3. Weighting scheme comparison

We study five weighting schemes in this paper: the traditional model Strict,

the data-independent versions Add, Exp and Invadd and our data-dependent

proposal Mult. The computational complexity to aggregate p values with an270

OWA procedure is O(p log(p)) due to the cost of the sorting step. Sorting the

values is not required in Strict, such that its cost reduces to O(p).

In Figure 1, we illustrate the weights WL generated by the included alter-

natives for some sets with a small number of values to be aggregated. On the

horizontal axis, we plot the position of a value in the ordered sequence. The275

vertical axis represents the weight at a particular position. It is clear that these

weight vectors are used to soften the minimum, as they put more emphasis on

the higher positions in the ordered sequence, which correspond to lower values

(Definition 1). We remind the reader that Strict always assigns a weight 1 to

the last position and weight 0 to all others. This setting is not plotted.280

In Figures 1a and 1b, we compare the three data-independent settings (Add,

Exp and Invadd) for sets with size 5 and 10 respectively. As was clear from their

description, the additive weights take on the form of a straight line with slope

2
p(p+1) , while the exponential weights are taken from an exponential function

with base 2. The relative weight increase for Exp is the same in each step,285

that is, wi+1 is obtained by multiplying wi with a constant factor 2. For the

inverse additive weights, this relative increase becomes larger when the position

i increases. It is clear from Figures 1a and 1b that this results in higher weights

for the lower positions for Invadd compared to Exp. The exponential weights

cancel out the contribution of the values at the lowest positions (in particular290

when p is high), while Invadd always assigns them a non-negligible weight. This

is an important difference between these two settings, which will be discussed

further in Section 4. Add divides the weights more evenly across the positions

than any other setting. This may not always be beneficial. Especially when p is

large, the weight associated with the true minimum may be relatively too low.295

For large values of p, Add becomes closely related to a regular average.

We note that, due to the choice of negator in (6), the Strict and Exp settings

12
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(d) V2 = 〈1.0, 0.9, 0.8, 0.7, 0.6〉

Figure 1: Illustration of the different weight settings.

are related to a nearest neighbour approach. For Strict, the membership degree

of x to the lower approximation of A is computed as A(x) = miny/∈A[1−R(x, y)].

This procedure locates the nearest neighbour of x that does not belong to A.300

In Exp, the relation with a nearest neighbour technique is more subtle, but

is further pronounced as the aggregation length p increases. As stated above,

when p increases, Exp sets several of the lowest weights to zero. For example,

when p = 50, only 14 weights in the exponential vector are non-zero. This

means that only the 14 nearest elements to x that do not belong to A are used305

in the calculation of A(x). This nearest neighbour characteristic is one of the

important aspects which helps to explain the results presented in Section 4.
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Figures 1c and 1d compare Mult to Exp and Invadd. These alternatives

are related to each other in the sense that a weight can be obtained from the

previous or next one by multiplication. The factor in this multiplication is fixed310

in Exp, while it varies for Invadd and Mult. We consider two different value sets:

V1 = 〈0.9, 0.8, 0.5, 0.2, 0.1〉 and V2 = 〈1.0, 0.9, 0.8, 0.7, 0.6〉. As discussed above,

since V1 and V2 have the same size, the exponential and inverse additive do not

differ for these two aggregations. The Mult setting on the other hand uses the

values in V1 and V2 to determine its weights. The figures show that these are315

very different for V1 and V2 and closely follow the distribution of their values.

4. Weighting scheme selection strategy

In this section, we analyse the performance of the OWA-based lower approx-

imation predictor using the five weighting schemes described in Sections 3.1-

3.2. Section 4.1 lays out the details of our experimental study and Section 4.2320

presents an initial high-level comparison of the different OWA weighting schemes.

In Section 4.3, we divide the included datasets into eight groups, based on which

we can present a selection strategy for the OWA weighting scheme. We explain

the observed behaviour of the different weight settings in Section 4.4. Section 4.5

groups some remarks on our chosen approach.325

4.1. Experimental set-up

We compare the different weighting schemes within OWA-based fuzzy rough

sets in a classification setting. We follow [18] and use the lower approximation

operator as predictor. To classify an instance x, this classifier computes the

membership degree C(x) of this element for all classes C and assigns x to the330

class for which this value is highest. It uses expression (6) in this calculation,

setting weight vector WL to one of the five alternatives listed in Sections 3.1-

3.2. By doing so, we obtain experimental results of the Strict, Add, Exp, Invadd

and Mult weighting schemes showing how well they can separate natural groups

(classes) of observations. Note that the aim of this paper is not to propose a new335
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Table 1: Description of the 50 datasets used in the experiments. We list the number of features

(nFeat), the number of instances (nInst), the number of classes (nCl) and the IR. Together

with the number of features, we specify whether they are all nominal (Y) or not (N).

Name nFeat nInst nCl(IR) Name nFeat nInst nCl(IR)

abalone 8(N) 4174 28(689) page-blocks 10(N) 5472 5(175.46)

australian 14(N) 690 2(1.25) phoneme 5(N) 5404 2(2.41)

automobile 25(N) 159 6(16) pima 8(N) 768 2(1.87)

balance 2(N) 625 3(5.88) ring 20(N) 7400 2(1.02)

banana 2(N) 5300 2(1.23) saheart 9(N) 462 2(1.89)

bands 19(N) 365 2(1.7) satimage 36(N) 6435 6(2.45)

breast 9(Y) 277 2(2.42) segment 19(N) 2310 7(1)

bupa 6(N) 345 2(1.38) sonar 60(N) 208 2(1.14)

car 6(Y) 1728 4(18.62) spambase 57(N) 4597 2(1.54)

cleveland 13(N) 297 5(12.62) spectfheart 44(N) 267 2(38.56)

contra 9(N) 1473 3(1.89) splice 60(Y) 3190 3(2.16)

crx 15(N) 653 2(1.21) texture 40(N) 5500 11(1)

derma 34(N) 358 6(5.55) thyroid 21(N) 7200 3(40.16)

ecoli 7(N) 336 8(28.6) tic-tac-toe 9(Y) 958 2(1.89)

flare 11(Y) 1066 6(7.7) titanic 3(N) 2201 2(2.1)

german 20(N) 1000 2(2.34) twonorm 20(N) 7400 2(1)

