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Abstract—This paper proposes a classifier that uses fuzzy
rough set theory to improve the Fuzzy Nearest Neighbour (FNN)
classifier. We show that previous attempts to use fuzzy rough set
theory to improve the FNN algorithm have some shortcomings
and we overcome them by using the fuzzy positive region to
measure the quality of the nearest neighbours in the FNN
classifier. A preliminary experimental evaluation shows that the
new approach generally improves upon existing methods.

I. INTRODUCTION

Classification, the problem of labeling an instance based
on previously seen data, is one of the main subjects in
machine learning and pattern recognition, with applications in
fields like spam detection, natural language processing, speech
recognition, bioinformatics and many more.

One of the best-known classifiers is the K Nearest Neigh-
bour (KNN) classifier [1]. It assigns a target instance to the
class most common among its nearest neighbours. Due to its
low bias, understandability and the fact that it does not impose
any assumptions on the data, KNN is widely used in many
applications.

However, KNN faces the problem that each of its neigh-
bours is considered equally important, independent of the
neighbour’s distance to the target instance. To overcome this
problem, Keller et al. suggested in [2] to introduce fuzzy set
theory [3] into the classical KNN decision rule. By means
of the fuzzy similarity relation, instances can now partially
belong to the set of nearest neighbours and are weighted
accordingly.

This Fuzzy Nearest Neighbour (FNN) method improves the
KNN method substantially, but in [4] it was noted that this
classifier cannot adequately handle imperfect knowledge. In
particular, when every training pattern is far removed from the
test object, and hence there are no suitable neighbours, the
algorithm is still forced to make clear-cut predictions. This
is because the predicted membership degrees to the various
decision classes always need to sum up to 1. To address
this problem, Sarkar [4] introduced a so-called fuzzy rough
ownership function that, when plugged into the conventional

FNN algorithm, produces class confidence values that do not
necessarily sum up to 1. However, this method does not refer
to the main ingredients of rough set theory, i.e., lower and
upper approximation.

Therefore, in [5], [6] the authors proposed a nearest neigh-
bour algorithm that measures the extent to which the nearest
neighbours belong to the fuzzy lower and upper approxi-
mations of a certain class to predict the class of the target
instance. In order to deal with noisy data, they took this fuzzy
rough nearest neighbour (FRNN) approach one step further
and used vaguely quantified rough sets (VQRSs, [7]).

In this paper, we show that FRNN only takes into account
one instance, and that the VQNN classifier is similar to the
FNN classifier if they use the same similarity relation. As a
result, none of the existing fuzzy nearest neighbour methods
are able to use fuzzy rough set theory to improve the FNN
classifier.

Fuzzy rough set theory was designed to model imperfect
knowledge, that is, to take into account the fact that there
are instances similar to each other but belonging to different
classes. This occurs for border instances, instances in over-
lapping classes or mislabeled instances. The fuzzy positive
region measures for each instance the extent to which instances
similar to it belong to the same class. As a result, the fuzzy
positive region can be used to measure the quality of an
instance.

In this work, we improve the FNN classifier by weighting
the nearest neighbour instances according to their membership
degree to the fuzzy positive region. In other words, when
classifying a target instance, we do not only take into account
the distance from the target instance to its nearest neighbours,
but also the quality of the nearest neighbours.

The remainder of this paper is structured as follows: in
Section II, we review the KNN, FNN, FRNN and VQNN
techniques. In Section III, we introduce our new classifier,
called POSNN, and in Section IV, we experimentally evaluate
POSNN. We conclude and highlight future research directions
in Section V.



II. RELATED WORK

In this section we briefly recall the KNN technique and
some of its fuzzy (rough) extensions. We assume that we are
given a training dataset X and a target instance t for which
we want to predict the class. The training data consists of n
instances x1, . . . , xn and covers m features a1, . . . , am that
can be nominal or continuous. The value of an attribute a
for an instance x is denoted by a(x), the class value of x is
denoted by d(x).

