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ABSTRACT 

INTELLIGENT QUERY FOR REAL ESTATE SEARCH 

by Mandeep Jandir 

The purpose of this project is to improve search query accuracy in a real 

estate website by developing an intelligent query system which provides the best 

matching result for standard search criteria. This intelligent query website 

utilizes fuzzy logic and partial membership to filter query results based on user 

input data. Fuzzy logic helps obtain results that are otherwise not attainable 

from a non-fuzzy search. A non-fuzzy search entails search results that match 

exactly with the given criteria. This project also allows a user to do a free 

keyword search. This type of search uses synonyms of the keywords to query 

for houses. The resulting information is more credible and precise than the 

traditional website because it provides a reasonable result, of the specified 

search, to the user. 
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INTRODUCTION 

Real estate websites are gradually becoming more popular on the World 

Wide Web. These websites are like search engines for finding properties, which 

are useful for users who want to buy homes or other property. However, there 

are no objective ways for retrieving search results based on personalized data. If 

we take a look at Zillow, REIL, MLSListings, ZipListing, and Prudential 

California Realty websites, we can find that all of these sites utilize inputs from 

the standard fields to retrieve search results for any type of property desired. 

But, these mentioned websites return strict search results based on user request. 

For instance, if a user wants to buy a 4 bedroom, 2-car garage house, the search 

result will only retrieve 4 bedroom, 2-car garage houses; whereas a fuzzy logic real 

estate system will retrieve 5 bedroom, 2-car garage houses or 4 bedroom, 3-car garage 

houses, etc. depending on how and which membership function is applied to the 

standard fields to obtain partial membership for the linguistic terms. 

The above mentioned websites - Zillow, REIL, MLSListings, ZipListing, 

and Prudential California Realty - do not have the option that allows the user to 

do a free keyword search for real estate properties. A keyword search feature 

allows the user to search for houses based on personal preference rather than 
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utilizing the standard search fields. For example, a user may want to search for 

homes with big rooms, for which the search result will return house properties 

with the original keyword big rooms along with synonymous keywords such as 

large rooms, spacious rooms, huge rooms, enormous rooms, etc. 

Therefore, a more objective way of utilizing a user's search inputs has 

been implemented. By using fuzzy logic on queries for real estate search, we are 

able to filter and retrieve meaningful results which are close to what the user 

requests. On the other hand, in the traditional query, there is no real matching 

result for the search specified by the user via the standard search fields or the 

synonymous search bar. Thus, fuzzy logic returns a matching result if there 

exists one and therefore, it does an equal or better query to find the results. 

We begin by presenting in Section 2 an overview of the background and 

related work - how fuzzy intelligence can be used to perform a better search 

result for the real estate website domain. In Section 3, the design of this project 

will be described and the implementation will be discussed in Section 4. The 

results of this project will be compared in Section 5. This will be followed by a 

future work segment of the project in Section 6. 
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BACKGROUND AND RELATED WORK 

In the past few years, there has been an increase in applications of fuzzy 

logic and the Internet, especially in intelligent search engines. Fuzzy logic allows 

for "making useful, human-understandable, deductions from semi-structured 

information readily available on the web" (NikRavesh, 2002). For mis proposed 

project, we have utilized a conventional DBMS (MySQL) and integrated a fuzzy 

logic based querying system (jFuzzyLogic). 

The real estate websites store insurmountable amounts of information for 

different types of properties in databases. We have noticed that there seems to 

be an inherent discrepancy between the "hard" machine and the "soft" human 

being (Kacprzyk & Zadrozny, 1994). Fuzzy logic has played a crucial role in 

making it possible to significantly improve the interfaces by offering formal 

means to deal with vagueness resulting from the utilization of the natural 

language (Kacprzyk, Owsinski, & Zadrozny, 2001). 

It is important to know how Zadeh's paradigm of computing works: 

linguistic values (e.g. low), linguistic relations (e.g. much less than half), 

linguistic modifiers (e.g. very), and linguistic quantifiers (e.g. most) can be 

utilized in developing a more human-consistent and human-friendly querying 
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interface to DBMSs (Kacprzyk & Zadrozny, 2001). Basically, this type of 

querying system will allow for queries of the type "find (all) property such that 

most (or any other suitable linguistic quantifier) of the important attributes (such 

as price, number of bedrooms/bathrooms, etc...) are as specified (equal to 3, 

greater than $400,000, much less than 2500 square feet, etc...)" (Kacprzyk & 

Zadrozny, 1996). 

The main problem is how to extend a query language so as to allow for 

the use of the fuzzy terms, including: low, much greater than, most, etc. The 

linguistic terms are identified by membership functions on a fixed interval, thus 

allowing context-independent classifications. The membership functions that 

can be utilized for any fuzzy logic system are Trapezoidal, Gaussian, Possibility, 

or PossibilityTest. 

A fuzzy query system basically allows the user to write SQL with fuzzy 

matching and makes it feasible to use fuzzy elements in queries to help facilitate 

the use of a DBMS (Kacprzyk & Zadrozny, 1996). The membership functions of a 

fuzzy linguistic quantifier utilizes a piecewise linear graph, which signifies that 

there needs to be two numbers provided. Basically, the vocabulary for querying 

languages is extended with the use of linguistic terms which allows for query 
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conditions, such as: "temp is high" or "income is much greater than 

expenditures." 

A fuzzy querying engine known as FQuery provides a way to process the 

fuzzy queries mentioned above. FQuery is built on top of the Microsoft Access 

database management system. However, obtaining this fuzzy engine was not 

feasible. After receiving no response from numerous email attempts to the 

author of this engine, for attaining FQuery, a search for another fuzzy logic 

system followed. Most of the fuzzy logic systems described in various papers 

was theoretical. Hence, the fuzzy logic systems mentioned in the literature were 

not a functional system readily available to use for this project. After searching 

for a lot of different fuzzy systems, the most promising system discovered was 

the jFuzzyLogic package software. Section 4 describes this fuzzy logic system in 

detail. 

Experience in Researching Fuzzy SQL 

Initially, a lot of literature pertaining to fuzzy logic in SQL was obtained 

for this topic. Despite finding lots of information on the web, there was some 

difficulty in finding the corresponding systems and software mentioned in the 

literature to use for this project. As mentioned above, several email attempts, to 
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some of the authors who wrote the papers on introducing a fuzzy system for any 

application, went in vain. No response to those emails was received, regarding 

how to obtain a copy of that particular software mentioned in the paper. An 

observation was made; that most of the papers which mentioned an 

implementation of a fuzzy software system were written by those who lived 

outside of the USA. 

Upon researching, we noticed that we could only study in finding 

information on fuzzy SQL; we could not search for anything based on fuzzy in 

real estate since it has never been done before. There is no such literature written 

on including fuzzy logic in real estate search websites. All the references, 

mentioned in Section 8 of this paper, which we found and read for our project, 

give detailed explanations on how to include fuzzy logic in DBMS. 

Another important piece of information that came across during the 

reviewing of all the literature was that the dates for all the writings collected, 

varied drastically. The range for the papers that were gathered is twenty-seven 

years, 1978 - 2005. And all these pieces of work contained very important 

relevant information for obtaining fuzzy logic in DBMS. 

The majority of the literature obtained and reviewed was written by 

Janusz Kacprzyk. Kacprzyk is a professor at the Systems Research Institute at 
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Polish Academy of Sciences in Warsaw, Poland. He is the person who 

implemented FQuery - an add-on for "Microsoft Access which makes it possible 

to use queries involving fuzzy values and relations as well as non-standard 

aggregation operators" (Kacprzyk & Zadrozny, 1996). The next section discusses 

the design part of the project. 
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DESIGN 

In this section we describe how we have designed this project. We discuss 

the usage of the fuzzy logic system, jFuzzyLogic, in our intelligent query system. 

We also explain what fuzzy inference system and fuzzy control logic is and how 

they are used in jFuzzyLogic. We also illustrate and describe in detail the 

architectural model for our developed system. 

jFuzzyLogic - Fuzzy Logic System 

jFuzzyLogic is a fuzzy logic software package written in Java that is 

available for everyone to use via the GNU General Public License (GPL). This 

fuzzy logic package has many features, which include: parametric optimization 

algorithms, FCL compliance, membership functions, defuzzifiers, rule 

aggregation, rule connection operators, and rule implication methods. 

The different types of parametric optimization algorithms that 

jFuzzyLogic allows are derivate, gradient descent, and jump. The membership 

functions that can be utilized are continuous and discrete as well as custom 

defined membership functions. The different types of continuous membership 

functions defined in jFuzzyLogic are GenBell, Sigmoidal, Trapezoidal, Gaussian, 

PieceWiseLinear, and Triangular. 
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As shown in Figure 1, the continuous membership functions provided by 

jFuzzyLogic are drawn accordingly. From the legend, ml refers to a 

PieceWiseLinear function (blue line), m2 refers to a Triangular function (purple 

line), m3 refers to a Trapezoidal function (green line), m4 refers to a GenBell 

function (orange line), m5 refers to a Gaussian function (yellow line), and m6 

refers to a Sigmoidal function (red line). 
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Figure 1. Continuous Membership Functions 
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Each linguistic term in a Triangular membership function is 

described by three points (min, mid, and max), whereas each linguistic term in a 

Trapezoidal membership function is described by four points (min, mid low, mid 

high, and max). The linguistic terms for a Gaussian membership function are 

defined by two points (mean and standard deviation) and each of the linguistic 

terms for the GenBell membership function are defined by three points (a, b, and 

mean). The linguistic terms for Sigmoidal membership functions are described 

by two points (gain and tO) while the linguistic terms associated with the 

PieceWiseLinear membership function each have as many (x, y) pair coordinates 

as needed to define the membership of that variable. 

