49 research outputs found

    A decision support system for eco-efficient biorefinery process comparison using a semantic approach

    Get PDF
    Enzymatic hydrolysis of the main components of lignocellulosic biomass is one of the promising methods to further upgrading it into biofuels. Biomass pre-treatment is an essential step in order to reduce cellulose crystallinity, increase surface and porosity and separate the major constituents of biomass. Scientific literature in this domain is increasing fast and could be a valuable source of data. As these abundant scientific data are mostly in textual format and heterogeneously structured, using them to compute biomass pre-treatment efficiency is not straightforward. This paper presents the implementation of a Decision Support System (DSS) based on an original pipeline coupling knowledge engineering (KE) based on semantic web technologies, soft computing techniques and environmental factor computation. The DSS allows using data found in the literature to assess environmental sustainability of biorefinery systems. The pipeline permits to: (1) structure and integrate relevant experimental data, (2) assess data source reliability, (3) compute and visualize green indicators taking into account data imprecision and source reliability. This pipeline has been made possible thanks to innovative researches in the coupling of ontologies, uncertainty management and propagation. In this first version, data acquisition is done by experts and facilitated by a termino-ontological resource. Data source reliability assessment is based on domain knowledge and done by experts. The operational prototype has been used by field experts on a realistic use case (rice straw). The obtained results have validated the usefulness of the system. Further work will address the question of a higher automation level for data acquisition and data source reliability assessment

    Intelligent query for real estate search

    Get PDF
    The purpose of this project is to improve search query accuracy in a real estate website by developing an intelligent query system which provides the best matching result for standard search criteria. This intelligent query website utilizes fuzzy logic and partial membership to filter query results based on user input data. Fuzzy logic helps obtain results that are otherwise not attainable from a non-fuzzy search. A non-fuzzy search entails search results that match exactly with the given criteria. This project also allows a user to do a free keyword search. This type of search uses synonyms of the keywords to query for houses. The resulting information will be more credible and precise than the traditional website because it provides a reasonable result, of the specified search, to the user

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Matching records in multiple databases using a hybridization of several technologies.

    Get PDF
    A major problem with integrating information from multiple databases is that the same data objects can exist in inconsistent data formats across databases and a variety of attribute variations, making it difficult to identify matching objects using exact string matching. In this research, a variety of models and methods have been developed and tested to alleviate this problem. A major motivation for this research is that the lack of efficient tools for patient record matching still exists for health care providers. This research is focused on the approximate matching of patient records with third party payer databases. This is a major need for all medical treatment facilities and hospitals that try to match patient treatment records with records of insurance companies, Medicare, Medicaid and the veteran\u27s administration. Therefore, the main objectives of this research effort are to provide an approximate matching framework that can draw upon multiple input service databases, construct an identity, and match to third party payers with the highest possible accuracy in object identification and minimal user interactions. This research describes the object identification system framework that has been developed from a hybridization of several technologies, which compares the object\u27s shared attributes in order to identify matching object. Methodologies and techniques from other fields, such as information retrieval, text correction, and data mining, are integrated to develop a framework to address the patient record matching problem. This research defines the quality of a match in multiple databases by using quality metrics, such as Precision, Recall, and F-measure etc, which are commonly used in Information Retrieval. The performance of resulting decision models are evaluated through extensive experiments and found to perform very well. The matching quality performance metrics, such as precision, recall, F-measure, and accuracy, are over 99%, ROC index are over 99.50% and mismatching rates are less than 0.18% for each model generated based on different data sets. This research also includes a discussion of the problems in patient records matching; an overview of relevant literature for the record matching problem and extensive experimental evaluation of the methodologies, such as string similarity functions and machine learning that are utilized. Finally, potential improvements and extensions to this work are also presented

    Stratégies pour le raisonnement sur le contexte dans les environnements d assistance pour les personnes âgées

