
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2008

Intelligent query for real estate search
Mandeep Jandir
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Jandir, Mandeep, "Intelligent query for real estate search" (2008). Master's Theses. 3489.
DOI: https://doi.org/10.31979/etd.8erk-bcw9
https://scholarworks.sjsu.edu/etd_theses/3489

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70406039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3489?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3489&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

INTELLIGENT QUERY FOR REAL ESTATE SEARCH

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Mandeep Jandir

August 2008

UMI Number: 1459686

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1459686

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

©2008

Mandeep Jandir

ALL RIGHTS RESERVED

APPROVED EORT3HE DEP. NT OF COMPUTER SCIENCE

Dr. Chris Pollett

./

n A_A -WXU
Dr. Sami Khuri

APPROVED FOR THE UNIVERSITY

&//b/o^

ABSTRACT

INTELLIGENT QUERY FOR REAL ESTATE SEARCH

by Mandeep Jandir

The purpose of this project is to improve search query accuracy in a real

estate website by developing an intelligent query system which provides the best

matching result for standard search criteria. This intelligent query website

utilizes fuzzy logic and partial membership to filter query results based on user

input data. Fuzzy logic helps obtain results that are otherwise not attainable

from a non-fuzzy search. A non-fuzzy search entails search results that match

exactly with the given criteria. This project also allows a user to do a free

keyword search. This type of search uses synonyms of the keywords to query

for houses. The resulting information is more credible and precise than the

traditional website because it provides a reasonable result, of the specified

search, to the user.

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. Chris Tseng who provided

the motivation, resources, and invaluable insights without which this project

could never have been accomplished.

I would also like to express my gratitude to my committee members, Dr.

Chris Pollett and Dr. Sami Khuri, for their useful comments on my work.

Finally, I would like to thank my parents, sister, and brother for their

continuous encouragement and support.

v

TABLE OF CONTENTS

INTRODUCTION 1

BACKGROUND AND RELATED WORK 3

Experience in Researching Fuzzy SQL 5

DESIGN 8

jFuzzyLogic - Fuzzy Logic System 8

Fuzzy Inference System (FIS) and Fuzzy Control Logic (FCL) 11

Architecture Model of Homes For You 15

IMPLEMENTATION 18

Real Estate Website 18

PHP Configuration for Java Classes 21

Real Estate Data 23

Fuzzy Inputs 24

Fuzzy Rule Set for Price Variable 25

Fuzzy Rule Set for Beds Variable 27

Fuzzy Rule Set for Bathrooms Variable 29

Fuzzy Rule Set for Size Variable 31

Fuzzy Rule Set for Lot Variable 34

Fuzzy Control Logic file - houseicl 36

Standard Field Search (Fuzzy) 39

Constraints for Standard Fields 41

Minimum Constraint 41

Maximum Constraint 42

Range Constraint 43

Exact Constraint 44

VI

TABLE OF CONTENTS (conf d)

Synonymous Search 45

RESULTS 48

Example 1 - Standard Field Search 48

Example 2 - Standard Field Search 49

Example 3 - Standard Field Search 49

Example 4 - Standard Field Search 50

Example 5 - Standard Field Search 51

Example 6 - Synonymous Search 52

Example 7 - Synonymous Search 54

Example 8 - Synonymous Search 55

Example 9 - Synonymous Search 57

Example 10 - Synonymous Search 58

Analysis of the Results 59

FUTURE WORK 61

CONCLUSION 62

REFERENCES 64

APPENDIX A: XML to Database field names conversion 67

APPENDIXB: Glossary 69

APPENDIX C: Source Code 70

House.java - jFuzzyLogic Code to access membership functions 70

SynonymFinder.php - script to retrieve synonyms from online 71

vii

LIST OF TABLES

Table 1. XML to Database field names conversion 23

LIST OF FIGURES

Figure 1. Continuous Membership Functions 9

Figure 2. Class Diagram for jFuzzyLogic 13

Figure 3. Sample FCL File 14

Figure 4. Architecture Model of Homes For You Website 16

Figure 5. PHP Java Bridge Window 21

Figure 6. Fuzzy Rule Set for Price Variable 26

Figure 7. Fuzzy Rule Set for Beds Variable 28

Figure 8. Fuzzy Rule Set for Baths Variable 30

Figure 9. Fuzzy Rule Set for Size Variable 32

Figure 10. Fuzzy Rule Set for Lot Variable 35

Figure 11. UI of Standard Field Selection (Fuzzy) 40

Figure 12. UI of Synonymous Search 46

Figure 13. Query Result for big rooms Keyword 53

Figure 14. Query Result for additional storage Keyword 55

Figure 15. Query Result for renovate Keyword 56

Figure 16. Query Result for beautiful backyard Keyword 58

Figure 17. Query Result for vacant Keyword 59

Vll l

INTRODUCTION

Real estate websites are gradually becoming more popular on the World

Wide Web. These websites are like search engines for finding properties, which

are useful for users who want to buy homes or other property. However, there

are no objective ways for retrieving search results based on personalized data. If

we take a look at Zillow, REIL, MLSListings, ZipListing, and Prudential

California Realty websites, we can find that all of these sites utilize inputs from

the standard fields to retrieve search results for any type of property desired.

But, these mentioned websites return strict search results based on user request.

For instance, if a user wants to buy a 4 bedroom, 2-car garage house, the search

result will only retrieve 4 bedroom, 2-car garage houses; whereas a fuzzy logic real

estate system will retrieve 5 bedroom, 2-car garage houses or 4 bedroom, 3-car garage

houses, etc. depending on how and which membership function is applied to the

standard fields to obtain partial membership for the linguistic terms.

The above mentioned websites - Zillow, REIL, MLSListings, ZipListing,

and Prudential California Realty - do not have the option that allows the user to

do a free keyword search for real estate properties. A keyword search feature

allows the user to search for houses based on personal preference rather than

1

utilizing the standard search fields. For example, a user may want to search for

homes with big rooms, for which the search result will return house properties

with the original keyword big rooms along with synonymous keywords such as

large rooms, spacious rooms, huge rooms, enormous rooms, etc.

Therefore, a more objective way of utilizing a user's search inputs has

been implemented. By using fuzzy logic on queries for real estate search, we are

able to filter and retrieve meaningful results which are close to what the user

requests. On the other hand, in the traditional query, there is no real matching

result for the search specified by the user via the standard search fields or the

synonymous search bar. Thus, fuzzy logic returns a matching result if there

exists one and therefore, it does an equal or better query to find the results.

We begin by presenting in Section 2 an overview of the background and

related work - how fuzzy intelligence can be used to perform a better search

result for the real estate website domain. In Section 3, the design of this project

will be described and the implementation will be discussed in Section 4. The

results of this project will be compared in Section 5. This will be followed by a

future work segment of the project in Section 6.

2

BACKGROUND AND RELATED WORK

In the past few years, there has been an increase in applications of fuzzy

logic and the Internet, especially in intelligent search engines. Fuzzy logic allows

for "making useful, human-understandable, deductions from semi-structured

information readily available on the web" (NikRavesh, 2002). For mis proposed

project, we have utilized a conventional DBMS (MySQL) and integrated a fuzzy

logic based querying system (jFuzzyLogic).

The real estate websites store insurmountable amounts of information for

different types of properties in databases. We have noticed that there seems to

be an inherent discrepancy between the "hard" machine and the "soft" human

being (Kacprzyk & Zadrozny, 1994). Fuzzy logic has played a crucial role in

making it possible to significantly improve the interfaces by offering formal

means to deal with vagueness resulting from the utilization of the natural

language (Kacprzyk, Owsinski, & Zadrozny, 2001).

It is important to know how Zadeh's paradigm of computing works:

linguistic values (e.g. low), linguistic relations (e.g. much less than half),

linguistic modifiers (e.g. very), and linguistic quantifiers (e.g. most) can be

utilized in developing a more human-consistent and human-friendly querying

3

interface to DBMSs (Kacprzyk & Zadrozny, 2001). Basically, this type of

querying system will allow for queries of the type "find (all) property such that

most (or any other suitable linguistic quantifier) of the important attributes (such

as price, number of bedrooms/bathrooms, etc...) are as specified (equal to 3,

greater than $400,000, much less than 2500 square feet, etc...)" (Kacprzyk &

Zadrozny, 1996).

The main problem is how to extend a query language so as to allow for

the use of the fuzzy terms, including: low, much greater than, most, etc. The

linguistic terms are identified by membership functions on a fixed interval, thus

allowing context-independent classifications. The membership functions that

can be utilized for any fuzzy logic system are Trapezoidal, Gaussian, Possibility,

or PossibilityTest.

A fuzzy query system basically allows the user to write SQL with fuzzy

matching and makes it feasible to use fuzzy elements in queries to help facilitate

the use of a DBMS (Kacprzyk & Zadrozny, 1996). The membership functions of a

fuzzy linguistic quantifier utilizes a piecewise linear graph, which signifies that

there needs to be two numbers provided. Basically, the vocabulary for querying

languages is extended with the use of linguistic terms which allows for query

4

conditions, such as: "temp is high" or "income is much greater than

expenditures."

A fuzzy querying engine known as FQuery provides a way to process the

fuzzy queries mentioned above. FQuery is built on top of the Microsoft Access

database management system. However, obtaining this fuzzy engine was not

feasible. After receiving no response from numerous email attempts to the

author of this engine, for attaining FQuery, a search for another fuzzy logic

system followed. Most of the fuzzy logic systems described in various papers

was theoretical. Hence, the fuzzy logic systems mentioned in the literature were

not a functional system readily available to use for this project. After searching

for a lot of different fuzzy systems, the most promising system discovered was

the jFuzzyLogic package software. Section 4 describes this fuzzy logic system in

detail.

Experience in Researching Fuzzy SQL

Initially, a lot of literature pertaining to fuzzy logic in SQL was obtained

for this topic. Despite finding lots of information on the web, there was some

difficulty in finding the corresponding systems and software mentioned in the

literature to use for this project. As mentioned above, several email attempts, to

5

some of the authors who wrote the papers on introducing a fuzzy system for any

application, went in vain. No response to those emails was received, regarding

how to obtain a copy of that particular software mentioned in the paper. An

observation was made; that most of the papers which mentioned an

implementation of a fuzzy software system were written by those who lived

outside of the USA.