The various types of discrete membership functions described in the fuzzy 

logic system are Singleton and GenericSingleton. There are also several types of 

defuzzifiers provided by the jFuzzyLogic system: continuous, discrete, and 

custom defined defuzzifiers. The continuous defuzzifiers listed for this fuzzy 

logic system include CenterOfGravity, RightMostMax, CenterOfArea, 

LeftMostMax, and MeanMax. There is only one type of discrete defuzzifier 

defined in jFuzzyLogic, which includes CenterOfGravitySingletons. Rule 

aggregation incorporates how rules are accumulated and there are several ways 

of achieving aggregation: BoundedSum, Max, ProbOr, Sum, or NormedSum. 
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The two types of rule connections operators allowed in the jFuzzyLogic system 

include AND and OR. 

The jFuzzyLogic system implements a Fuzzy Inference System (FIS) and 

Fuzzy Control Logic compliance (FCL). Based on the user-defined FCL file, a 

user can input variables. The system fuzzifies the values of those input variables 

and returns a defuzzified output along with membership values and graphs of 

all the input variables. This jFuzzyLogic system is employed for retrieving 

membership values of the linguistic terms based on user selected variables from 

the real estate website. The linguistic terms whose membership values are 

greater than zero are then utilized to query the database to obtain meaningful 

search results. The next section discusses the terms FIS and FCL. 

Fuzzy Inference System (FIS) and Fuzzy Control Logic (FCL) 

Fuzzy Inference is the process utilized to produce a mapping of the given 

input to an output by using fuzzy logic. The mapping itself proposes a starting 

point from which decisions can be made, or patterns perceived. The process of 

fuzzy inference involves membership functions, logic operations, and if-then 

rules. A fuzzy inference system (FIS) uses fuzzy control logic. 
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Fuzzy Control Language (FCL) is a language for implementing fuzzy 

logic, especially fuzzy control. Fuzzy controllers include an input phase, a 

processing phase, and an output phase. The first phase maps the inputs to the 

appropriate membership functions and truth values. The second phase first 

applies each appropriate rule and produces a result for each, and then totals the 

results of the rules. Lastly, the output phase translates the totaled result back 

into a precise control output value. 

In the jFuzzyLogic system, a fuzzy inference system is created by defining 

one or more FuzzyRuleSets. Each FuzzyRuleSet is compiled by some 

FuzzyRules and each FuzzyRule is written using an antecedent (IF part) and a 

consequent (THEN part). Consequents are a set of FuzzyRuleTerms and an 

antecedent is denoted by a FuzzyRuleExpression. A FuzzyRuleExpression 

consists of two terms linked together by a RulelmplicationMethod (rule 

connectors are AND, OR, and NOT). Each FuzzyRuleTerm is described by a 

Variable and a LinguisticTermName. Each Variable has a name and some 

LinguisticTerms. A class diagram representation describing the jFuzzyLogic 

system is shown in Figure 2. 
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Figure 2. Class Diagram for jFuzzyLogic 

This jFuzzyLogic system defines a Fuzzy Function Block inside the FCL file and 

it contains the following type of information shown in Figure 3. 
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FUNCTION_BLOCK Fuzzify 
VAR_INPUT 

temperature : REAL; 
pressure : REAL; 

END_VAR 
VAR_OUTPUT 

valve : REAL; 
END_VAR 
FUZZIFY temperature 

TERM cold := (5, 1) (30, 0); 
TERM hot := (5, 0) (30, 1); 

END_FUZZIFY 
FUZZIFY pressure 

TERM low := (60, 1) (100, 0); 

TERM high := (60, 0) (100, 1); 
ENDJFUZZIFY 
DEFUZZIFY valve 

TERM drainage := -100; 
TERM closed := 0; 
TERM open := 100; 
ACCU : MAX; 
METHOD : COGS; 
DEFAULT := 0; 

END_DEFUZZIFY 
RULEBLOCK blockl 

AND : MIN; 
RULE 1 : IF temperature IS cold AND pressure IS low THEN valve IS open; 
RULE 2 : IF temperature IS cold AND pressure IS high THEN valve IS closed WITH 0.7; 
RULE 3 : IF temperature IS hot AND pressure IS low THEN valve IS closed; 
RULE 4 : IF temperature IS hot AND pressure IS high THEN valve IS drainage; 

END_RULEBLOCK 
END FUNCTION BLOCK 

Figure 3. Sample FCL file 

As seen in the sample FCL file from Figure 3, within each function block, 

the input and output variables are defined, the variables are converted into 

degrees of membership by using FUZZIFY blocks and the output is defuzzified 

using the DEFUZZIFY block based on the rules listed in the RULEBLOCK. For 

our project, we are only interested in defining input variables and FUZZIFY 

blocks. The information from the FUZZYIFY blocks will be used by the 
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jFuzzyLogic system to return partial membership values. The exact definition of 

the FUZZYIFY blocks that we have used for our intelligent search query will be 

discussed in detail in Section 4.3. The next section describes the architectural 

model of the intelligent query system developed in this project. 

Architecture Model of Homes For You 

The architecture model shown in Figure 4 illustrates the functional/logical 

view of the intelligent query system that we have defined. Based on the model, 

the user can either utilize the standard search or synonymous search to query for 

house listings. If a user opts to utilize the standard search, the query is 

constructed using the membership function values obtained by passing the user 

specified values to the jFuzzyLogic engine. The membership values used to 

query for house listings from the database yield the filtered results. These results 

are then ranked based on the membership values returned by the jFuzzyLogic 

engine. The ranked output is then displayed for the user to view. 

If the user chooses to use the synonymous search, the keyword phrase 

entered would then be sent to the Encarta synonymous website to obtain the 

synonyms of the keyword phrase. These synonyms along with the original 

keyword phrase would then be used to construct the query. When executed in 

15 



the database, this query would then produce the filtered results. These results 

would then be ranked with the original keyword phrase at the top of the output 

list and the synonymous phrases following the original keyword phrase. This 

ranked output would then be displayed for the user to view. 

Encarta 
Synonymous 

Website 

House listing 
Information 

Query 
Construction 

using 
Membership 

Values 

Query 
Construction 

using 
Synonyms 

Real Estate 
Search Result 

Spatial 
DB 

Ranking 
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Filtered Real 
Estate Search 

Results 

pensus 200C 
Fact Sheet 
Website 

Server - Using 
MySQL and Apache 

User-Querying XML 
data converted to 
database - 76 house 
listings 

Figure 4. Architecture Model of Homes For You Website 

Each house from the ranked house listing result, displays the Census 2000 

fact information along with the house property information for the user to view. 

This census information is retrieved from the fact finder website created by the 
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U.S. Census Bureau. The statistics obtained from the census website are 

discussed in Section 4.1. This project has been developed using the Apache 

server, PHP scripts, and MySQL database. This will be explained further in the 

next section, which describes the implementation part of this project. 
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IMPLEMENTATION 

Real Estate Website 

Our real estate website Homes For You allows for traditional and non-

traditional standard search queries for finding homes and other properties. Our 

website is an enhancement, to the other traditional websites, that allows for 

fuzzy search based on the standard input selection. For example, if a user wants 

to buy a 4 bedroom, 3 bath, and 3 car garage home, the search results will also show 

a 4 bedroom, 3 bath, and 2 car garage home amongst the properties available. 

For the non-traditional search, users can enter in keywords in a search bar 

that may not be available as a standard search field option. For example, in a 

search bar, a user can enter: hardwood floors or big backyard. And, these keywords 

will then be analyzed accordingly by utilizing synonyms of the keywords to 

obtain the search results. The synonymous query will expand the search for 

particular property and thus, help obtain meaningful results. 

The main outline for achieving search results based on the non-traditional 

search is to find the synonymous keywords from the following columns fields 

from the database: extra info, cooling, general exterior, more info, flooring, 

garage, heating, public remarks 1, public remarks 2, agent remarks, kitchen info, 
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location, laundry info, pool, roof, sewer info, bath info, water, land features, 

special features, and report info. Thus, these column fields are utilized to find 

the user specified keyword phrase using synonyms. 

Another feature of this project incorporates the usage of a zip code, for a 

particular house listing, to obtain the Census 2000 demographic profile 

highlights of the area. The fact finder website only allows access to the data from 

the year 2000, not the data from the year 2006. The site shows data in number 

and percent values as well as a link to view a map for each of the different types 

of characteristics. Based on the zip code and pattern matching, the number 

values are accessed from this website and displayed under a particular house 

listing description. This census information provides statistics relating to the 

general, social, economic, and housing characteristics of the chosen area. 

The general characteristics segment lists in numbers the total population 

of male and female, median age (in years), different age groups, different races 

(White, Black or African American, American Indian and Alaska Native, Asian, 

Native Hawaiian and Other Pacific Islander, Other), average household size, and 

the total housing units (owner-occupied housing units, renter-occupied housing 

units, and vacant housing units) in the area. The social characteristics portion 

lists in numbers the population that is twenty-five years of age and over - as well 
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as those twenty-five year olds that have a high school degree and a bachelor's 

degree - civilian veterans, disability status, foreign born, and those who speak a 

language other than English. 

