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Abstract 
This paper addresses the problem of the optimal design of batch plants with imprecise 
demands and proposes an alternative treatment of the imprecision by using fuzzy 
concepts. For this purpose, we extended a multiobjective genetic algorithm developed in 
previous works, taking into account simultaneously maximization of the net present 
value (NPV) and two other performance criteria, i.e. the production delay/advance and a 
flexibility criterion. The former is computed by comparing the fuzzy computed 
production time to a given fuzzy production time horizon and the latter is based on the 
additional fuzzy demand that the plant is able to produce. The methodology provides a 
set of scenarios that are helpful to the decision’s maker and constitutes a very promising 
framework for taken imprecision into account in new product development stage. 
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1. Introduction 
In recent years, there has been an increased interest in the design of batch processes due 
to the growth of specialty chemical, pharmaceutical,  and related industries, because 
they are a preferred operating method for manufacturing small volumes of high-value 
products. The market demand for such products is usually changeable, and at the stage 
of conceptual design of a batch plant, it is almost impossible to obtain the precise 
information on the future product demand over the lifetime of the plant. However, 
decisions must be made on the plant capacity. This capacity should be able to balance 
the product demand satisfaction and extra plant capacity in order to reduce the loss on 
the excessive investment cost or that on market share due to the varying demands on 
products. The design of multiproduct batch plants has been an active area of research 
over the past decade (see (Shah, 1998) and (Pinto and Grossmann, 1998) for reviews). 
Most of the work has been yet limited to deterministic approaches, wherein the problem 
parameters are assumed to be known with certainty. However, in reality there can be 
uncertainty in a number of factors such as processing times, costs, demands, and not all 
the requirements placed by the technology of the process and the properties of the 
substances are defined. To cope with this, there has been increased interest in the 
development of different types of probabilistic models that explicitly take into account 
the various uncertainties (Sahinidis, 2003). For example, Wellons and Reklaitis 
proposed an MINLP model for the design of batch plants under uncertainty with staged 
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capacity expansions. Based on the structure of multiproduct batch plants, Straub and 
Grossmann (1992) developed an efficient procedure to evaluate the expected stochastic 
flexibility, embedded within an optimization framework for selecting the design (size 
and number of parallel equipment). Two-stage stochastic programming approaches have 
also been applied for design under uncertainty (Ierapetritou and Pistikopolous (1996); 
Cao and Yuan (2002).  
It must be clearly said that the use of probabilistic models that describe the uncertain 
parameters in terms of probability distributions in an optimization framework is very 
greedy in computational time, either because of the large number of scenarios involved 
in the discrete representation of the uncertainty or the need to use complex integration 
techniques when uncertainty is modeled by continuous distributions. Besides, the use of 
probabilistic models is realistic only when a historic data set is available for uncertain 
parameters, which is rarely the case at the preliminary design stages in new product 
development. 
In this work, fuzzy concepts and arithmetic constitute an alternative to describe the 
imprecise nature on product demands. Genetic algorithm optimization techniques were 
retained for both, MINLP and mutliobjective aspects of the optimization problem. For 
this purpose, we extended a multiobjective genetic algorithm, developed in previous 
works (Dietz, 2005a, b), taking into account simultaneously the maximization of the net 
present value (NPV) and two other performance criteria, i.e. the production 
delay/advance and a flexibility criterion. The paper is organized as follows. Section 2 is 
devoted to process description and problem formulation. Section 3 presents a brief 
overview of fuzzy set theory involved in the fuzzy framework within a multiobjective 
genetic algorithm. The presentation is then illustrated by some typical results. Finally, 
the conclusions on this work are drawn. 
 