glass 9(N) 214 6(8.44) vehicle 18(N) 846 4(1.1)

haberman 3(N) 306 2(2.78) vowel 13(N) 990 11(1)

heart 13(N) 270 2(1.25) wdbc 30(N) 569 2(1.68)

ionosphere 33(N) 351 2(1.79) wine 13(N) 178 3(1.48)

mammo 5(N) 830 2(1.06) winequal-r 11(N) 1599 6(68.1)

marketing 13(N) 6876 9(2.49) winequal-w 11(N) 4898 7(439.6)

monk-2 6(N) 432 2(1.12) wisconsin 9(N) 683 2(1.86)

mov lib 90(N) 360 15(1) yeast 8(N) 1484 10(92.6)

nursery 8(Y) 12690 5(2160) zoo 16(Y) 101 7(10.25)

classification method, but rather to develop a strategy to select the weighting

scheme for OWA-based fuzzy rough sets within machine learning algorithms in

general. Our conclusions transfer to other applications as well (see Section 5.4).

We evaluate the performance on 50 datasets (Table 1) by means of 10-fold

cross validation. The datasets and partitions were obtained from the KEEL340

repository at www.KEEL.es. For each dataset, we list the number of instances,

features and classes and specify whether all features are nominal (categorical)

or not. Along with the number of classes, we indicate the level of imbalance

between them with the imbalance ratio (IR). We compute this measure as the

15
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ratio of the sizes of the largest and smallest classes. For two-class datasets,345

this coincides with the measure traditionally used in studies on class imbalance

[29]. The classification performance of the fuzzy rough lower approximation is

evaluated by the balanced accuracy. This metric is defined as the mean of the

class-wise accuracies and is not negatively affected by class imbalance. Table 1

shows that several datasets are severely imbalanced. It is accepted within the350

machine learning community that the traditional global accuracy can provide

misleading results on such datasets and should therefore be avoided (e.g. [29]).

4.2. Preliminary performance comparison

The results for each dataset can be found in Tables 2 and 3. These tables

divide the datasets in several groups, which will be described in Section 4.3.355

The mean balanced accuracy of the fuzzy rough lower approximation predictor is

0.6693 (Strict), 0.6282 (Add), 0.6891 (Exp), 0.6867 (Invadd) and 0.6871 (Mult).

The strict model is the best setting for 11 datasets, Add for 8, Exp and Mult

for 9 and Invadd for 14. When we derive our weight selection strategy, we do

not wish to overfit these results by only focusing on the best setting for each360

dataset. Instead, we interpret any result that is within 0.05 of the best value as

acceptable and any other as poor. We can observe that Strict performs poorly

on 18 datasets, Add on 15, Exp on 12 and Invadd and Mult on 10.

Based on their average performance, we would conclude that (i) Exp, Invadd

and Mult are competitive weight settings and outperform Strict and (ii) Add365

does not work well. However, we observe that Exp, Invadd and Mult perform

poorly on at least one fifth of the datasets, meaning that it is not a good idea

to select one of these alternatives as a default option. It is also not prudent to

exclude Add from consideration, as it gives the best result on eight datasets.

Clearly, the optimal weighting scheme differs between datasets. The study of370

this phenomenon is our focus. Below, we discuss why certain weighting schemes

are preferred in specific situations and present a clear selection strategy.
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Table 2: Balanced accuracy results for the datasets in the first five groups of datasets.

Dataset Strict Add Exp Invadd Mult

Only nominal features

breast 0.4946 0.5908 0.5537 0.5826 0.5783

car 0.2459 0.3732 0.2638 0.3474 0.3892

flare 0.1971 0.4179 0.3107 0.4731 0.4274

nursery 0.2267 0.2276 0.2004 0.2268 0.2240

splice 0.5491 0.5972 0.5416 0.5737 0.5770

tic-tac-toe 0.5049 0.5902 0.5211 0.5658 0.5659

zoo 0.9229 0.8526 0.8883 0.8883 0.9621

Mean 0.4487 0.5214 0.4685 0.5225 0.5320

Perfectly balanced, low complexity (high Fisher score)

mov lib 0.8722 0.5889 0.8678 0.8500 0.8589

segment 0.9766 0.8433 0.9745 0.9494 0.9649

texture 0.9869 0.7596 0.9884 0.9664 0.9775

vowel 0.9939 0.6000 0.9859 0.9788 0.9869

Mean 0.9574 0.6980 0.9541 0.9361 0.9470

At least 30 features, at most 1000 instances

derma 0.9554 0.8844 0.9765 0.9689 0.9722

ionosphere 0.8777 0.7321 0.8684 0.8059 0.8311

sonar 0.8515 0.7962 0.8592 0.8928 0.8569

spectfheart 0.6165 0.6387 0.6295 0.7310 0.7100

wdbc 0.9507 0.9313 0.9655 0.9412 0.9473

Mean 0.8503 0.7965 0.8598 0.8679 0.8635

More than five classes, IR ≤ 10

glass 0.7106 0.4659 0.7130 0.6039 0.6236

marketing 0.2101 0.2307 0.2575 0.2701 0.2653

satimage 0.8946 0.6360 0.9026 0.8309 0.8707

Mean 0.6051 0.4442 0.6244 0.5683 0.5865

More than five classes, IR > 10

abalone 0.1116 0.0903 0.1150 0.1047 0.1364

automobile 0.7471 0.5243 0.6734 0.6550 0.6600

ecoli 0.7170 0.5598 0.7413 0.7381 0.7476

winequal-r 0.3616 0.2811 0.3590 0.3355 0.3561

winequal-w 0.4498 0.2567 0.4419 0.3863 0.4067

yeast 0.5181 0.3960 0.5359 0.5554 0.5564

Mean 0.4842 0.3514 0.4777 0.4625 0.4772

4.3. Proposed strategy

In Tables 2 and 3, the 50 datasets are divided into eight groups, based on

simple and easy-to-compute data characteristics. For each dataset, the highest375

value is printed in bold typeface and any value that is more than 0.05 lower
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Table 3: Balanced accuracy results for the datasets in the last three groups of datasets.