A. K Nearest Neighbour (KNN)

The KNN classifier [1] determines the K instances in X
closest to t and then assigns t to the class that is best
represented among these K neighbours. In case of ties, a class
is assigned at random from the candidate classes. Usually, the
following Euclidean distance is used:

deucl(x, t) =

√√√√ m∑
i=1

dieucl(x, t),

where
dieucl(x, t) = (ai(x)− ai(t))

2

if ai is a continuous feature and

dieucl(x, t) =

{
1 if ai(x) 6= ai(t)
0 if ai(x) = ai(t)

if ai is nominal.
KNN is a simple classification method that does not impose
assumptions on the data. Due to its local nature it has low
bias, more specifically, the error rate of 1NN asymptotically
never exceeds twice the optimal Bayes error rate [8].

B. Fuzzy Nearest Neighbour (FNN)

One drawback of the KNN classifier is that each of the
selected neighbours is considered equally important when
assigning a class to the target instance. This problem is
illustrated in Figure 1.

Consider KNN with K=10. The target instance is repre-
sented by a dot. There are 2 classes among the 10 neighbours,
4 neighbours of the first class (represented by a cross) are lying
close to the target instance, while 6 instances from the second
class (represented by a diamond) are lying further from the
target instance. Due to the simple voting strategy of KNN, the
target instance will be assigned to the second class, although it
is clear from the figure that the first class should be preferred.
Moreover, the classification highly depends on the number of
neighbours chosen.

In [2], Keller et al. address this problem by incorporating
fuzzy set theory. More specifically, they first determine the K
nearest neighbours NN of the target instance t and then assign
t to the class C for which the following sum is maximal:∑

x∈NN

R(x, t)C(x)∑
x∈NN

R(x, t)
.

Fig. 1. KNN with K=10 assigns the target instance (represented by a dot)
to the majority class (represented by diamonds), but it is clear that the target
instance should be assigned to the minority class (represented by crosses).

The similarity R(x, t) between x and t is defined as follows:

R(x, t) =
1

deucl(x, t)
2

m−1

. (1)

The parameter m determines the extent to which the distance
is weighted when calculating each neighbour’s contribution.
We use m = 2 throughout the paper, as suggested in [2].

We consider two options to define the class membership
function C. The basic approach is that C(x) is 1 if the class
of x is C and 0 otherwise. The second approach, proposed by
Keller et al. in [2], defines C(x) as

0.51 +
nC

K
∗ 0.49

if x is in class C and
nC

K
∗ 0.49

otherwise. Here, nC is the number of instances among the K
nearest neighbours of x which belong to class C. Using this
definition, the class membership C(x) will be more than 0.51
if x belongs to class C, and the class membership is higher if
many of the neighbours belong to class C. On the other hand,
C(x) is smaller than 0.49 if x does not belong to class C, and
is smaller if fewer instances belong to class C.

We refer to the first class membership as Ccrisp and to the
second as Cgradual.

For the example in Figure 1, FNN will assign a higher
weight in the voting strategy to the four instances of the
minority class and the target instance will be assigned to the
minority class.

In the following subsections, we present previous attempts
to improve FNN by means of fuzzy rough sets.

C. Fuzzy Rough Nearest Neighbour (FRNN)

In [6], the authors use the fuzzy lower and upper approxi-
mation to improve the FNN algorithm. The FRNN algorithm
assigns a class to a target instance t as follows:



• Determine NN, the set of K nearest neighbours of t
• Assign t to the class C for which

(R ↓ C)(t) + (R ↑ C)(t)

is maximal.
Here, the lower and upper approximation [9] are defined over
the nearest neighbours of t:

(R ↓ C)(t) = min
x∈NN

I(R(x, t), C(x))

(R ↑ C)(t) = max
x∈NN

T (R(x, t), C(x))

The class membership is 1 if x is in class C and 0 otherwise1.
We define the similarity relation R as suggested by the authors
in [6]:

R(x, t) = min
i∈{1,...,n}

Rai
(x, t), (2)

with
Rai

(x, t) = 1− |ai(x)− ai(t)|
|amax

i − amin
i |

,

where amax
i and amin

i are the maximal and minimal occurring
value of the attribute ai.