2. Process description and problem formulation 
The case study is a multiproduct batch plant for the production of proteins taken from 
the literature (Montagna et al., 2000). This example is used as a test bench since short-
cut models describing the unit operations involved in the process are available. The 
batch plant involves eight stages for producing four recombinant proteins, on one hand 
two therapeutic proteins, Human insulin (I) and Vaccine for Hepatitis B (V) and, on the 
other hand, a food grade protein, Chymosin (C) and a detergent enzyme, cryophilic 
protease (P).  
In previous works (Dietz et al. 2005a, b), batch plant design was carried out minimizing 
the investment cost and the production system was represented using discrete event 
simulation techniques in order to take into account different production policies. Two 
strategies for campaign policies were tested, either monoproduct or multiproduct. In this 
work, only the monoproduct campaign policy was considered, so that the computation 
of cycle time can be easily implemented using the classical formulation proposed in 
(Montagna et al., 2000), involving size and time equations as well as constraints. A key-
point of the procedure is the computation of the so-called cycle time TLi for each 
product, which corresponds to the limiting time, i.e., the time between two consecutive 
batches of the product. The objective is to determine the number and size of parallel 
equipment units/storage as well as some key process variables in order to satisfy one or 
several criteria (see (Dietz et al. (2005a)) for a complete description of the problem). 
Although the minimizing investment (I) is most often considered in the dedicated 
literature, it is not the most adequate objective for the optimal design problem. In real 



applications, designers preferentially not only consider to maximize the net present 
value (NPV), but also to satisfy a due date. The corresponding mathematical 
expressions of the objective functions (considered as fuzzy with a ~-symbol) are 
proposed as follows: 
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The penalization term is equal to an arbitrary value of 1/ ω for an advance and ω for a 
delay in order to penalize more delays than advances. A sensitivity analysis leads to 
adopt a value of 4 for ω. Finally, an additional criterion was computed in case of an 
advance (respectively a delay), representing the additional production  that the batch 
plant is able to produce. Without going further in the detailed presentation of the 
computation procedure, it can be simply said that a flexibility index (called criterion f3) 
is computed by dividing the potential capacity of the plant by its actual value. 
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3. Overview of fuzzy multiobjective genetic algorithm approach 

3.1. Representation of fuzzy demands and time horizon due-date 
In this section, only the key concepts from the theory of fuzzy sets that will be used for 
batch plant design are presented (more detail can be found in (Kaufmann and Gupta, 
1988). Different forms can be used for modeling the membership functions of fuzzy 
numbers. We have chosen to use normalized trapezoidal fuzzy numbers (TrFNs) for 
modeling product demand. Let us recall that the membership function values of a TrFN 
range from zero to one with the mode at one. The possibility distribution of TrFNs 
represented by a four-tuple [a1, a2, a3, a4] with a1 ≤ a2 ≤  a3 ≤  a4 describes the more or 
less possible values for a demand. In other words, they can be interpreted as pessimistic 
or optimistic viewpoints of the designer. Figure 1 presents the typical values adopted in 
this work which correspond respectively to an imprecision of 10% with mode at one 
(respectively 15% with mode at zero). We also introduced in the model a fuzzy horizon 
time with a “rectangular” representation which may be viewed as latest and earliest 
dates to satisfy, with an imprecision of 10% (see Figure 2).  
 

 

 
Figure 1 – Fuzzy representation of product demand (kg/year) 

3.2. Fuzzy extension of a  multiobjective genetic algorithm 
The multiobjective genetic algorithm presented elsewhere (Dietz et al., 2005b) was then 
extended to take into account the fuzzy nature of both demand and horizon time. Let us 
mention that the same encoding procedure was adopted since no fuzzy parameter is 
involved at that stage. The tunable parameters of the GA will also not be discussed here. 
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Although the GA basic principles will not be recalled, it must be said that arithmetic 
operations on fuzzy numbers that will be used concern exclusively the objective 
functions and the constraints.  
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Figure 2 – Fuzzy representation of horizon time (h) 