Dataset Strict Add Exp Invadd Mult

At most five classes, at most 4000 instances, IR ≤ 2

australian 0.7250 0.8730 0.7946 0.8675 0.8513

bands 0.7308 0.6509 0.7164 0.7173 0.6439

bupa 0.6160 0.6422 0.6498 0.6782 0.6696

contra 0.4030 0.4690 0.4374 0.4836 0.4604

crx 0.7715 0.8695 0.8326 0.8706 0.8650

heart 0.7808 0.8225 0.8058 0.8242 0.8117

mammo 0.7456 0.8205 0.8082 0.8214 0.8114

monk-2 0.7409 0.9052 0.9059 0.9171 0.8144

pima 0.6516 0.7014 0.6754 0.7040 0.6778

saheart 0.5853 0.6620 0.6104 0.6769 0.6315

vehicle 0.6942 0.5670 0.7082 0.6615 0.7006

wine 0.9631 0.9631 0.9673 0.9679 0.9679

wisconsin 0.9617 0.9301 0.9654 0.9497 0.9737

Mean 0.7207 0.7597 0.7598 0.7800 0.7599

At most five classes, at most 4000 instances, IR > 2

balance 0.5417 0.7576 0.6378 0.6528 0.7874

cleveland 0.3001 0.2919 0.2855 0.2820 0.2710

german 0.5619 0.6576 0.5750 0.5740 0.5629

haberman 0.5360 0.6363 0.5475 0.5651 0.5267

titanic 0.5211 0.6997 0.6812 0.7109 0.7083

Mean 0.4922 0.6086 0.5454 0.5570 0.5712

At most five classes, more than 4000 instances

banana 0.8728 0.7246 0.8929 0.8848 0.8975

page-blocks 0.7610 0.3198 0.7915 0.5506 0.5978

phoneme 0.8738 0.7730 0.8743 0.8165 0.8455

ring 0.7181 0.5000 0.6924 0.5139 0.5742

spambase 0.8987 0.8027 0.9091 0.8730 0.8447

thyroid 0.6219 0.5280 0.5928 0.5720 0.4340

twonorm 0.9462 0.9757 0.9619 0.9754 0.9723

Mean 0.8132 0.6605 0.8164 0.7409 0.7380

is underlined. Values that are not underlined are considered to correspond

to an acceptable alternative to the best setting. For each group of datasets,

one particular weighting scheme emerges as the best performing one. These

are framed in Tables 2 and 3. We do not only focus on the best performing380

settings, because we do not wish to overfit this data by proposing strategies

that are too specific. We encounter the following groups of datasets, along with

their corresponding recommended weighting schemes:
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1. Datasets with only nominal features: in our similarity relation (5),

the feature-wise similarity Rf (x, y) between elements x and y based on a385

nominal feature f can only be 0 or 1, depending on whether these elements

take on the same value for f . As a result of this lack of variety in similarity

values, we can expect that many elements are found at the same distance

of a given element. This renders a nearest neighbour approach unsuitable,

as reflected by the poor results obtained by Strict and Exp.390

Our Mult proposal is able to model the distinct staircase structure in the

values to be aggregated and guarantees that equal values are assigned

equal weights. Its data-dependent nature makes Mult an appropriate

choice for datasets with only nominal features, as evidenced by the re-

sults in Table 2. We recommend its use for this group. The results of Add395

and Invadd are close together and acceptable on average, but they both

perform poorly on at least one dataset. For Add, which fails on the flare

and zoo datasets, this is explained by the fact that these datasets have a

high number of classes (Section 4.4.1). When a small dataset with only

nominal features contains only a few classes, Add could be used.400

2. Perfectly balanced datasets with low complexity: this group con-

tains four datasets, for which all classes have the same size. They also have

a low data complexity, which can for instance be evaluated by the multi-

class Fisher discriminant score [17]. This metric is defined for datasets

with only numeric features. A higher value corresponds to a lower com-405

plexity. The four datasets in this group have scores of 2.5413 (mov lib),

15.6143 (segment), 10.2872 (texture) and 2.0389 (vowel), while the average

score of the datasets with only numeric features is 1.8451. We recommend

the use of Strict in this case. On these easy datasets, OWA-based fuzzy

rough sets do not have a clear advantage over the traditional model. By410

selecting Strict, the sorting step in the OWA aggregation is avoided. We

note that the additive scheme performs very poorly, but this is due to the

high number of classes in these datasets (Section 4.4.1). The complexity

condition for this group is crucial. For example, dataset mammo is almost
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balanced, but Strict gives a poor result. Its Fisher score is 0.4926.415

3. Datasets with at least 30 features and at most 1000 instances:

five datasets are included in this group. The mov lib dataset from group 2

could be included as well, because it contains 360 instances described by

90 features. We also note that these datasets have only numeric features.

Due to their high-dimensional nature, elements are pushed close together420

(empty space phenomenon). This implies that the values aggregated in

the OWA step are more similar to each other than expected in lower

dimensional datasets. Add clearly fails in this situation, since it is most

related to an average (Section 3.3). For each class, the values in the

aggregation will be very similar. If we combine them with a procedure425

similar to an average, the final values for all classes will be more or less

the same. As a result, the prediction by Add is close to a random guess.

The average results of Strict, Exp, Invadd and Mult are close together.

We recommend the use of Mult, because it does not perform poorly on

any of these datasets. The three other options sometimes give a bad430

result. Although Mult never obtains the highest balanced accuracy, it is

the safest choice. We developed Mult in such a way that its weights follow

the distribution of the values to be aggregated. We see the benefit of

this idea for these complex datasets, where the weights capture important

differences and can better discern between classes.435

4. Datasets with more than five classes and IR ≤ 10: we recommend

the use of Exp for this group (see Sections 4.4.1 and 4.4.3).

5. Datasets with more than five classes and IR > 10: the tradi-

tional model performs best and we recommend the use of Strict (see Sec-

tions 4.4.1 and 4.4.3).440

6. Datasets with at most five classes, at most 4000 instances and IR

≤ 2: for these small and balanced datasets, the inverse additive scheme

stands out as best performing. We observe that there is only one truly

bad weighting scheme for this group, namely Strict. These datasets are

relatively easy to handle, because they are not too large, do not have too445
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many classes and are not too imbalanced. This seems to be a setting in

which any OWA aggregation performs better than the strict model, as

there are no factors that can severely hinder the OWA procedure.

The four true OWA aggregations all provide relatively good results. Their

average balanced accuracies are not very different. Nevertheless, Add,450

Exp and Mult fail on some of these datasets, while Invadd never does.

