
THÈSE DE DOCTORAT CONJOINT
TÉLÉCOM SUDPARIS & UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité Informatique

École doctorale Informatique, Télécommunications et Électronique de Paris

Présentée par

Thibaut Tiberghien

Pour obtenir le grade de

DOCTEUR DE TELECOM SUDPARIS

Stratégies pour le raisonnement sur le contexte dans les
environnements d’assistance pour les personnes âgées

Soutenue le 18 Novembre 2013

devant le jury composé de :

Pr. Jacques Demongeot Université Joseph Fourier & CNRS AGIM Rapporteur
Pr. Lawrence Wong National University of Singapore Rapporteur
Pr. François Pierrot Université Montpellier 2 & CNRS LIRMM Examinateur
Dr. Mohamed Ali Feki Alcatel Lucent Bell Labs Belgium Examinateur
Pr. Daniel Racoceanu Université Pierre et Marie Curie & CNRS IPAL Examinateur
Pr. Mounir Mokhtari Institut Mines Télécom & CNRS IPAL Directeur de Thèse

Thèse n◦ 2013TELE0026

Institut Mines-Telecom
Image & Pervasive Access Lab

CNRS (UMI 2955), France
I2R / A*STAR, Singapore

1 Fusionopolis Way
#21-01 Connexis (South Tower)

Singapore 138632

DOCTOR OF PHILOSOPHY (PhD) THESIS
INSTITUT MINES-TELECOM & UNIVERSITY PIERRE AND MARIE CURIE

Specialization in Computer Sciences

Paris Doctoral School of Computing, Telecommunication and Electronics

Presented by

Thibaut Tiberghien

To obtain the degree of

DOCTOR OF PHILOSOPHY FROM TELECOM SUDPARIS

Strategies for Context Reasoning in Assistive Livings for
the Elderly

Defended on 18th November 2013

in front of a doctoral comittee composed of:

Pr. Jacques Demongeot Université Joseph Fourier & CNRS AGIM Reviewer
Pr. Lawrence Wong National University of Singapore Reviewer
Pr. François Pierrot Université Montpellier 2 & CNRS LIRMM Jury Member
Dr. Mohamed Ali Feki Alcatel Lucent Bell Labs Belgium Jury Member
Pr. Daniel Racoceanu Université Pierre et Marie Curie & CNRS IPAL Jury Member
Pr. Mounir Mokhtari Institut Mines Télécom & CNRS IPAL Thesis Director

Thèse n◦ 2013TELE0026

4

Enthusiasm is one of the most powerful engines of success.
When you do a thing, do it with all your might.

Put your whole soul into it.
Stamp it with your own personality.

Be active, be energetic and faithful, and you will accomplish your object.
Nothing great was ever achieved without enthusiasm.

— Ralph Waldo Emerson, 1803–1882

Dedicated to my lovely wife Wanlyn.

Abstract

Research Challenge

One’s interest in ambient intelligence may lie in the ability of an environment to respond in an ap-
propriate manner to what is happening within it. It is the reaction of a computerised system to a
non-formalised situation that is intriguing. Such systems are by nature able to instantiate a reaction,
even complex, to a formalised and recognised situation, even complex. The true challenge is to provide
a formalisation for machines to project situational data and make sense of it, i.e. build connections
or bindings between it and the rest of the contextual knowledge. We call this challenge “context
comprehension”, and divide it into two main aspects: (i) formalising contextual knowledge to project
situational data in it, and (ii) reasoning to connect such inter-correlated formalised knowledge or infer
new one. The problem being studied in this doctoral work is: What strategies can be put in place to
provide context comprehension in assistive livings?

Comprehension is defined in the Random House Kernerman Webster’s College Dictionary as the
“capacity of the mind to perceive and understand; [the] power to grasp ideas”. We can see it as the
process of simultaneously extracting and constructing meaning through the manipulation of sensed
situational data. We use the words extracting and constructing to emphasize both the importance and
the insufficiency of the sensed data as a determinant of comprehension. In the field of ambient intelli-
gence, it consists in putting in place a translation mechanism between the sensed representation of a
situation and its formalised, machine-readable version. This mechanism would probably be constituted
of heterogeneous and complementary strategies, allowing the definition of a formalisation (or model),
the naive projection of sensed data into the model, and the inference of knowledge into this model.

Outcome & Contributions of the Thesis

Leveraging our experience with the traditional approach to Ambient Assisted Living (AAL) which re-
lies on a large spread of heterogeneous technologies in deployments, this thesis studies the possibility
of a more “stripped down” and complementary approach, where only a reduced hardware subset is
deployed, probing a transfer of complexity towards the software side, and enhancing the large scale
deployability of the solution. Focused on the reasoning aspects in AAL systems, this work has allowed
the finding of a suitable semantic inference engine for the peculiar use in these systems, responding to a
need in this scientific community. Considering the coarse granularity of situational data available, ded-
icated rule-sets with adapted inference strategies are proposed, implemented, and validated using this
engine. A novel semantic reasoning mechanism is proposed based on a cognitively inspired reasoning
architecture. Finally, the whole reasoning system is integrated in a fully featured context-aware service
framework, powering its context awareness by performing live event processing through complex onto-
logical manipulation. The overall system is validated through in-situ deployments in a nursing home as
well as private homes over a few months period, which itself is noticeable in a mainly laboratory-bound
research domain.

Organisation of this Dissertation

This thesis concentrates its research efforts on the reasoning aspects in smart environments. The disser-
tation will focus mainly on the design of the reasoning engine which allowed us to develop an integrated
system that has been deployed in real conditions. It is organised around five parts, each subdivided
into one to three chapters. The first part provides the background and motivation behind this doctoral
work, concluding with the positioning of the work. The second part consists in the conception part of
the work. It is composed of an analysis of the related work in rule-based reasoning, a comparison of

i

semantic reasoning engines from an ambient intelligence point of view, the design of a novel rule-set
for context comprehension, and its integration into a cognitively inspired reasoning architecture. The
third part is more focused towards the implementation aspects of the work. After introducing the
enabling technologies, it describes the evolution of the context-aware service framework designed and
implemented, focusing on two notable milestones and their respective architectures. Details of the
mechanisms implemented are provided, highlighting their contribution to the improvement of the over-
all process and performance. The fourth part provides results from the various validations that have
been conducted; on one hand in a nursing home in Singapore and on the other hand in three individual
homes in France, with the involvement in both countries of several partners from medical, research and
engineering background. It also discusses the strategies which could enable the technological transfer
into society of AAL solutions. The last part concludes on the work done and provides an overview of
the further studies in perspective.

Keywords

Ambient Assisted Living, Ageing People with Dementia, Ambient Intelligence, Internet of Things, Con-
text Awareness, Knowledge Modelling, Semantic Reasoning, Semantic Web, Inference Engine, Cognitive
Model, Service Framework, Scalable Deployments.

ii

Author’s Publications

Journal Papers

H. Aloulou, M. Mokhtari, T. Tiberghien, J. Biswas, and P. Yap, “Real world deployment of assistive
living technologies for cognitively impaired people in singapore: Demonstration guidelines,” in IEEE
Journal of Biomedical and Health Informatics (J-BHI), IEEE, 2013 (In-Press).

H. Aloulou, M. Mokhtari, T. Tiberghien, J. Biswas, C. Phua, J. H. K. Lin, and P. Yap, “Deployment
of assistive living technology in a nursing home environment: methods and lessons learned,” in BMC
Medical Informatics and Decision Making, vol. 13, p. 42, 2013.

M. Mokhtari, H. Aloulou, T. Tiberghien, J. Biswas, D. Racoceanu, and P. Yap, “New trends to
support independence in persons with mild dementia – a mini-review,” in International Journal of
Experimental, Clinical, Behavioural, Regenerative and Technological Gerontology, vol. 58, pp. 554–563,
Karger Publishers, 2012.

Conference Papers

R. Endelin, H. Aloulou, J. De Roo, S. Renouard, T. Tiberghien, and M. Mokhtari, “Implementation
of allen’s interval logic with the semantic web,” in International ACM Conference on Management of
Emergent Digital EcoSystems (MEDES), ACM, 2013 (In-Press).

R. Endelin, S. Renouard, T. Tiberghien, H. Aloulou, and M. Mokhtari, “Behavior recognition for
elderly people in large-scale deployment,” in Inclusive Society: Health and Wellbeing in the Community,
and Care at Home (ICOST 2013), vol. 7910 of Lecture Notes in Computer Science, pp. 61–68, Springer,
2013.

A. A. Phyo Wai, J. H. K. Lin, V. Y. Lee, C. Phua, T. Tiberghien, H. Aloulou, Y. Liu, X. Zhang,
J. Biswas, and P. Yap, “Challenges, experiences and lessons learned from deploying patient moni-
toring and assistance system at dementia care hostel,” in Inclusive Society: Health and Wellbeing in
the Community, and Care at Home (ICOST 2013), vol. 7910 of Lecture Notes in Computer Science,
pp. 292–297, Springer, 2013.

T. Tiberghien, M. Mokhtari, H. Aloulou, and J. Biswas, “Semantic reasoning in context-aware assis-
tive environments to support ageing with dementia,” in Proceedings of the 11th International Semantic
Web Conference (ISWC), vol. 7650 of Lecture Notes in Computer Science, pp. 212–227, Springer, 2012.

H. Aloulou, M. Mokhtari, T. Tiberghien, J. Biswas, and J. H. K. Lin, “A semantic plug&play based
framework for ambient assisted living,” in Impact Analysis of solutions for chronic disease Prevention
and Management (ICOST), vol. 7251 of Lecture Notes in Computer Science, pp. 165–172, Springer,
2012.

T. Tiberghien, M. Mokhtari, H. Aloulou, J. Biswas, J. Zhu, and V. Lee, “Handling user interface plas-
ticity in assistive environment: Ubismart framework,” in Toward Useful Services for Elderly and People
with Disabilities (ICOST), vol. 6719 of Lecture Notes in Computer Science, pp. 256–260, Springer, 2011.

J. Zhu, V. Y. Lee, J. Biswas, M. Mokhtari, T. Tiberghien, and H. Aloulou, “Context-aware reasoning
engine with high level knowledge for smart home,” in Proceedings of the 1st International Conference on
Pervasive and Embedded Computing and Communication Systems (PECCS), pp. 292–297, SciTePress,
2011.

iii

REPORTS

J. Biswas, A. A. Phyo Wai, A. Tolstikov, J. H. K. Lin, M. Jayachandran, S. F. V. Foo, V. Y. Lee,
C. Phua, J. Zhu, T. H. Huynh, T. Tiberghien, H. Aloulou, and M. Mokhtari, “From context to
micro-context-issues and challenges in sensorizing smart spaces for assistive living,” in Proceedings
of the 2nd International Conference on Ambient Systems, Networks and Technologies (ANT), vol. 5,
pp. 288–295, Elsevier, 2011.

Reports

T. Tiberghien, “Mechanisms of plasticity in the design of dynamic user interfaces for application in
pervasive assistive environments,” Master’s thesis, Technische Universität München, Image & Pervasive
Access Lab, 2010.

T. Tiberghien, “Tangible interaction to enhance users’ experience,” in Sensor-Based User Interfaces
– Science or Science-Fiction?, pp. 11–18, Technische Universität München, 2010.

iv

Acknowledgement

First and foremost I would like to thank Mounir for giving me this opportunity of course. I have
benefited greatly from your vision, your friendship and your confidence. Thank you to Hamdi for your
daily patience. It was great sharing the past three years with you, supporting each other and making
things work better despite our differences. A shout out to Wan, my early partner in crime. I wish
we had more of those crazy times. Next up are our chosen ones - the interns! Romain, designing all
day with you was just great, even though you always had “one more little thing”... Jérémie, your
maturity, perfectionism and open-mindedness made working with you such a breeze. I hope we’ll have
opportunities to work together again. Guillaume, you are a crazy guy, a visionary and an innovator!
Come back whenever you want.

A great thank you to the Amupadh team: Kenneth, Alwyn, Andrei, Jaya, Aung Aung, Xian, Yan,
Jin Song, Clifton, Weimin and Philip. We shared two great years, starting from scratch and building
up a platform that we could deploy today. Those were some mad times. Thank you to Jit in particular
for your advice and kindness, I do hope we can collaborate again soon.

Next up I would like to acknowledge the QoL team too. Thank you Stéphane. Although you were
far and busy and we couldn’t share so much time together, you have inspired me in many ways. It was
good to have someone to look up to. Maybe we can work again together some day.

Thank you to all the other guys from IPAL. Antoine who, in three years went from being a colleague
to being a groomsmen at my wedding. Stéphane for running this marathon with me from the very
beginning to the end—it’s good to see the light at the end of the tunnel together. Ludo, I have appreci-
ated your quiet yet strong presence in IPAL all this while, and you have made it a better environment
for me. Olivier, Michal, Joo Hwee, Renan, Patrick, Kim, Thibault, Solène, Suriana, Joreis, Pierre,
Carole, Clément, Shue Ching, Shijian, Hanlin, Camille, Blaise, Nicolas, and the others I forget. We
share many good memories that I cannot summarize here. Thank you to Coralie for your friendship,
your “innovationism”, for making us a bit more proud, and for your encouragement. Thank you as well
to Daniel, for the great conversations we once had, for speaking about philosophy and reminding me
that it is part of our sciences.

Thank you Jos for being such a motivating and inspiring person. For your support on EYE too and
your optimism towards our work.

I wish to thank the scientific direction at the Institut Mines-Télécom for funding this work.

I would like to express my gratitude to the residents who have accepted to take part in the trials;
in Peacehaven in Singapore and at home in France. This gratitude is shared by my teammates as well.
You have been very accommodating in the past months.

Last but not least, I would like to thank my family—my parents for bearing with the concerns they
had, and my parents-in-law for the pride they make me feel. And the biggest thank you of all goes to
my wife Wanlyn. Thank you for your patience and your love during these three years. Thank you for
your moral support and for sharing the dreams that help me go forward.