 
They involve addition, subtraction, taking the maximum of two fuzzy numbers (mainly 
at the selection stage and at the Pareto sort procedure), through the extension principle 
of (Zadeh, 1975).  Although there exists a large body of literature that deals with the 
comparison of fuzzy numbers, the approach proposed by (Liou and Wang, 1992) was 
finally adopted here. Looking more closely at the selection stage, three cases were 
considered, as qualitatively shown in Figure 3, corresponding  to either unfeasible 
solutions leading to unacceptable violations of a time horizon constraint (f3=0), or to 
acceptable solutions sharing a time domain with an horizon constraint (f3=1), or, finally, 
to solutions for which the computation of the additional demand that the batch plant is 
able to satisfy is interesting from a flexibility viewpoint (f3>1).In case C, the computed 
value of the total time necessary to manufacture all the products is shifted to the right so 
that the highest (respectively lowest) value of the four-tuple of the TrFN corresponds to 
that of the due date for time horizon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Fuzzy evaluation procedure in the GA 

4. Typical results 

4.1. Monocriterion case 
GA typical results obtained with NPV as the only criterion to consider are presented in 
Table 1. Ten runs were performed to guarantee the stochastic nature of the GA. Table 1 
presents the mean value of the NPV as well as the right core and support deviation from 
the mean value. Symmetrical values are obtained since symmetrical values were 
considered for both product demand and horizon due-date.  The order of magnitude of 
the results is of interest at the design preliminary stages. 
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AG01 4.64 12.5% 18.8% AG06 4.60 12.6% 18,9% 
AG02 4.65 12.5% 18.7% AG07 4.77 12.9% 19,4% 
AG03 4.59 12.6% 19.0% AG08 4.61 12.6% 18,9% 
AG04 4.61 12.6% 18.9% AG09 4.65 12.5% 18,8% 
AG05 4.29 13.5% 20.3% AG10 4.63 12.5% 18,7% 

Table 1 – Monocriterion (NPV) batch plant design 
4.2. Tricriteria case 
The three criteria considered here are the NPV, and two batch plant flexibility criteria 
production Advance/Delay respect the due date and production flexibility criterion 
defined as the maximal production capacity respect the actual demand. Previous studies 
showed their antagonist behaviour. An oversized batch plant gives more flexibility in 
terms of production but is penalising for the NPV criterion. A delay respect to the due 
data allows increasing the NPV criterion because the Investment can be reduced. Figure 
4 displays the results when the three criteria are considered simultaneously after the 
final Pareto sort procedure over the solutions corresponding to each optimization run. 
Only, the average value of the involved criteria is reported here. Similar results can be 
obtained for the other couples of criteria. Although a thorough analysis was performed, 
only the guidelines that may be useful for the practitioner are given. For instance, this 
curve may be useful to detect unfeasible regions and to identify the promising regions 
from the viewpoints of NPV and flexibility index. In the illustrative example, we 
indicate some regions which may be interesting to explore since they involve high 
values for the net present value and exhibit a flexibility index greater than 1, 
corresponding to an acceptable advance in production (not reported here). 
 

 

 

 

 

 

 

 

Figure 4 – Tricriteria results: NPV-Flexibility results projection. 

5. Conclusions 
In this paper, we have proposed a fuzzy approach to the treatment of imprecise demands 
in the batch design problem. Its benefits can be summarized as follows: 
- Fuzzy concepts allow us to model imprecision in cases where historical data are not 
readily available, i.e. for demand representation; 
- The models do not suffer from the combinatorial explosion of scenarios that discrete 
probabilistic uncertainty representation exhibit; 
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- Another significant advantage is that heuristic search algorithms, namely genetic 
algorithms for combinatorial optimization can be easily extended to the fuzzy case; 
- Multiobjective concepts can also be taken into account. 
Finally, this framework provides an interesting decision-making approach to design 
multiproduct batch plants under conflicting goals. 
 
Nomenclature 
I= Investment cost (M€) 
f= Working capital (M€) 
VP= Revenue (M€/y) 
DP= Operation cost 
(M€/y) 
AP= Depreciation (M€/y);  
a= Tax rate  

i= Discount rate;  
n= Number of  periods 
P= Number of products to be 
produced 
M= Number of stages 
H= Due date (h) 
Hi= Production time for product i (h) 

Nj= Number of parallel units 
in stage j  
Vj= Required volume of a 
unit in stage j  
αj= Cost coefficient for unit 
j 
βj= Cost exponent for unit j 
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