The economic characteristics section lists people in the labor force that are 

sixteen years of age and over, mean travel time to work in minutes, median 

household income in 1999 (dollars), median family income in 1999 (dollars), per 

capita income in 1999 (dollars), families below poverty level, and individuals 

below poverty level. The housing characteristics segment lists all the single-

family owner-occupied homes and the median value (dollars), median of 

selected monthly owner costs - with a mortgage and without a mortgage. 

This census information is incorporated into this project to provide a more 

descriptive result for the house listing. This additional fact allows the user to 

obtain general knowledge of the area around a particular property that he/she 

might be interested in. Certain areas are attracting home owners based on the 

families already living in that neighborhood. Thus, this extra information for a 

particular house listing may further provide the incentive to buy this property. 

In the next section, we describe the PHP configuration for JAVA classes. 
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PHP Configuration for Java Classes 

The real estate website, which was created using fuzzy logic, was written 

in PHP and integrated with the jFuzzyLogic system mentioned in Section 3. The 

PHP scripts use the Apache Web Server and MySQL database, from the WAMP 2 

bundled package. In order to get the PHP files to connect to the JAVA classes, a 

special bridge known as the PHP/Java Bridge package was downloaded and 

incorporated into the project. As mentioned in the README file from the 

PHP/Java Bridge software, "The PHP/Java Bridge is a network protocol which 

can be used to connect a native script engine (PHP) with a Java VM". The simple 

and easy to follow directions from the README file of the software package 

were utilized to setup the PHP/Java Bridge correctly. 

To use this bridge, it was described in the README file that we needed to 

double click on the JavaBridge executable jar file and select a port, as shown in 

Figure 5. 

Starting the PHP/Java Bridge 

Start a socket listener on port 

OK Camel 

Figure 5. P H P Java Bridge W i n d o w 
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Next, we had to create a jar file containing all the .class files that were required 

for the project. In this instance, we needed all the .class files of the jFuzzyLogic 

software. Then, as instructed in the README file, to include the Java class(es) in 

the PHP file, we had to add the following two lines of code in that PHP file 

calling the Java class(es): 

require_once("./JavaBridge/Java/Java.inc"); 

java_require("./jFuzzyLogic/HouseNoPackage.jar; 

./jFuzzyLogic/jFuzzyLogic_l_2_l.jar"); 

It is necessary that the relative pathnames used above are according to the 

location of the Java Bridge folder and while also making sure that the .class files 

are from the point of view of the PHP script using the javajrequire function call. 

One important note that we had to follow is that every time we restarted the 

server machine, we needed to double click on the JavaBridge.exe file again and 

select a port in order to keep the functionality of the PHP/[ava Bridge working 

correctly. In the next section, we discuss the real estate data that we have used 

for our intelligent search query system. 
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Real Estate Data 

The data utilized for this real estate search web site is a real data set which 

was received in an xml file format. The xml document was converted into a 

database. Along with the conversion, some of the xml field names were renamed 

to more descriptive column names in the database table because several of the 

field names consisted of xstrl23, xDate4, Feature34, etc. These field names did 

not correlate with their contents. Thus, the xml field names were renamed 

according to the contents of these variables. As shown in Table 1, changing the 

field names from the xml file to more descriptive names was easier to do by 

basing the new name on the contents. For a complete table listing of all the 

renamed field names, please refer to Appendix A. 

Table 1. 

XML to Database field names conversion 

XML Field 
Name 

XSTR72 

XSTR65 

XSTR89 

FEATURE20 

FEATURE21 

FEATURE36 

Sample Contents of One Entry 

Wall to Wall Carpeting, Linoleum or Vinyl, 
Tile 

Concrete Perimeter 
Built-in Oven/Range Combo, Microwave Oven, 

1 Dishwasher, Disposer, 1 Refrigerator 
155 Heather Ln 

Palo Alto CA 

4 

Database Table 
Column Name 

FLOORING 

OUTSIDE INFO 

KITCHEN INFO 

MAILING ADDRESS 
MAILING 

CITYSTATE 

BEDROOMS 
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The database table contains seventy-six entries of real estate properties, 

where each entry contains around ninety-three columns of associated data. 

Some of the important information each house listing contains is: style, original 

list price, area, type, county, contract date, cross streets, MLS agent id, general 

exterior, view, fireplace fuel, fireplace location, flooring, finance terms, living 

dining room information, outside information, garage, heating, insulation, 

kitchen, public remarks, agent remarks, showing instructions, kitchen 

information, location, occupant phone, laundry information, pool, roof, sewer 

information, bath information, parking features, water, land features, special 

features, report information, days on market, owner name, property address, 

city, zip code, approx square feet, last transaction date, deed number, zoning, 

transfer value, year built, tax amount, tax rate area, bedrooms, bathrooms. The 

next section describes the fuzzy inputs and their associated linguistic terms 

utilized for this project. 

Fuzzy Inputs 

For this real estate project, there are five input values required from the 

standard search fields that have been fuzzified using the jFuzzyLogic software: 

price of a house, number of beds, number of baths, size of a house in square feet, 
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and lot size of the plot in square feet. In the next section we describe the 

membership graphs for those user-defined input variables. 

Fuzzy Rule Set for Price Variable 

The price variable, as shown in Figure 6, has nine linguistic terms. Each 

term has been composed of a name and a membership function. Each linguistic 

term is associated with a price, in terms of how much a particular property costs, 

and has been named according to the price range that the linguistic term covers. 

The linguistic terms were chosen based on the data; the cutoffs have been based 

on the minimum and maximum house listing prices from the database. For this 

variable the membership function that each term uses is the piece-wise linear 

function. 

25 



Figure 6. Fuzzy Rule Set for Price Variable 

The linguistic term names employed for the price variable are: fourfiftyK, 

sixfif tyK, eightfiftyK, tenfiftyK, twelvefiftyK, fourteenfiftyK, sixteenfiftyK, 

eigthteenfiftyK, and twentyfiftyK. The K represents thousand, hence fourfiftyK 

equals to four thousand and fifty (4050). The justification for utilizing such 

names as linguistic term names is that it signifies that the middle defined point 

has that value. It also indicates the lower and upper bounds for that term. For 

example, the first linguistic term is named fourfiftyK, which denotes that the 

middle point for this term has been defined at (450000,1). 
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Based on the design of this variable's linguistic terms, the lower bound 

has been classified at being 100000 less than the linguistic term value. Hence the 

lower bound point for linguistic term fourfiftyK is described at (350000, 0). The 

upper bound for this variable's linguistic terms has been defined to be 150000 

more than the linguistic term value. Consequently the upper bound is described 

at (600000, 0). The next section describes the fuzzy rule set for the bedroom 

variable. 

Fuzzy Rule Set for Beds Variable 

The beds variable, as shown in Figure 7, has seven linguistic terms. Each 

of these linguistic variables associates the number of beds that a particular 

property has and has been named according to the range of bedrooms the house 

listings has. The linguistic terms were chosen based on the data; the cutoffs have 

been based on the minimum and maximum number of beds listed in the 

database. And similarly, as with the above variable, the beds variable also has 

utilized the piece-wise linear function as its membership function. 
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Figure 7. Fuzzy Rule Set for Beds Variable 

The linguistic term names utilized for the beds variable are: one, two, 

three, four, five, six, and seven. The justification for using such names as 

linguistic term names is that the term names signifies that the middle defined 

point has that value. It also indicates the lower and upper bound for that term. 

For example, the middle linguistic term has been named four, which denotes that 

the middle point for this term is at (4,1). Based on the design of this variable's 

linguistic terms, the lower bound has been defined as 1.5 less than the linguistic 
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term value. Hence the lower bound point for linguistic term four has been 

described at (2.5,0). 

The upper bound for this variable's linguistic terms was defined to be 1.5 

more than the linguistic term value. Consequently the upper bound has been 

described at (5.5, 0). The reason for having decimal related lower and upper 

bounds is so as to include and give partial membership to values exactly one less 

or one more than the user selected. Going back to the same example, if the user 

has selected four-bedrooms, houses with three- and five-bedrooms would receive 

partial membership, hence signaling the fuzzy intelligence system that the 

database also needs to be queried for three and five bedroom houses. The next 

section discusses the fuzzy rule set for the bathroom variable. 

Fuzzy Rule Set for Bathrooms Variable 

The bathrooms variable, as shown in Figure 8, also has seven linguistic 

terms. Each of these linguistic terms associates the number of bathrooms that a 

particular property has and has been named according to the number of 

bathrooms that the linguistic term covers. The linguistic terms were chosen 

based on the data; the cutoffs have been based on the minimum and maximum 
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number of bathrooms listed in the database. This variable also uses the piece-

wise linear function as its membership function. 

baths 

one —two —five four three —seven six 

Figure 8. Fuzzy Rule Set for Baths Variable 

The linguistic term names utilized for the bathrooms variable are the same 

as for the bedrooms variable: one, two, three, four, five, six, and seven. The 

justification for using such names as linguistic term names is that the term names 

signify the middle defined point having that value. It also indicates the lower 

and upper bound for that term. For example, the middle linguistic term has been 
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named two, which denotes that the middle point for this term is at (2,1). Based 

on the design of this variable's linguistic terms, the lower bound has been 

defined as 1.5 less than the linguistic term value. Hence the lower bound point 

for linguistic term two has been described at (0.5, 0). 