    Get PDF
    Tirant parti de notre expérience avec une approche traditionnelle des environnements d'assistance ambiante (AAL) qui repose sur l'utilisation de nombreuses technologies hétérogènes dans les déploiements, cette thèse étudie la possibilité d'une approche simplifiée et complémentaire, ou seul un sous-ensemble hardware réduit est déployé, initiant un transfert de complexité vers le côté logiciel. Axé sur les aspects de raisonnement dans les systèmes AAL, ce travail a permis à la proposition d'un moteur d'inférence sémantique adapté à l'utilisation particulière à ces systèmes, répondant ainsi à un besoin de la communauté scientifique. Prenant en compte la grossière granularité des données situationnelles disponible avec une telle approche, un ensemble de règles dédiées avec des stratégies d'inférence adaptées est proposé, implémenté et validé en utilisant ce moteur. Un mécanisme de raisonnement sémantique novateur est proposé sur la base d'une architecture de raisonnement inspiré du système cognitif. Enfin, le système de raisonnement est intégré dans un framework de provision de services sensible au contexte, se chargeant de l'intelligence vis-à-vis des données contextuelles en effectuant un traitement des événements en direct par des manipulations ontologiques complexes. L ensemble du système est validé par des déploiements in-situ dans une maison de retraite ainsi que dans des maisons privées, ce qui en soi est remarquable dans un domaine de recherche principalement cantonné aux laboratoiresLeveraging our experience with the traditional approach to ambient assisted living (AAL) which relies on a large spread of heterogeneous technologies in deployments, this thesis studies the possibility of a more stripped down and complementary approach, where only a reduced hardware subset is deployed, probing a transfer of complexity towards the software side, and enhancing the large scale deployability of the solution. Focused on the reasoning aspects in AAL systems, this work has allowed the finding of a suitable semantic inference engine for the peculiar use in these systems, responding to a need in this scientific community. Considering the coarse granularity of situational data available, dedicated rule-sets with adapted inference strategies are proposed, implemented, and validated using this engine. A novel semantic reasoning mechanism is proposed based on a cognitively inspired reasoning architecture. Finally, the whole reasoning system is integrated in a fully featured context-aware service framework, powering its context awareness by performing live event processing through complex ontological manipulation. the overall system is validated through in-situ deployments in a nursing home as well as private homes over a few months period, which itself is noticeable in a mainly laboratory-bound research domainEVRY-INT (912282302) / SudocSudocFranceF

    The Development of a Web-based Decision Support System for the Sustainable Management of Contaminated Land

    Get PDF
    Land is a finite natural resource that is increasingly getting exhausted as a result of land contamination. Land is made up of soil and groundwater, both of which have many functions for which we depend on, including provision of food and water, supporting shelter, natural flood defence, carbon sequestration, etc. Contaminants in land also pose a number of threats to public health and the environment; other natural resources; and have detrimental effects on property such as buildings, crops and livestock. The most effective method of dealing with these contaminants is to cleanup and return the sites to beneficial use. The cleanup process involves making a choice from amongst competing remediation technologies, where the wrong choice may have disastrous economic, environmental and/or social impacts. Contaminated land management is therefore much broader than the selection and implementation of remedial solutions, and requires extensive data collection and analysis at huge costs and effort. The need for decision support in contaminated land management decision-making has long been widely recognised, and in recent years a large number of Decision Support Systems (DSS) have been developed. This thesis presents the development of a Web-based knowledge-based DSS as an integrated management framework for the risk assessment of human health from, and sustainable management of, contaminated land. The developed DSS is based on the current UK contaminated land regime, published guidelines and technical reports from the UK Environment Agency (EA) and Department for Environment, Food and Rural Affairs (DEFRA) and other Government agencies and departments. The decision-making process of the developed DSS comprises of key stages in the risk assessment and management of contaminated land: (i) preliminary qualitative risk assessment; (ii) generic quantitative risk assessment; and (iii) options appraisal of remediation technologies and remediation design. The developed DSS requires site specific details and measured contaminant concentrations from site samples as input and produces a site specific report as output. The DSS output is intended to be used as information to support with contaminated land management decision-making.Great Western Researc

    A knowledge-based system for automated discovery of ecological interactions in flower-visiting data.

    Get PDF
    Doctor of Philosophy in Mathematics, Statistics and Computer Science. University of KwaZulu-Natal, Durban 2017Studies on the community ecology of flower-visiting insects, which can be inferred to pollinate flowers, are important in agriculture and nature conservation. Many scientific observations of flower-visiting insects are associated with digitized records of insect specimens preserved in natural history collections. Specimen annotations include heterogeneous and incomplete, in situ field documentation of ecologically significant relationships between individual organisms (i.e. insects and plants), which are nevertheless potentially valuable. A wealth of unrepresented biodiversity and ecological knowledge can be unlocked from such detailed data by augmenting the data with expert knowledge encoded in knowledge models. An analysis of the knowledge representation requirements of flower-visiting community ecologists is presented, as well as an implementation and evaluation of a prototype knowledge-based system for automated semantic enrichment, semantic mediation and interpretation of flower-visiting data. A novel component of the system is a semantic architecture which incorporates knowledge models validated by experts. The system combines ontologies and a Bayesian network to enrich, integrate and interpret flower- visiting data, specifically to discover ecological interactions in the data. The system’s effectiveness, to acquire and represent expert knowledge and simulate the inferencing ability of expert flower-visiting ecologists, is evaluated and discussed. The knowledge-based system will allow a novice ecologist to use standardised semantics to construct interaction networks automatically and objectively. This could be useful, inter alia, when comparing interaction networks for different periods of time at the same place or different places at the same time. While the system architecture encompasses three levels of biological organization, data provenance can be traced back to occurrences of individual organisms preserved as evidence in natural history collections. The potential impact of the semantic architecture could be significant in the field of biodiversity and ecosystem informatics because ecological interactions are important in applied ecological studies, e.g. in freshwater biomonitoring or animal migration

    Spatiotemporal enabled Content-based Image Retrieval

    Full text link

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019
    corecore