Upon researching, we noticed that we could only study in finding

information on fuzzy SQL; we could not search for anything based on fuzzy in

real estate since it has never been done before. There is no such literature written

on including fuzzy logic in real estate search websites. All the references,

mentioned in Section 8 of this paper, which we found and read for our project,

give detailed explanations on how to include fuzzy logic in DBMS.

Another important piece of information that came across during the

reviewing of all the literature was that the dates for all the writings collected,

varied drastically. The range for the papers that were gathered is twenty-seven

years, 1978 - 2005. And all these pieces of work contained very important

relevant information for obtaining fuzzy logic in DBMS.

The majority of the literature obtained and reviewed was written by

Janusz Kacprzyk. Kacprzyk is a professor at the Systems Research Institute at

6

Polish Academy of Sciences in Warsaw, Poland. He is the person who

implemented FQuery - an add-on for "Microsoft Access which makes it possible

to use queries involving fuzzy values and relations as well as non-standard

aggregation operators" (Kacprzyk & Zadrozny, 1996). The next section discusses

the design part of the project.

7

DESIGN

In this section we describe how we have designed this project. We discuss

the usage of the fuzzy logic system, jFuzzyLogic, in our intelligent query system.

We also explain what fuzzy inference system and fuzzy control logic is and how

they are used in jFuzzyLogic. We also illustrate and describe in detail the

architectural model for our developed system.

jFuzzyLogic - Fuzzy Logic System

jFuzzyLogic is a fuzzy logic software package written in Java that is

available for everyone to use via the GNU General Public License (GPL). This

fuzzy logic package has many features, which include: parametric optimization

algorithms, FCL compliance, membership functions, defuzzifiers, rule

aggregation, rule connection operators, and rule implication methods.

The different types of parametric optimization algorithms that

jFuzzyLogic allows are derivate, gradient descent, and jump. The membership

functions that can be utilized are continuous and discrete as well as custom

defined membership functions. The different types of continuous membership

functions defined in jFuzzyLogic are GenBell, Sigmoidal, Trapezoidal, Gaussian,

PieceWiseLinear, and Triangular.

8

As shown in Figure 1, the continuous membership functions provided by

jFuzzyLogic are drawn accordingly. From the legend, ml refers to a

PieceWiseLinear function (blue line), m2 refers to a Triangular function (purple

line), m3 refers to a Trapezoidal function (green line), m4 refers to a GenBell

function (orange line), m5 refers to a Gaussian function (yellow line), and m6

refers to a Sigmoidal function (red line).

membership

1,0

0.9

0.8

0.7
a.
S 0-8
a>
•S 0.5

s 0.4

0.3 i

0.2

0.1

0.0

membership

/ \

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0]

X

m5 — ml — m3 m6 m4 — m2

Figure 1. Continuous Membership Functions

9

Each linguistic term in a Triangular membership function is

described by three points (min, mid, and max), whereas each linguistic term in a

Trapezoidal membership function is described by four points (min, mid low, mid

high, and max). The linguistic terms for a Gaussian membership function are

defined by two points (mean and standard deviation) and each of the linguistic

terms for the GenBell membership function are defined by three points (a, b, and

mean). The linguistic terms for Sigmoidal membership functions are described

by two points (gain and tO) while the linguistic terms associated with the

PieceWiseLinear membership function each have as many (x, y) pair coordinates

as needed to define the membership of that variable.

The various types of discrete membership functions described in the fuzzy

logic system are Singleton and GenericSingleton. There are also several types of

defuzzifiers provided by the jFuzzyLogic system: continuous, discrete, and

custom defined defuzzifiers. The continuous defuzzifiers listed for this fuzzy

logic system include CenterOfGravity, RightMostMax, CenterOfArea,

LeftMostMax, and MeanMax. There is only one type of discrete defuzzifier

defined in jFuzzyLogic, which includes CenterOfGravitySingletons. Rule

aggregation incorporates how rules are accumulated and there are several ways

of achieving aggregation: BoundedSum, Max, ProbOr, Sum, or NormedSum.

10

The two types of rule connections operators allowed in the jFuzzyLogic system

include AND and OR.

The jFuzzyLogic system implements a Fuzzy Inference System (FIS) and

Fuzzy Control Logic compliance (FCL). Based on the user-defined FCL file, a

user can input variables. The system fuzzifies the values of those input variables

and returns a defuzzified output along with membership values and graphs of

all the input variables. This jFuzzyLogic system is employed for retrieving

membership values of the linguistic terms based on user selected variables from

the real estate website. The linguistic terms whose membership values are

greater than zero are then utilized to query the database to obtain meaningful

search results. The next section discusses the terms FIS and FCL.

Fuzzy Inference System (FIS) and Fuzzy Control Logic (FCL)

Fuzzy Inference is the process utilized to produce a mapping of the given

input to an output by using fuzzy logic. The mapping itself proposes a starting

point from which decisions can be made, or patterns perceived. The process of

fuzzy inference involves membership functions, logic operations, and if-then

rules. A fuzzy inference system (FIS) uses fuzzy control logic.

11

Fuzzy Control Language (FCL) is a language for implementing fuzzy

logic, especially fuzzy control. Fuzzy controllers include an input phase, a

processing phase, and an output phase. The first phase maps the inputs to the

appropriate membership functions and truth values. The second phase first

applies each appropriate rule and produces a result for each, and then totals the

results of the rules. Lastly, the output phase translates the totaled result back

into a precise control output value.

In the jFuzzyLogic system, a fuzzy inference system is created by defining

one or more FuzzyRuleSets. Each FuzzyRuleSet is compiled by some

FuzzyRules and each FuzzyRule is written using an antecedent (IF part) and a

consequent (THEN part). Consequents are a set of FuzzyRuleTerms and an

antecedent is denoted by a FuzzyRuleExpression. A FuzzyRuleExpression

consists of two terms linked together by a RulelmplicationMethod (rule

connectors are AND, OR, and NOT). Each FuzzyRuleTerm is described by a

Variable and a LinguisticTermName. Each Variable has a name and some

LinguisticTerms. A class diagram representation describing the jFuzzyLogic

system is shown in Figure 2.

12

fIS

I
uzzyRuleSet

FuzzyRule K >

I
\Ru!elmp!i<aii<mMethoa

ffuzzyRuleExpressionjO

I
wltCenntaienMetheq

FuzzyRwIeTerm

Variable

UnguisticTerml

f^> HvieAggregazionMethoA

Defuziif'w]

I
W4embershipfeaafoi}\

Figure 2. Class Diagram for jFuzzyLogic

This jFuzzyLogic system defines a Fuzzy Function Block inside the FCL file and

it contains the following type of information shown in Figure 3.

13

FUNCTION_BLOCK Fuzzify
VAR_INPUT

temperature : REAL;
pressure : REAL;

END_VAR
VAR_OUTPUT

valve : REAL;
END_VAR
FUZZIFY temperature

TERM cold := (5, 1) (30, 0);
TERM hot := (5, 0) (30, 1);

END_FUZZIFY
FUZZIFY pressure

TERM low := (60, 1) (100, 0);

TERM high := (60, 0) (100, 1);
ENDJFUZZIFY
DEFUZZIFY valve

TERM drainage := -100;
TERM closed := 0;
TERM open := 100;
ACCU : MAX;
METHOD : COGS;
DEFAULT := 0;

END_DEFUZZIFY
RULEBLOCK blockl

AND : MIN;
RULE 1 : IF temperature IS cold AND pressure IS low THEN valve IS open;
RULE 2 : IF temperature IS cold AND pressure IS high THEN valve IS closed WITH 0.7;
RULE 3 : IF temperature IS hot AND pressure IS low THEN valve IS closed;
RULE 4 : IF temperature IS hot AND pressure IS high THEN valve IS drainage;

END_RULEBLOCK
END FUNCTION BLOCK

Figure 3. Sample FCL file

As seen in the sample FCL file from Figure 3, within each function block,

the input and output variables are defined, the variables are converted into

degrees of membership by using FUZZIFY blocks and the output is defuzzified

using the DEFUZZIFY block based on the rules listed in the RULEBLOCK. For

our project, we are only interested in defining input variables and FUZZIFY

blocks. The information from the FUZZYIFY blocks will be used by the

14

jFuzzyLogic system to return partial membership values. The exact definition of

the FUZZYIFY blocks that we have used for our intelligent search query will be

discussed in detail in Section 4.3. The next section describes the architectural

model of the intelligent query system developed in this project.

Architecture Model of Homes For You

The architecture model shown in Figure 4 illustrates the functional/logical

view of the intelligent query system that we have defined. Based on the model,

the user can either utilize the standard search or synonymous search to query for

house listings. If a user opts to utilize the standard search, the query is

constructed using the membership function values obtained by passing the user

specified values to the jFuzzyLogic engine. The membership values used to

query for house listings from the database yield the filtered results. These results

are then ranked based on the membership values returned by the jFuzzyLogic

engine. The ranked output is then displayed for the user to view.

If the user chooses to use the synonymous search, the keyword phrase

entered would then be sent to the Encarta synonymous website to obtain the

synonyms of the keyword phrase. These synonyms along with the original

keyword phrase would then be used to construct the query. When executed in

15

the database, this query would then produce the filtered results. These results

would then be ranked with the original keyword phrase at the top of the output

list and the synonymous phrases following the original keyword phrase. This

ranked output would then be displayed for the user to view.

Encarta
Synonymous

Website

House listing
Information

Query
Construction

using
Membership

Values

Query
Construction

using
Synonyms

Real Estate
Search Result

Spatial
DB

Ranking
based on
membership

Filtered Real
Estate Search

Results

pensus 200C
Fact Sheet
Website

Server - Using
MySQL and Apache

User-Querying XML
data converted to
database - 76 house
listings

Figure 4. Architecture Model of Homes For You Website

Each house from the ranked house listing result, displays the Census 2000

fact information along with the house property information for the user to view.

This census information is retrieved from the fact finder website created by the

16

U.S. Census Bureau. The statistics obtained from the census website are

discussed in Section 4.1. This project has been developed using the Apache

server, PHP scripts, and MySQL database. This will be explained further in the

next section, which describes the implementation part of this project.

17

IMPLEMENTATION

Real Estate Website

Our real estate website Homes For You allows for traditional and non-

traditional standard search queries for finding homes and other properties. Our

website is an enhancement, to the other traditional websites, that allows for

fuzzy search based on the standard input selection. For example, if a user wants

to buy a 4 bedroom, 3 bath, and 3 car garage home, the search results will also show

a 4 bedroom, 3 bath, and 2 car garage home amongst the properties available.