The upper bound for this variable's linguistic terms has been defined to be 

1.5 more than the linguistic term value. Consequently the upper bound has been 

described at (3.5,0). The same reason as with the bed variables fuzzy rule set has 

been used for having decimal related lower and upper bounds. It has been used 

to include partial membership to values exactly one less or one more than the 

user selected. Going back to the same example, if the user has selected two 

bathroom properties, houses with one- and three-bathrooms would receive 

partial membership, hence signaling the newly designed system that along with 

two bathroom houses, the database also needs to be queried for one- and three-

bathroom houses. In the next section, we discuss the fuzzy rule set of the size 

variable. 

Fuzzy Rule Set for Size Variable 

The size variable, as shown in Figure 9, has ten linguistic terms, where 

each linguistic term has been associated to the size of the property. Since there is 
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such a wide range of sizes for any property, there is a need to define this variable 

by ten linguistic terms. Each linguistic term has been named according to the 

size range of the house listings. The linguistic terms were chosen based on the 

data; the cutoffs have been based on the minimum and maximum sizes of the 

properties listed in the database. This variable also uses the piece-wise linear 

function as its membership function. 

twelveH—twentyeightH—twentyfourH eighteenH fourteenH—oneT twentytoroH sixteenH—iwentysixH—twoTi 
aasaasaaawaaMasaBMBjBgaaBgawaawfcfcLin.iiii.^.jjjsawaawgi i1 Mini »i I isasaSBgca ,n n in nil i ,i ml 1/tsBSKaa-SBesaaaaasBBSBSBassaasa iiiu.iiii iiiiimu I laaasaaaii 1111 n n i i n i mi i i i i i u i i n n 11 i w 

Figure 9. Fuzzy Rule Set for Size Variable 
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The linguistic term names used for the size variable are: oneT, twelveH, 

fourteenH, sixteenH, eighteenH, twoT, twentytwoH, twentyfourH, twentysixH, 

and twentyeightH. The T in the linguistic term refers to thousand and the H in 

the linguistic term refers to hundred. Thus, twelveH equals to twelve hundred 

and twoT refers to two thousand. The justification for using such names as 

linguistic term names is that it signifies that the middle defined point has that 

value. It also indicates the lower and upper bound for that term. For example, 

one of the middle linguistic terms has been named twoT, which signifies that the 

middle point for this term is at (2000,1). Based on the design of this variable's 

linguistic terms, the lower bound has been classified at being 349 less than the 

linguistic term value. Hence the lower bound point for linguistic term twoT has 

been described at (1651, 0). 

The upper bound for this variable's linguistic terms has been defined to be 

251 more than the linguistic term value. Consequently the upper bound has been 

described at (600000, 0). Based on all this information, the linguistic terms for the 

size variable cover the range for the sizes of properties by giving partial 

membership to any wide range of sizes entered by the user. The next section 

describes the fuzzy rule set of the lot variable. 
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Fuzzy Rule Set for Lot Variable 

The lot variable, shown in Figure 10, has nine linguistic terms, where each 

linguistic term has been associated to the lot size of the property. As mentioned 

above for the size variable, since there is such a wide range for a lot size of any 

property, there was a need to define this variable by nine linguistic terms. Each 

linguistic name has been uniquely defined according to the lot size range based 

on the house listings from the database. The linguistic terms were chosen based 

on the data; the cutoffs have been based on the minimum and maximum lot sizes 

of the properties listed in the database. This variable also uses the piece-wise 

linear function as its membership function. 
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Figure 10. Fuzzy Rule Set for Lot Variable 

The linguistic term names used for the lot variable are: oneT, fourT, sixT, 

eightT, tenT, twelveT, fourteenT, sixteenT, and eigthteenT. The T in the 

linguistic terms refer to thousand, hence, oneT equals to one thousand. The 

justification for utilizing such names as linguistic term names is that it signifies 

that the middle defined point has that value. It also denotes the lower and upper 

bounds for that term. For example, one of the middle linguistic terms has been 

named eightT, which signifies that the middle point for this term is at (8000,1). 

The way this variable's linguistic terms have been defined, the lower bound has 
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been described at 2999 less than the linguistic term value. Hence the lower 

bound point for linguistic term eightT is identified at (3001,0). The upper bound 

for this variable's linguistic terms has been defined to be 3001 more than the 

linguistic term value. Consequently the upper bound is described at (11001,0). 

The reason for choosing the mentioned lower and upper bound values for 

each linguistic term was to include those houses whose lot sizes are specified 

exactly to be that given value by the user. For example, if the user selects houses 

whose lot size equals to 11,000 square feet, based on the linguistic terms defined, 

the user defined variable would have partial membership in three linguistic 

terms: eightT, tenT, and twelveT. Hence this would be returned to the fuzzy 

intelligence system and the houses which have lot sizes between 8,000 and 12,000 

square foot would be queried for accordingly. 

The next section describes the FCL file we defined for the jFuzzyLogic 

software. 

Fuzzy Control Logic file - house.fcl 

The associated fuzzy control logic (FCL) file that we have defined for the 

jFuzzyLogic software to use for this intelligent query system is shown below: 
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FUNCTION BLOCK house // Block definition 

VAR_ 

END_ 

VAR 

END 

_INPUT 
price : 
beds : 
baths : 
size : 
lot : 
_VAR 

_OUTPUT 
rating 
VAR 

REAL; 
REAL; 
REAL; 
REAL; 
REAL; 

: REAL 

// Define input variables 

// Define output variable 

FUZZIFY price // 
TERM fourfiftyK 
TERM sixfiftyK 
TERM eightfiftyK 
TERM tenfiftyK 
TERM twelvefiftyK 
TERM fourteenfiftyK 
TERM sixteenfiftyK 
TERM eighteenfiftyK 
TERM twentyfiftyK 

END FUZZIFY 

Fuzzify input 
= (350000, 0) 
= (500000, 0) 
= (700000, 0) 
= (900000, 0) 
= (1100000,0) 
= (1300000,0) 
= (1500000,0) 
= (1700000,0) 
= (1900000,0) 

variable 'price' 
(450000, 1) (600000, 0) 
(650000, 1) (800000, 0) 
(850000, 1) (1000000,0) 
(1050000,1) (1200000,0) 
(1250000,1) (1400000,0) 
(1450000,1) (1600000,0) 
(1650000,1) (1800000,0) 
(1850000,1) (2000000,0) 
(2050000,1) (2200000,0) 

FUZZIFY beds 
TERM one 
TERM two 
TERM three 
TERM four 
TERM five 
TERM six 
TERM seven 

END FUZZIFY 

// Fuzzify input variable 'beds' 
(0, 0) 
(0.5,0) 
(1.5,0) 
(2.5,0) 
(3.5,0) 
(4.5,0) 
(5.5,0) 

(1,1) 
(2,1) 
(3,1) 
(4,1) 
(5,1) 
(6,1) 
(7,1) 

(2.5,0) 
(3.5,0); 
(4.5,0); 
(5.5,0) 
(6.5,0) 
(7.5,0); 
(8.5,0); 

FUZZIFY baths 
TERM one 
TERM two 
TERM three 
TERM four 
TERM five 
TERM six 
TERM seven 

END FUZZIFY 

// Fuzzify input variable 'beds' 
(0, 0) 
(0.5,0) 
(1.5,0) 
(2.5,0) 
(3.5,0) 
(4.5,0) 
(5.5,0) 

(1,1) 
(2,1) 
(3,1) 
(4,1) 
(5,1) 
(6,1) 
(7,1) 

(2. 
(3, 

5,0); 
5,0) 

(4.5,0) 
(5.5,0); 
(6.5,0); 
(7.5,0) 
(8.5,0) 

FUZZIFY size 
TERM oneT 
TERM twelveH 

// Fuzzify input variable 'size' 
:= (800, 0) (1000, 1) (1251, 0 ) ; 
:= (951, 0) (1200, 1) (1451, 0) ; 
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TERM fourteenH 
TERM sixteenH 
TERM eighteenH 
TERM twoT 
TERM twentytwoH 
TERM twentyfourH 
TERM twentysixH 
TERM twentyeightH 

END FUZZIFY 

= (1151, 0) (1400, 1) (1651, 0) 
= (1251, 0) (1600, 1) (1851, 0) 
= (1451, 0) (1800, 1) (2051, 0) 
= (1651, 0) (2000, 1) (2251, 0) 
= (1851, 0) (2200, 1) (2451, 0) 
= (2051, 0) (2400, 1) (2651, 0) 
= (2251, 0) (2600, 1) (2851, 0) 
= (2451, 0) (2800, 1) (3051, 1) 

FUZZIFY lot 
TERM oneT : 
TERM fourT : 
TERM sixT : 
TERM eightT : 
TERM tenT : 
TERM twelveT : 
TERM fourteenT : 
TERM sixteenT : 
TERM eighteenT : 

END_FUZZIFY 

DEFUZZIFY rating 
TERM low 
TERM middlelow 
TERM middle 
TERM middlehigh 
TERM high 
ACCU : NSUM; 
METHOD : COG; 