A special thought goes out to my grand-parents. I hope that my work will help families keep in touch
in the future, despite life becoming crazier by the day, despite the distance among family-members. I
wish we had the technologies I envision to grow a bit more together.

v

vi

Contents

Abstract i

Author’s Publications iii

Acknowledgement v

I Introduction 1

1 Towards Sustainable Ageing 3

1.1 Ageing in Place . 3

1.1.1 Challenging Demographic Changes . 3

1.1.2 Normal Ageing . 5

1.1.3 Pathological Ageing . 7

1.2 Gerontechnology . 8

1.3 Ambient Assisted Living . 9

2 Assistive Living Spaces 13

2.1 Whispering Things . 13

2.2 Pervasive Interaction . 14

2.3 Ambient Intelligence (AmI) . 14

2.4 An AAL Round-up . 15

3 Positioning of this Doctoral Work 17

3.1 Easing AAL Technology Transfer into Society . 17

3.1.1 A Need for Deployments in Real Settings . 17

3.1.2 Two Complementary Approaches . 19

3.2 Specific Research Focus: Context Comprehension . 21

3.2.1 Definition of the Research Challenge . 21

3.2.2 Related Work in Context Comprehension . 22

3.2.3 Presentation of the Method . 24

II Semantic Reasoning for Context Comprehension 27

4 Modelling of Contextual Knowledge 29

4.1 Motivation and Challenges . 29

4.2 Related Work in Context Modelling . 30

4.3 Functional Approach to Context Representation . 31

4.3.1 Rapid Introduction to the Semantic Web . 31

4.3.2 Functional Model for Service Delivery . 32

4.3.3 Functional Model for Activity Recognition . 35

4.3.4 No Memory: a Strategic Choice . 37

4.4 Naive Mechanism for Data Projection . 38

4.5 Perspective Work: a More Parametric Context Model 39

vii

CONTENTS

5 Designing a Semantic Context Comprehension Engine 41
5.1 Introduction . 41

5.1.1 A Taxonomy for Context Comprehension . 41
5.1.2 Explicit Reasoning . 41
5.1.3 Heterogeneous Needs for the Context Granularity 42

5.2 Related Work in Rule-based Reasoning Techniques . 42
5.2.1 Imperative and Declarative Paradigms . 42
5.2.2 Semantic Technologies . 43
5.2.3 Usage in the AmI and AAL Communities . 46
5.2.4 Conclusion . 47

5.3 Which Inference Engine for AAL? . 47
5.3.1 Requirements Gathering . 48
5.3.2 Comparison on Inference Engines . 50

5.4 Rule Design for Context Comprehension . 53
5.4.1 General Concepts of The Rule Design . 53
5.4.2 Activity Inference: Balancing Rationalism and Empiricism 54
5.4.3 Rules Verification Using Formal Methods . 58

6 Incorporating Data Driven Techniques and Quality of Information 63
6.1 Limitations of a Purely Rule-Based Approach . 63
6.2 Data Driven Analysis of Ontological Knowledge . 63

6.2.1 Traditional Machine Learning Techniques on Ontologies 63
6.2.2 Rule-Based Clustering . 64
6.2.3 Combining Different Techniques . 65

6.3 Introducing Memory in the Reasoning . 66
6.4 Quality of Semantic Information . 66

6.4.1 Representing Uncertainty in N3 . 66
6.4.2 Reasoning under Uncertainty in N3 . 68

7 A Cognitively Inspired Reasoning Architecture 71
7.1 Conscious and Unconscious Minds . 71
7.2 Live Event Processing Using EYE Through the NTriplestore 73
7.3 Complex Ontological Manipulation in the Inference Mechanism 75

7.3.1 Ontological States . 75
7.3.2 Semantic I/O . 75

7.4 Integration Into a Context-Aware Service Framework . 76

III UbiSMART Framework: Ubiquitous Service MAnagement and Rea-
soning archiTecture 79

8 Detailed Description of UbiSMART Framework 81
8.1 Enabling Technologies . 81

8.1.1 Service Oriented Architecture (SOA) . 81
8.1.2 Open Service Gateway initiative (OSGi) . 82
8.1.3 Representational State Transfer (REST) . 84

8.2 Fully Distributed Reasoning Architecture: UbiSMART v1 85
8.2.1 UbiSMART’s Service Architecture . 85
8.2.2 Communication . 87
8.2.3 Sequence Diagram . 88
8.2.4 Detailed Implementation Using Jena Inference Engine 89

viii

CONTENTS

8.2.5 Performance Validation and Discussion . 93

8.3 Hybrid Reasoning Architecture: UbiSMART v2 . 94

8.3.1 UbiSMART’s RESTful Architecture . 94

8.3.2 Sequence Diagram . 98

8.3.3 Extra: N3 Triplestore . 98

8.3.4 Communication . 101

8.3.5 Extra: Semantic Plug’n’Play . 102

8.4 Detailed Implementation of the Hybrid Architecture . 105

8.4.1 Stimulistener . 105

8.4.2 Cortex . 107

8.4.3 Cerebration and MotionEstimator . 108

8.4.4 Cogitation and EyeReasoner . 110

8.4.5 Performance Validation . 111

8.5 Discussion: Arbitration Between Reasoning Techniques 112

IV Validation 113

9 Deployments and Validation 115

9.1 Validation Approach . 115

9.2 Technical Validation: STARhome Showcase . 115

9.2.1 Context of the Deployment . 115

9.2.2 System Description . 116

9.2.3 Results . 117

9.3 Top-Down Approach: Nursing Home in Singapore . 118

9.3.1 Context of the Deployment . 118

9.3.2 Description of the Use-Case . 119

9.3.3 System Description . 120

9.3.4 Results . 124

9.4 Bottom-Up Approach: Individual Private Homes in France 125

9.4.1 Context of the Deployment . 125

9.4.2 System and Data Description . 126

9.4.3 Results . 127

9.5 Lessons Learned . 130

9.5.1 Get Out of the Lab . 130

9.5.2 The Suitable Sensing Granularity . 130

V Conclusion 133

10 Conclusions and Perspectives 135

10.1 Conclusions . 135

10.2 Perspective Work . 136

VI Appendix 139

A Overview of AAL Research Bottlenecks 141

B Global Deterioration Scale (GDS) 143

ix

CONTENTS

C Grammars for the Semantic Web 147
C.1 Jena Rule Grammar . 147
C.2 N3 Grammar . 149
C.3 OWL 2 RL Grammar . 151

D UbiSMART v2 Source Code Extracts 155
D.1 Stimulistener . 155
D.2 Cortex . 160
D.3 Cogitation . 164
D.4 EyeReasoner . 168
D.5 Cerebration . 171
D.6 MotionEstimator . 172

E Ontological Models and Rules 179
E.1 Ontology for the Service Delivery Aspect . 179
E.2 Ontology for the Activity Recognition Aspect . 183

F Discussion: Business Models for iAAL 193
F.1 Smart Home in a Box . 193

F.1.1 A Box as Gateway in Each Home . 193
F.1.2 Web Browser as the Main Interface . 194
F.1.3 Server-Side Processing and Applications . 194
F.1.4 Sensors and Actuators . 194

F.2 The SmartStore Project . 195
F.2.1 Motivation . 195
F.2.2 Concept Development . 196
F.2.3 Self-Review for the Summer School . 198

G Research & Development in Singapore 199
G.1 Introduction . 199
G.2 Singapore’s Research Organisation . 199

G.2.1 Hierarchy of Singapore’s Research Institutions 199
G.2.2 The National Research Foundation (NRF) . 199

G.3 Orientation of Singapore’s Research . 200
G.3.1 A Research Strategy Defined in Five-Year Plans 200
G.3.2 Research Priorities at the 2015 Horizon . 201

Bibliography 203

List of Figures 215

List of Tables 217

Acronyms 219

Index 223

x

Part I

Introduction

1

The important thing is not how
many years in your life but how
much life in your years.

— Edward J. Stieglitz, 1899–1958 1
Towards Sustainable Ageing

1.1 Ageing in Place

1.1.1 Challenging Demographic Changes

The United Nations’ World Population Ageing report [1] defines population ageing as the process
by which older individuals become a proportionally larger share of the total population. With an
unprecedented intensity, it is reported as one of the most distinctive demographic events of the twentieth
century, and the twenty-first century will witness even more rapid ageing. Indeed, it is estimated in the
World Alzheimer Report 2009 [2] that 1 in 5 people will be aged over 60 years old by 2050 compared to
1 in 10 today. Figure 1.1 provides an overview of the world’s demographic changes in the second half
of the twentieth century, together with an estimation for the first half of the twenty-first.

Population ageing is due to the demographic transition, which refers to the transition from high
birth and death rates to low birth and death rates as a country develops from a pre-industrial to an
industrialized economic system. Between 1950 and 2010, the global life expectancy has increased from
48 to 68 years old and it is expected to go up to 75 years old by 2050 [3]. There are still considerable
disparities between the developed countries (82 years old) and the developing countries (74 years old),
however this gap has narrowed greatly in the last decades. In parallel, the global fertility rate has
fallen from 5 children per woman in 1950 to roughly 2.5 today, and is projected to drop to about 2 by

3

CHAPTER 1. TOWARDS SUSTAINABLE AGEING

1950

0% 2% 4% 6%2%4%6%

10

20

30

40

50

60

70

80

90

100
105

Males Females

0

2010

10

20

30

40

50

60

70

80

90

100
105

Males Females

0

2050

10

20

30

40

50

60

70

80

90

100
105

Males Females

0
0% 2% 4% 6%2%4%6% 0% 2% 4% 6%2%4%6%

Figure 1.1: World Population by Age Groups and Sex (Ratio Over Total Population) [3]

2050 [3]. Most of this decline has occurred in the developing world, where the share of children in the
population is expected to drop by half from the 1965 level by 2050.

If population ageing was initially experienced by the more developed countries, it is now a global
phenomenon and all countries will face it at different levels of intensity and in different time frames.
The evolution of societies’ age structure caused by population ageing has a profound impact on a broad
range of economic, political and social aspects. For instance, concerns are growing about the long-term
viability of intergenerational social support systems, which are crucial for the well-being of both the
older and younger generations [4]. This is especially true where provision of care within the family
becomes more and more difficult as family size decreases and women are increasingly employed. In the
Asian culture, and especially in Japan, it is customary for working adults to be the informal caregivers
providing for the parents needs. As illustrated in Figure 1.2, this trait of society has however seen an
important evolution since the percentage of elderly living with their kin in Japan has decreased from
85% in 1960 to 55% in 1995. In western countries, the viability of the socio-economical pension systems

0% 20% 40% 60% 80% 100%

1960

1975

1985

1995

with kin aloneelderly
couple only

institution

Figure 1.2: Living Arrangements of Japanese Elderly: 1960 to 1995 [5]

ensuring the financial support for the elderly is to be questioned. Such systems were indeed designed
after the second world-war relying on a demographic balance that does not exist anymore. For example,
Figure 1.3 highlights the evolution of the life course of a person between 1960 and 1995. It is given
as an average over 15 western countries member of the Organisation for Economic Co-Operation and
Development (OECD), an international organisation helping governments tackle economic, social and
governance challenges. As more people live longer, retirement, pensions and other social benefits tend
to extend over longer periods of time. This makes it necessary for social security systems to change
substantially in order to remain effective [1]. Increasing longevity can also result in rising medical costs
and increasing demands for health services, since older people are typically more vulnerable to chronic

4

1.1. AGEING IN PLACE

Years not in work

Years in employment

Years before labor market

Years in retirement

Life
expectancy

Age of
retirement

Age of
entry in
the labor
market

Years not in work

Years in employment

Years before labor market

Years in retirement

Life
expectancy

Age of
retirement

Age of
entry in
the labor
market

Males Females

0

10

20

30

40

50

60

70

80

1960 1970 1980 1990 1995

Age

0

10

20

30

40

50

60

70

80

1960 1970 1980 1990 1995

Age

Figure 1.3: Decomposition of Average Life Course: 1960 to 1995 [5]

diseases. In Figure 1.3, one can observe that despite an increase in the numbers of years of employment
for women, their retirement time has also increased from 8 years in 1960 to 21 years in 1995.

1.1.2 Normal Ageing

Ageing is a highly individualized, irreversible and inevitable process by which a person becomes more
vulnerable and dependent on others [6]. It proceeds at different rates and within different functions
depending on people. Changes, that can occur in cognitive, physiological and social conditions, are
not necessarily related to a disease since they are, in a certain magnitude, a normal part of the ageing
process.

Cognitive Changes

Cognitive changes related to normal ageing span across several aspects of the mind. If general knowledge
is preserved, declines are normal in spatial orientation, numeral treatments, verbal comprehension and
verbal fluidity [7]. The “mechanical intelligence” is in fact mainly affected due to a decrease in processing
speed and sensory functioning related to normal ageing [8, 9]. Although changes in memory functioning
with advancing age are also expected and feared, not all aspects of memory are affected. Figure 1.4
summarises the different types of memory with the impact of age under normal conditions. Sensory
memory is the ability for each of the five senses to hold a large amount of sensory information for
a very short period of time, and is independent of the attention to the stimulus. It suffers no major
influence of ageing. Short term memory is a 20 to 30 seconds memory used to hold information
for processing. It is a working memory that can hold 7 elements for direct manipulation. It is highly
involved in Activities of Daily Living (ADL) as it enables multi-tasking and manipulation of information.
The capacity to hold 7 elements is not affected by age, but the manipulation of this memory becomes
difficult as elders have a limited capacity to divide their attention between two related tasks or inhibit
unimportant information. Long term memory is a series of memory modules each responsible for
holding different sorts of information. It is subject to three mechanisms (encoding, storage, retrieval)
that are not affected by age in the same way. Encoding is usually subject to a less spontaneous
organisation of information, so elders might need support on this. Storage is not affected. With age,
retrieval becomes much more difficult in free recall (e.g. What were the 5 items?) than in recognition
(e.g. Did I say apple? cucumber?) or with help (e.g. What were the 2 tools and 3 fruits?). Globally the

5

CHAPTER 1. TOWARDS SUSTAINABLE AGEING

Declarative
Memory

Long Term
Memory

Episodic
Memory

Short Term
Memory

Sensory
Memory

Procedural
Memory

Semantic
Memory

Figure 1.4: Preservation and Decline in the Normal Ageing Memory [6]

latency of retrieval increases with the advancing age. Among long term memory modules, procedural
memory is the memory of “how to do” for cognitive and motor tasks and is well preserved under
normal ageing conditions. Declarative memory, the memory of facts and events, is however partly
affected. One usually experiences a decline of the episodic memory which is holding information
such as what happened, when and where. This is due to a growing difficulty to remember the source
and context in which information is learned. It is for example useful to remember where someone left
his keys. Semantic memory, the memory of meanings and concept-based knowledge, is normally not
influenced by age. Finally, cognitive changes related with normal ageing are also subjectively greater
due to the difficulty of the overall language and communication experience due to a sharp decline in
verbal fluidity and growing problems to handle complex sentence structures.