The fuzzy implicator I is a mapping [0, 1]2 → [0, 1] that is
decreasing in the first and increasing in the second argument,
and for which I(0, 0) = 1 and (∀x ∈ [0, 1])(I(1, x) = x).
The fuzzy t-norm T is a commutative and associative mapping
[0, 1]2 → [0, 1] that is increasing in both arguments, and for
which (∀x ∈ [0, 1])(T (1, x) = x). In this paper, we use
the Kleene-Dienes implicator IKD and minimum t-norm TM ,
defined as follows for x, y ∈ [0, 1]:

IKD(x, y) = max(1− x, y)

TM (x, y) = min(x, y).

The fuzzy rough lower approximation (R ↓ C) of t expresses
to which extent instances similar to t are in class C. The fuzzy
rough upper approximation (R ↑ C) of t expresses to which
extent there exist instances that are similar to t and belong to
class C. As a result, (R ↓ C)(t)+(R ↑ C)(t) provides a good
clue to predict if t belongs to C.

When we look in more detail at this method, we see that
only one instance influences the outcome, as proven in the
next theorem:

Theorem 1: FRNN assigns a target instance t to the class
of the instance x ∈ NN for which R(x, t) is maximal.

Proof: We first rewrite the lower approximation of the
target instance (we use the fact that I(a, 1) = 1 for all a ∈
[0, 1]):

(R ↓ C)(t)
= min

x∈NN
I(R(x, t), C(x))

= min
x∈NN,C(x)=0

I(R(x, t), C(x))

= min
x∈NN,C(x)=0

(1−R(x, t))

= 1− max
x∈NN,C(x)=0

R(x, t)

1We could use the Cgradual definition, but we use the definition as in [6]

Here, we assumed that there was at least one instance x
for which C(x) = 0. In case there is no such instance,
all instances belong to the same class and then the theorem
obviously holds.

Next, we consider the upper approximation of the target
instance:

(R ↑ C)(t)
= max

x∈NN
T (R(x, t), C(x))

= max
x∈NN,C(x)=1

T (R(x, t), C(x))

= max
x∈NN,C(x)=1

R(x, t)

This result only holds if there is at least one instance for which
C(x) = 1. Otherwise, (R ↓ C)(t) = 0.

In case there is at least one instance x for which C(x) = 1,
t is assigned to the class for which the following expression
is maximal:

max
x∈NN,C(x)=1

R(x, t)− max
x∈NN,C(x)=0

R(x, t)

Now suppose that y ∈ NN is the instance for which

max
x∈NN

R(y, t)

is maximal, and suppose D is the class of y, i.e., D(y) = 1.
Then for each other class C,

max
x∈NN,C(x)=1

R(x, t)

is strictly smaller than

max
x∈NN,D(x)=1

R(x, t)

and
max

x∈NN,C(x)=0
R(x, t)

is strictly larger than

max
x∈NN,D(x)=0

R(x, t).

In case there is no instance for which C(x) = 1, t is assigned
to the class for which the following expression is maximal:

− max
x∈NN,C(x)=0

R(x, t)

Again, suppose that y ∈ NN is the instance for which

max
x∈NN

R(y, t)

is maximal, and suppose D is the class of y, i.e., D(y) = 1.
Then for each other class C,

max
x∈NN,C(x)=0

R(x, t)

is strictly larger than

max
x∈NN,D(x)=0

R(x, t).

As a result, the target instance t is assigned to class D, which
is the nearest neighbour of t with respect to the similarity
measure R.



Theorem 1 shows that the classification of t is only determined
by one instance, and that the concepts of fuzzy rough set
theory are not fully exploited.