DEFAULT := 0; 

// Fuzzif 
= (400, 0) 
= (1001, 0) 
= (2001, 0) 
= (5001, 0) 
= (7001, 0) 
= (9001, 0) 
= (11001,0) 
= (13001,0) 
= (15001,0) 

y input variable 'size' 
(1000, 1) (2001, 0 ) ; 
(4000, 1) (7001, 0 ) ; 
(6000, 1) (9001, 0 ) ; 
(8000, 1) (11001,0); 
(10000, 1) (13001,0); 
(12000, 1) (15001,0); 
(14000, 1) (17001,0); 
(16000, 1) (19001,0); 
(18000, 1) (21001,0); 

// Defzzzify output variable 'rating' 
:= (0, 0) (1 
:= (2, 0) (3 
:= (4, 0) (5 
:= (6, 0) (7 
:= (8, 0) (9 

, 1) (2, 0 ) ; 
, 1) (4, 0 ) ; 
, 1) (6, 0 ) ; 
, 1) (8, 0 ) ; 
, 1) (10,0); 

// Use 'max' accumulation method 
// Use 'Center Of Gravity' defuzzification 
// method 
// Default value is 0 (if no rule 
// activates defuzzifier) 

END DEFUZZIFY 

RULEBLOCK Nol 
AND : MIN; 

ACT : MIN; 

// Use 'min' for 'and' (also implicit use 
// 'max' for 'or' to fulfill DeMorgan's 
// Law) 
// Use 'min' activation method 

// There are no rules in this rule block because none are needed 
// for this project. I am only interested in membership values 
// and their associated linguistic terms 

END RULEBLOCK 

END FUNCTION BLOCK 
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The jFuzzyLogic software package that we utilize for this project provides 

plotted graph outputs of the FuzzyRuleSet as defined in the FCL file. This is 

useful for debugging purposes since the software shows the graph output. This 

allows the user to see if all the linguistic terms in each variable have been defined 

correctly as compared to each other. This feature is also useful for viewing the 

FuzzyRuleSet as an image versus the code from the FCL file. 

The next section explains how we employed fuzzy logic, from the 

jFuzzyLogic software, in the standard field search in the Homes For You real 

estate website. 

Standard Field Search (Fuzzy) 

The user interface design for the standard field search is shown in Figure 

11. As displayed, five standard search field selections have been defined: price of 

house, number of bedrooms and bathrooms in a house, size and lot size of the 

house (measured in square feet). The user is allowed to type in any appropriate 

value for each of the five standard search fields. 
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Figure 11. UI of Standard Field Selection (Fuzzy) 

For the beds and baths field selections, a user has the option to click on the 

drop down list to pick a number or can type in a value in the text field. The 

reason for having a text box is to help facilitate a range input. The drop down 

list does not contain any range hence the need for an input text box. The 

justification for including a drop down list for the beds and baths field selections 

is to display for the user the range of bedrooms and bathrooms for the entire 

house listing data set. Thus a user can either select an input value from the drop 
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down list or enter in the input value manually. The next section describes the 

different constraints defined for the standard search fields. 

Constraints for Standard Fields 

Next to each of the five standard search field input boxes, a user can also 

modify the input value by selecting a constraint: minimum, maximum, exact, or 

range. To explain this further, let us look at a very simple example. For instance, 

suppose that a user wants a four-bedroom house. There are different scenarios 

for each of the four different constraints as explained in the next four sub­

sections. 

Minimum constraint. If the user picks minimum as the constraint for the 

input value, this fuzzy intelligence system is defined to utilize the Java classes 

from jFuzzyLogic to obtain the membership values of the associated linguistic 

terms for the bedrooms variable. From the example in the previous section, the 

input value for the bedrooms variable will be four and based on the 

FuzzyRuleSet discussed above, the input value of four has partial membership 

in linguistic terms three and five. Since the user has specified the constraint to 

be minimum and four as the input value, linguistic term three has partial 

membership. Therefore, the database is also queried for three-bedroom houses. 
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The result is then ranked according to the membership values. In this case, all of 

the house properties with four-, five-, six-, and seven- bedrooms are listed first 

and at the bottom of the results page, three-bedroom houses are displayed. 

The next section describes the second constraint option available for a user 

to select. 

Maximum constraint. If the user picked maximum instead of minimum as 

the constraint for the input value, this fuzzy intelligence system is defined to 

utilize the Java classes from the jFuzzyLogic software package to obtain 

membership values of the associated linguistic terms for the bedrooms variable. 

As from the same example before, the input value for the bedrooms variable is 

still four. The FuzzyRuleSet is still the same and based on Figure 7, the input 

value four has partial membership in two linguistic fields, namely three and 

five. In this case since the constraint it maximum, the database will also be 

queried for five-bedroom houses. The result is once again ranked based on the 

membership values. The user will see one-, two-, three-, four- and then five-

bedroom house listings. Five-bedroom houses will be at the end of the result 

list, since it had the least membership value amongst all other number of 

bedrooms. 
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The next section describes the third constraint option available for the user 

to select. 

Range constraint. If the user picked range instead of maximum as the 

constraint for the input value, this defined fuzzy intelligence system calls the 

Java class from the jFuzzyLogic package to obtain the membership values of the 

associated linguistic terms for the bedrooms variable. The example now is 

slightly changed; the user queries for three-five bedrooms. Thus, the input 

value for the bedrooms variable is now 3-5, which means three, four, and five 

are all considered to be the input values. 

The same FuzzyRuleSet from Figure 7 is used to acquire membership 

values. The input variable three has partial membership in linguistic terms two 

and four. The input variable four has partial membership in linguistic terms 

three and five. Lastly, the input variable five has partial membership in 

linguistic terms four and six. Thus, the database would be queried for three-, 

four-, five-bedroom houses as well as two- and six- bedroom houses. This result 

will also be ranked, the number of bedrooms with the highest membership 

values will be listed towards the top of the search result and the bedrooms with 

the lowest membership values will be listed at the bottom of the search result. 
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The next section explains the final constraint option available for the user 

to select. 

Exact constraint If the user picks the last constraint, exact, for the input 

value, then just as before, this defined fuzzy intelligence system calls the Java 

class from the jFuzzyLogic software to obtain the membership values of the 

associated linguistic terms. As in the example used in the minimum and 

maximum constraint sections, the input value for the bedrooms variable is three. 

Using the FuzzyRuleSet from Figure 7, we obtain the membership values of the 

linguistic terms. The input variable three has partial membership in linguistic 

terms two and four. Therefore, the database would be queried for two-, three-, 

and four-bedroom houses. This result would be ranked according to the 

membership values, with three-bedroom houses listed at the top of the search 

results and the two- and four-bedroom houses listed at the bottom of the list. 

In a traditional query, as done in the real estate websites mentioned in the 

first section, any input value for the houses variable would take a crisp number 

with no partial membership in other numbers. These real estate websites use 

crisp logic for executing a search query in the database. Thus, the input variable 

is used to define the crisp set and to find houses listings that are exactly in the 

set. Therefore, there is no partial membership given to those numbers that are 
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slightly close to the set; either the number is in the set or it is not. For example, a 

three bedroom house with an exact constraint would only return three-bedroom 

houses. No partial membership would be taken into consideration in traditional 

real estate websites and thus a user will not be able achieve as credible and 

precise results as opposed to the intelligent query system defined in the project. 

The next section discusses the second feature of this project, a free 

keyword search for the user. 

Synonymous Search 

Another important aspect of this project includes a synonymous search of 

the house listings. What if a user wants to search for houses but not using the 

standard field selections? The synonymous search allows the user to type in a 

keyword and search for real estate properties. Basically, a user is allowed to do a 

free keyword search for properties. For example, a user can search for big 

backyard houses, and the database would also be queried for large backyard houses 

since large is a synonym for big. 

The user interface design of the synonymous search feature is shown in 

Figure 12. As mentioned, the user types in keyword(s) in the search bar, the 

keywords are passed into the website, and the synonyms are retrieved. The 
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retrieved synonyms are then used to query the database for matching results. 

The website utilized to find synonyms of the keywords entered by the user is 

titled Encarta Thesaurus by MSN. Depending on the keyword, this website 

displays many synonyms but only the first two sets of synonyms are obtained to 

use by the database search query. Appendix C contains the PHP script used to 

obtain the synonyms from the Encarta website. The results are displayed in 

ranking order, with the supplied keyword input search result at the top and the 

synonymous search results following the original result. 
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Figure 12. UI of Synonymous Search 
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A user can click on a particular house listing from the synonymous search 

result and see the highlighted keyword(s) or synonymous keyword(s) within 

that listing to reinforce the result. 

In the next section, we discuss the results obtained from this project. The 

results are shown using several examples. 
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RESULTS 

Different case examples for the standard field and synonymous search 

will be presented in this section. This will help demonstrate the capabilities of 

this intelligent query system. The first five examples will show different cases of 

utilizing the standard field search feature and the last five examples will show 

the usage of the synonymous search feature using different keywords as inputs. 