Physiological Changes

Similarly to the cognitive aspects, physiological difficulties associated with normal ageing span across
several parts of the body. One of the greatest impacts on the functional abilities of elders is due to
the declines of the sensory system. The sight of a 60 years old, for example, reaches only a third of
the luminosity as compared to a 20 years old [10]. It becomes more difficult to adjust to darkness or
distinguish colors. This has a strong impact on the quality of life of elders as they become anxious over
performing their ADL safely. It also reduces their mobility while augmenting the risk of falls. Hearing
loss is also part of the normal ageing process and is having a strong impact on elders’ ease and quality
of communication. Other senses are affected as well and participate to reduce the overall quality of
life. It is noticeable that the sensory system is fully affected by normal ageing, which may reflect the
deterioration of the nervous system rather than the sensory modalities themselves. Other physiological
changes include a decreased muscle strength and power as well as a decline in cardiovascular and
pulmonary functions affecting people’s balance and functional abilities necessary to perform ADL.

Social Changes

Due to the changes exposed in the two paragraphs above,—let us remember these are considered
normal ageing and do not incorporate declines or difficulties due to pathological ageing—people become
dependent on others with advancing age. Indeed, cognitive declines make it growingly difficult to
handle emergency situations and forgetfulness can sometimes threaten the safety of elders. Moreover,
physiological changes make performing ADL difficult as activities with low metabolic demand are
perceived as more and more demanding. 65 years old is commonly considered as the cut-off between
adult age and elderly as it corresponds to the age where a significant percentage of the population needs
assistance to perform their ADL (see Figure 1.5). It has also been observed that elders generally suffer
from social isolation as well, mostly due to their communication difficulties and reduced mobility. This

6

1.1. AGEING IN PLACE

2.4%
9.2% 11.0%

19.5%

31.2%

49.5%

Age
15–64 65–69 70–74 75–79 80–84 85+

Figure 1.5: Percent of People Needing Assistance with Daily Activities by Age Groups
[11]

has a greater impact than is usually recognised since their consequently lower quality of life increase
their risk for depression.

1.1.3 Pathological Ageing

Pathological ageing is defined as an unexpected decline of one or several conditions (cognitive,
physiological, social) of a person with advancing age. It can come forward as an unusual acceleration of
changes under the scope of normal ageing, or as the apparition of changes unrelated to normal ageing.
Although all conditions can be affected by pathological ageing, a particular focus is commonly put on
the cognitive condition. Figure 1.6 illustrates the different stages of cognitive decline between normal
ageing and dementia. Mild cognitive impairment characterises a cognitive impairment beyond that

Cognitive
functioning

Time

normal ageing
pathological ageing

mild cognitive
impairment

dementia

Figure 1.6: Pathological Ageing: Mild Cognitive Impairment and Dementia [6]

expected for the age and education of a person. It is a transitional stage between normal ageing and
dementia, for which the impairment has no major effect on the performance of ADL. It is mainly seen
as a risk factor towards dementia but at this stage, a person’s condition can remain stable or even
improve. Dementia is a syndrome that can be caused by a number of progressive illnesses that affect
memory, thinking, behaviour and the ability to perform everyday activities [12]. Alzheimer’s disease
is the most common type of dementia, and other types include vascular dementia, dementia with Lewy
bodies and frontotemporal dementia. The boundaries between the types are not clear, and a mixture
of more than one type is common. Dementia mainly affects older people, although there is a growing
awareness of cases that start before the age of 65. After age 65, the likelihood of developing dementia
roughly doubles every five years.

7

CHAPTER 1. TOWARDS SUSTAINABLE AGEING

Dementia and Alzheimer’s Disease

Dementia is characterized by a progressive deterioration of intellectual and functional abilities, typi-
cally over a period of 7 to 10 years [13] and is classified into 5 stages (3–7) according to the Global
Deterioration Scale (GDS) [14]. These stages are described in Table B.1 in Appendix B. At stage 3,
the symptoms can be subtle and the patient can live independently without assistance. At stages 4
and 5, independent living becomes an issue, and in more advanced stages of the disease, the situation
becomes critical, especially with verbal communication problems (aphasia), difficulty in identifying ob-
jects and persons (agnosia), and high-level disorder in performing familiar and learned tasks (apraxia).
The elder, therefore, needs continuous support by a caregiver because he or she can no longer perform
everyday tasks.

In epidemiology, the prevalence is the proportion of a population found to have a condition.
The prevalence of dementia was estimated to 35.6 million people in 2010 and this number is nearly
doubling every 20 years [2]. A study using a stochastic, multistate model was used in conjunction with
United Nations’ worldwide population forecasts and data from epidemiological studies of the risks of
Alzheimer’s disease in order to forecast the global burden of Alzheimer’s disease by 2050 [15]. This
study predicted that by the year 2050, the worldwide prevalence of Alzheimer’s would grow fourfold
to 106.8 million. Table 1.1, extracted from this study, shows the geographic distribution of the burden
of the disease. It is estimated that 48% of cases worldwide are in Asia, and that the percentage in

Table 1.1: Projections of Alzheimer’s Disease Prevalence (in Millions) in 2006 and 2050,
by Regions and Stage of Disease* [15]

Prevalence (in millions)

2006 2050

Overall Early-stage Late-stage Overall Early-stage Late-stage

Africa 1.33 0.76 0.57 6.33 3.58 2.75

Asia 12.65 7.19 5.56 62.85 34.84 28.01

Europe 7.21 4.04 3.17 16.51 9.04 7.47

Latin America 2.03 1.14 0.89 10.85 5.99 4.86

North America 3.10 1.73 1.37 8.85 4.84 4.01

Oceania 0.23 0.13 0.10 0.84 0.46 0.38

Total 26.55 14.99 11.56 106.23 58.75 47.48
*Regions defined according to the United Nations Population Division [3]. Oceania includes Australia, New Zealand,

Melanesia, Micronesia, and Polynesia.

Asia will grow to 59% by 2050. Figure 1.7 shows the growth in prevalence of Alzheimer’s disease up to
2050 by stage of disease and by gender. It is estimated that about 62% of worldwide cases are female,
reflecting the lower mortality rates among women.

The World Alzheimer Report 2010 [12] which focuses on the global economic impact of dementia
estimates that the worldwide cost of dementia is USD 604 billions each year.

1.2 Gerontechnology

The sustainability of an ageing society depends upon our effectiveness in creating technological envi-
ronments, including assistive technology and inclusive design, for innovative and independent living
and social participation of older adults in good health, comfort and safety. Gerontechnology is an
interdisciplinary academic and professional field combining gerontology and technology [16]. It con-
cerns matching technological environments to health, housing, mobility, communication, leisure and
work of older people [17]. It enables the design and development in relevant engineering disciplines
of adapted solutions based on scientific knowledge about the ageing process [18]. Research outcomes

8

1.3. AMBIENT ASSISTED LIVING

Males Females

Prevalence
(millions)

Early Stage
Late Stage

2010 2020 2030 2040 2050

20

0

40

60

80

2010 2020 2030 2040 2050

20

0

40

60

80

Prevalence
(millions)

Early Stage
Late Stage

Figure 1.7: Worldwide Projections of Alzheimer’s Prevalence (in Millions) for the Years
2006–2050, by Stage of Disease [15]

form the basis for designers, builders, engineers, manufacturers, and those in the health professions
(nursing, medicine, gerontology, geriatrics, environmental psychology, developmental psychology, etc.),
to provide an optimum living environment for the widest range of ages.

Gerontechnology research spans across a wide range of application domains where technology can
help to handle age-related decline of abilities. It can for example help to compensate the decline of
these capacities using solutions going from reading glasses to adapted motored vehicle, or from pinhole
camera necklace building day diaries to smart homes assisting elders perform their ADL. Furthermore,
specific research is targeting the improvement of caregiving conditions, for professional caregivers as
much as for informal caregivers within the family. Hence, gerontechnology provides technical support
like systems for lifting and transferring people with reduced mobility or monitoring solutions to ensure
that an elder person is able to leave alone safely. Another important area of focus is the improvement of
seniors’ social life by enhancing their communication capabilities and providing them with opportunities
in new roles and situations such as performing new leisure activities or introducing them to new social
situations or communication channels.

For an efficient integration of these technologies in the environment and life of elders, it is crucial
to look into the ease of use and acceptability of these technologies for an ageing use. The ageing
population and its impact on economics, politics, education and lifestyle is already a global concern.
In time, products and services relevant to the “silver industry” are expected to flood the marketplace.
And with it, we expect an increase in the demand for designers and engineers who understand the
needs of the ageing population using the knowledge of gerontological design processes.

1.3 Ambient Assisted Living

Making use of the transition towards pervasive, ubiquitous environments where embedded computing
devices seamlessly integrate and cooperate to serve human needs, we can design systems specially fitted
to provide care to the elderly. There is indeed no reason for the elderly to miss out on the benefits of
Information & Communications Technology (ICT) which can help them remain independent, socially
active and increase their mobility and safety. These technologies are particularly relevant to elderly
people with dementia, who are usually accepting of their deployment and understand the impact on
their safety and well-being in daily life [19]. Ambient Assisted Living (AAL) consists of a set
of ubiquitous technologies embedded in a living space to provide pervasive access to context-aware
assistive services. It can for example enhance ageing in place by helping elderly people with their ADL.

9

CHAPTER 1. TOWARDS SUSTAINABLE AGEING

Through a multi-disciplinary approach involving engineers, researchers, designers and medical staff,
and in close collaboration with stakeholders like elder citizens, families, professional caregivers and
insurance companies, AAL research foster the emergence of innovative ICT-based products, services
and systems for ageing well at home, in the community, and at work. It aims at increasing the quality
of life, autonomy, participation in social life, skills and employability of elderly people, and reducing
the costs of health and social care. It also provides support to carers, families and care organisations.
Ultimately, AAL is a shared vision [20] to combine social, technological and business aspects to deliver:

– new models of service delivery and care that contribute to greater self reliance for older adults
and greater support for informal carers;

– living spaces that can improve the quality of their everyday lives;

– ways for older people to remain active, including contributing as volunteers or providing mutual
support.

The LeadingAge Center for Aging Services Technologies (CAST) is a non-profit organisation leading
the charge to expedite the development, evaluation and adoption of emerging technologies that can
improve the ageing experience. It has become an international coalition of more than 400 technology
companies, ageing services organizations, research universities, and government representatives. In
2010, CAST produced a conceptual video giving a glimpse, through the eyes of one family, of what
the future of ageing could look like with the help from developing technologies that are possible,
practical, and affordable (http://www.leadingage.org/Imagine-the-Future-of-Aging.aspx [21]).
The reader is invited to watch the video, as well as a second one available on the same webpage
where industry experts describe how these technologies can potentially improve healthcare, preserve
independence and ensure quality of life for seniors.

Use-Case: Carol, 79 Years Old

Carol is living alone in the same home that she has lived in for 30 years. She and her husband, who
passed away two years ago, raised their three children in this home and although she is now living in it
independently - it is home. Her children have long since moved out with the closest being Michelle who
is a 45-minute drive away. Carol has some cardiovascular conditions and she also, like many people her
age, is starting to experience a bit of cognitive decline. She just does not remember things as well as
she used to.

Each day, Carol gets up around 7:00, uses the bathroom, weighs herself, goes to the kitchen to eat
breakfast and take her various pills, makes a cup of tea and then settles into the den to watch the
morning news. Around 9:00, a prompt appears across the TV screen reminding Carol to take her blood
pressure, which she does with a wireless-enabled blood pressure cuff that is sitting next to her easy
chair in the den.

Each morning around 10:00, Michelle, Carol’s daughter, receives a text message on her cell phone
that says “Mom’s okay”—meaning that systems throughout her mother’s home were able to determine
that she got out of bed, she used the bathroom, her weight had not dramatically shifted, she took her

10

http://www.leadingage.org/Imagine-the-Future-of-Aging.aspx

1.3. AMBIENT ASSISTED LIVING

pills correctly, the gas on the stove is off, and her blood pressure is stable. Michelle uses her cell phone
to call her mother and ask her how she’s doing that morning, but she already knows that all is well and
they talk about Michelle’s kids. If Carol had forgotten to take her pills that morning or if something
else about her daily living had been abnormal, Michelle would have been alerted and she could have
called her mother to help coach her or preventively called for more specific professional health care
support.

This use-case is extracted from the Continua Health Alliance website. Continua Health Alliance is
a non-profit, open industry organization of healthcare and technology companies joining together in
collaboration to improve the quality of personal healthcare. With more than 200 member companies
around the world, Continua is dedicated to establishing a system of interoperable personal connected
health solutions with the knowledge that extending those solutions into the home fosters indepen-
dence, empowers individuals and provides the opportunity for truly personalized health and wellness
management. http://www.continuaalliance.org/

11

http://www.continuaalliance.org/

12

The most profound technologies are
those that disappear. They weave
themselves into the fabric of every-
day life until they are indistinguish-
able from it.

— Mark Weiser, 1952–1999 2
Assistive Living Spaces

2.1 Whispering Things

As the Internet and the World Wide Web (Web) developed, more kinds of increasingly mobile computing
devices became connected, and Web servers delivered ever-richer content with which these devices could
interact. The next disruptive development consists in getting the majority of Internet traffic generated
by “things” rather than by human-operated computers. Indeed, if the last 10 years of technology
development were about making it easier for people to exchange information with one another—using
Google, Facebook, Pinterest, Dropbox, and so on—the next 10 years will be about making it easy for
the physical world to transmit data to the Internet [22]. This movement called Internet of Things
(IoT) , or more prosaically, Machine to Machine Communication (M2M), is well underway with
the things being physical entities whose identity and state (or the state of whose surroundings) are
capable of being relayed to an Internet-connected Information Technology (IT) infrastructure. Almost
anything to which you can attach a sensor—a cow in a field, a container on a cargo vessel, the air-
conditioning unit in your office, a lamppost in the street—can become a node in the Internet of Things.
In 2008, the number of things connected to the Internet exceeded the number of people on Earth.
Figure 2.1 illustrates using concentric disks the amount of things connected to the Internet until today
and as estimated for the end of this decade.

people on earth

things on the web

2003
2010

2015
2020

Figure 2.1: Proportion of People on Earth vs “Things” on the Web (Source: Cisco)

IoT belongs to a wider ICT revolution called ubiquitous computing (or sometimes pervasive
computing). Mark Weiser coined the term around 1988, during his tenure as Chief Technologist of the
Xerox Palo Alto Research Centre (PARC) [23]. It identifies a post-desktop model of human-computer
interaction in which information processing has been thoroughly integrated into everyday objects and
activities. It actually relates to a trend towards the deployment of ubiquitous, connected computing
devices, unobtrusively embedded in the environment. Pervasive devices are meant to be very tiny or
even invisible, mobile or embedded in almost any type of object imaginable. They should also make use
of increasingly interconnected networks to enable communication [24]. One goal of IoT and ubiquitous

13

CHAPTER 2. ASSISTIVE LIVING SPACES

computing is to get deeper insights and real-time feedback that can help people make faster and better
decisions. This obviously ties into big data and there are certain industries—such as manufacturing,
healthcare, and public utilities—where this is going to have a huge impact in the immediate future.