Consequently, we advise the use of the latter for this group. We note that

Invadd has also come out as best general performing setting in previous

studies (e.g. [32, 40]) and its strength is most evident for this group of

datasets. From the 14 datasets in which Invadd attained the highest455

balanced accuracy, nine are contained in this group. When there are no

prior challenging factors (e.g. large size, many classes, class imbalance),

Invadd seems to be a good default choice.

7. Datasets with at most five classes, at most 4000 instances and

IR > 2: Add shows the best performance on this group of datasets. Their460

strength in the presence of class imbalance is explained in Section 4.4.3.

8. Datasets with at most five classes and more than 4000 instances:

when a dataset contains many instances, using exponential weights is a

good option. We explain this behaviour in Section 4.4.2.

We realise that the thresholds selected to create these groups may seem artificial,465

but they are based on the results in Tables 2 and 3 and will be justified in

Section 4.4 and validated in Section 5. The user can also relax these guidelines,

for instance by replacing ‘more than five classes’ by ‘many classes’, ‘at most

4000 instances’ by ‘a small dataset’ and so on. Our main priority is to capture

the general behaviour of the weight settings. In order to apply our proposed470

strategy in practice in a machine learning method using OWA-based fuzzy rough

sets, a weighting scheme selection step should be implemented before the main

algorithm. Based on the included easy-to-compute dataset characteristics, the

method would first evaluate whether the dataset at hand belongs to the first

group. If not, it verifies its membership to the second group and the third one475
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after that. When the dataset does not belong to any of the first three groups, the

method decides to which of the final five it belongs, which are mutually exclusive.

Having done so, the weight vector in (6) is set according to the weighting scheme

advised for the selected group and the main algorithm devised by the user can

be run. Examples of this approach are provided in Section 5.4.480

4.4. Explaining the observed behaviour

In this section, we answer some questions related to the observations made

above and that naturally arise when studying the results in detail. These pro-

vide further insight in the performance of the different weighting schemes. We

consider the following three challenges: a high number of classes (Section 4.4.1),485

a high number of instances (Section 4.4.2) and class imbalance (Section 4.4.3).

Our analysis contains several important take-away messages for researchers who

wish to use OWA-based fuzzy rough sets.

4.4.1. High number of classes

In this paper, we interpret a high number of classes as ‘more than five’. This490

concerns all datasets in groups 4 and 5 by definition. Apart from these, the

four datasets in group 2 all contain more than five classes as well. In group 1,

datasets flare and zoo have six and seven classes respectively and the derma

datasets from group 3 also contains six. In all, of the 50 datasets in Table 1,

a subset of 16 have more than five classes. The average balanced accuracy of495

the weight settings over these datasets are 0.6641 (Strict), 0.5242 (Add), 0.6707

(Exp), 0.6597 (Invadd) and 0.6733 (Mult). Strict obtains the best result for six

datasets, Mult and Exp each obtain the best result on four, while Invadd takes

first place on the remaining two. Add has a poor result on 14 out of the 16

datasets. The other four alternatives each fail on two datasets. The following500

questions need to be addressed:

1. Why does Add not perform well when the number of classes is high?

2. In datasets with many classes, why are Strict and Exp the preferred set-

tings?
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We provide an answer to these two questions in the separate paragraphs below.505

Question 1. Based on its mean balanced accuracy and the number of datasets

on which it performs poorly, Add is highly inferior to the other weight settings

(including Strict) when the number of classes is high. The reason for its bad

performance is that there is too little difference in the sets of values to aggregate,

that is, these sets have a high degree of overlap. Assume that there are six classes510

in the dataset (C1 to C6). In (6), the membership degree of x to Ci is computed

by aggregating the values 1 − R(x, y) for instances y in any of the five other

classes. This implies an overlap of four classes between the aggregation sets of

Ci and Cj . For example, C1(x) and C2(x) both use all values 1 − R(x, y) in

classes C3, C4, C5 and C6. The only difference between the value vectors of515

C1(x) and C2(x) is that the former uses class C2 and the latter class C1.

The increased expected overlap between the value vectors in the lower ap-

proximation aggregations holds for the OWA model in general and is not specific

for Add. Nevertheless, since Add assigns a large relative importance to all values

(Section 3.3), the high overlap implies that the aggregated values for the differ-520

ent classes will be close together. Consequently, the ability to discern between

classes decreases and prediction errors are made. Other weight settings are hin-

dered less by the overlap, because their weight distribution is highly different to

that of Add and places a clearer emphasis on the minimum (Section 3.3). On top

of the overlap problem, a high number of classes also implies an increase in the525

size of the sets to aggregate. When the additive weight vector becomes longer,

its behaviour approaches that of a regular average, which further accentuates

the issue that the values Ci(x) are not sufficiently distinct.

Question 2. In our strategy presented in Section 4.3, we recommend Strict or

Exp for datasets with more than five classes (groups 4 and 5). Table 2 shows530

that these are indeed the preferred configurations for such datasets in this study.

Although they have been computed over a larger set of datasets, the average

results listed at the beginning of this section confirm this.
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Aside from the poor performance of Add, Table 2 also indicates that Invadd

and Mult perform relatively less strongly on the datasets in groups 4 and 5.535

As explained in our answer to the previous question, when there are many

classes in the dataset, there is a large overlap between the value vectors in the

lower approximation computations. Although not to such an extent as Add, the

Invadd and Mult settings also assign non-negligible weights to all values to be

aggregated. As a result, they are also at risk for aggregated class approximation540

values that are too close to each other to adequately distinguish between them.

Mult outperforms Invadd, because its weights are set up to decrease more rapidly

going from right to left in the weight vector.

Strict and Exp are nearest neighbour approaches and only consider a small

portion of the values in their aggregation step. This helps them to avoid the545

overlap problem and explains why they are the preferred weight setting in this

situation. We make a further distinction between groups 4 and 5 based on the

degree of imbalance in the dataset. The reason why Strict is preferred over Exp

when the IR of a dataset is large is discussed in Section 4.4.3.

4.4.2. High number of instances550

In this study, we put the threshold of a high number of instances to 4000.