Example 1 - Standard Field Search 

In this first example, we have searched for a home using just the price 

standard field selection and the range constraint. The input selected for the price 

range is 550000 - 750000. Using the fuzzy rule set for the price variable, as 

shown in Figure 6, we find that this input has partial membership in two 

linguistic terms, namely fourfiftyK and sixfiftyK. Therefore, the database will be 

queried for house listing with a price that is between 450000 and 750000. This 

search result returns twenty-two house listings. If the actual input, 550000 -

750000, was utilized to query the database, the result set would be slightly 

smaller, with eighteen house listings. The next section describes another 

example of using the standard field search. 
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Example 2 - Standard Field Search 

For this example, we have searched for a home using only the beds 

variable and the maximum constraint. The input for the beds variable is two. 

Based on the fuzzy rule set for the bed variable, as shown in Figure 7, we find 

that this input value has partial membership in two linguistic terms, namely one 

and three. Since the maximum constraint has been used, we also include three-

bedroom houses in the search query to the database. This query yields eight 

matching houses. It can be noticed that the search returns houses with three-

bedrooms only. This means that there are no houses with only two-bedrooms. 

So the fuzzy intelligence search returned some houses that would otherwise not 

be included in the result if a traditional real estate website utilized this same data 

set. In the next section we illustrate another example using the standard field 

search. 

Example 3 - Standard Field Search 

In this next example for the standard field search we have used the baths 

variable and the minimum constraint. The input for the baths variable is three. 

Based on the fuzzy rule set for the baths variable, as shown in Figure 8, we find 

that the input three has partial membership in two linguistic terms, namely two 
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and four. Since the minimum constraint has been utilized, we also include two 

bathroom houses in the query to the database. This search result returns fifty-six 

matching houses. There are also two houses with two-bathrooms listed at the 

end of the list since the input value three had partial membership in linguistic 

term two. In the next section we describe another example using the standard 

field search. 

Example 4 - Standard Field Search 

In this example for the standard field search, the size variable with the 

exact constraint has been utilized to query for houses. The input value for the 

size variable has been defined to be 1050 square feet. Based on the fuzzy rule set, 

from Figure 9, for the size variable, we find that the input of 1050 has partial 

membership in two linguistic terms, namely oneT (one thousand) and twelveH 

(twelve hundred). Since the exact constraint has been utilized, the database will 

be queried for houses whose sizes are between one thousand and twelve 

hundred square feet. This search result returns eleven matching houses. In a 

non intelligent query system for a real estate website, if the user searches for 

houses with exactly 1050 square feet in size, it will not result in any matching 

houses since no house exists with that exact size in square feet from the provided 
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data set. In the next section we discuss the final example using the standard field 

search. 

Example 5 - Standard Field Search 

For this last standard field search example, four of the standard fields 

have been utilized to do a search. The price variable has been defined to have 

range as its constraint with 550000-750000 as its value. The bedrooms variable 

has been defined to have maximum as its constraint three as its value. The 

bathrooms variable has been defined to have minimum as its constraint and two 

as its value. Lastly, the size variable for this search has been defined to have the 

exact constraint and 1050 square feet as its value. Based on the fuzzy rule sets for 

the price, bedrooms, bathrooms, and size variables, each variable has some 

linguistic terms that have some partial membership values. Taking all the partial 

membership values of the linguistic terms into consideration, this search yields 

eight matching houses, including a $430,000,4-bedroom, 3-bathroom, 1200 square 

foot house. In the next section we describe an example using the synonymous 

search feature. 
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Example 6 - Synonymous Search 

For this synonymous search example, we will input big rooms as the 

keyword search phrase. To show that big rooms do not exist in any of the fields in 

the database, a search query for this keyword phrase will be sent to the database. 

The MySQL query will be of the following form: 

SELECT * FROM ^listings* WHERE ^EXTRAINFCT LIKE '%%' || 
^COOLING^ LIKE '%%' || 'GENERALEXTERIORv LIKE '%%' || 
^MOREINFCT LIKE '%%' || ^FLOORING* LIKE '%%' || SGARAGE% LIKE 
'%%' || XHEATINGS LIKE '%%' || NPUBLICREMARKS1v LIKE '%%' || 
SPUBLICREMARKS2N LIKE '%%' || "AGENTREMARKS* LIKE '%%' || 
^KITCHENINFO* LIKE '%%' || xLOCATION" LIKE '%%' || 
"LAUNDRYINFO" LIKE '%%' || "POOL" LIKE '%%' || "ROOF" LIKE '%%' 
II "SEWERINFO" LIKE '%%' || "BATHINFO" LIKE '%%' || "WATER" 
LIKE '%%' || "LANDFEATURES" LIKE '%%' || "SPECIALFEATURES" LIKE 
'%%' || "REPORTINFO" LIKE '%%' 

The two percent marks match any number of characters, including zero 

characters. By incorporating the keyword phrase big rooms and the LIKE 

operator, the search query above will do pattern matching of the specified 

keyword. To illustrate this case, here is a simple query: 

SELECT * FROM "listings" WHERE "PUBLICREMARKS1" LIKE '%big 
rooms%' II "PUBLICREMARKS2" LIKE '%big rooms%' || "AGENTREMARKS" 
LIKE '%big rooms%' 

This query translates to: find all house listings from the listings table where the 

public remarks 1, public remarks 2, and agent remarks fields contain the key 

phrase big rooms. Executing this query returns an empty result set indicating that 

52 



the key phrase big rooms does not exist in any of the fields of the house listings. 

This is shown in Figure 13. 

©HUH 
Database 

hsslistings (1) 

hssN stings (1) 

B9 listings 

a) Server: localhost • £i Database: hsslistings • ifl Table: listings "InnoDBfme: 11264 kB" 

HBrowse gf Structure .jjSQL /Search ^Insert fjjExport jjlmport ^Operations J Empty 

BProp 

ffi MySQL returned an empty result set (i.e. zero rows). (Query took 0.0320 sec) 

-SQL query: 
SELECT " 
FROM listings' 
WHERE 'EXTRAINFO' LIKE %big rooms%' || 'COOLING' LIKE %tHg rooms%'1| 'GENERALEXTERIOR' LIKE '%big rooms%' II 'MOREINFO' 
LIKE '%big rooms%' || 'FLOORING' LIKE %faig rooms%' || 'GARAGE' LIKE %big rooms%' || 'HEATING' LIKE '%big rooms%' || 
•PUBLICREMARKS1' LIKE '%big rooms%' II 'PUBLICREMARKS2' LIKE '%b<g rooms%' || 'AGENTREMARKS' LIKE Vobig tooms%' || 
'KITCHENINFO' LIKE '%big rooms%' II 'LOCATION' LIKE '%big rooms%' || 'LAUNDRYINFO' LIKE '%big rooms%' II 'POOL' LIKE 
•%big rooms%' || 'ROOF' LIKE ^ b i g rooms%' II 'SEWERINFO' LIKE '%big rooms*,' II 'BATHINFO' LIKE "%big rooms%' II 'WATER' LIKE 
•%big rooms%' || 'LANDFEATURES' LIKE '%big rooms%' II 'SPECIALFEATURES' LIKE '%big roomsW I! 'REPORTINFO' LIKE '%big raoms%' 
LIMIT 0 76 

l E « . J fl.BBaD.AOiJ lLcrMaRrJE.Sate]l I f iSEB&Jl 

Figure 13. Query result for big rooms keyword 

The synonymous keywords for big rooms are the following: large rooms, 

giant rooms, immense rooms, vast rooms, great rooms, gigantic rooms, great big 

rooms, huge rooms, enormous rooms, whopping rooms, full-size rooms, life-size 

rooms, spacious rooms, capacious rooms, roomy rooms, large rooms, and deep 

rooms. The database is queried for all the synonymous keywords and the search 

returns two matching houses. Both of the houses listed in the search results 

contain the key phrase spacious rooms. In this example, the synonymous search 
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proved successful. In the next section we discuss a second example using the 

synonymous search feature. 

Example 7 - Synonymous Search 

In another example of the synonymous search, we are using the keyword 

phrase additional storage. The synonymous keywords for this phrase include 

extra storage, added storage, supplementary storage, other storage, further 

storage, bonus storage, surplus storage, and superfluous storage. This key 

phrase and its synonymous key phrases are searched in the database and this 

search results in sixteen matching houses. The query mentioned in Section 5.6 

could be used to test if additional storage is listed the database. As shown in 

Figure 14, when this query is executed, it yields an empty result set. This 

indicates the synonyms for additional storage were used to obtain these results of 

sixteen matching houses. 
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© MySQL returned an empty result set (i.e. zero rows) (Query took 0 0024 sec) 

• SQL query: 

SELECT • 
FROM 'listings' 
WHERE 'EXTRAINFO' LIKE ^additional storage*' || 'COOLING' LIKE '%additionsl storage*' || 'GENERALEXTERIOR' LIKE 
•%add>tional storage%' || 'MOREINFO' LIKE "^additional storage*' II 'FLOORING' LIKE '%additional storage*' II GARAGE' LIKE 
'%additional storage0* II HEATING' LIKE "Siadditional storage%' || 'PUBUCREMARKS1' LIKE '%additional storage*' || 'PUBUCREMARKS2' 
LIKE '%additional Storage*' || 'AGENTREMARKS' LIKE '%additional storage*' II 'KITCHENINFO' LIKE -%additional storage*' II 'LOCATION' 
LIKE '%additional storage*' || 'LAUNDRYINFO' LIKE '%add(tional storage%' || 'POOL' LIKE '%additional storage%' || 'ROOF' LIKE 
•%addltional storage* I! 'SEWERINFO' LIKE '%additional storage%' || 'BATHINFO' LIKE '%additional storage%' I! 'WATER' LIKE 
'%additional storage*' II 'LANDFEATURES' LIKE ^additional storage*' II 'SPECIALFEATURES' LIKE ^additional storage*' || 
•REPORTINFO' LIKE '%additional storage*' 
LIMIT 0 76 
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Figure 14. Query result for additional storage keyword 

In tiie next section we describe another example using the synonymous 

search feature. 