For the non-traditional search, users can enter in keywords in a search bar

that may not be available as a standard search field option. For example, in a

search bar, a user can enter: hardwood floors or big backyard. And, these keywords

will then be analyzed accordingly by utilizing synonyms of the keywords to

obtain the search results. The synonymous query will expand the search for

particular property and thus, help obtain meaningful results.

The main outline for achieving search results based on the non-traditional

search is to find the synonymous keywords from the following columns fields

from the database: extra info, cooling, general exterior, more info, flooring,

garage, heating, public remarks 1, public remarks 2, agent remarks, kitchen info,

18

location, laundry info, pool, roof, sewer info, bath info, water, land features,

special features, and report info. Thus, these column fields are utilized to find

the user specified keyword phrase using synonyms.

Another feature of this project incorporates the usage of a zip code, for a

particular house listing, to obtain the Census 2000 demographic profile

highlights of the area. The fact finder website only allows access to the data from

the year 2000, not the data from the year 2006. The site shows data in number

and percent values as well as a link to view a map for each of the different types

of characteristics. Based on the zip code and pattern matching, the number

values are accessed from this website and displayed under a particular house

listing description. This census information provides statistics relating to the

general, social, economic, and housing characteristics of the chosen area.

The general characteristics segment lists in numbers the total population

of male and female, median age (in years), different age groups, different races

(White, Black or African American, American Indian and Alaska Native, Asian,

Native Hawaiian and Other Pacific Islander, Other), average household size, and

the total housing units (owner-occupied housing units, renter-occupied housing

units, and vacant housing units) in the area. The social characteristics portion

lists in numbers the population that is twenty-five years of age and over - as well

19

as those twenty-five year olds that have a high school degree and a bachelor's

degree - civilian veterans, disability status, foreign born, and those who speak a

language other than English.

The economic characteristics section lists people in the labor force that are

sixteen years of age and over, mean travel time to work in minutes, median

household income in 1999 (dollars), median family income in 1999 (dollars), per

capita income in 1999 (dollars), families below poverty level, and individuals

below poverty level. The housing characteristics segment lists all the single-

family owner-occupied homes and the median value (dollars), median of

selected monthly owner costs - with a mortgage and without a mortgage.

This census information is incorporated into this project to provide a more

descriptive result for the house listing. This additional fact allows the user to

obtain general knowledge of the area around a particular property that he/she

might be interested in. Certain areas are attracting home owners based on the

families already living in that neighborhood. Thus, this extra information for a

particular house listing may further provide the incentive to buy this property.

In the next section, we describe the PHP configuration for JAVA classes.

20

PHP Configuration for Java Classes

The real estate website, which was created using fuzzy logic, was written

in PHP and integrated with the jFuzzyLogic system mentioned in Section 3. The

PHP scripts use the Apache Web Server and MySQL database, from the WAMP 2

bundled package. In order to get the PHP files to connect to the JAVA classes, a

special bridge known as the PHP/Java Bridge package was downloaded and

incorporated into the project. As mentioned in the README file from the

PHP/Java Bridge software, "The PHP/Java Bridge is a network protocol which

can be used to connect a native script engine (PHP) with a Java VM". The simple

and easy to follow directions from the README file of the software package

were utilized to setup the PHP/Java Bridge correctly.

To use this bridge, it was described in the README file that we needed to

double click on the JavaBridge executable jar file and select a port, as shown in

Figure 5.

Starting the PHP/Java Bridge

Start a socket listener on port

OK Camel

Figure 5. P H P Java Bridge W i n d o w

21

Next, we had to create a jar file containing all the .class files that were required

for the project. In this instance, we needed all the .class files of the jFuzzyLogic

software. Then, as instructed in the README file, to include the Java class(es) in

the PHP file, we had to add the following two lines of code in that PHP file

calling the Java class(es):

require_once("./JavaBridge/Java/Java.inc");

java_require("./jFuzzyLogic/HouseNoPackage.jar;

./jFuzzyLogic/jFuzzyLogic_l_2_l.jar");

It is necessary that the relative pathnames used above are according to the

location of the Java Bridge folder and while also making sure that the .class files

are from the point of view of the PHP script using the javajrequire function call.

One important note that we had to follow is that every time we restarted the

server machine, we needed to double click on the JavaBridge.exe file again and

select a port in order to keep the functionality of the PHP/[ava Bridge working

correctly. In the next section, we discuss the real estate data that we have used

for our intelligent search query system.

22

Real Estate Data

The data utilized for this real estate search web site is a real data set which

was received in an xml file format. The xml document was converted into a

database. Along with the conversion, some of the xml field names were renamed

to more descriptive column names in the database table because several of the

field names consisted of xstrl23, xDate4, Feature34, etc. These field names did

not correlate with their contents. Thus, the xml field names were renamed

according to the contents of these variables. As shown in Table 1, changing the

field names from the xml file to more descriptive names was easier to do by

basing the new name on the contents. For a complete table listing of all the

renamed field names, please refer to Appendix A.

Table 1.

XML to Database field names conversion

XML Field
Name

XSTR72

XSTR65

XSTR89

FEATURE20

FEATURE21

FEATURE36

Sample Contents of One Entry

Wall to Wall Carpeting, Linoleum or Vinyl,
Tile

Concrete Perimeter
Built-in Oven/Range Combo, Microwave Oven,

1 Dishwasher, Disposer, 1 Refrigerator
155 Heather Ln

Palo Alto CA

4

Database Table
Column Name

FLOORING

OUTSIDE INFO

KITCHEN INFO

MAILING ADDRESS
MAILING

CITYSTATE

BEDROOMS

23

The database table contains seventy-six entries of real estate properties,

where each entry contains around ninety-three columns of associated data.

Some of the important information each house listing contains is: style, original

list price, area, type, county, contract date, cross streets, MLS agent id, general

exterior, view, fireplace fuel, fireplace location, flooring, finance terms, living

dining room information, outside information, garage, heating, insulation,

kitchen, public remarks, agent remarks, showing instructions, kitchen

information, location, occupant phone, laundry information, pool, roof, sewer

information, bath information, parking features, water, land features, special

features, report information, days on market, owner name, property address,

city, zip code, approx square feet, last transaction date, deed number, zoning,

transfer value, year built, tax amount, tax rate area, bedrooms, bathrooms. The

next section describes the fuzzy inputs and their associated linguistic terms

utilized for this project.

Fuzzy Inputs

For this real estate project, there are five input values required from the

standard search fields that have been fuzzified using the jFuzzyLogic software:

price of a house, number of beds, number of baths, size of a house in square feet,

24

and lot size of the plot in square feet. In the next section we describe the

membership graphs for those user-defined input variables.

Fuzzy Rule Set for Price Variable

The price variable, as shown in Figure 6, has nine linguistic terms. Each

term has been composed of a name and a membership function. Each linguistic

term is associated with a price, in terms of how much a particular property costs,

and has been named according to the price range that the linguistic term covers.

The linguistic terms were chosen based on the data; the cutoffs have been based

on the minimum and maximum house listing prices from the database. For this

variable the membership function that each term uses is the piece-wise linear

function.

25

Figure 6. Fuzzy Rule Set for Price Variable

The linguistic term names employed for the price variable are: fourfiftyK,

sixfif tyK, eightfiftyK, tenfiftyK, twelvefiftyK, fourteenfiftyK, sixteenfiftyK,

eigthteenfiftyK, and twentyfiftyK. The K represents thousand, hence fourfiftyK

equals to four thousand and fifty (4050). The justification for utilizing such

names as linguistic term names is that it signifies that the middle defined point

has that value. It also indicates the lower and upper bounds for that term. For

example, the first linguistic term is named fourfiftyK, which denotes that the

middle point for this term has been defined at (450000,1).

26

Based on the design of this variable's linguistic terms, the lower bound

has been classified at being 100000 less than the linguistic term value. Hence the

lower bound point for linguistic term fourfiftyK is described at (350000, 0). The

upper bound for this variable's linguistic terms has been defined to be 150000

more than the linguistic term value. Consequently the upper bound is described

at (600000, 0). The next section describes the fuzzy rule set for the bedroom

variable.

Fuzzy Rule Set for Beds Variable

The beds variable, as shown in Figure 7, has seven linguistic terms. Each

of these linguistic variables associates the number of beds that a particular

property has and has been named according to the range of bedrooms the house

listings has. The linguistic terms were chosen based on the data; the cutoffs have

been based on the minimum and maximum number of beds listed in the

database. And similarly, as with the above variable, the beds variable also has

utilized the piece-wise linear function as its membership function.

27

^ • * a t P S * P f f l S $? ' * J W ^ "' " % <

beds

- one — two — five four three — seven six

Figure 7. Fuzzy Rule Set for Beds Variable

The linguistic term names utilized for the beds variable are: one, two,

three, four, five, six, and seven. The justification for using such names as

linguistic term names is that the term names signifies that the middle defined

point has that value. It also indicates the lower and upper bound for that term.

For example, the middle linguistic term has been named four, which denotes that

the middle point for this term is at (4,1). Based on the design of this variable's

linguistic terms, the lower bound has been defined as 1.5 less than the linguistic

28

term value. Hence the lower bound point for linguistic term four has been

described at (2.5,0).

The upper bound for this variable's linguistic terms was defined to be 1.5

more than the linguistic term value. Consequently the upper bound has been

described at (5.5, 0). The reason for having decimal related lower and upper

bounds is so as to include and give partial membership to values exactly one less

or one more than the user selected. Going back to the same example, if the user

has selected four-bedrooms, houses with three- and five-bedrooms would receive

partial membership, hence signaling the fuzzy intelligence system that the

database also needs to be queried for three and five bedroom houses. The next

section discusses the fuzzy rule set for the bathroom variable.

Fuzzy Rule Set for Bathrooms Variable

The bathrooms variable, as shown in Figure 8, also has seven linguistic

terms. Each of these linguistic terms associates the number of bathrooms that a

particular property has and has been named according to the number of

bathrooms that the linguistic term covers. The linguistic terms were chosen

based on the data; the cutoffs have been based on the minimum and maximum

29

number of bathrooms listed in the database. This variable also uses the piece-

wise linear function as its membership function.

baths

one —two —five four three —seven six

Figure 8. Fuzzy Rule Set for Baths Variable

The linguistic term names utilized for the bathrooms variable are the same

as for the bedrooms variable: one, two, three, four, five, six, and seven. The

justification for using such names as linguistic term names is that the term names

signify the middle defined point having that value. It also indicates the lower

and upper bound for that term. For example, the middle linguistic term has been

30

named two, which denotes that the middle point for this term is at (2,1). Based

on the design of this variable's linguistic terms, the lower bound has been

defined as 1.5 less than the linguistic term value. Hence the lower bound point

for linguistic term two has been described at (0.5, 0).