We realize that this is a small number in the big data era, but it is sufficiently

large considering the characteristics described in Table 1. There are 13 datasets

in our study with a size larger than 4000. These include the seven datasets

from group 8, marketing and satimage from group 4, abalone and winequal-w555

from group 5, nursery from group 1 and texture from group 2. The average

balanced accuracy of the weight settings on these datasets is 0.6594 (Strict),

0.5250 (Add), 0.6631 (Exp), 0.6132 (Invadd) and 0.6190 (Mult). Strict and Exp

are clearly preferable in this case and the latter is the overall best choice.

The difference between Strict and Exp on the one hand and Add, Invadd560

and Mult on the other is that the nearest neighbour nature of the former two

can cancel out the contribution of some instances (Section 3.3). For Strict, this

is always the case, as it has zero weights for all but one position. For Exp, zero
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weights occur when the length of the vector increases, when due to its rapid

(exponential) descent in weights from right to left in the vector WL, only a565

small portion of values are assigned non-zero weights.

A larger dataset size implies a larger length of the weight vectors. The

experimental results show that a nearest neighbour approach is more suitable for

this situation than a full OWA aggregation, which takes all values into account.

Add, Invadd and Mult lose some of their characteristics, because they insist on570

assigning some weight to all values. As the aggregation length becomes larger,

important values (i.e. those close to the minimum) are assigned increasingly

smaller weights to accommodate for this property, since OWA weights always

sum to one (Definition 1). This is most prominently noticeable in Add, where

the weight vector almost flattens out to a regular average.575

The reason why Exp is preferred over Strict is the same as why k-nearest

neighbour classification (kNN, with k > 1) is preferred over 1-nearest neigh-

bour classification. It is more robust against noise and makes more confident

predictions by relying on multiple near elements. Furthermore, weighted kNN

is often favoured over uniform kNN, because the former assigns relatively more580

importance to nearer neighbours in its predictions [13].

4.4.3. Class imbalance

We have used the IR of a dataset on two occasions in our weight selection

strategy: to make a distinction between groups 4 and 5 on the one hand and

between groups 6 and 7 on the other. In this section, we explain why the weight585

choice can depend on the IR of a dataset. We answer two questions:

1. In datasets with a low number of classes and instances, why is Add the

only good choice when the dataset is at least mildly imbalanced?

2. In datasets with many classes, why is Strict preferred in case of large

imbalance and Exp in case of small to mild imbalance?590

We discuss these two topics in separate paragraphs below.
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Question 1. This question pertains to datasets with at most five classes, at most

4000 instances and an IR of at least two. The latter implies that the largest

class is at least twice as large as the smallest class. In Table 3, five datasets have

been assigned to group 7. Aside from these, breast, car and splice from group 1595

and spectfheart from group 3 also have the properties listed above. The average

balanced accuracy of the weight settings on these 9 datasets is 0.4852 (Strict),

0.5826 (Add), 0.5240 (Exp), 0.5577 (Invadd) and 0.5679 (Mult). The additive

scheme attains the best average result and the highest number of wins (4 out of

9). Although Add appeared to be an inferior weight alternative in Section 4.2,600

it is clearly dominant on small, imbalanced datasets. We expect that the bad

performance of Strict and Exp is due to their relation to the nearest neighbour

classifier and the sensitivity of the latter to class imbalance.

Considering the results in more detail, we noticed that the other OWA alter-

natives often fall in the trap of class imbalance, that is, they assign instances to605

a majority class too easily. This implies a high accuracy for the majority class,

but severely lower accuracies for minority classes. Our use of the balanced ac-

curacy guarantees that a bad performance on small classes is not overshadowed

by a good one on large classes. Add usually has similar accuracy rates for all

classes in these datasets, reflected in its superior balanced accuracy values.610

Expression (6) shows that the membership degree to the lower approximation

of a class C is calculated by aggregating values based on elements that do not

belong to C. Assume that the dataset contains two classes C1 and C2 and that

the former is the majority class. Because of the above condition on the IR,

this means that C1 is at least twice as large as C2. To classify an instance x,615

the predictor computes two values: C1(x) = OWAWL
({1 − R(x, y) | y ∈ C2})

and C2(x) = OWAWL
({1 − R(x, y) | y ∈ C1}). Due to the difference in class

sizes, the first aggregation is taken over far less values than the second. The

largest influence of this fact is felt by Add. As discussed above, the longer the

additive weight vector becomes, the closer it is to a regular average. Since the620

aggregation lengths can be very different, the characteristics of Add on either

class can severely vary as well. The longer aggregation (C2(x)) will be far closer
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to an average of its values than the shorter one (C1(x)). This difference in the

treatment of classes is far less pronounced for the other OWA alternatives and

in Strict it is even non-existent. Here lies the key to why Add is preferred in625

the presence of class imbalance: its high sensitivity to the length of the vector

makes it process minority and majority classes very differently. It does not allow

for majority elements to dominate the minority elements. The contributions

of majority instances are almost averaged in the calculations, while those of

minority elements are aggregated with a truer OWA aggregation. A similar630

conclusion holds when there are more than two classes.

In summary, like many other classifiers, the lower approximation predictor

is sensitive to class imbalance. The additive weighting scheme inherently treats

majority and minority classes differently, which is why it is the preferred choice

here. We note that the work of [28] provides a more detailed study on appro-635

priate OWA weight vectors when dealing with two-class imbalanced datasets.

Question 2. This question relates to datasets with more than five classes. We

recommend to use Exp when the IR is at most 10 (group 4) and Strict otherwise

(group 5). In Section 4.4.1, we have already explained why Strict and Exp are

the best weight options for datasets with more than five classes. For datasets640

with a moderate IR, Exp is preferred over Strict for the same reason as given

in Section 4.4.2, namely the higher prediction confidence and robustness when

more than one near neighbour is used in the classification process. For a highly

imbalanced dataset, the strict model is a better option. This is due to the class

imbalance problem, which has a larger influence on kNN (with k > 1) than on645

1NN. Exp loses some of its strength when the imbalance becomes large.