Example 8 - Synonymous Search 

In this example, a single keyword synonymous search will be executed. 

The keyword is renovate and its synonyms are: renew, recondition, modernize, 

refurbish, repair, restore, mend, fix up, revamp, remodel, redecorate, and do up. 

The synonymous search for renovate yields fifteen matching houses. Just to make 

sure that only the synonyms of this keyword are responsible for such a large 

result set, the query mentioned in Section 5.6 is used to match for the keyword 

renovate. The MySQL search query returns two matching rows of data, as shown 
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in Figure 15. This signifies that renovate occurs in two of the fifteen synonymous 

search matches indicating that thirteen of the fifteen matches occurred based on 

the synonym of renovate. 

\ hssBstings (1) 

hssKstings(l) 

Q) Showing rows 0 - 1 (2 total. Quay took 0 0028 sec) 

a 
-SQL query: 

SELECT -
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WHERE 'EXTRAINFO' LIKE '%renovate%' || 'COOLING- LIKE •"tamMta*,1 j[ 'GENERALEXTERIOR' LIKE %renovate%' II'MOREINFO' LIKE %renovate%' II FLOORING' 
LIKE '%r«io»>te%' || GARAGE' LIKE ,(Kren(Mit»%' II 'HEATING' LIKE ••IrenOTnteK.' II "PUBUCREMARKS1" LIKE '%renovate%' II 'PUBLICREMARKS2' LIKE 'KnnrraunY II 
'AGENTREMARKS' LIKE '%ren<M»e%' II 'KITCHENlNFO' LIKE ,%renov»e%' || 'LOCATION' LIKE •%rem>vate%'1! 'LAUNORYINFO' LIKE '%f«novate%" || 'POOL LIKE 
I t n n o n U K ' II 'ROOF LIKE 'ttrarmnWW II 'SEWERINFO' LIKE I twma tgK - || "BATMNFO" LIKE '%reno«te%' II 'WATER' LIKE '%i*nimte%' || "LANDFEATURES' LIKE 
•UrnioHUK II SPECIALFEATURES' LIKE '%i»novat«%' II REPORI1NFO' LIKE 'KnnouUK' 
LIMIT 0 30 

•3 eatJQjJ3w.sQL.airciiat9.RHRCoi)e! Illl Refresh i 

Query results operations-
Prntyiew I I Pimt«ew.(wUi.MltottslTI I EfflortJ 

I,Show I 30 ]row(s) starting from record #!o 
in i horizontal [»] mode and repeat headers after j 100 jcels 

Sort by key i None |»j | Go | 

*~T^ [ I ] I STATUS J I.SmE.I ImPPfilCE.I Î NDINSOATE, I I SQIDPATEJ I OBIGUSTPBICtl I PRICE I 
D >" X 2 Sold Contemporary 852,000 11/4/2003 9/5(2003 829,000 829000 

D S * 47 Sold Contemporary 860,000 9/11/2003 8/19/2003 810,000 810000 

I ™..J .». I, | .,__u I,. 

Figure 15. Query result for renovate keyword 

In the next section we illustrate a fourth example using the synonymous 

search feature. 
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Example 9 - Synonymous Search 

In this example of the synonymous search, the key phrase chosen has been 

beautiful backyard. The synonyms of this key phrase include: lovely backyard, 

attractive backyard, good-looking backyard, gorgeous backyard, stunning 

backyard, striking backyard, fine-looking backyard, handsome backyard, 

picturesque backyard, scenic backyard, delightful backyard, charming backyard, 

wonderful backyard, exquisite backyard, pleasing backyard, superb backyard, 

and magnificent backyard. This synonymous search yields two matching 

houses. 

The search query from Section 5.6, used to test for the initial key phrase in 

the database, yields an empty set as shown in Figure 16. Upon clicking on the 

two listings of houses, it is viewed that the first listing contains the synonymous 

phrase gorgeous backyard while the second listing contains the synonymous 

phrase lovely backyard. This example proves that this synonymous search 

feature is a positive advancement for helping users in finding real estate 

properties. 
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CD M y S Q L returned an empty result set (i.e. zero rows). (Query took 0 .0026 sec) 

l~SQL query: 

SELECT ' 
FROM 'listings' 
WHERE 'EXTRAINFO' LIKE '^beautiful backyard%' || 'COOLING' LIKE '%beautHul backyard%' || 'GENERALEXTERIOR' LIKE 
•^beautiful backyard*' II 'MOREINFO' LIKE '%beautiful backyard*' II 'FLOORING' LIKE '%beautiM backyard*' II 'GARAGE' LIKE 
"%beautiy backyard*' II 'HEATING' LIKE '%beautH backyard%' II 'PUBLICREMARKSV LIKE '%beautiful backyard*' II 'PUBLICREMARKS2" 
LIKE '%beautiful backyard*'» 'AGENTREMARKS' LIKE '*beautiftil backyard*' || 'KITCHENINFO' LIKE ^beautiful backyard*' II 'LOCATION' 
LIKE '%beautrful backyard*' || 'LAUNDRYINFO' LIKE '%beau* l backyard*' II 'POOL" LIKE '%beautiful backyard*' || 'ROOF' LIKE 
'^beautiful backyard*' || 'SEWERINFO' LIKE "Sbeautiful backyard%' || 'BATHINFO' LIKE '%l»autifu! backyard%' || 'WATER' LIKE 
•%beautiM backyard*' || 'LANDFEATURES' LIKE '%beautiful backyard%' || 'SPECIALFEATURES' LIKE ^beautiful backyard%' II 
•REPORTINFO' LIKE '%beautiful backyard%' 
LIMIT 0 76 
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Figure 16. Query result for beautiful backyard keyword 

In the next section we describe the last example using the synonymous 

search feature. 

Example 10 - Synonymous Search 

The last synonymous search example uses vacant as its keyword. The 

synonyms associated with vacant are empty, available, unoccupied, not in use, 

unfilled, untaken, free, clear, blank, expressionless, indifferent, vacuous, 

uncomprehending, and inane. This synonymous search generates fifty-six 

matching houses. The MySQL query from Section 5.6, which checks for the 

keyword input in the database, is executed using the keyword and results in four 

matching rows, as shown in Figure 17. This signifies that four of the fifty-six 
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search result listings contain the word vacant and fifty-two of the remaining 

search result house listings contain a synonym for vacant. 

(D Showing rows 0 - 3 (4 total, Query took 0.0045 sec) 

HS®[! 
] hsslistings (1) 

hsstisttngsO) 

H Isttngs 

•SQL query: 

SELECT' 
FROM 'listings' 
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'ROOF UKE '%vacant%' II 'SEWERINFO' LIKE '%vacant%' || 'BATHINFO' LIKE '%vacam%' || 'WATER' LIKE -%vacam%' || 'LANDFEATURES' UKE '%vacanH4' || 
'SPECIALFEATURES' LIKE '%1acam%' || REPORTINFO' LIKE '«vacam%' 
LIMIT 0 30 
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Figure 17. Query result for vacant keyword 

In the next section, we analyze the results; namely the ten examples of the 

standard search and synonymous search queries. 

Analysis of the Results 

Based on the ten example case studies for this intelligent query system, 

this new system proves to be a beneficial piece of software that allows users the 
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ability to search for real estate property and obtain meaningful and credible 

results. By analyzing the data set of seventy six house listings, the various 

different cases were described and the results were shown to be uniquely 

acceptable based on the user defined query via the standard field and 

synonymous search. 

The five standard field search query examples compared the results of the 

fuzzy logic query system with the standard MySQL query using the described 

input data. As shown, the fuzzy logic system outputted a larger set of house 

listings data as compared to a traditional query search. The five synonymous 

search query examples showed the same results; the fuzzy logic query system 

produced a larger set of house listings data as compared to the traditional query 

search. The bigger result set from our newly designed fuzzy logic system, Homes 

For You, showed us that the user can receive more house listings to view and 

potentially pick out a real estate property from the result set. 

Based on all this information, our intelligent query system that we have 

implemented for the real estate website is very beneficial at retrieving 

meaningful search results. The users are able to view house listings that were 

close to their precise search; results of the house listings that the user may not 

have otherwise originally queried for. 
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FUTURE WORK 

One enhancement that could be made to this intelligent query system is 

the usage of all the possible synonyms of a given keyword. The drawback to 

utilizing only a few of the synonyms is that the scope for a synonymous search is 

limited since not all of the possible synonyms of a keyword are included in the 

query. The reason for using only a subset of the synonyms is so that a result 

could be quickly obtained. Linking to the synonym website and parsing for the 

synonyms takes some time and then using those synonyms to query the database 

also involves some time usage. So, to reduce the time for processing all the 

information, only a subset of the synonyms was used for this project. 