2.2 Pervasive Interaction

Human Computer Interaction (HCI) in our daily life is mainly limited to the Graphical User Interface
(GUI) paradigm but the increasing interest and research activity towards a more pervasive access to
surrounding computing platforms open the door to new kinds of interaction. Complementing the IoT
movement, interactivity is getting more natural as it gets embedded in the environment. Tangible user
interfaces is a popular example of post-desktop interaction design using the physical world as interface
[25]. It relies on concepts like ambient media taking advantage of people’s background awareness or
graspable media that gives a physical existence to computation using artefacts that can be grabbed,
stretched, and so on. The goal is to create an intuitive, effortlessly portable, and constantly available
way of interaction between human and machines [26].

While building smart environments, the heterogeneity of interaction paradigms is a rich opportunity
but it remains challenging to make good use of it. Most of the time, applications are limited to one
device but there is a well recognized need to go further, to enable the plurality of interaction modalities
and pick the best of them in real-time. Depending on the environment, the user’s activity and the
type of service to be delivered, the interaction modality should be adapted. Should the interaction
be graphical, ambient, tangible? Should the service be brought at the centre of focus or remain in
the background until some attention is given to it? These questions are related to the newly existing
pervasive access to information and are to be addressed in the development of assistive spaces. The
interaction with pervasive computing platforms represents a difficult task especially when building
systems for seniors with dementia. Indeed, the interface should be user-friendly in order to make
it easy to enjoy the assistance provided by the smart environment. It should take into account not
only users’ preferences but also their cognitive capabilities. Moreover, different surrounding computing
platforms and devices/sensors are considered as an additional source of heterogeneity.

When designing the interaction with pervasive services for elderly with dementia, there are several
aspects to consider. Polymorphism characterizes the adaptation needed knowing that physical and
intellectual limitations have to be taken into account, as well as preferences in order to help users
engage in interaction [27]. The second important requirement is multi-modality, the possibility to
provide a service through different modalities of interaction. Indeed, to guide the elderly throughout
their activities, services should prompt them at their point of focus so as to decrease the trouble
and enhance the seamlessness of interaction. We must find mechanisms to determine this point and
optimize the interaction modality accordingly. These two aspects define my scope of the user interface
plasticity challenge which characterizes “the capacity of an interface to withstand variations of both
the system physical characteristics and the environment while preserving usability” [28].

2.3 Ambient Intelligence (AmI)

The integration of microprocessors into everyday objects like furniture, clothing, white goods, etc.—
thus making these formerly silent objects able to communicate with each other and human users—has
open the door to the field of Ambient Intelligence (AmI), i.e. “intelligent” pervasive computing. AmI
aims at making use of the connected entities in order to provide users with an environment which offers
services when and if needed.

One great challenge of such environments is how to adequately address the heterogeneity and dy-
namic nature of users, services and devices [29]. Key issues of the development of AmI are context-
awareness and reasoning: How to identify the context of users, especially the ones with unpredictable

14

2.4. AN AAL ROUND-UP

behaviours like elderly with dementia? How to identify and activate the appropriate service within a
continuously changing multitude of services [30]? How to provide selected services in a relevant modal-
ity of interaction that will engage the user as much as possible? The ultimate goal of AmI is to make
ambient services more intelligent and adaptive to the specific needs of their users. The core challenge
lies in the mechanisms for the reasoning and decision making related to context-awareness.

There are numerous definitions for context and context-awareness, but one of the most referenced
one is given by Anind Dey who defines context very widely as “Any information which can be used to
characterize the situation of an entity. An entity is a person, a place or an object which is considered
relevant for the interaction between a user and an application, including the user and the application”
[31]. Chen and Kotz have classified context into four basic types of context [32]:

– computational context, e.g. the state of resources of the device and of the network,

– user context, e.g. people, places and objects,

– physical context, e.g. luminosity, noise, temperature,

– temporal context, e.g. hour, day, period of the year.

Abowd et al. proposed the notions of primary context such as localization, identity, activity and time,
and of secondary context that can be deduced from the primary context and may be used for making
decisions at a higher level of abstraction [33].

Conceptually, Gareth Jones sectioned context provisioning in three layers [34]: data acquisition
and distribution, interpretation and utilization. Before raw contextual data gathered from sensors and
devices can be used, it must be interpreted and evaluated with respect to its accuracy, stability and
reliability. The interpretation layer may also combine contextual data from different sources to enhance
its reliability or completeness. To make applications able to understand, describe and manage context
information, it is necessary to have a context model, which can be defined at the application or the
middleware layer. Strang and Linnhoff-Popien identified and compared six types of context models:
attribute-value pairs, schema-based models, graphic models, logic-based models, object-oriented models
and ontology-based models [35]. They concluded that the object-oriented and the ontology-based
models are the most complete and expressive ones, and hence are the most suited for modelling context
for ubiquitous computing.

The definition and taxonomy of the context considered in the scope of this thesis is based on the
notions by Abowd et al. which have been extended based on the functional sectioning by Gareth Jones
as described in chapter 5. The context has been modelled using ontologies as advised by Strang and
Linnhoff-Popien (see chapter 4).

2.4 An AAL Round-up

In section 1.3, I defined the scope for the AAL research field and provided a use-case for it. Here
I would like to emphasize how wide a domain it is, highlighting the numerous scientific bottlenecks
it encompasses. In Appendix A, Figures A.1 and A.2 provide respectively a coarse-grain overview of
research thematics within AAL and its subdivision into fine-grain research bottlenecks. AAL research
is multidisciplinary and covers aspects from both technological, human and business perspectives. In
order to provide relevant solutions, it is important to involve the stakeholders early in the design.
This means involve seniors to ensure the acceptance of the proposed solutions, but also doctors and
caregivers (professional and informal) who have better ideas about the needs, insurance companies
who can provide insights into relevant business models and researchers from fields as various as human
factors, HCI, embedded systems, wireless sensing, multi-agents systems, formal methods, knowledge
modelling, etc.

15

CHAPTER 2. ASSISTIVE LIVING SPACES

Rougier et al., like Sixsmith and Johnson, Alwan et al. and many more, work on the detection of
falls in a house using solutions as various as depth maps on video, infra-red arrays or floor vibration
sensing setups [36, 37, 38]. It remains however an open challenge to find a generic solution covering
a whole house for fall detection without using less-accepted wearable sensors or without driving the
deployment cost to prohibitive amounts. Floeck et al. propose a system able to send alerts to a family
member in case the movement detected in the house is abnormally low [39]. Stelios et al. perform
indoor localisation of the residents to provide medical notifications in the environment [40]. Numerous
other AAL solutions are available and, in most cases, robust. However, their scope of usability, mostly
focused on security aspects, is generally very narrow. To help the generalization of AAL systems, it
would be useful to integrate them in an interoperable way. This would decrease their cost by sharing
hardware or even software resources. Leveraging the system in place, we could then provide other
context-aware services like reminders or ADL assistance at a lower cost and start to tackle the Quality
of Life (QoL) aspects [17]. For example, the Jawbone Up [41] is a fitness bracelet that, among others,
provides sleep quality monitoring and could be used in AAL systems. However, there is a one-to-
one mapping of the sleep data acquired and the sleep monitoring service. Thus, other services in the
environment cannot make use of the bracelet’s knowhow on people’s sleep patterns and sleep quality.
Similarly, the sleep monitoring service has no information about people’s agenda, daytime activities
or the local temperature, which could be provided by the smart home and are relevant factors with a
potential impact on the resident’s sleep quality.

The major contributors to AAL research are focused on developing solutions tailored for living
laboratories—e.g. the CASAS project [42], the Gator Tech Smart House [43], the iDorm [44], and the
Georgia Tech Aware Home [45]. However, many aspects of a smart assistive home are yet to be tackled
and the choices made by researchers when developing in laboratories are not the ones they would have
made if they had developed on-field [46]. I explain further in section 3.1.1 how AAL research needs to
be brought outside of laboratories, outside of controlled environments, in order to address issues related
to real-world settings in a relevant manner.

After two decades of research, the main problem faced by the AAL community is to deal with the
reasoning that is fundamental to the decision on which activity is being performed. This is especially
true when working on the integration of an ambient assistive system to be deployed in real settings, close
to industrial requirements. In the field of dementia assistance, the proposed solutions are subject to an
increasing reasoning complexity in order to provide specific and personalised services to the residents.
Numerous approach have been or are currently investigated, among which rule-based systems with
various syntaxes [47, 48, 49], fuzzy logic [50], neural networks [37], games theory [51], Dynamic Bayesian
Network (DBN) [52], etc. In this area, an efficient and standardized context model and inference
strategy are still lacking, many approaches are not scalable enough for the large-scale deployments
necessary to the technology transfer to market. Finally little or no work has studied the combination
of the numerous and complimentary reasoning techniques.

Summarising the points above AAL research is at a point where interoperability is a challenge
to be tackled in order to increase the reach and impact of the proposed system. Reasoning, especially
to perform context inference, remains the very first scientific bottleneck and is researched in numerous
directions, sometimes lacking a framework to integrate and combine results from the different tech-
niques. Finally, it is urgent to push deployments outside of laboratories in order to develop and test
systems in an environment and in settings that are relevant to the targeted market. Moreover, going
out of laboratories will also help increase the involvement of the various stakeholders.

16

The wise man questions the wisdom
of others because he questions his
own. The fool questions the wisdom
of others because it differs from his.

— Leo Stein, 1872–1947 3
Positioning of this Doctoral Work

3.1 Easing AAL Technology Transfer into Society

3.1.1 A Need for Deployments in Real Settings

As explained in section 2.4, AAL research as it is performed today suffers a strong limitation due
to the numerous “living lab” initiatives restraining the development and testing of AAL solutions to
semi-controlled to controlled environments.

Related Work: Living Lab Initiatives

CASAS [42] This Washington State University project, under the School of Electrical Engineer-
ing and Computer Science, aims at creating an adaptive smart home that utilizes machine learning
techniques to discover patterns in user behaviour and to automatically mimic these patterns. Its user
interface, CASA-U, is designed as a simulation environment in which all previous and current activities
can be visualized and residents are able to navigate through the map of the home, identify and mod-
ify automated events or their timings, and provide feedback to the smart home based on automation
policies. Participants are actually recruited students or elder people who are performing/playing some
tasks during trial periods of a few hours and which can be spread over a few days.

Gator Tech Smart House [43] This project from the University of Florida’s Mobile and Pervasive
Computing Laboratory aims at developing programmable pervasive spaces in which a smart space ex-
ists as both a runtime environment and a software library. It is mainly focused on improving smart
homes from a technological point of view by developing software stacks to ensure the representation,
communication, collaboration and control of smart technologies called “hot spots”. Though its tech-
nological contribution is extremely valuable with concepts such as “smart home in a box”, the Gator
Tech Smart House is not focused on human trials and its very fine sensing granularity makes it less
realistic when considering deployments in real homes.

iSpace [44] The intelligent Dormitory, iSpace (previously iDorm), from the Department of Computer
Science at the University of Essex, United Kingdom is a real ubiquitous computing environment test-
bed. It is a two bedroom flat fitted with ad-hoc gadgets, as well as a myriad of networked sensors and
effectors to enable intelligent agents to monitor and make changes to the environment conditions. It
has been designed to allow research for a wide range of users including able bodied, disabled and elderly
populations with a view to maximise the possible benefits of the new technology for all members of
the community. Though the environment is interesting, it is still constrained and controlled for testing
purpose and experiments are limited to specific sets of behaviours [50].

17

CHAPTER 3. POSITIONING OF THIS DOCTORAL WORK

Georgia Tech Aware Home[45] The Aware Home is the first residential laboratory of its type.
It is a 3-story, 5040 square foot facility designed to facilitate research, while providing an authentic
home environment. It has two identical floors, each featuring a kitchen, dining room, living room, 3
bedrooms, 2 bathrooms, and a laundry room. The home was originally intended to allow a full-time
resident/research participant to live on one floor, while enabling the prototyping of new technologies,
sensing, and other research on the other floor. For a number of reasons (including legal), this intended
use by long-term residents has not yet been realized. The facility is used for studies involving live-in
participants for short periods only (e.g. 1–10 days).

Our Vision

Building prototyping environments is interesting as it helps to involve stakeholders in the design and
testing of assistive solutions [53, 54]. However real life scenarios are unlimited and cannot be ex-
haustively tested in such environments where the number of users and the trial duration are limited.
Moreover, the technical usability and reaction of stakeholders cannot be evaluated in these environ-
ments since technical problems (e.g. sensors pulled off by patients, bad network connectivity) or design
problems (e.g. household routines, multiple users, adaptability to different users) are not predictable
during the design process and may not appear in controlled settings. Still, these problems should be
identified and resolved during the development phase.

We believe that there is an urgent need to deploy AAL systems in real settings at an early stage of
development to ensure their matching the needs and constraints of stakeholders and users’ environment.
Without this, no meaningful evaluation of the proposed solutions is possible, hence leading to problems
concerning technology transfer to the market. It is a primordial constraint to our field if we want
to reach a societal impact under a decade. This is where the work described in this thesis differs
critically from the state of the art which is mainly tailored for living laboratories. We are proceeding
to the deployment in real settings at early stage of technological readiness. In a research domain where
84% of the systems are in their prototype stage [55], this thesis introduces both mechanisms to ease
the deployment of complex systems and a stripped down vision of AAL, conceptualised in order to
enhance the scalability of deployment of the proposed system. Our solution is targeted to be deployed
for commercial operation in five hundred houses in France and a proof of concept has already been
deployed in three houses for two months.

In order to deploy in real environments, we started by a semi-supervised environment where feed-
back can be gathered from professional caregivers able to assess the needs of and impact on elderly
people with mild dementia. We conducted a pre-deployment analysis in a nursing home in Singapore,
collaborating closely with end-users (dementia residents) and caregivers specialised in dementia care.
This collaboration was precious in order to identify the needs, develop and deploy a technical sys-
tem based on the collected requirements, then evaluate the performance and usability of the proposed
solution in real settings. Our approach has involved healthcare specialists in the design process, as
recommended by Orpwood et al. [56]. We also involved them in the evaluation of the performance and
usability of the proposed solutions in real life conditions. We envision that such a multidisciplinary
design approach, supporting a deployment in real life settings is crucial; and that a simple system
developed and validated in this way is more relevant and valuable than a well-featured solution proven
stable only in a laboratory.