4.5. Remarks on our approach

As explained in Section 4.1, we have used the prediction performance of

the OWA-based lower approximation to study the differences between the five

weighting schemes. Machine learning methods using OWA-based fuzzy rough650

sets mostly rely on this operator (Section 2.3), which makes our study highly
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relevant for practical applications. We have clearly explained the effects of the

weights in different situations. However, it is important to reflect on two aspects

affecting the classifier performance: our selection of the five weighting schemes

and similarity measure (5).655

Evaluated weighting schemes. Additional weighting schemes can be found in

the literature or devised by the reader. However, in light of the different prop-

erties exhibited by each scheme (Sections 3.1-3.3), we feel that we have made an

appropriate selection. When the reader wishes to assess the adequacy of their

custom weighting scheme within OWA-based fuzzy rough sets, they should be660

able to do so based on our discussion in Sections 4.3-4.4. We have based our-

selves on the general defining characteristics of the schemes, in particular in

Section 4.4, and our conclusions should carry over to other alternatives as well.

Instance similarity. We have chosen to fix the fuzzy relation measuring instance

similarity to expression (5). This is a reasonable and intuitive similarity mea-665

sure, which has been used in previous studies on fuzzy rough classifiers as well.

Alternatives exist, but we do not expect that our observations and conclusions

in Sections 4.3-4.4 will greatly change when a different (sensible) relation is used.

When an alternative similarity measure is more suitable for a particular dataset,

the performance of the classifier will improve, but we believe that the relative670

rankings of the weighting schemes will remain the same. Since we focus on the

latter aspect, optimizing the similarity relation is of secondary importance and

our default use of (5) is justified. Our conclusions in the previous sections are

not strongly based on the instance similarity values. Naturally, like the nearest

neighbour classifier, any fuzzy rough classifier may benefit from the application675

of metric learning [23]. A user that wishes to apply our simple classifier in a pre-

diction task can opt to use our guidelines in conjunction with a data-dependent

similarity measure derived with a metric learning technique.

5. Validation of the proposed strategy

We proceed with the validation of our proposal and do so in several steps:680
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1. Section 5.1: we first evaluate its performance on the 50 datasets in

Table 1.

2. Section 5.2: next, we compare our manually detected trends with those

extracted by a decision tree meta-learner.

3. Section 5.3: the third, important step is to validate the weight selection685

strategy on independent datasets that were not used in Section 4.

4. Section 5.4: finally, we consider two other applications aside from clas-

sification and show that our guidelines are useful in these settings as well.

We can analyse the difference in performance of our selection strategy and

the fixed weight definitions by means of the Wilcoxon test [42]. This non-690

parametric test compares the results of methods M1 and M2 on n datasets.

For each dataset, the difference in performance is computed by subtracting the

result of M2 from that of M1. Afterwards, these differences are ranked from

small to large in absolute value. The smallest difference is assigned rank 1, the

largest rank n. R+ and R− are computed as the sum of the ranks of the positive695

and negative differences respectively. A higher value of R+ is interpreted as a

better performance of M1 compared to M2. A test statistic and p-value can be

computed based on R+ and R−. When R+ > R− and the p-value is smaller

than the significance level α, it can be concluded that M1 performed significantly

better than M2 on this group of datasets. In this paper, we use α = 0.05.700

5.1. Data from Table 1

If we follow our proposed strategy to select a weight setting for the 50

datasets in Table 1, the mean balanced accuracy increases to 0.7109. This

is a noticeable increase compared to the highest value of 0.6891 in Section 4.2.

On 25 out of the 50 datasets, our weight selection strategy chooses the weight705

setting with the best performance. On the 25 remaining ones, an alternative for

which the balanced accuracy is at most 0.05 lower is chosen.

To verify whether the increase in balanced accuracy is statistically signifi-

cant, we use our proposal as M1 in the Wilcoxon test and compare its perfor-

mance to that of the five weight settings. The test shows that the proposed710
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strategy outperforms every weight setting with statistical significance. In par-

ticular, using each of the five alternatives as M2, we find p-values of 0.000071

for Strict (R+ = 1048.5, R− = 226.5), 0.00000041 for Add (R+ = 1127.0,

R− = 98.0), 0.000466 for Exp (R+ = 999.5, R− = 275.5), 0.002114 for Invadd

(R+ = 921.0, R− = 304.0) and 0.002074 for Mult (R+ = 956.0, R− = 319.0).715

This good behaviour is not unexpected, as our strategy was derived based on

the performance of the weight settings on these datasets. In Section 5.3, we

validate our proposed strategy on independent datasets.

5.2. Decision tree

Our selection strategy in Section 4.3 has been constructed manually. We720

decided that any result that is within 0.05 of the best value for a dataset is

acceptable. By doing so, we avoided overfitting our data and were able to

construct sufficiently general and understandable weight selection rules. We did

not aim to obtain the best overall result, but rather to avoid poor results.

Another option is to construct a meta-dataset, based on which the weight725

rules can be learned automatically. This dataset contains 50 entries, each corre-

sponding to one dataset. We can use the data characteristics used in Section 4.3

(e.g. number of classes) as features. The class label of an entry is the name of

the best performing weight setting for that dataset. To extract rules, a decision

tree can be trained on the meta-dataset. The resulting tree model can be used730

to assign a weight setting to a new dataset based on its characteristics.

Although it removes the subjective aspect of our manual derivation, a limi-

tation of this automated procedure is that there is no possibility to incorporate

the same flexibility as before and accept slightly sub-optimal results. Using the

meta-dataset corresponds to a different goal, namely to select the best weight735

setting as often as possible. The downside is that there is no safety net: if the

best setting is not selected, a very poor alternative may very well be chosen.

We have used the rpart function from the rpart package in R [30] to train

a decision tree on the meta-dataset. All parameters were set to their default

settings, apart from ‘minbucket’, which we set to four. For this value, the740
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Figure 2: Decision tree learned from the meta-dataset. For each internal node, the left child

fulfils the condition, the right child does not.

tree has eight leaf nodes. We deemed this appropriate, because we used eight

groups of datasets as well. As splitting features, the tree can select the number

of instances, the number of classes, the IR and whether or not there are only

nominal features in a dataset. Figure 2 presents the resulting decision tree.

The tree detects the same general trends as we did. Its first split is made on745

the number of classes. We interpreted up to five classes as a small number, but

the tree considers any number larger than two as high. An explanation may be

that many of our datasets consist of only two classes (24 out of 50).

In datasets with a small number of classes and many instances, Exp should

be used. We modelled this as well and explained this behaviour in Section 4.4.2.750

When both the number of classes and instances are small, Invadd is used when

the classes are more or less balanced and Add when they are not. This roughly

corresponds to groups 6 and 7 in Section 4.3. We used the threshold 2 to decide

when the imbalance is too large, the tree uses 2.22.