The upper bound for this variable's linguistic terms has been defined to be

1.5 more than the linguistic term value. Consequently the upper bound has been

described at (3.5,0). The same reason as with the bed variables fuzzy rule set has

been used for having decimal related lower and upper bounds. It has been used

to include partial membership to values exactly one less or one more than the

user selected. Going back to the same example, if the user has selected two

bathroom properties, houses with one- and three-bathrooms would receive

partial membership, hence signaling the newly designed system that along with

two bathroom houses, the database also needs to be queried for one- and three-

bathroom houses. In the next section, we discuss the fuzzy rule set of the size

variable.

Fuzzy Rule Set for Size Variable

The size variable, as shown in Figure 9, has ten linguistic terms, where

each linguistic term has been associated to the size of the property. Since there is

31

such a wide range of sizes for any property, there is a need to define this variable

by ten linguistic terms. Each linguistic term has been named according to the

size range of the house listings. The linguistic terms were chosen based on the

data; the cutoffs have been based on the minimum and maximum sizes of the

properties listed in the database. This variable also uses the piece-wise linear

function as its membership function.

twelveH—twentyeightH—twentyfourH eighteenH fourteenH—oneT twentytoroH sixteenH—iwentysixH—twoTi
aasaasaaawaaMasaBMBjBgaaBgawaawfcfcLin.iiii.^.jjjsawaawgi i1 Mini »i I isasaSBgca ,n n in nil i ,i ml 1/tsBSKaa-SBesaaaaasBBSBSBassaasa iiiu.iiii iiiiimu I laaasaaaii 1111 n n i i n i mi i i i i i u i i n n 11 i w

Figure 9. Fuzzy Rule Set for Size Variable

32

The linguistic term names used for the size variable are: oneT, twelveH,

fourteenH, sixteenH, eighteenH, twoT, twentytwoH, twentyfourH, twentysixH,

and twentyeightH. The T in the linguistic term refers to thousand and the H in

the linguistic term refers to hundred. Thus, twelveH equals to twelve hundred

and twoT refers to two thousand. The justification for using such names as

linguistic term names is that it signifies that the middle defined point has that

value. It also indicates the lower and upper bound for that term. For example,

one of the middle linguistic terms has been named twoT, which signifies that the

middle point for this term is at (2000,1). Based on the design of this variable's

linguistic terms, the lower bound has been classified at being 349 less than the

linguistic term value. Hence the lower bound point for linguistic term twoT has

been described at (1651, 0).

The upper bound for this variable's linguistic terms has been defined to be

251 more than the linguistic term value. Consequently the upper bound has been

described at (600000, 0). Based on all this information, the linguistic terms for the

size variable cover the range for the sizes of properties by giving partial

membership to any wide range of sizes entered by the user. The next section

describes the fuzzy rule set of the lot variable.

33

Fuzzy Rule Set for Lot Variable

The lot variable, shown in Figure 10, has nine linguistic terms, where each

linguistic term has been associated to the lot size of the property. As mentioned

above for the size variable, since there is such a wide range for a lot size of any

property, there was a need to define this variable by nine linguistic terms. Each

linguistic name has been uniquely defined according to the lot size range based

on the house listings from the database. The linguistic terms were chosen based

on the data; the cutoffs have been based on the minimum and maximum lot sizes

of the properties listed in the database. This variable also uses the piece-wise

linear function as its membership function.

34

rsr
®ie«K£wBjist^gsg*ss9w*»*9pi§?WfeN^^

1.00

0 . 8 6

0 00

0.86

0.80

0.78

0.70

0.86

.9- 0.80

S 0M

"§ 0.50

a o.«
0.41

0.3S

0.30

0.28

020

0.18

0.10

0.05

0.00

lot

\ >\ A

/ \ / \ / \ / \

/ V V V *

twelveT— eighteenT— sixT oneT fourT—tenT fourteenT sixteenT — eightTI

Figure 10. Fuzzy Rule Set for Lot Variable

The linguistic term names used for the lot variable are: oneT, fourT, sixT,

eightT, tenT, twelveT, fourteenT, sixteenT, and eigthteenT. The T in the

linguistic terms refer to thousand, hence, oneT equals to one thousand. The

justification for utilizing such names as linguistic term names is that it signifies

that the middle defined point has that value. It also denotes the lower and upper

bounds for that term. For example, one of the middle linguistic terms has been

named eightT, which signifies that the middle point for this term is at (8000,1).

The way this variable's linguistic terms have been defined, the lower bound has

35

been described at 2999 less than the linguistic term value. Hence the lower

bound point for linguistic term eightT is identified at (3001,0). The upper bound

for this variable's linguistic terms has been defined to be 3001 more than the

linguistic term value. Consequently the upper bound is described at (11001,0).

The reason for choosing the mentioned lower and upper bound values for

each linguistic term was to include those houses whose lot sizes are specified

exactly to be that given value by the user. For example, if the user selects houses

whose lot size equals to 11,000 square feet, based on the linguistic terms defined,

the user defined variable would have partial membership in three linguistic

terms: eightT, tenT, and twelveT. Hence this would be returned to the fuzzy

intelligence system and the houses which have lot sizes between 8,000 and 12,000

square foot would be queried for accordingly.

The next section describes the FCL file we defined for the jFuzzyLogic

software.

Fuzzy Control Logic file - house.fcl

The associated fuzzy control logic (FCL) file that we have defined for the

jFuzzyLogic software to use for this intelligent query system is shown below:

36

FUNCTION BLOCK house // Block definition

VAR_

END_

VAR

END

_INPUT
price :
beds :
baths :
size :
lot :
_VAR

_OUTPUT
rating
VAR

REAL;
REAL;
REAL;
REAL;
REAL;

: REAL

// Define input variables

// Define output variable

FUZZIFY price //
TERM fourfiftyK
TERM sixfiftyK
TERM eightfiftyK
TERM tenfiftyK
TERM twelvefiftyK
TERM fourteenfiftyK
TERM sixteenfiftyK
TERM eighteenfiftyK
TERM twentyfiftyK

END FUZZIFY

Fuzzify input
= (350000, 0)
= (500000, 0)
= (700000, 0)
= (900000, 0)
= (1100000,0)
= (1300000,0)
= (1500000,0)
= (1700000,0)
= (1900000,0)

variable 'price'
(450000, 1) (600000, 0)
(650000, 1) (800000, 0)
(850000, 1) (1000000,0)
(1050000,1) (1200000,0)
(1250000,1) (1400000,0)
(1450000,1) (1600000,0)
(1650000,1) (1800000,0)
(1850000,1) (2000000,0)
(2050000,1) (2200000,0)

FUZZIFY beds
TERM one
TERM two
TERM three
TERM four
TERM five
TERM six
TERM seven

END FUZZIFY

// Fuzzify input variable 'beds'
(0, 0)
(0.5,0)
(1.5,0)
(2.5,0)
(3.5,0)
(4.5,0)
(5.5,0)

(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(7,1)

(2.5,0)
(3.5,0);
(4.5,0);
(5.5,0)
(6.5,0)
(7.5,0);
(8.5,0);

FUZZIFY baths
TERM one
TERM two
TERM three
TERM four
TERM five
TERM six
TERM seven

END FUZZIFY

// Fuzzify input variable 'beds'
(0, 0)
(0.5,0)
(1.5,0)
(2.5,0)
(3.5,0)
(4.5,0)
(5.5,0)

(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(7,1)

(2.
(3,

5,0);
5,0)

(4.5,0)
(5.5,0);
(6.5,0);
(7.5,0)
(8.5,0)

FUZZIFY size
TERM oneT
TERM twelveH

// Fuzzify input variable 'size'
:= (800, 0) (1000, 1) (1251, 0) ;
:= (951, 0) (1200, 1) (1451, 0) ;

37

TERM fourteenH
TERM sixteenH
TERM eighteenH
TERM twoT
TERM twentytwoH
TERM twentyfourH
TERM twentysixH
TERM twentyeightH

END FUZZIFY

= (1151, 0) (1400, 1) (1651, 0)
= (1251, 0) (1600, 1) (1851, 0)
= (1451, 0) (1800, 1) (2051, 0)
= (1651, 0) (2000, 1) (2251, 0)
= (1851, 0) (2200, 1) (2451, 0)
= (2051, 0) (2400, 1) (2651, 0)
= (2251, 0) (2600, 1) (2851, 0)
= (2451, 0) (2800, 1) (3051, 1)

FUZZIFY lot
TERM oneT :
TERM fourT :
TERM sixT :
TERM eightT :
TERM tenT :
TERM twelveT :
TERM fourteenT :
TERM sixteenT :
TERM eighteenT :

END_FUZZIFY

DEFUZZIFY rating
TERM low
TERM middlelow
TERM middle
TERM middlehigh
TERM high
ACCU : NSUM;
METHOD : COG;

DEFAULT := 0;

// Fuzzif
= (400, 0)
= (1001, 0)
= (2001, 0)
= (5001, 0)
= (7001, 0)
= (9001, 0)
= (11001,0)
= (13001,0)
= (15001,0)

y input variable 'size'
(1000, 1) (2001, 0) ;
(4000, 1) (7001, 0) ;
(6000, 1) (9001, 0) ;
(8000, 1) (11001,0);
(10000, 1) (13001,0);
(12000, 1) (15001,0);
(14000, 1) (17001,0);
(16000, 1) (19001,0);
(18000, 1) (21001,0);

// Defzzzify output variable 'rating'
:= (0, 0) (1
:= (2, 0) (3
:= (4, 0) (5
:= (6, 0) (7
:= (8, 0) (9

, 1) (2, 0) ;
, 1) (4, 0) ;
, 1) (6, 0) ;
, 1) (8, 0) ;
, 1) (10,0);

// Use 'max' accumulation method
// Use 'Center Of Gravity' defuzzification
// method
// Default value is 0 (if no rule
// activates defuzzifier)

END DEFUZZIFY

RULEBLOCK Nol
AND : MIN;

ACT : MIN;

// Use 'min' for 'and' (also implicit use
// 'max' for 'or' to fulfill DeMorgan's
// Law)
// Use 'min' activation method

// There are no rules in this rule block because none are needed
// for this project. I am only interested in membership values
// and their associated linguistic terms

END RULEBLOCK

END FUNCTION BLOCK

38

The jFuzzyLogic software package that we utilize for this project provides

plotted graph outputs of the FuzzyRuleSet as defined in the FCL file. This is

useful for debugging purposes since the software shows the graph output. This

allows the user to see if all the linguistic terms in each variable have been defined

correctly as compared to each other. This feature is also useful for viewing the

FuzzyRuleSet as an image versus the code from the FCL file.