Another important aspect is to test this intelligent query system 

extensively with more house listings data. More data would allow this 

intelligent query system to be fine tuned accordingly and would help to make 

sure that the membership functions of the standard variables are defined 

correctly. Along with testing with more data, this system needs to be analyzed 

for usability with a very large pool of subjects. The user interface design and 

logic behind this intelligent query system could then be extensively evaluated 

through the usability testing process. This would help make the Homes For You 

website a simple and easy to use/ navigate site. 
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CONCLUSION 

This project has attempted a new approach in retrieving search results by 

using fuzzy logic. The intelligent query in real estate web site, that we have 

created, is capable of taking in the standard field selection search data and 

generating results that are more meaningful. This system also incorporates a 

search bar for users to input more information about a particular house they 

want. For example, apart from choosing 5-bedroom, 4-bath, 3-car garage house, the 

user can also input into the search bar, not near highway and close to hospital. So 

the results of this search will provide for even more meaningful information 

about houses. 

The ten standard field search and synonymous search query examples 

further reinforce the power of utilizing fuzzy logic in the real estate website 

domain. The ten cases discussed in Section 5 provide great examples of how 

well this intelligent query system can return search results. With the simple user 

interface design, the users can easily search for houses. Based on all this 

information, the implemented system, therefore, increases the ability of the users 

to query for real estate property with more accuracy. 

Some of the challenging and innovative aspects of this project include 

implementing an effective fuzzy logic real estate website that provides reliable 
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search results: integrating fuzzy logic using jFuzzyLogic, PHP scripts, and Java 

files; applying fuzzy logic to standard field selections; parsing of online facts data 

to incorporate into real estate web site; and performing a synonymous search 

based on several fields from the database. With the use of all this, this new 

system, therefore, increases the ability of users to query for real estate property 

with greater precision. 

This intelligent query system has proved to be successful in the real estate 

domain. We can exploit this intelligent query system further by applying it to 

other domains or applications. This would help obtain just as accurate and 

credible results, thus making this intelligent query system powerful. 
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APPENDIX A: XML to Database field names conversion 

XML Field 
Name 

XSTR152 

XSTR57 

XSTR67 

XSTR70 

XSTR72 

XSTR73 

XSTR65 

XSTR75 

XSTR82 

XSTR89 

XSTR103 

XSTR121 

XSTR122 

XSTR58 

FEATURE16 

Sample Contents of One Entiy 

Single Family Residential 

Lovely redesigned home with 
private Zen-like garden 

Separate Family Room 

Conventional 

Wall to Wall Carpeting, 
Linoleum or Vinyl, Tile 

Separate Dining Room 

Concrete Perimeter 

2 Car Garage, Attached, Uncovered 
Parking, RV or Boat Parking, Off Street 

Parking, Garage-Converted 

Ceilings insulated, Walls insulted 

Built-in Oven/Range Combo, Microwave 
Oven, 1 Dishwasher, Disposer, 

1 Refrigerator 

Laundry Area - Inside, Extra Storage 

Sewer in & Connected 

2 or more stall showers, 
1 shower over tub 

Geological/Flood report, Press control 
Report (SPC), Preliminary Title Report. 

Property Inspection Report, CC&R's 

AARONS, BERNARD TR 

Database Table Column 
Name 

TYPE 

EXTRAINFO 

MOREINFO 

OTHERINFO 

FLOORING 

LIVDINROOMINFO 

OUTSIDEINFO 

GARAGE 

INSULATION 

JOTCHENINFO 

LAUNDRYINFO 

SEWERINFO 

BATfflNFO 

REPORTINFO 

OWNERNAME 
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FEATURE17 

FEATURE18 

FEATURE19 

FEATURE20 

FEATURE21 

FEATURE22 

FEATURE23 

FEATURE24 

FEATURE26 

FEATURE27 

FEATURE28 

FEATURE29 

FEATURE30 

FEATURE31 

FEATURE32 

FEATURE33 

FEATURED 

FEATURE35 

FEATURE36 

FEATURE37 

FEATURE38 

752 Middlefield Rd 

Palo Alto CA 

94301 2911 

155 Heather Ln 

Palo Alto C A 

94301 2911 

5113.98 

PA 

1788 

3332 

5/15/1991 

0010902238 

RM2 

605454 

1951 

313580 

6014 

01 

4 

3 

7936 

PROPERTYADDRESS 

CITY 

ZIPCODE 

MAILINGADDRESS 

MAILINGCITYSTATE 

MAILINGZDPCODE 

CENSUSTRACT 

CITYCODE 

APPROXSQFT 

PERCENITMPROVED 

LASTTRANSACTIONDATE 

DEEDNUMBER 

ZONING 

TRANSFERVALUE 

YEARBUILT 

TAXAMOUNT 

TAXRATEAREA 

PROPERTYUSECODE 

BEDROOMS 

BATHS 

ACTUALLOTSIZE 
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APPENDIX B: GLOSSARY 

Crisp set: the membership function of a variable with two values, commonly 
defined as 0 and 1. 

Defuzzification: modifying a fuzzy set into a numerical value. 

Fuzzification: conversion of an input value into level of membership for 
particular membership functions defined for that variable. 

Fuzzy Control: form of control in which the control algorithm is based on Fuzzy 
Logic; ex. The FCL file in jFuzzyLogic system has fuzzy control. 

Fuzzy Logic: compilation of mathematical theories based on the idea of Fuzzy 
set. 

Linguistic rule: IF-THEN rule with antecedent and consequent 

Linguistic term: defined by Fuzzy sets, and given membership function 

Linguistic variable: variables that takes values in the range of linguistic term 

Membership function: function that conveys how much an element of a set fits 
in a given Fuzzy subset. 

69 



APPENDIX C: Source Code 

jFuzzyLogic Code to access membership functions 

This Java file (House.java) uses the FCL defined file and obtains the membership 
values of the inputs passed into the specified fuzzy rule set: 

import net.sourceforge.j FuzzyLogic.FIS; 
import net.sourceforge.j FuzzyLogic.rule.FuzzyRuleSet; 

/** 

* Test parsing an FCL file 
* @author Mandeep Jandir 
*/ 

public class House { 

public double getRating(String var, String member, int num) 
{ 

// Load from 'FCL' file 
String fileName = "C:/Program Files/Apache Group/ 

Apache2/htdocs/realestate/ 
j FuzzyLogic/fcl/house.fcl"; 

FIS fis = FIS.load(fileName, false); 

if( fis == null ) 
{ 

// Error while loading? 
System.err.println("Can't load file: '" + 

fileName + "'") ; 
return 0; 

} 

// Show ruleset 
FuzzyRuleSet fuzzyRuleSet = fis.getFuzzyRuleSet() ; 

//displays in a GUI, the graphs of the rules 
//fuzzyRuleSet.chart() ; 

// Evaluate fuzzy set 
fuzzyRuleSet.evaluate(); 

return 
fuzzyRuleSet.getVariable(var).getMembership(member); 
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//Prints ruleSet 

//System.out.printIn(fuzzyRuleSet) ; 
} 

public static void main(String[] args) throws Exception 
{ 

House h = new House(); 
double r = h.getRat ing("price", "sixfiftyK", 579000); 
double r = h.getRat ing("beds","four" ,3) ; 
Sys tem.out .pr in t ln( r ) ; 

} 

SynonymFinder.php file 

This file parses the MSN Encarta Thesaurus website for the synonyms of the 
specified keyword. Using patterns, the synonyms of the input keyword are 
obtained. 

<?php 

/* 

* Function: get_synonym 
* Purpose : retrieves all synonyms from website 
* Input : 2 parameter( a word, and web-Link 

http://encarta.msn.com/thesaurus_/) 
* Output : List of synonyms 
*/ 

function getsynonym($description, $web_url) 
{ 

$words = array(); 
$url = $web_url . $description . ".html"; 
$data = file_get_contents($url) ; 
$newlines = array("\t","\n","\r","\x20\x20","\0","\xOB"); 

$content = str_replace($newlines, "", 
html_entity_decode($data)); 

$count=0; 

preg_match('/<font class="wordWheelHighlight">(.*)<td 
colspan="3" class="Copyright">/i', $content, 
$match); 
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$result = $match[l]; 
$temp = ""; 

for($i = 0; $i < 2; $i++) 
{ 

$s t a r t = strpos ($content, '<bxi>Synonyms</ix/b>: ' ,$end) ; 

$end = strpos($content , '<br><br><b><i>Antonym</i></b>:', 
$ s t a r t ) ; 

if($end == "") 
$end = strpos($content, '</span></td></tr></table>', 

$start); 
$table = substr($content,$start,$end-$start); 

// extracting string after symbol ':' 
$patternl="/Synonyms(.*):\s(.*)/"; 

preg_match($patternl, $table, $arrl); 

if($temp != "") 
$temp .= ", ".strip_tags($arrl[2]); 

else 
$temp .= strip_tags ($arrl [2]); 

} 

$words = explode(", ", strip_tags($temp)); 
return $words; // return synonyms 

} 

$weburl = "http://encarta.msn.com/thesaurus_/"; 
$description = "renovate"; 
$res = array(); 

$res = getsynonym($description, $weburl); 
$count_2 = count($res); 

echo "<BRXb>Synonyms for " .$description. " :</b>\n"; 
for($i=0;$i<$count_2;$i++) 
{ 

echo $res[$i]." \n"; 
} 

?> 
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