After a 1-year deployment in the nursing home, we have gathered precious experience which high-
lighted the difficulty to deploy complex systems in large scale, even after putting in place multiple
mechanisms to ease this deployment. Therefore we designed a new system with a thoroughly simplified
hardware to be deployed in large scale in individual homes in France. Consequently, we had to make
more complex and robust our reasoning algorithms to compensate the reduction in the hardware com-
plexity. This transfer of complexity between hardware and software has highlighted new and interesting
research bottlenecks which represent the core of this thesis.

18

3.1. EASING AAL TECHNOLOGY TRANSFER INTO SOCIETY

3.1.2 Two Complementary Approaches

As explained in the previous section, we have tried to make AAL systems more scalable to deployments
by simplifying the hardware complexity and by providing tools to help people deploy the different
entities (sensing, interaction, etc.) into the environment. Moreover, stakeholders for such systems
actually vary depending on the countries; which means that different adapted solutions should be
available accordingly. Indeed, in European countries, the main financing stakeholders are insurance
companies for whom placing elders who lose their autonomy in adapted homes is extremely costly.
Thus the need is more towards a generic system, reliable, deployable into hundreds or thousands of
homes by the technician of a private service provider, and allowing cost to go down with an increasing
number of users. In this case, a control/call centre can even be considered. On the contrary, in most
Asian countries, the main financing stakeholders are individuals like elders themselves or their family
trying to improve the safety while leaving alone so as to preserve the elder’s autonomy. In this case,
the system should be more like adhoc modules, modularly customizable depending on one’s needs, and
deployable by the family. Therefore we have identified two complementary approaches.

Top-Down Approach

The top-down approach is designed for the Asian market or independent people willing to install their
assistive home, with well specified and easy to understand system modules that people can relate to
and want to buy. Each module has a specific function, and modules can be composed to tackle specific
needs. In this approach, the scope of system is more narrow originally but several optional modules can
be plugged to it in order to extend functionalities. The processing is dedicated towards a few scenarios
backed by specific sensing devices, and users should be able to control the way the system behaves by
programming it through a simple graphical interface. Services are provided in the environment through
the most relevant device available depending on the context of the resident. Context inference is done
by creating a binding between a set of sensor states and given scenarios. The device to be used for
interaction is bound to the context of the user or a part of it (e.g. location). As many scenarios as
wished can be added and bound to sets of sensor states and services. Here the key challenge is to
make the installation of additional technological or service modules as easy as possible so as to provide
an extremely adaptable system. This means that a hardware plug & play must be put in place, and
backed by a programmable reasoning engine generating rules for the inference of the context based
either on simple rules that the user can graphically provide, or on bindings created by the user between
entities, their states and scenarios. Of course all the programmability left in the hands of the users can
be instead performed by caregivers, technicians or autonomously by the system when software bundles
containing scenarios are installed. This approach fits well with the “there is an app for that” model.

In the top-down approach, assisting services are primarily meant for the elder resident inside the
home and his informal caregivers remotely. It can be reminders to perform some activities like taking
medicine, or for safety purpose like turning off the gas stove. It can also help the resident physically
with home control or cognitively with ADL assistance. On the caregiver side, and very similarly to
the Continua Health Alliance use-case (see section 1.3), some level of remote monitoring is provided
to ensure the safety of the resident. Daily messages can be sent to confirm a normal activity, and
notifications can be used in case the likelihood of an emergency is detected. In this case, the system
does not need a 100% accuracy of detection as it is preferred to leave some doubt to be lifted by the
caregiver.

Bottom-Up Approach

The bottom-up approach is designed for the European market and their insurance companies or any
large scale setup of assistive homes by a service provider offering a generic service to many households.
It is based on a very robust and reliable hardware system, ensuring minimum complexity/cost of
deployment and maintenance and thus increasing the scalability of the solution towards large-scale

19

CHAPTER 3. POSITIONING OF THIS DOCTORAL WORK

deployments. Additionally, it relies on heavier data processing on servers in order to make the most
out of available data. E.g. it can perform rule-based inference or employ more complex statistical and
machine learning techniques to understand activities performed by residents, gather knowledge about
their lifestyle, detect instant anomalies as well as long-term lifestyle evolutions.

The main constraint emerging from the scalability issue is to strip down the technological system
to be deployed. Less sensors should be used and especially less types of sensors as each of them needs
to be deployed in a specific way, with specific code and specific maintenance. Classical AAL state
of the art solutions were found to be hard to deploy even by the engineers who created them [46],
hence it seems unimaginable that their setup would be handled by third party service companies—as
a marketable solution would require. We have also learned from the stakeholders that video analysis,
even using on-camera image processing, is not a well-accepted option and that avoiding to rely on video
cameras would increase the acceptance of such solutions. Similarly, reliance on wearable sensors was
judged too constraining for a generic marketable solution. For all above reasons, the sensing system we
have designed in the bottom-up approach is composed solely of motion sensors attached to the ceiling
of each room in the house and a reed switch to detect the opening and closing of the house’s main
entrance door.

These imposed sensing constraints reduce drastically the contextual information available for the
inference of activities. Indeed, it contains only data about the sensed motion in each room of the house
as well as the changes of state of the entrance door. Thus the system’s intelligence has to be able
to cope with this, i.e. the intelligence has to be increased. Moreover, we set as requirement for our
solution to provide in real-time an estimation of the activity based on sensor data, such that possibly
dangerous situations would be addressed as quickly as possible. It has been judged, together with the
stakeholders, that verifying if residents are all right, for example by a simple phone call, would be better
than detecting a problem too late; and it might help as well to decrease the loneliness felt generally by
elders at home. Beside the challenge of being reactive to the possibly abnormal behaviour of people
with dementia, the key scientific novelty of this approach lies in:

1. the inference of activities from minimal contextual information available,

2. the real-time constraint on the activity inference.

In the bottom-up approach, the services deployed are not meant for direct assistance to the elder
resident. However, it provides them with the assurance of some level of safety in their daily life. Indeed,
behaviours are observed and classified into a high-level hierarchy of activities, other measurables are
logged, and statistics are gathered about their lifestyle. Consequently notifications can be sent out in
real-time to professional and informal caregivers, or even employees of a call centre, when activities
detected are too different from the routine and might indicate that the resident is facing some problem.
People are thus empowered to check on the elderly and react accordingly much faster. We have found
out while interacting with senior citizens who started to experience some effects of mild dementia that
such solutions were very welcomed when their effect on personal independence and safety was explained
clearly. Another kind of service can be provided in this approach, namely the reporting of evolutions
in the lifestyle of the resident. This can have significant impact on health assessment by doctors as, for
example, it could help to foresee some degradation of one’s condition and help prevent it. It can also
help to detect the deterioration of one’s social inclusion, which is nearly impossible for the moment.
Here again, the system does not need a 100% accuracy of detection as interpretations are left to the
people based on statistical representations and on interaction with the resident.

About the Configuration of Smart Homes

In term of configurability, end-user driven and system driven approaches can be seen as two opposite
ends of a scale. An end-user driven approach empowers the users, giving them complete control in
managing the system, whereas a system driven approach (or autonomous approach) hands complete

20

3.2. SPECIFIC RESEARCH FOCUS: CONTEXT COMPREHENSION

control over to the system itself. In most situations, empowering the user might seem the logical choice;
an end-user driven approach not only encourages the creativity of the user but potentially makes the
user feel more at ease with being immersed within a complex computer system. Nevertheless, some
users may lack the ability or confidence to program their smart environment, even with a simple graphic
interface. Furthermore, users with medical conditions may find it difficult or even impossible to interact
with computer devices. In these situations an autonomous system is a better choice; it greatly reduces
the cognitive and sometimes physical load placed on the user in managing the system. The Callaghan-
Clarke-Chin (3C) model shown in Figure 3.1 is a socio-agent framework that illustrates this concept
[57, 58]. Each quadrant represents one extreme type of usage that may be encountered as a system

User Phobia

User Philia

User driven
configuration

System driven
configuration

Misuse Sabotage

Creative use Symbiosis

Figure 3.1: The Callaghan-Clarke-Chin (3C) Model

becomes exclusively autonomous or end-user driven, given the user has a phobia (fear) or philia (love)
of the system. Ideally we wish to avoid misuse and sabotage of the system and maximise creative use
and symbiosis (collaboration) between the user and system. Maximising creative use and empowering
the user with an end-user driven system may increase a user’s phobia causing the user to misuse the
system, albeit perhaps unintentionally. On the contrary, trying to maximise symbiosis by providing
an autonomous system may also trigger a user’s phobia and cause the user to sabotage the operations
within the system, again albeit perhaps inadvertently [59].

3.2 Specific Research Focus: Context Comprehension

3.2.1 Definition of the Research Challenge

One’s interest in ambient intelligence lies in the ability of an environment to respond in an appropriate
manner to what is happening within it. It is the reaction of a computerised system to a non-formalised
situation that is intriguing. Such systems are by nature able to instantiate a reaction, even complex, to
a formalised and recognised situation, even complex. The true challenge is to provide a formalisation for
machines to project situational data and make sense of it, i.e. build connections or bindings between it
and the rest of the contextual knowledge. This challenge will further be referred as, and hence provide
my definition for, context comprehension. I divide it into two main aspects:

1. formalising contextual knowledge to project situational data in it,

2. reasoning to connect such inter-correlated formalised knowledge or infer new one.

The question I ask myself in this doctoral work is:

“What strategies can be put in place to provide context comprehension in assistive livings?”

21

CHAPTER 3. POSITIONING OF THIS DOCTORAL WORK

Comprehension is defined in the Random House Kernerman Webster’s College Dictionary as the
“capacity of the mind to perceive and understand; [the] power to grasp ideas” [60]. We can see it as
the process of simultaneously extracting and constructing meaning through the manipulation of sensed
situational data. I use the words extracting and constructing to emphasize both the importance and
the insufficiency of the sensed data as a determinant of comprehension. In the field of ambient intelli-
gence, it consists in putting in place a translation mechanism between the sensed representation of a
situation and its formalised, machine-readable version. This mechanism would probably be constituted
of heterogeneous and complementary strategies, allowing the definition of a formalisation (or model),
the naive projection of sensed data into the model, and the inference (explicit as well as implicit) of
knowledge into this model. By explicit, I mean inference using deterministic techniques emerging from
the formalisation of domain knowledge about human behaviours or sensing systems, e.g. rule-based
techniques. In opposition, and complementarily, implicit inference refers to some more computational
techniques deriving knowledge from the data itself and its intrinsic patterns, as with statistical or
unsupervised machine learning techniques.

From the numerous research challenges presented in Figure A.2 at page 142, this thesis concentrate
its research efforts on the reasoning aspects in smart environments. This document will focus mainly
on the design of the reasoning engine which allowed us to develop an integrated system that has been
deployed in real market conditions. The deployment has been performed in two different scenarios, on
one hand in a nursing home in Singapore and on the other hand in three individual homes in France,
with the involvement in both countries of several partners from medical, research and engineering
background.

3.2.2 Related Work in Context Comprehension

Representing Contextual Information

One can find in the literature important information sources concerning the formalisation of contextual
data. E.g. Hong & Landay explain in their position paper the necessary distinction between sensor
data and contextual data [61]. Sensor data is not ambiguous but has specific characteristics such as
granularity, precision or accuracy which impact their interpretation when inferring contextual data.
Quality of Information (QoI) is primordial in the context representation and should be introduced in
an atomic and uniform manner for all information. It is the idea defended by Henricksen et al. who
propose to label semantically the QoI when known, and to compute or estimate the QoI when we infer
[62]. Their proposed labeling mechanism however remains basic and the estimation mechanism is not
described. Henricksen et al. also propose an excellent description of the peculiarities of contextual
information; among others, they highlight:

– its imperfection, due to the existence of incorrect, inconsistent, incomplete or expired information;
which shows the need for a QoI metric,

– its temporal characteristics, information being either static or dynamic, and eventually making
up a need for memory,

– its multiple facets; it is indeed necessary to support several representations of a same context at
various level of abstraction and capturing the relations between these several representations.

Their work is a good reference for us but remains more conceptual than functional.

Taking Uncertainty into Account

QoI seems to be an unavoidable aspect of the formalisation of contextual information. This leads
to the field of uncertainty management, which remains a delicate aspect considering how contextual
information is filled with ambiguity. If much work can be found in the literature on this aspect, none

22

3.2. SPECIFIC RESEARCH FOCUS: CONTEXT COMPREHENSION

address the issue in a general manner [63]. Hui Lei et al. enable the association of quality metrics such
as freshness or confidence [64], but their model lacks formalism. Gray & Salber include quality as a
meta-information and describe six attributes: coverage, resolution, accuracy, repeatability, frequency,
and timeliness [65]. Their model seems relevant to characterising sensor data (for example), but they
do not specify any mechanism to process this uncertainty and take it into account in the inference.

No Leading Reasoning Technique

Concerning the reasoning aspects, the numerous approaches to activity recognition present in the state
of the art can mostly be brought down to two main classes: rule-based methods and pattern matching
methods combined with preliminary learning.

Rule-based methods are mostly relying on some multi-modal sensor fusion and on the binding
of emerging contextual data with activities. Various types of rules syntax have been used, spanning
from Domain Specific Languages (DSL) [47] backed by purpose-build object-oriented models to the
inference of ontologies using either query-based methods [48] with specific application code or rule-based
methods [49]. Artikis et al. developed LTAR-EC (Event Calculus for Long-Term Activity Recognition),
an activity recognition system consisting of an implementation of Event Calculus dialect, a logical
language for representing and reasoning about actions and their effects, in Prolog [66]. Antoniou
proposed a purpose-build algebra for reasoning about activities, but it lacks the reliance on a context
model, thus rules cannot be generalised or abstracted and the reasoning is implemented in a very
scenario-based manner [67]. Fuzzy logic has also been used in both rule-based and learning-based
approaches [50, 68]. Rule-based activity inference has its great advantages since it makes it easy to
incorporate in the inference domain knowledge gathered by experts. Such knowledge can then be tested
in term of inference performance and due to its explicit formalisation, it is easy to update and test
iteratively. It is also appreciated for its ability to infer activities concretely without requiring a heavy
learning dataset to calibrate the algorithms beforehand. However, it is undeniable that such approach
also has heavy limitations. Indeed, being based on the use of explicit prior knowledge, it is impossible
to make knowledge emerge from patterns implicitly present in the contextual data; whereas this would
be possible using statistical methods or machine learning techniques. It is also more prone to erroneous
detection due to the noise present in situational data.