D. Vaguely Quantified Nearest Neighbour (VQNN)

Another approach suggested in [6] to incorporate fuzzy
rough set theory is using VQRSs instead of the basic fuzzy
rough sets.
The resulting VQNN algorithm assigns a class to a target
instance t as follows:
• Determine NN, the K nearest neighbours of t
• Assign t to the class C for which

(R ↓Qu C)(t) + (R ↑Ql C)(t)

is maximal.
Here, the upper and lower approximations of VQ rough sets
are defined as follows:

(R ↓Qu C)(t) = Qu(

∑
x∈NN

min(R(x, t), C(x))∑
x∈NN

R(x, t)
)

(R ↓Ql C)(t) = Ql(

∑
x∈NN

min(R(x, t), C(x))∑
x∈NN

R(x, t)
)

The operators Qu and Ql are fuzzy quantifiers that represent
most and some respectively, i.e., they are increasing [0, 1] →
[0, 1] mappings such that Qu(1) = Ql(1) = 1 and Qu(0) =
Ql(0) = 0. This classifier should now be a classifier based
on fuzzy rough set theory that can handle noise. However, the
next theorem shows that VQNN is the same classifier as FNN,
provided the same similarity relation is used.

Theorem 2: Assume VQNN and FNN use the same simi-
larity relation. Then VQNN and FNN return the same class
for each target instance t.

Proof: As Qu and Ql are increasing, VQNN maximizes
the following sum (the denominators in the arguments of Qu

and Ql are equal):∑
x∈NN

min(R(x, t), C(x)).

As C(x) only takes values 0 and 1, this sum can be written
as: ∑

x∈NN

R(x, t)C(x),

which is exactly the sum FNN is maximizing over.

III. POSITIVE REGION BASED FUZZY ROUGH NEAREST
NEIGHBOUR CLASSIFICATION (POSNN)

From the previous section, we conclude that neither FRNN,
nor VQNN is able to use concepts from fuzzy rough set theory
to improve FNN. In the first case, we proved that only one
instance is used for the classification, and in the second case,
we obtain the same classifier as FNN, provided we use the
same similarity measure.

In this section, we propose a new fuzzy rough based nearest
neighbour classifier. The FNN classifier makes no assumptions
on the quality of the neighbours, that is, each neighbour is
considered equally important. However, there are three types
of neighbours that may be less suitable for guiding the FNN
classification:

1) Border neighbours: if the target instance has a neighbour
that is on the border of two classes, this neighbour is less
interesting than neighbours that are more at the center
of a class.

2) Instances in overlapping regions of classes: if the target
instance has a neighbour that is in the overlap of
two classes, this neighbour is less interesting thanother
neighbours. This case is closely related to the previous
type of neighbours.

3) Mislabeled neighbours: if there is a neighbour that is
isolated, that is, there are no instances of the same
class lying close to it, this neighbour is probably noisy
(mislabeled).

Fuzzy rough sets were designed to model this imperfect
knowledge. The so-called positive region expresses for each
instance to which extent instances similar to it are in the same
class. For classification problems, it is given by the following
formula:

POS(x) = min
y∈X
I(R(x, y), Rc(x, y))

Here, Rc(x, y) is 1 if y and x belong to the same class, and
0 otherwise. The similarity measure R is the one defined in
Equation (2). Border instances or instances in overlapping
regions will have smaller positive region memberships than
instances in the center of a class, and mislabeled instances will
have a lower positive region membership than instances that
are surrounded by instances of the same class. This makes the
positive region suitable to measure the quality of a neighbour.

The final fuzzy rough positive region based nearest neigh-
bour algorithm (POSNN) proceeds as follows to classify an
instance t:
• Determine NN, the set of K nearest neighbours of t
• Assign t to the class C for which∑

x∈NN

R(x, t)C(x)POS(x)∑
x∈NN

R(x, t)

is maximal.
Here, C can be Cgradual or Ccrisp, R(x, t) is the similarity

measure as defined in Equation (1). The use of the different
similarity measures might be confusing, but we opt to use the
similarity measure defined by Keller et al. in [2] to determine
the similarity between the neighbours and the target instance,
and the similarity measure in [6], which is typically used in
fuzzy rough set theory, for calculating the positive region.

The difference between FNN and POSNN is that POSNN
not only rewards neighbours that are closer to the instance,
but also takes into account the quality (positive region) of the
neighbours.



In the next section, we experimentally evaluate the POSNN
classifier.

