9,723 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Multiobjective Multiproduct Batch Plant Design Under Uncertainty

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands and proposes an alternative treatment of the imprecision by using fuzzy concepts. For this purpose, we extended a multiobjective genetic algorithm developed in previous works, taking into account simultaneously maximization of the net present value (NPV) and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The former is computed by comparing the fuzzy computed production time to a given fuzzy production time horizon and the latter is based on the additional fuzzy demand that the plant is able to produce. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage

    Application of Fuzzy Cognitive Mapping in Livelihood Vulnerability Analysis

    Get PDF
    Feedback mechanisms are important in the analysis of vulnerability and resilience of social-ecological systems, as well as in the analysis of livelihoods, but how to evaluate systems with direct feedbacks has been a great challenge. We applied fuzzy cognitive mapping, a tool that allows analysis of both direct and indirect feedbacks and can be used to explore the vulnerabilities of livelihoods to identified hazards. We studied characteristics and drivers of rural livelihoods in the Great Limpopo Transfrontier Conservation Area in southern Africa to assess the vulnerability of inhabitants to the different hazards they face. The process involved four steps: (1) surveys and interviews to identify the major livelihood types; (2) description of specific livelihood types in a system format using fuzzy cognitive maps (FCMs), a semi-quantitative tool that models systems based on people’s knowledge; (3) linking variables and drivers in FCMs by attaching weights; and (4) defining and applying scenarios to visualize the effects of drought and changing park boundaries on cash and household food security. FCMs successfully gave information concerning the nature (increase or decrease) and magnitude by which a livelihood system changed under different scenarios. However, they did not explain the recovery path in relation to time and pattern (e.g., how long it takes for cattle to return to desired numbers after a drought). Using FCMs revealed that issues of policy, such as changing situations at borders, can strongly aggravate effects of climate change such as drought. FCMs revealed hidden knowledge and gave insights that improved the understanding of the complexity of livelihood systems in a way that is better appreciated by stakeholders

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Regression between headmaster leadership, task load and job satisfaction of special education integration program teacher

    Get PDF
    Managing school is a daunting task for a headmaster. This responsibility is exacerbated when it involves the Special Education Integration Program (SEIP). This situation requires appropriate and effective leadership in addressing some of the issues that are currently taking place at SEIP such as task load and job satisfaction. This study aimed to identify the influence of headmaster leadership on task load and teacher job satisfaction at SEIP. This quantitative study was conducted by distributing 400 sets of randomized questionnaires to SEIP teachers across Malaysia through google form. The data obtained were then analyzed using Structural Equation Modeling (SEM) and AMOS software. The results show that there is a significant positive effect on the leadership of the headmaster and the task load of the teacher. Likewise, the construct of task load and teacher job satisfaction has a significant positive effect. However, for the construct of headmaster leadership and teacher job satisfaction, there was no significant positive relationship. This finding is very important as a reference to the school administration re-evaluating their leadership so as not to burden SEIP teachers and to give them job satisfaction. In addition, the findings of this study can also serve as a guide for SEIP teachers to increase awareness of the importance of managing their tasks. This study also focused on education leadership in general and more specifically on special education leadership

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case
    • 

    corecore