Pattern matching techniques are focusing on the recognition of patterns in sequences of even-
tually pre-processed sensor data; and require a machine learning step to extract frequent patterns
hopefully corresponding to some activities of interest. Several families of pattern recognition tech-
niques are commonly used in AAL systems. One can use statistical states machines like Hidden
Markov Models (HMM) which are based on the observation of the transition probability between
states [69, 70]. Probabilistic modelling methods are also possible, such as Conditional Random
Fields (CRF) which are a kind of graphical model and classifier which is able to take neighbouring
samples into account to predict labels for given data samples [71, 72]. Other learning models have
been used, like Support Vector Machines (SVM) which is associated with non-probabilistic binary
linear classifiers that map observation samples in either side of a hyperplane of the observation space
[73]. The machine learning step is mostly performed in a supervised manner using labelled data ob-
tained with various laboratory-bound processes [69, 72, 73]. These processes are however not applicable
for systems to be deployed in market conditions [74]. Therefore, being unable to perform learning on
deployment sites raises the issue of the validity of an average-resident profile learned in the labora-
tory. Indeed, some work has been published showing the low similarity between the lifestyle of elders
with dementia throughout several homes [75]. Unsupervised learning has been the focus of very recent
work and although it shows encouraging results [75, 76], it has strong limitations since the results were
obtained with the fine-grain deployment of numerous sensors of different types throughout the house.
Other issues are also mentioned, such as the need for a manual selection of the number of clusters to
be detected having an impact on the quality of the result and the usability of the solutions. Beside the
supervision of the learning, the deployment of learning-based assistive space in people’s home neces-

23

CHAPTER 3. POSITIONING OF THIS DOCTORAL WORK

sarily meet a cold-start issue, i.e. the system needs to learn the patterns of behaviour of the residents
before it can provide relevant information or services. Finally, these techniques can only perform poor
temporal reasoning without complexifying their internal models significantly since there are no explicit
rules for computing the intervals.

Reasoning Limitations Due to Sensing Granularity

From our experience on the dataset gathered in the three homes in France, it appears that when
the contextual information provided by sensors is limited, the amount of data is not sufficient to use
traditional data mining techniques and other statistical methods like HMM. Indeed, they seem to
not perform well due to the low granularity of the context information available. As for rule-based
approaches, classical implementations need to be made more complex since activities can no longer be
bound to the activation of a given set of sensors. Mining and statistical methods having a fundamental
issue when using datasets with low granularity (bottom-up approach, see section 3.1.2), and considering
the cold-start issue, I have decided to pursue with rule-based methods.

3.2.3 Presentation of the Method

This section summarises the scientific bottlenecks and challenges related to context comprehension.
These challenges are mainly emerging from the peculiarities of situational data and from the behaviours
of people, especially when suffering from mild dementia. Figure 3.2 provides a graphical overview of this
thesis research contributions, structured around the challenges met when trying to formalise and make
sense of sensed situational data. These challenges are arranged in the ring of challenges and classified
according to their cause. E.g. we face difficulties due to situational data being highly dynamic since
new sensor events are received every few seconds. Such data is also full of imperfection since sensors
can fail to measure the right stimuli, communication can add noise in the data and falsify it, models
cannot be exhaustively representing contexts, etc. When considering formal models to store and infer
knowledge, the memory of past events is also an issue as it makes the models more complex and
increases significantly the processing time needed to parse and infer the knowledge base. Situational
data, as a representation of human behaviours is also highly interrelated, either explicitly or through
implicit patterns, which must be leveraged in its formalisation. Similarly, it is a multi-faceted kind of
information, encompassing multiple possible levels of abstraction, and in which an important domain
knowledge from expert can eventually provide insight. To these challenges, one must add the specific
issues of the bottom-up approach mentioned earlier, namely the inference of activities from minimal
contextual information available, and the real-time constraint on the activity inference. Based on the
identification of these challenges, several strategies have been investigated in the scope of this thesis.
These strategies are represented in the ring of contributions, positioned right on the outside of the
challenges that they address. I describe shortly each contribution below.

Context Modelling: Ontological Representation and Quality of Information Metrics

My contribution on the modelling of contextual knowledge is described in chapter 4. In this aspect,
we may rely heavily on models available in the literature when it comes to the representation of
human behaviours, even for people with dementia. However, the models available classify behaviours
extensively into hierarchies but fail to define them in term of attributes that can be computed easily.
I prefer a more naive and functional approach to gather technical requirements for further modelling.
I have validated my naive and functional approach and an integration with extensive models from the
literature remains in perspective work. I also provide a comparison of relevant modelling technologies
and explain my preference for the semantic models. In term of QoI, I describe in section 6.4 an atomic
way of labelling statements with related metrics through the enhanced representation of triples in
ontologies using unnamed graphs.

24

3.2. SPECIFIC RESEARCH FOCUS: CONTEXT COMPREHENSION

quality of
information

metrics

machine learning techniques

dedicated
mechanism

for
rule-based
inference

ontological representation

naive
projection

mechanism derived from
sensor data

highly
interrelated

multi-
facetted

important
domain

knowledge

highly
dynamic

need
memory

implicit
patterns

full of
imperfection

tem
pora

l in
fo

Formalising
& making sense

of situational data

Focus of this thesis: context comprehension

Ring of challenges: peculiarities of situational data

Ring of challenges: peculiarities due to human behaviours

Ring of contributions covered in the dissertation

Figure 3.2: Structural Summary of this Doctoral Work

Naive Projection Mechanism

In order to derive contextual knowledge from sensed situational data, we have to project this data
into the contextual model. I describe in section 4.4 a mechanism to gather and merge sources of data
transparently, and then to automatically write into the model the data with minimal translation. The
minimal translation is handled at the modelling level by providing a facet of contextual representation
corresponding to the sensed data level.

Explicit Inference: Dedicated Mechanism for Rule-Based Inference

To enable the integration of expert knowledge into the activity inference, declarative methods and
especially reasoning with semantic inference engines are well suited. Therefore, after starting with the
development of a proof of concept using an imperative approach, I analysed the state of the art on
decision support mechanisms with among others rule-based solutions (section 5.2). Consequently, I
chose to develop our solution using semantic technologies and build a test-case to gather requirements
and make technological choices concerning the specific use of such technologies into an AAL use-case.

25

CHAPTER 3. POSITIONING OF THIS DOCTORAL WORK

This is described in section 5.3. Finally, I provide in section 5.4 the inference mechanisms that I have
designed to ensure the context comprehension both in the top-down and bottom-up approaches. Nat-
urally, rule-based methods have intrinsic limitations, for example due to the temporality of contextual
knowledge making context models more complex for the designers and developers as well as for the
processing by inference engines. I also note that the explicit connections which can be inferred by rules
are only the tip of the iceberg: much more data is implicitly correlated and can be made sense of. Nat-
ural patterns should emerge from data and be noticed (a-posteriori) instead of being designed (a-priori)
by humans. Finally, declarative methods do not take QoI metrics into consideration intrinsically and
special mechanisms need to be put in place.

Implicit Inference: Data Driven Techniques

In order to compensate the limitations of declarative approaches and take into account the temporality,
the implicit patterns and the QoI of contextual information, I propose in chapter 6 mechanisms to
integrate data driven techniques into my rule-based solution. Moreover, one can bring out temporality of
the context by doing observations over windowed or transitional representations of data (see section 6.3).
Unsupervised machine learning techniques can be used on situational data or contextual information.
I design in section 6.2 mechanisms to use these techniques on top on ontological representation of
contextual knowledge in an attempt to get the best out of two worlds.

26

Part II

Semantic Reasoning for Context
Comprehension

27

The most interesting facts are those
which can be used several times,
those which have a chance of recur-
ring. [...] Which, then, are the facts
that have a chance of recurring? In
the first place, simple facts.

— Henri Poincaré, 1854–1912 4
Modelling of Contextual Knowledge

4.1 Motivation and Challenges

Smart spaces filled with sensors, devices and computational entities that generate unstructured data
over time present a two-fold opportunity for system designers and integrators. The first by acting on the
data and transforming it into structured data, so that the information can be extracted, semantically
enabled and acted upon by intelligent system modules. The second by building intelligent modules
that can process this semantic information and build upon it by inferring more information or making
decisions. Semantic web technologies have the potential to provide syntaxes and mechanisms for the
representation of structured data and explicit contexts, for the expressive query of knowledge bases as
well as their flexible inference by reasoning engines [77].

Smart environments rely heavily on modelling. Architectural modelling is used to support better
design and management of these environments. Device modelling is exploited to overcome the inte-
gration issues and to offer a shared knowledge on how the environment works and on how it can be
controlled. Modelling does not limit itself to the environment’s structure and components but it has
an impact on the interaction level as well. Interaction modelling focuses on human activities to bet-
ter interpret the interaction of people with pervasive systems. Human behaviours and their temporal
evolution are analysed and linked with activities in order to learn frequent patterns, and possibly infer
user needs. The context in which activities occur, e.g. the environment state, time, weather or even
people’s mood, is modelled to take into account all possible factors influencing human behaviours [78].
The AmI community has defined key research requirements for building intelligence in different envi-
ronments, e.g. homes, offices, control centres, etc. They identify the need to develop new models with
a higher level of abstraction to address heterogeneity, intelligence, innovative management techniques
and human centric expressions of personal style [79]. Since architectural and device modelling deal
with the components/artefacts that are described for each environment, they are identified as Lower
Level Modelling (LLM). By contrast, the abstract modelling employed to achieve intelligence and
innovative management techniques is identified as Higher Level Modelling (HLM) as it deals with
generic human centric expressions. Carreira et al. also proposed a two-layers approach to model en-
vironments, (1) at the requirement level which is abstract and nearer to the end-user point of view,
(2) at the implementation level in order to ease the development of intelligent systems [80]. It can be
observed that proper modelling can play a significant role in achieving the potential of smart environ-
ments. Proper modelling means to be formally correct and semantically valid, enabling applications to
intelligently process models. Semantic web technologies can be used to describe smart environments
by providing proper LLM and HLM.

I presented in section 3.2.2 the modelling bottlenecks emerging from the peculiarities of contextual
knowledge, with among others its imperfection, temporal validity and multiple facets. I believe that
a context model providing multiple layers for the representation of the same context would provide
enough modularity to address each of these bottlenecks in a separate layer. This approach, which
matches and extends the LLM and HLM proposed above, would thus leave to the modules consuming

29

CHAPTER 4. MODELLING OF CONTEXTUAL KNOWLEDGE

context information the choice of the most suitable layers of representation. Additionally, I defend
the idea that context models should provide a descriptive and parametric description of the context,
instead of a declarative description as can be found in most ontological models in the literature. It is
not about listing in the most exhaustive way the possible activities and behaviours of elderly people
(for example), but rather to define semantic classes of contexts and parameters (attributes) for each
of these classes so that applications can make sense of them without prior knowledge. For example,
a behaviour or action should be described either as atomic (independent) or as a part of a sequence.
Behaviours should also be characterised as safe or dangerous for the elder, or possibly as safe normally
but dangerous in coexistence with a context from another specific class. Hence context modelling
requires a strong competency towards the analysis and modelling of complex systems.

4.2 Related Work in Context Modelling

As described above, modelling is a key aspect for the provision of intelligence into an environment.
It allows a computational understanding of low-level events coming from sensors and other devices,
and of higher level events describing the context in the environment. Several modelling technologies
can be used therefore. Among them, semantic and specifically ontological representations are seeing a
growing adoption and their use is being spread from the web, which they were originally designed for,
to various application domains. Several research publications describe how to use such representations
to formalise various aspects of ambient intelligence and context reasoning.

HomeML, proposed by Nugent et al., is an XML-based solution defining a standard to represent
the information transiting in ambient intelligence systems [81]. The description provided is focusing on
the devices and spaces of the environment without taking into account the human factors. Thus, the
rules used in HomeRuleML, HomeML’s rules counterpart, are based on use-cases linking explicit sensor
states to predefined human behaviours [82]. The introduction of a model for human behaviours would
bring a deeper, richer semantic representation and enable a reasoning using more abstract rules in order
to gain in versatility and accelerate the conception of context-aware applications. Indeed, ontological
reasoning may be employed with two different approaches:

– inferring based on object properties (i.e. relations or links) existing between individuals (i.e.
instances) in the ontology, as would be the case if HomeRuleML was transcribed into an ontological
format,

– or inferring based on the matching between data properties (i.e. parameters or attributes) at-
tached to the different individuals in the ontology, which requires a more complex modelling phase
but offers more possibilities and superior flexibility at the application level.

Akdemir et al. formalise human activities as spatio-temporal interactions of primitives and contex-
tual entities [83]. They present a semantic model of human activities based on an ontology populated
with entities of the environment, interactions between them and sequences of events identifying an
activity. The ELDeR ontology (Enabling Living inDependently of Risks) presented by Rodriguez et al.
similarly relies on a sequential description of the different ADL to detect potential risks while elders are
performing these activities [84]. These models are functional as they enable the inference of activities
and risks based on fine-grain interactions detected in the environment. More particularly, they fit very
well with the object-based activity recognition approach. Although, I consider this approach relevant
and have deployed systems that uses it, it still requires a fine-grain sensing of the context and does not
match the requirements described in section 3.1.2 concerning the bottom-up approach. Hence, I believe
that a more abstract model should be proposed to distance developers from using predefined use-cases.
Such a model should be extended to formalise human behaviours from a higher point of view as well,
perhaps providing a hierarchical classification of activities based on lower level attributes.

30

4.3. FUNCTIONAL APPROACH TO CONTEXT REPRESENTATION

The doctoral work of Farah Arab, focused on the modelling of human behaviours, provides an
almost exhaustive semantic representation of these behaviours, classifying them hierarchically in term
of coarseness of observation, importance towards independence, and statistical time or frequency of
observation [85]. This model, written from the point of view of an ergonomist, is very strong on the
human factors side. But even though it is an excellent reference of all the possible activities and
behaviours, it is lacking in the level of parametricity needed to perform autonomous activity inference
and risk assessment using algorithms. Indeed, this ontology do not provide any relation between the level
of contextual information inferred from sensor data, and the behavioural level declared a-priori. This is
a major obstacle to the integration of the proposed model into a system to be deployed for autonomous
assistance. I believe that providing a parametric representation where activities are characterized along
measurable and classifiable attributes would enable the estimation of the risk by inference instead of
its declaration a-priori.

The representation of Paganelli and Giuli uses various semantic models for the monitoring and the
assistance of people suffering from chronic diseases [86]. It is well parametrised, albeit more focused on
measurable criteria of a person’s condition without taking into account behaviours. Hence, the speci-
ficity of each person, as well as his preferences, cannot be taken into consideration at the decisional level.
My approach is to focus on the parametricity in the modelling of human behaviours in order to ensure
the straightforward integration and deployment in real systems. This means that my representation is
at a level closer to the contextual information derived from sensor data. Concerning the completeness
of the activities described and the consideration of human factors, a further integration between the
models provided here and the model proposed by Farah Arab is planned.