The next section explains how we employed fuzzy logic, from the

jFuzzyLogic software, in the standard field search in the Homes For You real

estate website.

Standard Field Search (Fuzzy)

The user interface design for the standard field search is shown in Figure

11. As displayed, five standard search field selections have been defined: price of

house, number of bedrooms and bathrooms in a house, size and lot size of the

house (measured in square feet). The user is allowed to type in any appropriate

value for each of the five standard search fields.

39

hir! ."-ir ,ny '« _' TI-

WELCOME TO Homes For You!

Price: \

Beds: ;

Baths: j

Size: i

Lot:

Search for a home:

Mm

T ! Mm

• i Mm

Min

i Min

W

M

a
1*1, SQFt

I r l ' SqFt

; Submit Now! i Synonymous Search

San Jos^ State University I Spring 2008 (CS299
Homes For Vou © 2G03. Al Rights Reserved.

Figure 11. UI of Standard Field Selection (Fuzzy)

For the beds and baths field selections, a user has the option to click on the

drop down list to pick a number or can type in a value in the text field. The

reason for having a text box is to help facilitate a range input. The drop down

list does not contain any range hence the need for an input text box. The

justification for including a drop down list for the beds and baths field selections

is to display for the user the range of bedrooms and bathrooms for the entire

house listing data set. Thus a user can either select an input value from the drop

40

down list or enter in the input value manually. The next section describes the

different constraints defined for the standard search fields.

Constraints for Standard Fields

Next to each of the five standard search field input boxes, a user can also

modify the input value by selecting a constraint: minimum, maximum, exact, or

range. To explain this further, let us look at a very simple example. For instance,

suppose that a user wants a four-bedroom house. There are different scenarios

for each of the four different constraints as explained in the next four sub­

sections.

Minimum constraint. If the user picks minimum as the constraint for the

input value, this fuzzy intelligence system is defined to utilize the Java classes

from jFuzzyLogic to obtain the membership values of the associated linguistic

terms for the bedrooms variable. From the example in the previous section, the

input value for the bedrooms variable will be four and based on the

FuzzyRuleSet discussed above, the input value of four has partial membership

in linguistic terms three and five. Since the user has specified the constraint to

be minimum and four as the input value, linguistic term three has partial

membership. Therefore, the database is also queried for three-bedroom houses.

41

The result is then ranked according to the membership values. In this case, all of

the house properties with four-, five-, six-, and seven- bedrooms are listed first

and at the bottom of the results page, three-bedroom houses are displayed.

The next section describes the second constraint option available for a user

to select.

Maximum constraint. If the user picked maximum instead of minimum as

the constraint for the input value, this fuzzy intelligence system is defined to

utilize the Java classes from the jFuzzyLogic software package to obtain

membership values of the associated linguistic terms for the bedrooms variable.

As from the same example before, the input value for the bedrooms variable is

still four. The FuzzyRuleSet is still the same and based on Figure 7, the input

value four has partial membership in two linguistic fields, namely three and

five. In this case since the constraint it maximum, the database will also be

queried for five-bedroom houses. The result is once again ranked based on the

membership values. The user will see one-, two-, three-, four- and then five-

bedroom house listings. Five-bedroom houses will be at the end of the result

list, since it had the least membership value amongst all other number of

bedrooms.

42

The next section describes the third constraint option available for the user

to select.

Range constraint. If the user picked range instead of maximum as the

constraint for the input value, this defined fuzzy intelligence system calls the

Java class from the jFuzzyLogic package to obtain the membership values of the

associated linguistic terms for the bedrooms variable. The example now is

slightly changed; the user queries for three-five bedrooms. Thus, the input

value for the bedrooms variable is now 3-5, which means three, four, and five

are all considered to be the input values.

The same FuzzyRuleSet from Figure 7 is used to acquire membership

values. The input variable three has partial membership in linguistic terms two

and four. The input variable four has partial membership in linguistic terms

three and five. Lastly, the input variable five has partial membership in

linguistic terms four and six. Thus, the database would be queried for three-,

four-, five-bedroom houses as well as two- and six- bedroom houses. This result

will also be ranked, the number of bedrooms with the highest membership

values will be listed towards the top of the search result and the bedrooms with

the lowest membership values will be listed at the bottom of the search result.

43

The next section explains the final constraint option available for the user

to select.

Exact constraint If the user picks the last constraint, exact, for the input

value, then just as before, this defined fuzzy intelligence system calls the Java

class from the jFuzzyLogic software to obtain the membership values of the

associated linguistic terms. As in the example used in the minimum and

maximum constraint sections, the input value for the bedrooms variable is three.

Using the FuzzyRuleSet from Figure 7, we obtain the membership values of the

linguistic terms. The input variable three has partial membership in linguistic

terms two and four. Therefore, the database would be queried for two-, three-,

and four-bedroom houses. This result would be ranked according to the

membership values, with three-bedroom houses listed at the top of the search

results and the two- and four-bedroom houses listed at the bottom of the list.

In a traditional query, as done in the real estate websites mentioned in the

first section, any input value for the houses variable would take a crisp number

with no partial membership in other numbers. These real estate websites use

crisp logic for executing a search query in the database. Thus, the input variable

is used to define the crisp set and to find houses listings that are exactly in the

set. Therefore, there is no partial membership given to those numbers that are

44

slightly close to the set; either the number is in the set or it is not. For example, a

three bedroom house with an exact constraint would only return three-bedroom

houses. No partial membership would be taken into consideration in traditional

real estate websites and thus a user will not be able achieve as credible and

precise results as opposed to the intelligent query system defined in the project.

The next section discusses the second feature of this project, a free

keyword search for the user.

Synonymous Search

Another important aspect of this project includes a synonymous search of

the house listings. What if a user wants to search for houses but not using the

standard field selections? The synonymous search allows the user to type in a

keyword and search for real estate properties. Basically, a user is allowed to do a

free keyword search for properties. For example, a user can search for big

backyard houses, and the database would also be queried for large backyard houses

since large is a synonym for big.

The user interface design of the synonymous search feature is shown in

Figure 12. As mentioned, the user types in keyword(s) in the search bar, the

keywords are passed into the website, and the synonyms are retrieved. The

45

retrieved synonyms are then used to query the database for matching results.

The website utilized to find synonyms of the keywords entered by the user is

titled Encarta Thesaurus by MSN. Depending on the keyword, this website

displays many synonyms but only the first two sets of synonyms are obtained to

use by the database search query. Appendix C contains the PHP script used to

obtain the synonyms from the Encarta website. The results are displayed in

ranking order, with the supplied keyword input search result at the top and the

synonymous search results following the original result.

! ij,. l ~ r i r * "BR-"" V i ' '•' tr-

Synonymous Search

Find houses that have...

match this or similar
description: ..

i Advanced Search j standard Searcti

San Jose State University | Spring 2008 | CS 299

Homes For You £ ' 2003. Afi Rights Reserved.

Figure 12. UI of Synonymous Search

46

A user can click on a particular house listing from the synonymous search

result and see the highlighted keyword(s) or synonymous keyword(s) within

that listing to reinforce the result.

In the next section, we discuss the results obtained from this project. The

results are shown using several examples.

47

RESULTS

Different case examples for the standard field and synonymous search

will be presented in this section. This will help demonstrate the capabilities of

this intelligent query system. The first five examples will show different cases of

utilizing the standard field search feature and the last five examples will show

the usage of the synonymous search feature using different keywords as inputs.

Example 1 - Standard Field Search

In this first example, we have searched for a home using just the price

standard field selection and the range constraint. The input selected for the price

range is 550000 - 750000. Using the fuzzy rule set for the price variable, as

shown in Figure 6, we find that this input has partial membership in two

linguistic terms, namely fourfiftyK and sixfiftyK. Therefore, the database will be

queried for house listing with a price that is between 450000 and 750000. This

search result returns twenty-two house listings. If the actual input, 550000 -

750000, was utilized to query the database, the result set would be slightly

smaller, with eighteen house listings. The next section describes another

example of using the standard field search.

48

Example 2 - Standard Field Search

For this example, we have searched for a home using only the beds

variable and the maximum constraint. The input for the beds variable is two.

Based on the fuzzy rule set for the bed variable, as shown in Figure 7, we find

that this input value has partial membership in two linguistic terms, namely one

and three. Since the maximum constraint has been used, we also include three-

bedroom houses in the search query to the database. This query yields eight

matching houses. It can be noticed that the search returns houses with three-

bedrooms only. This means that there are no houses with only two-bedrooms.

So the fuzzy intelligence search returned some houses that would otherwise not

be included in the result if a traditional real estate website utilized this same data

set. In the next section we illustrate another example using the standard field

search.

Example 3 - Standard Field Search

In this next example for the standard field search we have used the baths

variable and the minimum constraint. The input for the baths variable is three.

Based on the fuzzy rule set for the baths variable, as shown in Figure 8, we find

that the input three has partial membership in two linguistic terms, namely two

49

and four. Since the minimum constraint has been utilized, we also include two

bathroom houses in the query to the database. This search result returns fifty-six

matching houses. There are also two houses with two-bathrooms listed at the

end of the list since the input value three had partial membership in linguistic

term two. In the next section we describe another example using the standard

field search.

Example 4 - Standard Field Search

In this example for the standard field search, the size variable with the

exact constraint has been utilized to query for houses. The input value for the

size variable has been defined to be 1050 square feet. Based on the fuzzy rule set,

from Figure 9, for the size variable, we find that the input of 1050 has partial

membership in two linguistic terms, namely oneT (one thousand) and twelveH

(twelve hundred). Since the exact constraint has been utilized, the database will

be queried for houses whose sizes are between one thousand and twelve

hundred square feet. This search result returns eleven matching houses. In a

non intelligent query system for a real estate website, if the user searches for

houses with exactly 1050 square feet in size, it will not result in any matching

houses since no house exists with that exact size in square feet from the provided

50

data set. In the next section we discuss the final example using the standard field

search.