For datasets with only nominal features, the tree selects the additive scheme.755

Table 2 shows that Add indeed has the most wins on these datasets, but gives

a bad result on some of them as well. We compromised and selected Mult. The
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decision tree cannot do so, because it focuses on the best performing settings.

In datasets with a higher number of classes, we made a division based on

the IR. This does not happen in the decision tree. It groups all datasets with760

more than two classes in the right sub-tree, while we only considered the subset

of datasets with more than five classes. The tree again advises the use of Exp

when the dataset is large (see Section 4.4.2). Among the remaining datasets,

a distinction is only made based on the number of classes. Mult is used for

datasets with three, four or at least seven classes and Strict when there are five765

or six. This division seems somewhat artificial and cannot be easily explained.

The tree is probably overfitting the meta-dataset.

The mean balanced accuracy on the datasets in Table 1 using the weight

settings provided by the tree is 0.7089 and the best scheme is selected for 27

datasets. In Section 5.1, our weight scheme selection strategy selected the best770

setting on 25 datasets and attained a mean balanced accuracy of 0.7109. Al-

though it leads to fewer wins, its power to compromise allows our proposal to

perform better on average. Furthermore, it never selects a poor performing

scheme on the 50 datasets, while the tree does so on four of them. Aside from

their performance, our strategy can be favoured over the decision tree for a775

second reason: it is easier to understand and explain.

5.3. Independent data

In this section, we evaluate the performance of our proposed strategy on

independent datasets, that is, datasets that have not been used in this study

thus far. This evaluation will further reinforce the demonstrated efficacy and780

validity of our proposal. The 20 datasets used in this section are listed in Table 4

and are representatives of the eight groups defined in Section 4.3. They were

obtained from the KEEL, UCI and Weka platforms. These datasets and their

partitions can be downloaded from http://www.cwi.ugent.be/sarah.php.

We present the balanced accuracy values of this evaluation in Table 5. Apart785

from the results obtained using our proposed strategy, the table also shows the

performance of the five individual weight settings. As before, the best value
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Table 4: Description of the 20 independent datasets used in Section 5.3 We list the number

of features (nFeat), the number of instances (nInst), the number of classes (nCl) and the IR.

Together with the number of features, we specify whether they are all nominal (Y) or not (N).

Name nFeat nInst nCl(IR) Name nFeat nInst nCl(IR)

appendicitis 7(N) 106 2(4.05) iris 4(N) 150 3(1)

banknote 4(N) 1372 2(1.25) letter 16(N) 20000 26(1.11)

biodeg 40(N) 1055 2(1.96) magic 10(N) 19020 2(1.84)

credit 15(N) 653 2(1.21) messidor 19(N) 1151 2(1.13)

ctg 21(N) 2126 10(10.92) mushroom 22(Y) 5644 2(1.62)

eye detection 14(N) 14980 2(1.23) optdigits 64(N) 5620 10(1.03)

faults 33(N) 1941 2(1.88) penbased 16(N) 10992 10(1.08)

grub 8(N) 155 4(2.58) seismic 18(N) 2584 2(14.2)

hepatitis 19(N) 80 2(5.15) sensor 24(N) 5456 4(6.72)

housevotes 16(Y) 232 2(1.15) transfusion 4(N) 748 2(3.2)

for each dataset is shown in bold typeface, while any value that is more than

0.05 lower than this optimum is underlined. The advantages of our proposal

are clear. We obtain the highest balanced accuracy on average, the most wins790

and the fewest poor results. The table also shows that our selection strategy is

not infallible either, as it does not perform well on the mushroom dataset. The

Mult setting is selected, because this dataset contains only nominal features.

However, if we were to ignore this particular guideline, mushroom would be

assigned to group 8, because it has 2 classes and 5644 instances. In this case, it795

would be processed with Exp, which is the preferred setting for this dataset.

We compare the performance of our proposal to the five weight settings using

a Wilcoxon test. We can conclude that it performs significantly better than

Strict (R+ = 167.5, R− = 42.5, p = 0.01821), Add (R+ = 178.0, R− = 12.0,

p = 0.00027) and Mult (R+ = 165.5, R− = 44.5, p = 0.02272). We cannot800

conclude that our approach provides a significantly better result than Invadd

(R+ = 144.5, R− = 65.5, p = 0.14827) or Exp (R+ = 122.5, R− = 87.5,

p = 0.47034), although the higher values for R+ do indicate a preference in our

favour. Table 5 also demonstrates that a higher balanced accuracy is obtained

on average in this case, as well as a higher number of wins and lower number805

of poor results. We would also like to stress that since our selection strategy
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Table 5: Balanced accuracy results of the classification by the OWA-based fuzzy rough lower

approximation operator on independent datasets. With the results of our weight selection

strategy, we list the selected weight setting between brackets.

Dataset Strict Add Exp Invadd Mult Proposal

appendicitis 0.7514 0.7938 0.7479 0.7868 0.7542 0.7938 (A)

banknote 0.9987 0.9247 0.9987 0.9961 0.9987 0.9961 (I)

biodeg 0.8153 0.7139 0.8381 0.8216 0.8513 0.8216 (I)

credit 0.8194 0.8695 0.8582 0.8704 0.8571 0.8704 (I)

ctg 0.7379 0.3999 0.7301 0.6283 0.6793 0.7379 (S)

eye detection 0.8456 0.5903 0.8615 0.8147 0.7226 0.8615 (E)

faults 0.9897 0.6748 0.9919 0.9611 0.9904 0.9611 (I)

grub 0.2638 0.3963 0.3075 0.3638 0.3500 0.3963 (A)

hepatitis 0.8184 0.8232 0.8199 0.8633 0.7715 0.8232 (A)

housevotes 0.9137 0.9017 0.9209 0.9125 0.9125 0.9125 (M)

iris 0.9333 0.9533 0.9400 0.9533 0.9533 0.9333 (S)

letter 0.9428 0.6124 0.9632 0.9556 0.9537 0.9632 (E)

magic 0.8129 0.7606 0.8384 0.8126 0.7907 0.8384 (E)

messidor 0.6282 0.6056 0.6534 0.6546 0.6638 0.6546 (I)

mushroom 0.9593 0.8026 0.9749 0.9713 0.9034 0.9034 (M)

optdigits 0.9843 0.9094 0.9857 0.9798 0.9834 0.9857 (E)

penbased 0.9936 0.7624 0.9939 0.9671 0.9902 0.9939 (E)

seismic 0.5514 0.7015 0.5299 0.5872 0.4998 0.7015 (A)

sensor 0.9224 0.7393 0.9255 0.9024 0.9080 0.9255 (E)

transfusion 0.5708 0.6528 0.6048 0.6745 0.6047 0.6528 (A)

Mean 0.8126 0.7294 0.8242 0.8238 0.8069 0.8363

# best/poor 2/4 4/12 10/3 4/2 4/6 11/1

is based on simple data characteristics, the computation time to assess which

weighting scheme should be selected based on our instructions is negligible.