4.3 Functional Approach to Context Representation

As part of this thesis work, the main contributions are in the reasoning aspect of the context com-
prehension. Yet, it is impossible to tackle reasoning issues without taking some time to look into the
modelling aspect as well. Based on the observations given above about the related work, I have chosen
to build a basic model that is complementary to the models published in the state of the art through its
more functional aspect. For a more comprehensive description of activities, we rely heavily on models
presented in section 4.2, especially the one from Farah Arab. For a more parametric description of
activities, an application has been filed for the funding of a new doctoral thesis, in order to extend the
contributions described in chapter 5.

4.3.1 Rapid Introduction to the Semantic Web

The semantic web and its ontological format offer state of the art capabilities for the modelling of do-
main knowledge or systems architecture. Hence it is an excellent syntactic candidate for the contextual
model. Additionally, I expose in section 5.2 my choice to use such technologies from the reasoning point
of view. More particularly, I explain why I use the Notation3 (N3) language to build the models and
inference rules. I expose below some peculiarities of the ontological representation, and of N3 language,
so that the reader can fully understand the following sections.

The mainstream language used by semantic technologies today is the Resource Description
Framework (RDF), a general-purpose language for representing information, together with its Ex-
tensible Markup Language (XML) serialization. N3 is a more human-readable superset of RDF. The
RDF data model is based upon the idea of making statements about resources (the atomic semantic
entities) in the form of subject-predicate-object expressions called triples [87]. The terms Termino-
logical Box (TBox) and Assertional Box (ABox) are used to describe two different types of
statements. TBox statements provide a conceptual description of a system or domain in terms of
classes and properties; hence defining a vocabulary. ABox statements are TBox-compliant statements

31

CHAPTER 4. MODELLING OF CONTEXTUAL KNOWLEDGE

about individuals constituting this system or domain. TBox statements are sometimes associated
with object-oriented classes and ABox statements associated with instances of these classes. Together
these statements make up a knowledge base [88].

To be more specific, each entity of a triple is called a resource. Resources can have various roles,
which are defined either in the RDF standard, or the RDF Schema (RDF-S), a set of classes with
given properties, providing basic elements for the description of ontologies, and intended to structure
resources [89], or the Web Ontology Language (OWL), a vocabulary extension for authoring ontolo-
gies [90]. rdfs:Resource is the class of everything. All things described in an ontology are resources.
rdfs:Class declares a resource as a class for other resources. Properties are instances of the class
rdf:Property and describe a relation between subject resources and object resources. When used as
such a property is a predicate. One can divide further the rdf:Property class into the two subclasses
owl:ObjectProperty and owl:DatatypeProperty. Object properties link individuals to individuals
whereas datatype properties link individuals to resources from the rdfs:Literal class, the class of
all literal values such as strings and integers.

For the AmI community, the TBox usually provides a vocabulary for the description of an envi-
ronment through its space units such as rooms, its objects (connected or not), the people using the
space and their habits, etc. The ABox of the ontology contains all statements describing the actual
environment of deployment in a TBox-compliant manner, i.e. using the vocabulary described above.
The ABox representation could be considered as a projection of the reality of the deployment into the
semantic model provided by the TBox. It includes the actual house, sensing system, residents and their
different activities of interest.

Syntactic Sugars for Notation3

N3 has some syntactic sugars that allow abbreviations and factorizations; for instance the predicate
rdf:type which is used to state that a resource is an instance of a class can be abbreviated as the letter
“a” (as in “is a”). Moreover, if several statements are written for the same subject, then predicate-
object pairs can be separated by semicolons (“;”). Similarly, if a predicate applies several times to the
same subject with different objects, then one can separate the objects by a comma (“,”). Resources of
an ontology are always defined in a namespace and given a Uniform Resource Identifier (URI) in this
namespace. In N3, the @prefix keyword can be used at the top of a document to define aliases for
the namespaces used in the document. In this thesis, each namespace will be introduced once, when
needed, and considered as known for the subsequent sources code extracts (called Sources) where only
new namespaces will be explicited.

I provide in the next sections a graphical representation of the TBox, together with a minimal yet
functional extract of the ABox for the models dedicated to service delivery and activity recognition.
The actual ontologies naturally contain more classes and individuals but are simplified here for more
clarity. The full ontologies are available in Appendix E.

4.3.2 Functional Model for Service Delivery

Since this thesis focuses mainly on the reasoning mechanisms and not on the modelling itself, the
approach has been to define specific submodels, sometimes overlapping, for the different mechanisms
employed in the reasoning. These submodels can later on be integrated together as the full reasoning
process is implemented. The first submodel is presented in this section and supports the inference of the
services to be provided in the environment based on the detected context of the resident. The context
itself is not inferred here. It also supports the choice of the most relevant device for the interaction
between the resident and the service provided. The reasoning mechanisms corresponding to this model
are described in section 5.4.2.

32

4.3. FUNCTIONAL APPROACH TO CONTEXT REPRESENTATION

Terminological Box

Figure 4.1 illustrates the design of the first submodel with its graph representation. For more readability
and clarity, only a part of the whole ontological submodel in use is represented, thus containing only
high-level concepts related to the application and not to the internal reasoning process. The full version
is provided in Source E.1 in its N3 syntax. For this graph and the following semantic models, the legend
is given in Figure 4.2: each box represents a class, datatype properties which individuals of a class might
have are listed in the dotted extension below the box of the class, and object properties are represented
by the arrows between boxes. An arrow between the class A and the class B means that the property
has for rdfs:domain the class A and rdfs:range the class B, i.e. it can link a subject individual
from the class A to an object individual from the class B. The arrows with empty white heads are
representing a rdfs:subClassOf relation between two classes. This submodel will then be populated
with knowledge about the actual environment of deployment, users and their profile, services activated,
hardware deployed and real-time knowledge derived from the sensor data concerning the activities of
the residents.

name
snoozeTime

Person

hasContext

name
needHands

Context

busy

Caregiver
stageForAlert

Resident

Location

Activity

solved

Deviance

Reminder

ackHandled
acknowledgement

Notification

name
model
repeat
id
timeSent
stage

Service

name

Device

watchesAfter

runningFor

solvedBy

helpsWith

usedBy

escalateTo

hasAckService

deployedIn

onDevice

Figure 4.1: Semantic Model (TBox) for the Service Delivery to an Elder in a Smart
Space

Legend

datatypeProperty

Class

objectProperty

subClassOf

Figure 4.2: Legend for the Graphical Representation of Semantic Model (TBox) in this
Thesis

I consider in this model an environment where residents can be helped by caregivers, such as a
nursing home or a family house when elders live with kin. Sensors are embedded in the environment,
albeit no represented yet, and provide through processing modules some context information such as
the location of a resident, his current activity or problematic behaviour (deviance). In this submodel,
I bring down the context-aware services provided by the framework to two kinds: reminders (sent to
residents) or notifications (sent to caregivers). For instance, if a person has finished showering but
has left the water running, a reminder will be sent to him, which can be escalated to a notification to
a caregiver if he ignores it.

33

CHAPTER 4. MODELLING OF CONTEXTUAL KNOWLEDGE

The model I designed contains four main classes: Person, Device, Service and Context. Individ-
uals (instances) of each of them have specific attributes (data properties) and can be linked to other
individuals (object properties). Some classes are refined into sub-classes. For example, an individual
of the Person class can be a Resident or a Caregiver to differentiate the role of caregivers. Residents
are related to their caregivers by the watchesAfter relation and caregivers have the specific attribute
busy to keep track of their availability. The model can be extended so that residents would have prop-
erties to describe their habits, limitations or special needs in order to select the most relevant services.
Devices are not characterized much yet, they can be related to their owner/user or location respectively
by usedBy and deployedIn relations. Of course the user and device profiles will be developed further
when merging submodels to integrate the presentation engine, which infers how services should be
displayed [27].

The Context class has three sub-classes: Location, Activity and Deviance used to differentiate
semantically the kinds of information that can be collected about residents. A deviance refer to the
context of a resident going away from the “track” of regular activities and denotes a possibly dangerous
or more generally problematic situation that the system should help to resolve by providing relevant
assistive service to the resident. Deviances are considered solved when a change of context is observed
that corresponds to their hasSolvingContext relation. In the same way, contexts can initiate the
provision of services that are linked to them through the helpsWith relation.

For this submodel, the two classes of services considered are Reminder and Notification, both have
common attributes like timeSent, repeat or stage that are used to handle service cycles. A reminder
can become an alert if the situation becomes critic; this is implemented based on the escalateTo

relation. Alerts have some acknowledgement system enabling the forwarding of notifications among
caregivers, as well as the use of greetings messages when deviances have been solved as a confirmation
to the resident. Services are delivered based on the onDevice relation to the person pointed by the
runningFor relation.

Assertional Box

The ABox of the ontology contains all the individuals specific to a deployment. These individuals
should be populated at the deployment site using relevant protocols. For instance, we have designed
a semantic plug & play mechanism ensuring a software hot plug of instance, complementary to the
existing hardware hot plug provided by various protocols. This mechanism is especially useful in the
case of sensors or devices. For the description of the users, dedicated graphical tools can be provided
in order to gather detailed knowledge in a comfortable way. Contexts and services should be added in
“bundles” by selecting the features of interest from a catalogue or store. As this thesis does not treat
these aspects, we usually write the ABox manually and sometimes develop tools for automating this. At
runtime, the ABox is automatically modified and populated some more in order to reflect the changes
in the environment. The main modifications lie in the addition of object properties between existing
individuals of the ontology, and of datatype properties to capture the evolution of information about
people, devices or even software instances like services. I provide in Source 4.1 a simplified example of
a possible ABox for the present submodel. This example only has one resident, one caregiver and one
context of interest with the associated service. A more complete example is given in Source E.2.

Source 4.1: Example of a Simplified ABox for Service Delivery, in Notation3

1 @prefix log: <http ://www.w3.org /2000/10/ swap/log#>.

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

@prefix owl: <http ://www.w3.org /2002/07/ owl#>.

@prefix env: <environment #>.

6 @prefix ske: <skeleton#>.

34

4.3. FUNCTIONAL APPROACH TO CONTEXT REPRESENTATION

INITIAL DATA

People

11 env:patient a ske:Resident;

ske:name """John"""@en.

env:caregiver a ske:Caregiver;

ske:name """Tom"""@en;

ske:watchesAfter env:patient.

16

Location or environments

env:bathroom a ske:Location.

env:bedroom a ske:Location.

21 ## Devices

env:speaker1 a ske:Device;

ske:deployedIn env:bathroom.

env:iphone a ske:Device;

ske:usedBy env:caregiver.

26

SERVICES

Shower too long

31 env:showerEmpty a ske:Context.

env:showerTooLong a ske:Deviance;

ske:solvedBy env:showerEmpty.

env:showerTooLongReminder a ske:Reminder;

ske:helpsWith env:showerTooLong;

36 ske:escalateTo env:showerTooLongNotif.

env:showerTooLongNotif a ske:Notification;

ske:helpsWith env:showerTooLong.

4.3.3 Functional Model for Activity Recognition

As explained, the model described in section 4.3.2 is catered for the service selection and provision part
of the framework. It will be later on (section 5.4) associated with rules inferring the services to be
provided and their most relevant interaction device based on some already-fused-and-enhanced contex-
tual information. The second submodel, which is the focus of this section, is build in order to perform
scoped activity recognition from coarse grain sensed contextual data. Hence, it is complementary to the
first submodel and it is well adapted to the strong constraints imposed on the system in the bottom-up
approach (see section 3.1.2).

Terminological Box

I present in Figure 4.3 the model dedicated to the contribution described here. Note that only the
TBox is illustrated here. The graphical conventions are the same as the ones described for Figure 4.1
and given in Figure 4.2. An example of a complementary ABox is given further in N3 syntax.

For this submodel, I consider a person living independently at home and am interested in the coarse
grain inference of a few activities from situational data. Hence, the classes Person and Resident are
still used but Caregiver is omitted here. The vocabulary for the description of the environment of
deployment is extended with the rooms in which residents can be detected (Room class and detectedIn

property) and the objects—only doors at this stage—they can use (Object class and useNow property).
Rooms are part of a House where the resident lives (liveIn) and are sub-classified according to their
function. Spatial organisation is mainly described through the partOf property, but this can easily be
extended. Objects can optionally be associated with a specific space using the locatedIn property. The
description of the sensors deployment into the house is also enabled. A Sensor has its own SensorType,
and should either be attached to an Object (attachedTo) or deployed into an Environment like a room

35

CHAPTER 4. MODELLING OF CONTEXTUAL KNOWLEDGE

isAlone
inRoomSince
inRoomFor
doesActivitySince
doesActivityFor

Resident

liveIn/detectedIn/cameFrom

motionMeasured

Environment

Person

getConfidenceScore

Activity
lastUsed

Object

hasValue
lastUpdate
hasLastUpdate

Sensor

indicateLocation
indicateUse

SensorStateFurniture

Door

SensorType

House

Room
Outside

Bedroom
Bathroom

Livingroom
Kitchen
Toilet

...

believedToDo
useNow

locatedIn

partOf

type

hasPossibleState/
hasCurrentState

attachedTo

deployedIn

riskLevel

Deviance

Figure 4.3: Semantic Model (TBox) for a Stripped-Down Activity Inference
Note: Legend in Figure 4.2

(deployedIn). All sensor states are declared (SensorState class and hasPossible/CurrentState

properties); the active states providing information about the location of a resident or the use of an
object are characterised as such using boolean literals (datatype properties indicateLocation/Use).
Additionally, a class is provided to describe the activities of interest for which we want to track the
residents (Activity class and believedToDo property). Similarly to the first submodel, potentially
dangerous activities are defined into the subclass Deviance. Datatype properties are also defined to
keep track of timestamps such as the latest activation of a sensor (lastUpdate), the latest use of an
object (lastUsed), the time when a resident was first detected in a room (inRoomSince) or believed to
perform an activity (doesActivitySince). Such properties are also used to store numerical variables,
such as sensors values (hasValue) or the amount of motion measured in rooms (motionMeasured), as
well as parameters, like the risk level of a deviance (riskLevel). Finally datatype properties are used
to store inference results like a boolean to flag the detection of multiple people (isAlone), or a decimal
confidence score given to each activity in the reasoning process (getConfidenceScore).