Example 5 - Standard Field Search

For this last standard field search example, four of the standard fields

have been utilized to do a search. The price variable has been defined to have

range as its constraint with 550000-750000 as its value. The bedrooms variable

has been defined to have maximum as its constraint three as its value. The

bathrooms variable has been defined to have minimum as its constraint and two

as its value. Lastly, the size variable for this search has been defined to have the

exact constraint and 1050 square feet as its value. Based on the fuzzy rule sets for

the price, bedrooms, bathrooms, and size variables, each variable has some

linguistic terms that have some partial membership values. Taking all the partial

membership values of the linguistic terms into consideration, this search yields

eight matching houses, including a $430,000,4-bedroom, 3-bathroom, 1200 square

foot house. In the next section we describe an example using the synonymous

search feature.

51

Example 6 - Synonymous Search

For this synonymous search example, we will input big rooms as the

keyword search phrase. To show that big rooms do not exist in any of the fields in

the database, a search query for this keyword phrase will be sent to the database.

The MySQL query will be of the following form:

SELECT * FROM ^listings* WHERE ^EXTRAINFCT LIKE '%%' ||
^COOLING^ LIKE '%%' || 'GENERALEXTERIORv LIKE '%%' ||
^MOREINFCT LIKE '%%' || ^FLOORING* LIKE '%%' || SGARAGE% LIKE
'%%' || XHEATINGS LIKE '%%' || NPUBLICREMARKS1v LIKE '%%' ||
SPUBLICREMARKS2N LIKE '%%' || "AGENTREMARKS* LIKE '%%' ||
^KITCHENINFO* LIKE '%%' || xLOCATION" LIKE '%%' ||
"LAUNDRYINFO" LIKE '%%' || "POOL" LIKE '%%' || "ROOF" LIKE '%%'
II "SEWERINFO" LIKE '%%' || "BATHINFO" LIKE '%%' || "WATER"
LIKE '%%' || "LANDFEATURES" LIKE '%%' || "SPECIALFEATURES" LIKE
'%%' || "REPORTINFO" LIKE '%%'

The two percent marks match any number of characters, including zero

characters. By incorporating the keyword phrase big rooms and the LIKE

operator, the search query above will do pattern matching of the specified

keyword. To illustrate this case, here is a simple query:

SELECT * FROM "listings" WHERE "PUBLICREMARKS1" LIKE '%big
rooms%' II "PUBLICREMARKS2" LIKE '%big rooms%' || "AGENTREMARKS"
LIKE '%big rooms%'

This query translates to: find all house listings from the listings table where the

public remarks 1, public remarks 2, and agent remarks fields contain the key

phrase big rooms. Executing this query returns an empty result set indicating that

52

the key phrase big rooms does not exist in any of the fields of the house listings.

This is shown in Figure 13.

©HUH
Database

hsslistings (1)

hssN stings (1)

B9 listings

a) Server: localhost • £i Database: hsslistings • ifl Table: listings "InnoDBfme: 11264 kB"

HBrowse gf Structure .jjSQL /Search ^Insert fjjExport jjlmport ^Operations J Empty

BProp

ffi MySQL returned an empty result set (i.e. zero rows). (Query took 0.0320 sec)

-SQL query:
SELECT "
FROM listings'
WHERE 'EXTRAINFO' LIKE %big rooms%' || 'COOLING' LIKE %tHg rooms%'1| 'GENERALEXTERIOR' LIKE '%big rooms%' II 'MOREINFO'
LIKE '%big rooms%' || 'FLOORING' LIKE %faig rooms%' || 'GARAGE' LIKE %big rooms%' || 'HEATING' LIKE '%big rooms%' ||
•PUBLICREMARKS1' LIKE '%big rooms%' II 'PUBLICREMARKS2' LIKE '%b<g rooms%' || 'AGENTREMARKS' LIKE Vobig tooms%' ||
'KITCHENINFO' LIKE '%big rooms%' II 'LOCATION' LIKE '%big rooms%' || 'LAUNDRYINFO' LIKE '%big rooms%' II 'POOL' LIKE
•%big rooms%' || 'ROOF' LIKE ^ b i g rooms%' II 'SEWERINFO' LIKE '%big rooms*,' II 'BATHINFO' LIKE "%big rooms%' II 'WATER' LIKE
•%big rooms%' || 'LANDFEATURES' LIKE '%big rooms%' II 'SPECIALFEATURES' LIKE '%big roomsW I! 'REPORTINFO' LIKE '%big raoms%'
LIMIT 0 76

l E « . J fl.BBaD.AOiJ lLcrMaRrJE.Sate]l I f iSEB&Jl

Figure 13. Query result for big rooms keyword

The synonymous keywords for big rooms are the following: large rooms,

giant rooms, immense rooms, vast rooms, great rooms, gigantic rooms, great big

rooms, huge rooms, enormous rooms, whopping rooms, full-size rooms, life-size

rooms, spacious rooms, capacious rooms, roomy rooms, large rooms, and deep

rooms. The database is queried for all the synonymous keywords and the search

returns two matching houses. Both of the houses listed in the search results

contain the key phrase spacious rooms. In this example, the synonymous search

53

http://fl.BBaD.AOiJ

proved successful. In the next section we discuss a second example using the

synonymous search feature.

Example 7 - Synonymous Search

In another example of the synonymous search, we are using the keyword

phrase additional storage. The synonymous keywords for this phrase include

extra storage, added storage, supplementary storage, other storage, further

storage, bonus storage, surplus storage, and superfluous storage. This key

phrase and its synonymous key phrases are searched in the database and this

search results in sixteen matching houses. The query mentioned in Section 5.6

could be used to test if additional storage is listed the database. As shown in

Figure 14, when this query is executed, it yields an empty result set. This

indicates the synonyms for additional storage were used to obtain these results of

sixteen matching houses.

54

Database

| hsslistings (1)

hsslistings (1)

IS listings

ft) Server: localhost • Si Database: hsslistings • Sii Tabls: listings "InnoDBfree: 11264kB"

[g Browse ^Structure ,8 SQL / S e a r c h ji Insert BExport iplmport ^Operations J Empty

•Drop

© MySQL returned an empty result set (i.e. zero rows) (Query took 0 0024 sec)

• SQL query:

SELECT •
FROM 'listings'
WHERE 'EXTRAINFO' LIKE ^additional storage*' || 'COOLING' LIKE '%additionsl storage*' || 'GENERALEXTERIOR' LIKE
•%add>tional storage%' || 'MOREINFO' LIKE "^additional storage*' II 'FLOORING' LIKE '%additional storage*' II GARAGE' LIKE
'%additional storage0* II HEATING' LIKE "Siadditional storage%' || 'PUBUCREMARKS1' LIKE '%additional storage*' || 'PUBUCREMARKS2'
LIKE '%additional Storage*' || 'AGENTREMARKS' LIKE '%additional storage*' II 'KITCHENINFO' LIKE -%additional storage*' II 'LOCATION'
LIKE '%additional storage*' || 'LAUNDRYINFO' LIKE '%add(tional storage%' || 'POOL' LIKE '%additional storage%' || 'ROOF' LIKE
•%addltional storage* I! 'SEWERINFO' LIKE '%additional storage%' || 'BATHINFO' LIKE '%additional storage%' I! 'WATER' LIKE
'%additional storage*' II 'LANDFEATURES' LIKE ^additional storage*' II 'SPECIALFEATURES' LIKE ^additional storage*' ||
•REPORTINFO' LIKE '%additional storage*'
LIMIT 0 76

iLjftJiiLSî BayteaSa£H£^&JiilJss^Ji

Figure 14. Query result for additional storage keyword

In tiie next section we describe another example using the synonymous

search feature.

Example 8 - Synonymous Search

In this example, a single keyword synonymous search will be executed.

The keyword is renovate and its synonyms are: renew, recondition, modernize,

refurbish, repair, restore, mend, fix up, revamp, remodel, redecorate, and do up.

The synonymous search for renovate yields fifteen matching houses. Just to make

sure that only the synonyms of this keyword are responsible for such a large

result set, the query mentioned in Section 5.6 is used to match for the keyword

renovate. The MySQL search query returns two matching rows of data, as shown

55

in Figure 15. This signifies that renovate occurs in two of the fifteen synonymous

search matches indicating that thirteen of the fifteen matches occurred based on

the synonym of renovate.

\ hssBstings (1)

hssKstings(l)

Q) Showing rows 0 - 1 (2 total. Quay took 0 0028 sec)

a
-SQL query:

SELECT -
FROM "listings'
WHERE 'EXTRAINFO' LIKE '%renovate%' || 'COOLING- LIKE •"tamMta*,1 j['GENERALEXTERIOR' LIKE %renovate%' II'MOREINFO' LIKE %renovate%' II FLOORING'
LIKE '%r«io»>te%' || GARAGE' LIKE ,(Kren(Mit»%' II 'HEATING' LIKE ••IrenOTnteK.' II "PUBUCREMARKS1" LIKE '%renovate%' II 'PUBLICREMARKS2' LIKE 'KnnrraunY II
'AGENTREMARKS' LIKE '%ren<M»e%' II 'KITCHENlNFO' LIKE ,%renov»e%' || 'LOCATION' LIKE •%rem>vate%'1! 'LAUNORYINFO' LIKE '%f«novate%" || 'POOL LIKE
I t n n o n U K ' II 'ROOF LIKE 'ttrarmnWW II 'SEWERINFO' LIKE I twma tgK - || "BATMNFO" LIKE '%reno«te%' II 'WATER' LIKE '%i*nimte%' || "LANDFEATURES' LIKE
•UrnioHUK II SPECIALFEATURES' LIKE '%i»novat«%' II REPORI1NFO' LIKE 'KnnouUK'
LIMIT 0 30

•3 eatJQjJ3w.sQL.airciiat9.RHRCoi)e! Illl Refresh i

Query results operations-
Prntyiew I I Pimt«ew.(wUi.MltottslTI I EfflortJ

I,Show I 30]row(s) starting from record #!o
in i horizontal [»] mode and repeat headers after j 100 jcels

Sort by key i None |»j | Go |

*~T^ [I] I STATUS J I.SmE.I ImPPfilCE.I Î NDINSOATE, I I SQIDPATEJ I OBIGUSTPBICtl I PRICE I
D >" X 2 Sold Contemporary 852,000 11/4/2003 9/5(2003 829,000 829000

D S * 47 Sold Contemporary 860,000 9/11/2003 8/19/2003 810,000 810000

I ™..J .». I, | .,__u I,.