IV. EXPERIMENTAL EVALUATION

A. Experimental set-up

We apply the POSNN classifier to 40 datasets from the
UCI repository [10]. Their main characteristics are listed in
Table I. We selected datasets that cover both nominal and/or
continuous features, and vary in the number of features and
instances they contain. In order to keep the running time of the
experiments under control, we limited the maximum number
of instances to 4000.

The POSNN classifier is compared to the KNN, FNN, and
FRNN classifier. As it was shown in Section II-D that VQNN
returns the same results as FNN, we do not explicitly list
its results here. All methods are implemented in the Weka
software platform [11]. For POSNN and FNN, we both apply
the Cgradual and Ccrisp class membership functions. As a
result, there are 6 classifiers: KNN and FRNN, FNN and
POSNN applied with Ccrisp, and FNN and POSNN applied
with Cgradual.

For each experiment, we follow a 2×10 fold cross validation
strategy: we divide the data in 10 folds and classify the
instances of each fold using the remaining folds as training
data. We repeat this 2 times and average the results.
To test the robustness of POSNN, we vary the parameter K
representing the number of nearest neighbours from 1 to 15.

B. Results

In Figure 2 and Figure 3, we plot the average classification
accuracies over all datasets of KNN, FNN, FRNN and
POSNN. In Figure 2 we use the Cgradual measure for FNN
and POSNN, and in Figure 3 we use Ccrisp. These results
can also be found in Table II. In Table III, we show the best
classification accuracy over all values K=∈ {1, . . . , 15} for
each dataset.
From these plots and tables, we see that KNN and FRNN
perform worse than FNN and POSNN. Moreover, KNN and
FRNN strongly depend on the parameter K, while FNN and
POSNN are more or less independent of K, assuming that K
is at least 5. The optimal value K for POSNN and FNN is 6.
The results for FNN and POSNN are similar, but the POSNN
accuracies are consequently higher than FNN, except for
those where K is equal to 4 or 14 as can be seen in Table II.
The results using the Ccrisp class membership degree are
slightly better than those using Cgradual, and the differences
are larger for larger K. The optimal K value is 5 or 6 for all
considered classifiers.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a new fuzzy nearest neighbour
classifier, POSNN. It extends the FNN classifier by taking
into account the quality of the nearest neighbours by means
of the fuzzy positive region. We proved that previous attempts
to incorporate fuzzy rough set theory in the FNN classifier

TABLE I
CHARACTERISTICS OF THE DATASETS: NUMBER OF CLASSES,

ATTRIBUTES, INSTANCES, NOMINAL ATTRIBUTES AND CONTINUOUS
ATTRIBUTES.

Dataset # classes # atts # inst # nom # cont

Water 2 2 38 390 0 38
Water 3 3 38 390 0 38
Cleveland 5 13 297 0 13
Glass 6 9 214 0 9
Heart 2 13 270 0 13
Letter 4 16 3113 0 16
Olitos 4 25 120 0 25
Wine 3 13 178 0 13
Anneal 5 38 898 32 6
Anneal-o 5 38 898 32 6
Audiology 24 69 226 69 0
Autos 6 25 205 10 15
Balance S 3 4 625 0 4
Breast 2 9 286 9 0
Wisconsin 2 9 699 0 9
Horse-c 2 22 368 15 7
Horse-co 2 27 368 20 7
Credit 2 15 690 9 6
German 2 20 1000 13 7
Pima 2 8 768 0 8
Cleveland-14 2 13 303 7 6
Hungarian-14 2 13 294 7 6
Heart S 2 13 270 0 13
Hepatitis 2 19 155 13 6
Hypothyroid 4 29 3772 22 7
Ionosphere 2 34 351 0 34
Iris 3 4 150 0 4
Kr-vs-kp 2 36 3196 36 0
Labor 3 16 57 8 8
Lymphograpy 4 18 148 15 3
Primary 3 17 339 17 0
Segment 7 19 2310 0 19
Sick 2 29 3772 22 7
Sonar 2 60 208 0 60
Soybean 19 35 683 35 0
Splice 3 61 3190 61 0
Vehicle 4 18 846 0 18
Vote 2 16 435 16 0
Vowel 11 13 990 3 10
Zoo 7 17 101 16 1

are not able to use the main ingredients of fuzzy rough set
theory: FRNN only uses information about one of the nearest
neighbours, and VQNN is the same classifier as FNN if it uses
the same similarity measure.