The aim of this paper has been to provide a better understanding of the

impact of the different weighting schemes on the OWA-based fuzzy rough set810

model and advise how to make an appropriate choice between them. Our ob-

jective has not been to develop a new state-of-the-art classifier. Nevertheless,

we briefly remark that the use of our guidelines lifts the classification result of

the simple fuzzy rough lower approximation classifier to the level of the random

forest method [8]. This is a far more complex model and is generally accepted as815

a strong classifier. Using the default random forest method from the Weka plat-

form [16] with ten decision trees, the mean balanced accuracy on the datasets
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from Table 4 is 0.8373. No significant differences between this result and the

last column from Table 5 are detected, indicating that our basic fuzzy rough

classifier with a sensible weight selection can yield competitive results with such820

a popular classifier as the random forest method.

5.4. Other applications

As a final validation step, we use our guidelines within the OWA-FRPS

instance selection method [33] and the POSNN classifier [32, 34]. Both use the

fuzzy rough positive region POS(·). For an instance x, POS(x) is computed as825

its membership degree the OWA-based lower approximation of its own class. In

[32], the use of Invadd was advised for both methods, regardless of the dataset

on which they are applied. As observed in Section 4.2, this weighting scheme

can appear a good default choice based on its average performance, but does

not necessarily perform well on all datasets. We now evaluate whether using830

our guidelines instead benefits the performance of OWA-FRPS and POSNN. As

explained in Section 4.3, this is achieved by verifying to which of the eight groups

a dataset belongs and setting the weighting scheme used within (6) accordingly.

We use the independent datasets listed in Table 4 and provide the full results

on http://www.cwi.ugent.be/sarah.php.835

The OWA-FRPS method computes the quality of all training instances as

their membership degree to the positive region and derives a threshold above

which the quality is deemed sufficiently high. Only instances with a quality

exceeding this threshold are retained in the dataset. We combine it with the

1NN classifier, as done in [32, 33]. When we fix the weighting scheme to Invadd,840

the average reduction in the number of instances is 27.63% and the balanced

accuracy of 1NN after OWA-FRPS is 0.8097. Using our guidelines results in

an average reduction of 30.42% and a balanced accuracy of 0.8133. This pro-

vides three advantages: (i) we relieve the user from setting the OWA weighting

scheme, when they are not fully comfortable with using a default option, (ii)845

on average, the datasets are reduced slightly more and (iii) the classification

performance of the posterior classifier is maintained, even somewhat improved

35

http://www.cwi.ugent.be/sarah.php


(albeit not statistically significantly).

The POSNN classifier is a weighted extension of the fuzzy nearest neigh-

bour classifier of [21]. The contribution of each neighbour is weighted by its850

membership degree to the OWA-based positive region. Note that the lower ap-

proximation operator is not used as a predictor, as done in the construction of

our guidelines, but rather as a weighting mechanism. We have set the number of

neighbours to 10. The use of Invadd, as recommended in [32] leads to an average

balanced accuracy of 0.8084 on the datasets in Table 4, while using our guide-855

lines increases this value to 0.8101. According to the results of the Wilcoxon

test, this improvement is significant (R+ = 148.5, R− = 41.5, p = 0.029774).

6. Conclusion

Fuzzy rough set theory is a mathematical tool to model uncertainty in real-

world data. It has been used in several machine learning domains, but a limita-860

tion of the traditional model is its high sensitivity to noise. Several noise-tolerant

fuzzy rough set models have been proposed in the literature. Among them, the

OWA-based fuzzy rough set model generalizes the strict minimum and maxi-

mum in the traditional approximation operators to OWA aggregations.

The OWA-based fuzzy rough approximation operators are easy to interpret865

and implement and offer a robustness in the presence of noise that is clearly

demonstrated in previous work. The OWA-based model has been shown to

outperform the state-of-the-art in various machine learning domains. Never-

theless, OWA-based fuzzy rough set approaches have not experienced the same

widespread adoption or popularity as the traditional fuzzy rough set model.870

We believe that further advances can be made in many areas by exploiting the

strengths and interpretability of this versatile and flexible model.

In this paper, we have provided a crucial step on the way to increase the

popularity of OWA-based fuzzy rough set theory. Its approximation operators

depend on the user-defined aggregation weight setting. Up until now, no clear875

set of rules has existed for a suitable weighting scheme selection such that users
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of this fuzzy rough set model were left to their own devices. Through sys-

tematic and rigorous comparison of five different weighting schemes, we have

remedied this shortcoming and provided a clear strategy for the weight selection

process. The efficacy of the strategy is further supported and validated by an880

evaluation on independent datasets and in different applications. Our contribu-

tion is twofold. Most importantly, we have provided the community with clear

weighting scheme selection guidelines for the OWA-based lower approximation,

an operator repeatedly used in machine learning methods based on this fuzzy

rough set model. Secondly, we have also offered further insight into the defi-885

nition and inner workings of OWA-based fuzzy rough sets. No such work has

been previously presented.

We feel that we have succeeded in our aim to facilitate the use of OWA-based

fuzzy rough set theory by providing an easy-to-follow weight selection strategy.

Aside from the weight definition, the user does not need to set any parameter.890

We have seen the benefit of this fuzzy rough set model in our own research and

are confident that this work will contribute to a more wide-spread adoption of

OWA-based approaches, on top of the ones included in this paper.

To compare the different weighting schemes, we have focused on the clas-

sification prediction of the lower approximation operator. A user interested in895

the OWA-based upper approximation can nevertheless use our explanations on

the behaviour of the different settings as baseline information in their weight

selection process.
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