Figure 15. Query result for renovate keyword

In the next section we illustrate a fourth example using the synonymous

search feature.

56

Example 9 - Synonymous Search

In this example of the synonymous search, the key phrase chosen has been

beautiful backyard. The synonyms of this key phrase include: lovely backyard,

attractive backyard, good-looking backyard, gorgeous backyard, stunning

backyard, striking backyard, fine-looking backyard, handsome backyard,

picturesque backyard, scenic backyard, delightful backyard, charming backyard,

wonderful backyard, exquisite backyard, pleasing backyard, superb backyard,

and magnificent backyard. This synonymous search yields two matching

houses.

The search query from Section 5.6, used to test for the initial key phrase in

the database, yields an empty set as shown in Figure 16. Upon clicking on the

two listings of houses, it is viewed that the first listing contains the synonymous

phrase gorgeous backyard while the second listing contains the synonymous

phrase lovely backyard. This example proves that this synonymous search

feature is a positive advancement for helping users in finding real estate

properties.

57

HUH®
Database

; hssBstings (1)

hssistings(l)

SB listings

gl) Server: localhost • §» Database: hsslistings > m Table: listings "InnoDBfme 11264 kB"

JBrowae gf Structure JtSQL / S e a r c h y Insert fflExport ffilmport %OperaMont M Empty

^Drop

CD M y S Q L returned an empty result set (i.e. zero rows). (Query took 0 .0026 sec)

l~SQL query:

SELECT '
FROM 'listings'
WHERE 'EXTRAINFO' LIKE '^beautiful backyard%' || 'COOLING' LIKE '%beautHul backyard%' || 'GENERALEXTERIOR' LIKE
•^beautiful backyard*' II 'MOREINFO' LIKE '%beautiful backyard*' II 'FLOORING' LIKE '%beautiM backyard*' II 'GARAGE' LIKE
"%beautiy backyard*' II 'HEATING' LIKE '%beautH backyard%' II 'PUBLICREMARKSV LIKE '%beautiful backyard*' II 'PUBLICREMARKS2"
LIKE '%beautiful backyard*'» 'AGENTREMARKS' LIKE '*beautiftil backyard*' || 'KITCHENINFO' LIKE ^beautiful backyard*' II 'LOCATION'
LIKE '%beautrful backyard*' || 'LAUNDRYINFO' LIKE '%beau* l backyard*' II 'POOL" LIKE '%beautiful backyard*' || 'ROOF' LIKE
'^beautiful backyard*' || 'SEWERINFO' LIKE "Sbeautiful backyard%' || 'BATHINFO' LIKE '%l»autifu! backyard%' || 'WATER' LIKE
•%beautiM backyard*' || 'LANDFEATURES' LIKE '%beautiful backyard%' || 'SPECIALFEATURES' LIKE ^beautiful backyard%' II
•REPORTINFO' LIKE '%beautiful backyard%'
LIMIT 0 76

C g h l i M n S Q l D fljagHe EHEGflds, ll HBsfrsstt ll

Figure 16. Query result for beautiful backyard keyword

In the next section we describe the last example using the synonymous

search feature.

Example 10 - Synonymous Search

The last synonymous search example uses vacant as its keyword. The

synonyms associated with vacant are empty, available, unoccupied, not in use,

unfilled, untaken, free, clear, blank, expressionless, indifferent, vacuous,

uncomprehending, and inane. This synonymous search generates fifty-six

matching houses. The MySQL query from Section 5.6, which checks for the

keyword input in the database, is executed using the keyword and results in four

matching rows, as shown in Figure 17. This signifies that four of the fifty-six

58

search result listings contain the word vacant and fifty-two of the remaining

search result house listings contain a synonym for vacant.

(D Showing rows 0 - 3 (4 total, Query took 0.0045 sec)

HS®[!
] hsslistings (1)

hsstisttngsO)

H Isttngs

•SQL query:

SELECT'
FROM 'listings'
WHERE 'EXTRAINFO' LIKE '%vacant%- |i 'COOLING' LIKE '%vacam%' || GENERALEXTERIOR' LIKE '%bvacant%' || 'MOREINFO' LIKE '%vacant%' li 'FLOORING' LIKE
' % > « « % ' II 'GABAGE' LIKE '%vacaM%' II 'HEATING' LIKE '%»SC8M%' II 'PUBLICREMARKSi' LIKE '%vacanl%' il 'PLI8UCREMARKS2' LIKE 14vacanl%' II
'AGENTREMARKS' LIKE %tacm%' || 'KTTCHENINFO' LIKE 'S.vacant%' || 'LOCATION' LIKE %vacam%' II 'LAUNDRYINFO' UKE '%vacam%' || POOL' LIKE '%vicant%' II
'ROOF UKE '%vacant%' II 'SEWERINFO' LIKE '%vacant%' || 'BATHINFO' LIKE '%vacam%' || 'WATER' LIKE -%vacam%' || 'LANDFEATURES' UKE '%vacanH4' ||
'SPECIALFEATURES' LIKE '%1acam%' || REPORTINFO' LIKE '«vacam%'
LIMIT 0 30

C M l fl jEmMUSQlJ tfirMft.P4JE,Q«te a I f i a t e j & l l

rQuery results operations-

l,PnnS,y*w.l I.fnn'va».(wfe 'yntemfcli iJEwwtl

1 Show. | 30 lrow(s) starting from record #|o

in j horizontal \y\ mode and repeat headers after 1100 | ceBs

Sort by key j None H G 1 D _ _ _ _ _ ^

^ T ^ GeU I smrygj I SIYLEJ lmnEBicfc.1 I PEIONGPATEI I.SQLDDWE.1 I QRIQUSTPBICE I I PRICE.I
• S X 38 Active NULL NULL 11/170003 NULL 679,000 679000

D y X . 59 Sold NULL 721,000 10/30/2003 9/26/2003 689,000

• J? X 72 SOW Ranch 1,025,000 10/6/2003 10/3/2003 975,000

Figure 17. Query result for vacant keyword

In the next section, we analyze the results; namely the ten examples of the

standard search and synonymous search queries.

Analysis of the Results

Based on the ten example case studies for this intelligent query system,

this new system proves to be a beneficial piece of software that allows users the

59

ability to search for real estate property and obtain meaningful and credible

results. By analyzing the data set of seventy six house listings, the various

different cases were described and the results were shown to be uniquely

acceptable based on the user defined query via the standard field and

synonymous search.

The five standard field search query examples compared the results of the

fuzzy logic query system with the standard MySQL query using the described

input data. As shown, the fuzzy logic system outputted a larger set of house

listings data as compared to a traditional query search. The five synonymous

search query examples showed the same results; the fuzzy logic query system

produced a larger set of house listings data as compared to the traditional query

search. The bigger result set from our newly designed fuzzy logic system, Homes

For You, showed us that the user can receive more house listings to view and

potentially pick out a real estate property from the result set.

Based on all this information, our intelligent query system that we have

implemented for the real estate website is very beneficial at retrieving

meaningful search results. The users are able to view house listings that were

close to their precise search; results of the house listings that the user may not

have otherwise originally queried for.

60

FUTURE WORK

One enhancement that could be made to this intelligent query system is

the usage of all the possible synonyms of a given keyword. The drawback to

utilizing only a few of the synonyms is that the scope for a synonymous search is

limited since not all of the possible synonyms of a keyword are included in the

query. The reason for using only a subset of the synonyms is so that a result

could be quickly obtained. Linking to the synonym website and parsing for the

synonyms takes some time and then using those synonyms to query the database

also involves some time usage. So, to reduce the time for processing all the

information, only a subset of the synonyms was used for this project.

Another important aspect is to test this intelligent query system

extensively with more house listings data. More data would allow this

intelligent query system to be fine tuned accordingly and would help to make

sure that the membership functions of the standard variables are defined

correctly. Along with testing with more data, this system needs to be analyzed

for usability with a very large pool of subjects. The user interface design and

logic behind this intelligent query system could then be extensively evaluated

through the usability testing process. This would help make the Homes For You

website a simple and easy to use/ navigate site.

61

CONCLUSION

This project has attempted a new approach in retrieving search results by

using fuzzy logic. The intelligent query in real estate web site, that we have

created, is capable of taking in the standard field selection search data and

generating results that are more meaningful. This system also incorporates a

search bar for users to input more information about a particular house they

want. For example, apart from choosing 5-bedroom, 4-bath, 3-car garage house, the

user can also input into the search bar, not near highway and close to hospital. So

the results of this search will provide for even more meaningful information

about houses.

The ten standard field search and synonymous search query examples

further reinforce the power of utilizing fuzzy logic in the real estate website

domain. The ten cases discussed in Section 5 provide great examples of how

well this intelligent query system can return search results. With the simple user

interface design, the users can easily search for houses. Based on all this

information, the implemented system, therefore, increases the ability of the users

to query for real estate property with more accuracy.

Some of the challenging and innovative aspects of this project include

implementing an effective fuzzy logic real estate website that provides reliable

62

search results: integrating fuzzy logic using jFuzzyLogic, PHP scripts, and Java

files; applying fuzzy logic to standard field selections; parsing of online facts data

to incorporate into real estate web site; and performing a synonymous search

based on several fields from the database. With the use of all this, this new

system, therefore, increases the ability of users to query for real estate property

with greater precision.

This intelligent query system has proved to be successful in the real estate

domain. We can exploit this intelligent query system further by applying it to

other domains or applications. This would help obtain just as accurate and

credible results, thus making this intelligent query system powerful.

63

REFERENCES

Buche, P., Dervin, C, Haemmerle, O., & Thomopoulos, R. (2005). Fuzzy querying
of incomplete, imprecise, and heterogeneously structured data in the
relational model using ontologies and rules. IEEE Transactions on Fuzzy
Systems, 23(3), 373-383.

Chang, S., & Ke, J. (1978). Database skeleton and its application to fuzzy query
translation. IEEE Transactions on Software Engineering, 4(1), 31-44.

Chen, S., & Jong, W. (1997). Fuzzy query translation for relational database
systems. IEEE Transactions on Systems, Man and Cybernetics, Part B:
Cybernetics, 27(4), 714-721.