A preliminary experimental study showed that POSNN per-
forms better than KNN and FRNN. The differences between
POSNN and FNN are not large, but POSNN performs slightly
better than FNN for almost all values K between 1 and 15.
The POSNN classifier can still be improved. One option is
to use ordered weighted average rough sets [12] to define



TABLE II
AVERAGE CLASSIFICATION ACCURACIES OF KNN, FRNN, FNN AND

POSNN FOR DIFFERENT VALUES OF K

K KNN FRNN FNN POSNN FNN POSNN
Cgradual Cgradual Ccrisp Ccrisp

1 79.60 79.60 79.60 79.60 79.60 79.60
2 77.18 80.06 80.29 80.86 80.29 80.66
3 81.09 81.14 81.21 81.28 81.36 81.47
4 79.88 81.43 81.62 81.25 81.62 81.67
5 81.53 81.35 81.84 81.87 81.86 81.94
6 80.56 81.24 81.86 81.87 81.93 81.96
7 80.74 80.66 81.75 81.80 81.84 81.93
8 80.01 80.33 81.71 81.79 81.78 81.87
9 79.81 79.81 81.46 81.48 81.73 81.82
10 79.20 79.45 81.43 81.45 81.63 81.76
11 79.04 78.99 81.43 81.44 81.78 81.82
12 78.66 78.89 81.34 81.43 81.71 81.80
13 78.64 78.81 81.33 81.38 81.66 81.71
14 78.10 78.70 81.31 81.32 81.70 81.67
15 78.11 78.19 81.06 81.13 81.58 81.64

Fig. 2. Classification results for a range of K values, using Cgradual for
the class membership function.

the fuzzy positive region in order to deal with noise. Another
option is to use POSNN for regression problems.
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Breast 74.16 71.57 73.66 73.84 73.47 74.01
Wisconsin 97.00 94.49 96.93 96.93 96.93 97.00
Horse C 82.34 76.09 77.98 77.98 77.31 77.31
Horse CO 66.85 67.66 67.26 67.26 68.21 68.21
Credit 86.59 79.78 86.52 86.59 85.43 85.58
German 74.60 72.10 74.80 74.80 75.35 75.35
Pima 74.93 70.76 75.19 75.13 74.22 75.13
Cleveland 14 82.83 76.74 83.48 83.32 82.17 82.50
Hungarian 14 82.84 76.67 82.68 82.68 80.80 80.80
Heart S 80.56 77.96 80.93 80.56 81.11 81.67
Hepatitis 86.77 79.75 82.94 82.94 82.94 82.94
Hypothyroid 93.53 92.09 93.52 93.41 93.46 93.09
Ionosphere 86.77 91.31 86.77 87.48 86.77 87.61
Iris 96.67 96.00 96.00 96.00 96.00 96.00
Kr-vs-kp 96.25 90.55 96.35 96.35 96.64 96.64
Labor 81.67 85.33 81.67 81.67 84.00 84.00
Lymphograpy 85.48 81.05 85.45 85.45 85.45 85.45
Primary 43.06 34.94 42.92 42.77 42.92 42.77
Segment 97.08 97.08 97.08 97.08 97.08 97.08
Sick 96.43 96.14 96.39 96.42 96.42 96.30
Sonar 85.88 86.83 85.88 87.79 85.88 87.79
Soybean 56.64 64.92 63.74 63.60 63.74 63.60
Splice 87.02 75.88 85.89 85.89 85.94 85.94
Vehicle 71.81 70.10 72.75 72.16 73.22 72.51
Vote 94.04 83.22 84.96 84.96 82.99 82.99
Vowel 99.09 99.24 99.09 99.09 99.09 99.09
Zoo 96.59 97.14 96.59 96.59 96.59 96.59
AVERAGE: 83.60 81.13 83.46 83.53 83.35 83.45