Chen, S., & Lin, Y. (2002). A new method for fuzzy query processing in relational
database systems. Cybernetics & Systems, 33(5), 444-482.

Choi, D. (2003). Enhancing the power of web search engines by means of fuzzy
query. Decision Support Systems, 35(1), 31-44.

Intan, R., & Mukaidono, M. (2000). Fuzzy functional dependency and its
application to approximate data querying. Database Engineering and
Applications Symposium, 47-54.

Kacprzyk, J. (1995). Fuzzy logic in DBMSs and querying. Proceedings 1995 Second
New Zealand International Two-Stream Conference on Artificial Neural
Networks and Expert Systems, (20-23), 106-109.

Kacprzyk, J., & Zadrozny, S. (1994). Fuzzy querying for microsoft access. IEEE
World Congress on Computational Intelligence, Proceedings of the Third IEEE
Conference on Fuzzy Systems, 1(26-29), 167-171.

Kacprzyk, J., & Zadrozny, S. (1996). FQUERY for access: towards human
consistent querying user interface. Symposium on Applied Computing,
Proceedings of the 1996 ACM symposium on Applied Computing, 532-536.

64

Kacprzyk, J., & Zadrozny, S. (2001). Computing with words in intelligent
database querying: standalone and internet-based applications.
Information Sciences, 234(1-4), 71-109.

Kacprzyk, J., Owsinski, J.W., & Zadrozny, S. (2001). Clusterwise data mining
within a fuzzy querying interface. The 10th IEEE International Conference on
Fuzzy Systems, 3,1239-1242.

MLSListings. (2006). MLSListings. Retrieved September 27,2007, from
http://mlslistings.com/

MSN Encarta. (2008). Thesaurus. Retrieved April 7,2008, from
http://encarta.msn.com/thesaurus /thesaurus.html

NikRavesh, M. (2002). Fuzzy conceptual-based search engine using conceptual
semantic indexing. Fuzzy Information Processing Society, 146-151.

Penzo, W. (2005). Rewriting rules to permeate complex similarity and fuzzy
queries within a relational database system. IEEE Transactions on
Knowledge and Data Engineering, 17(2), 255-270.

Prudential Realty. (2008). Prudential Realty. Retrieved September 27,2007, from
http ://www.prurealty. com/

SourceForge.net. (2006). jFuzzyLogic. Retrieved November 24,2007, from
http://sourceforge.net/projects/jfuzzylogic

SourceForge.net. (2008). PHP/[ava Bridge. Retrieved February 4, 2008, from
http://sourceforge.net/project/php-java-bridge

U.S. Census Bureau. (2000). American FactFinder. Retrieved January 22,2008,
from http://factfinder.census.gov/

WampServer. (2008). Apache, PHP, MySQL on Windows. Retrieved January 29,
2008, from http://en.wampserver.com/

65

http://mlslistings.com/
http://encarta.msn.com/thesaurus
http://www.prurealty
http://SourceForge.net
http://sourceforge.net/projects/jfuzzylogic
http://SourceForge.net
http://sourceforge.net/project/php-java-bridge
http://factfinder.census.gov/
http://en.wampserver.com/

Zillow Real Estate. (2006). Real Estate Valuations, Homes for Sale, Free Real
Estate Information. Retrieved September 27,2007, from
http://www.zillow.com/

ZipRealty Real Estate. (1999). Homes for sale and local real estate agents.
Retrieved September 27, 2007, from http://www.ziprealty.com/

66

http://www.zillow.com/
http://www.ziprealty.com/

APPENDIX A: XML to Database field names conversion

XML Field
Name

XSTR152

XSTR57

XSTR67

XSTR70

XSTR72

XSTR73

XSTR65

XSTR75

XSTR82

XSTR89

XSTR103

XSTR121

XSTR122

XSTR58

FEATURE16

Sample Contents of One Entiy

Single Family Residential

Lovely redesigned home with
private Zen-like garden

Separate Family Room

Conventional

Wall to Wall Carpeting,
Linoleum or Vinyl, Tile

Separate Dining Room

Concrete Perimeter

2 Car Garage, Attached, Uncovered
Parking, RV or Boat Parking, Off Street

Parking, Garage-Converted

Ceilings insulated, Walls insulted

Built-in Oven/Range Combo, Microwave
Oven, 1 Dishwasher, Disposer,

1 Refrigerator

Laundry Area - Inside, Extra Storage

Sewer in & Connected

2 or more stall showers,
1 shower over tub

Geological/Flood report, Press control
Report (SPC), Preliminary Title Report.

Property Inspection Report, CC&R's

AARONS, BERNARD TR

Database Table Column
Name

TYPE

EXTRAINFO

MOREINFO

OTHERINFO

FLOORING

LIVDINROOMINFO

OUTSIDEINFO

GARAGE

INSULATION

JOTCHENINFO

LAUNDRYINFO

SEWERINFO

BATfflNFO

REPORTINFO

OWNERNAME

67

FEATURE17

FEATURE18

FEATURE19

FEATURE20

FEATURE21

FEATURE22

FEATURE23

FEATURE24

FEATURE26

FEATURE27

FEATURE28

FEATURE29

FEATURE30

FEATURE31

FEATURE32

FEATURE33

FEATURED

FEATURE35

FEATURE36

FEATURE37

FEATURE38

752 Middlefield Rd

Palo Alto CA

94301 2911

155 Heather Ln

Palo Alto C A

94301 2911

5113.98

PA

1788

3332

5/15/1991

0010902238

RM2

605454

1951

313580

6014

01

4

3

7936

PROPERTYADDRESS

CITY

ZIPCODE

MAILINGADDRESS

MAILINGCITYSTATE

MAILINGZDPCODE

CENSUSTRACT

CITYCODE

APPROXSQFT

PERCENITMPROVED

LASTTRANSACTIONDATE

DEEDNUMBER

ZONING

TRANSFERVALUE

YEARBUILT

TAXAMOUNT

TAXRATEAREA

PROPERTYUSECODE

BEDROOMS

BATHS

ACTUALLOTSIZE

68

APPENDIX B: GLOSSARY

Crisp set: the membership function of a variable with two values, commonly
defined as 0 and 1.

Defuzzification: modifying a fuzzy set into a numerical value.

Fuzzification: conversion of an input value into level of membership for
particular membership functions defined for that variable.

Fuzzy Control: form of control in which the control algorithm is based on Fuzzy
Logic; ex. The FCL file in jFuzzyLogic system has fuzzy control.

Fuzzy Logic: compilation of mathematical theories based on the idea of Fuzzy
set.

Linguistic rule: IF-THEN rule with antecedent and consequent

Linguistic term: defined by Fuzzy sets, and given membership function

Linguistic variable: variables that takes values in the range of linguistic term

Membership function: function that conveys how much an element of a set fits
in a given Fuzzy subset.

69

APPENDIX C: Source Code

jFuzzyLogic Code to access membership functions

This Java file (House.java) uses the FCL defined file and obtains the membership
values of the inputs passed into the specified fuzzy rule set:

import net.sourceforge.j FuzzyLogic.FIS;
import net.sourceforge.j FuzzyLogic.rule.FuzzyRuleSet;

/**

* Test parsing an FCL file
* @author Mandeep Jandir
*/

public class House {

public double getRating(String var, String member, int num)
{

// Load from 'FCL' file
String fileName = "C:/Program Files/Apache Group/

Apache2/htdocs/realestate/
j FuzzyLogic/fcl/house.fcl";

FIS fis = FIS.load(fileName, false);

if(fis == null)
{

// Error while loading?
System.err.println("Can't load file: '" +

fileName + "'") ;
return 0;

}

// Show ruleset
FuzzyRuleSet fuzzyRuleSet = fis.getFuzzyRuleSet() ;

//displays in a GUI, the graphs of the rules
//fuzzyRuleSet.chart() ;

// Evaluate fuzzy set
fuzzyRuleSet.evaluate();

return
fuzzyRuleSet.getVariable(var).getMembership(member);

70

//Prints ruleSet

//System.out.printIn(fuzzyRuleSet) ;
}

public static void main(String[] args) throws Exception
{

House h = new House();
double r = h.getRat ing("price", "sixfiftyK", 579000);
double r = h.getRat ing("beds","four" ,3) ;
Sys tem.out .pr in t ln(r) ;

}

SynonymFinder.php file

This file parses the MSN Encarta Thesaurus website for the synonyms of the
specified keyword. Using patterns, the synonyms of the input keyword are
obtained.

<?php

/*

* Function: get_synonym
* Purpose : retrieves all synonyms from website
* Input : 2 parameter(a word, and web-Link

http://encarta.msn.com/thesaurus_/)
* Output : List of synonyms
*/

function getsynonym($description, $web_url)
{

$words = array();
$url = $web_url . $description . ".html";
$data = file_get_contents($url) ;
$newlines = array("\t","\n","\r","\x20\x20","\0","\xOB");

$content = str_replace($newlines, "",
html_entity_decode($data));

$count=0;

preg_match('/(.*)<td
colspan="3" class="Copyright">/i', $content,
$match);

71

http://encarta.msn.com/thesaurus_/
file:///x20/x20

$result = $match[l];
$temp = "";

for($i = 0; $i < 2; $i++)
{

$s t a r t = strpos ($content, '<bxi>Synonyms</ix/b>: ' ,$end) ;

$end = strpos($content , '

<i>Antonym</i>:',
$ s t a r t) ;

if($end == "")
$end = strpos($content, '</td></tr></table>',

$start);
$table = substr($content,$start,$end-$start);

// extracting string after symbol ':'
$patternl="/Synonyms(.*):\s(.*)/";

preg_match($patternl, $table, $arrl);

if($temp != "")
$temp .= ", ".strip_tags($arrl[2]);

else
$temp .= strip_tags ($arrl [2]);

}

$words = explode(", ", strip_tags($temp));
return $words; // return synonyms

}

$weburl = "http://encarta.msn.com/thesaurus_/";
$description = "renovate";
$res = array();

$res = getsynonym($description, $weburl);
$count_2 = count($res);

echo "<BRXb>Synonyms for " .$description. " :\n";
for($i=0;$i<$count_2;$i++)
{

echo $res[$i]." \n";
}

?>

72

http://encarta.msn.com/thesaurus_/

	San Jose State University
	SJSU ScholarWorks
	2008

	Intelligent query for real estate search
	Mandeep Jandir
	Recommended Citation

	ProQuest Dissertations