Assertional Box

As explained in the previous section, the ABox of the ontology contains all statements describing the
actual environment of deployment in a TBox-compliant manner, i.e. using the vocabulary described
above. In this section, it includes the house, the sensing system, the residents and the different activities
of interest. I provide a minimal yet functional extract of the ABox in Source 4.2. The actual ontology
naturally contains more rooms, sensors and activities, and is given in Source E.6. Here, similarly to the
previous ontology, the population of the ABox is ensured through graphical tools for the description of
the environment, the same semantic plug & play mechanism for the sensors, and the choice of software
“bundles” for the activities of interest.

Source 4.2: N3 Description of a Home

@prefix qol: <model#>.

2 @prefix hom: <home#>.

36

4.3. FUNCTIONAL APPROACH TO CONTEXT REPRESENTATION

Home (with example rooms)

hom:france a qol:Environment.

hom:notAtHome a qol:Outside;

7 qol:partOf hom:france.

hom:homeN a qol:House;

qol:partOf hom:france.

hom:johndoe a qol:Resident;

qol:liveIn hom:homeN.

12

hom:room1 a qol:Livingroom;

qol:partOf hom:homeN.

hom:room2 a qol:Bedroom;

qol:partOf hom:homeN.

17 hom:object1 a qol:Door;

qol:locatedIn hom:homeN.

Sensors (examples)

hom:reed a qol:SensorType.

22 hom:pir a qol:SensorType.

hom:r1_on a qol:SensorState.

hom:r1_off a qol:SensorState;

qol:indicateUse true.

27 hom:r1 a qol:Sensor;

qol:type hom:reed;

qol:attachedTo hom:object1;

qol:hasPossibleState hom:r1_on;

qol:hasPossibleState hom:r1_off.

32

hom:p2_on a qol:SensorState;

qol:indicateLocation true.

hom:p2_off a qol:SensorState.

hom:p2 a qol:Sensor;

37 qol:type hom:pir;

qol:deployedIn hom:room1;

qol:hasPossibleState hom:p2_on;

qol:hasPossibleState hom:p2_off.

42 hom:p3_on a qol:SensorState;

qol:indicateLocation true.

hom:p3_off a qol:SensorState.

hom:p3 a qol:Sensor;

qol:type hom:pir;

47 qol:deployedIn hom:room2;

qol:hasPossibleState hom:p3_on;

qol:hasPossibleState hom:p3_off.

Activities (examples)

52 hom:getUp a qol:Activity.

hom:goToilet a qol:Activity.

hom:fall a qol:Deviance.

4.3.4 No Memory: a Strategic Choice

When observing the models described above, one can realise that no memory has been introduced in
the representation, at the exception of the cameFrom property in Figure 4.3 that provides a single step
memory for the detectedIn property. Actually, the model designed should be seen as a contextual
snapshot of a house, providing the latest known state of each sensor, the current location and activity
of the resident, the current motion measured in each room, and the current state of service activated

37

CHAPTER 4. MODELLING OF CONTEXTUAL KNOWLEDGE

in the framework. Although this might be seen as a limitation of the model, I consider it as a feature
that was chosen for a strategic purpose. Indeed, disabling the memory in the model allows for a
more understandable and less complex ontology, which means that rules are simpler to design and the
processing time is decreased since there are less triples in the ontology and no filters are needed to
extract the latest state of the house.

The use of semantic models and their corresponding semantically labelled data is also known as
Linked Data. Sir Tim Berners-Lee, director of the World Wide Web Consortium (W3C), coined the
term in 2006 in a design note discussing issues around the Semantic Web project. In the literature, the
memory issue and other issues related to processing data generated by stream sources (e.g. sensors)
and enriched with semantic descriptions—i.e. following the standards proposed for Linked Data—have
been identified and referred to as Linked Stream Data. Linked Stream Data enables the integration
of stream data with Linked Data collections and facilitates a wide range of novel applications. I can
refer here to the work by Anicic et al. about Event Processing SPARQL (EP-SPARQL) [91], by
Barbieri et al. about Continuous SPARQL (C-SPARQL) [92], or by Le-Phuoc et al. about Continuous
Query Evaluation over Linked Streams (CQELS) [93]. However, this work only addresses memory and
other Linked Stream Data issues from the query point of view. Indeed, each team proposes its own
extension of the SPARQL Protocol And RDF Query Language (SPARQL), a query language
for databases able to retrieve and manipulate data stored in RDF format. Since my approach consists
more in using inference mechanisms, i.e. rules, rather than query mechanisms, the work cited does not
provide much help. Additionally, no relevant publication was found about inference of Linked Stream
Data using rules. In section 6.3, I explain how to compensate the memory-less design by providing
modules that are able to build a dedicated memory for specific applications that may need it.

Naturally, a memory-less model has strong limitations. Indeed, historical information could be lever-
aged in order to infer activities in many use-cases. With the proposed approach, numerous application-
specific modules may be integrated to handle historical observations. This would however contribute to
increase the complexity of the platform. A trade-off is therefore necessary in this aspect. It is crucial
in my opinion to separate open research challenges into independent “bundles” that can be treated
separately. Although this doctoral work is closely related to the semantic processing of temporal in-
formation (Linked Stream Data), the focus and efforts are placed elsewhere and I try to keep my work
independent from this open research challenge. The idea is to perform scoped temporal observations
based on specific needs, while keeping for further work the integration of advances in Linked Stream
Data techniques.

4.4 Naive Mechanism for Data Projection

As explained previously in section 3.2, the first aspect of context comprehension consists in formalising
contextual knowledge in order to project situational data in it. This projection incorporates the need
to translate situational data into the computing-ready syntax of the contextual knowledge, i.e. the
context model. One must be aware of the shift intrinsically existing between situational data and the
actual situation it represents, since situational data is only a measurable facet of the situation that
depends on the actual sensing system deployed, and taking into account the uncertainty introduced
by sensors which can be faulty. It is therefore primordial not to add any additional shift during the
projection of the situational data into the model, for example due to an implicit projection error when
the situational data and its domain of projection are too different. I choose to provide in the ontology
a level of representation that is corresponding exactly to the situational data so that its translation
only consists in adding proper syntax and metadata without requiring any extrapolation. Therefore,
when sensor data is received, it may be written “as such” into the ontology based on the identification
number of the emitting sensor and its known states, information added in the ontology at the time of
deployment.

Although data projection can sometimes be challenging, I provide a naive projection mechanism of

38

4.5. PERSPECTIVE WORK: A MORE PARAMETRIC CONTEXT MODEL

low-level data in the model which is basically handled through the provision of a facet of the contextual
model corresponding to the sensed data level. Based on this, mechanisms are provided by specific
software modules to gather and fuse data sources transparently, and then to automatically write into
the model the data with minimal translation. For example, following the representation of the second
submodel presented in section 4.3.3, if the sensor with identification number “pir23az5” sends a “on”
state, we simply replace the current triple with pattern {hom:pir23az5 qol:hasCurrentState *} by
{hom:pir23az5 qol:hasCurrentState hom:pir23az5 on}. With such a representation, if any further
translation is needed, e.g. between situational data and a higher level contextual knowledge, it is made
explicitly using inference rules; thus it is possible to trace semantically the translation errors that might
arise. Finally, with this approach and when properly capturing in the ontology the expected behaviours
coming from sensors, we can also make a first level of verification of the data received from sensors such
that a received value that would not be in the range of possible values may be ignored and the sensor
marked as possibly faulty.

4.5 Perspective Work: a More Parametric Context Model

This doctoral work focuses mainly on the inference mechanisms for context comprehension in assistive
livings, thus the context modelling aspect is not deeply researched on. However, it seems difficult to
present work on ontological reasoning without presenting the models used first. As a matter of fact,
the main doctoral contribution is yet to come and I propose here some perspectives for a work that has
been submitted as an independent doctoral thematic.

In section 4.2, I exposed the scientific bottleneck constituted by the absence of models formalising
human behaviours in smart spaces in an equilibrate manner, halfway between human aspects and
system aspects, and with a functional parametricity. Such an ontology would provide a vocabulary
accessible to human readers as much as to algorithms, allowing the definition and inference of contextual
information relying much less on use-cases. This could be leveraged at the reasoning level, enabling
a better abstraction of the inference and decision rules ensuring the system’s intelligence. It would
indeed allow an enhanced parametricity of the inference engine in the short term and ease the design
of innovative auto-adaptive context-aware systems in the longer term.

39

40

There are two kinds of truths, those of rea-
soning and those of fact.

— Gottfried W. Leibniz, 1646–1716 5
Designing a Semantic Context Comprehension Engine

5.1 Introduction

5.1.1 A Taxonomy for Context Comprehension

Nurmi and Floréen have categorized the reasoning for context comprehension into four main perspec-
tives [94]:

– The low-level perspective: it includes basic tasks such as data pre-processing, data fusion and
basic context inference.

– The application-oriented perspective: where the application can use a wide variety of reasoning
methods to process the context data.

– The context monitoring perspective: the main concern at this level is a correct and efficient
update of the knowledge base as the context changes.

– The model monitoring perspective: the main task is to continuously evaluate and update learned
context, taking into account user feedback.

This chapter is positioned over the context monitoring and application-oriented perspectives, the low-
level perspective being handled by the framework described in chapter 8. The model monitoring
perspective has not been explored much in this work but an extension on the techniques involved is
provided in chapter 6.

5.1.2 Explicit Reasoning

As described in section 3.2.2, there are numerous approaches to reasoning for context comprehension,
and no technique has been proven fundamentally superior. Overall, each approach has its own set
of advantages and drawbacks, but all seem to be affected when the sensing granularity decreases. I
believe, however, that rule-based techniques can cope better in coarse sensing cases by leveraging domain
knowledge to compensate the decrease of situational data. It is therefore my approach of predilection
as coarse sensing is a major challenge to tackle in the bottom-up approach.

Rule-based (or explicit) reasoning can be used to perform some matching between phenomenons of
various natures provided that their description is available in a model. Considering the models described
in chapter 4, it is suitable for the recognition of situations (or context) based on the representation of
sensed data. It can also match residents’ context with relevant services and interaction modalities. It is
however an open challenge to provide an efficient, scalable and extensible mechanism to perform such
matching.

In this chapter, I analyse the requirements for such a mechanism, provide a comparison of the
technological alternatives, and propose mechanisms for the different levels of matching mentioned above
based on the technological choice made.

41

CHAPTER 5. DESIGNING A SEMANTIC CONTEXT COMPREHENSION ENGINE

5.1.3 Heterogeneous Needs for the Context Granularity

In the following, context comprehension is widely covered. One must however remember that contextual
knowledge is only inferred in order to be used, either by a person or a machine. Contextual knowledge is
not the end itself, but rather a mean. Consequently, the level and granularity of contextual knowledge to
be reached depends primarily on its targeted use. For instance, a resident or a professional caregiver in a
nursing home would probably like to receive reminders or notification when needed—e.g. if medication
needs to be taken or if the resident is having issues to perform ADL like taking a shower. In this case,
a well scoped albeit fine grain activity recognition is needed, to be used for automatic retrievals. In the
case of a resident’s doctor, the interest would probably lie in coarse grain context reports containing
information like sleep time and quality, amount of movement, shower duration, etc. Such information
would provide an approximate lifestyle report, which evolutions could help in assessing the condition of
the resident. Finally, a family member might just be contented with a very coarse grain activity report
indicating whether the activity of the day is similar to other days or too different, thus letting them
know whether things are fine or not.

5.2 Related Work in Rule-based Reasoning Techniques

5.2.1 Imperative and Declarative Paradigms

In order to perform rule-based reasoning, a number of technologies are available, from imperative pro-
gramming languages such as Java or Prolog, to declarative programming languages permitting a more
efficient separation between application logic and underlying models [95]. Imperative programming
is a programming paradigm that describes computation in terms of statements that change a program
state. In this paradigm, the program is composed of one or more procedures, also known as subroutines
or functions. Each function creates, modifies or deletes variables that constitute the state of the system
represented and processed by the program. Imperative programs usually handle systems modelling and
processing altogether, which means the logic specific to an application and the system model being
processed are implemented together and little reusability is possible, whether for the model or the
logic. On the contrary, declarative programming is a programming paradigm that expresses the
logic of a computation without describing its control flow [96]. In other word, a declarative program
is a program that describes what computation should be performed and not how to compute it. Such
program usually defines separately the model to be processed and the application logic, each having
their own language of description. The processing itself is then left to the language’s implementa-
tion. Declarative programming includes a number of better-known programming paradigms, such as
constraint programming, DSL, functional programming and many modelling languages.

In an application domain like AmI where relying on a context model is important, I bring down
interesting declarative languages to the numerous DSL and modelling languages. Most modelling
languages do not allow any inference to be performed and are thus not usable in our case. DSL usually
provide non-standard modelling and rules languages. In some cases, as for Structured Query Language
(SQL), the language might be standardised, but the vision behind it and hence the practice in the
community of users are not articulated around sharing models and data stored. We consequently reach
a “silo-based” network of systems where each system defines its own model, stores its own data and
protocols are defined to exchange part of this data without ever merging the models, but instead by
defining manual mappings between models.

For a pervasive computing application where numerous tiny modules, agents, algorithms are con-
tributing around a shared language and model in a decentralised manner; and hoping to be able to
leverage domain knowledge models when available without defining mappings and transferring data
between silos; a more open and linked modelling and rules language is needed. Semantic Web technolo-
gies offer such a language, in a standardized syntax, and with state of the art modelling and reasoning

42

5.2. RELATED WORK IN RULE-BASED REASONING TECHNIQUES

capabilities based on Description Logic (DL). The semantic web enables knowledge representation and
management. Although computers were originally designed for numerical calculation, it enables them
to compute knowledge and comprehend semantic documents or data. Ontologies are seen as a shared
understanding of a domain, overcoming specific terminologies by giving more importance to the mean-
ing of information [97]. They not only have the advantage of enabling the reuse and sharing of domain
knowledge among several applications [98], but also of allowing the use of logic reasoning mechanisms
to deduce high-level contextual information [99].

Adopting an imperative approach to implement context sensitive applications is very robust and
requires only a short design phase. However, it brings deep constraints in term of reusability in per-
sonalized environments and adaptability in dynamic environments. A declarative approach allows for a
more efficient separation between application logic and underlying models describing the use-case and
peculiarities of the environment. Although this choice represents an important trade-off on the effort to
be put at the design phase, I have decided to use a declarative approach, and more specifically semantic
technologies as it enhances the reusability and adaptability of the system. This choice seemed unavoid-
able when targeting a deployment of more than just a dozen of homes. Although reasoners are the
heart of AAL solutions, they do not need to be extremely powerful or complex. Their true requirement
is to reach a consistent result in a limited time; and this can be implemented using semantic reasoners.
The selection of relevant services and interaction modalities can be performed using semantic matching
between the knowledge about users’ context derived from sensor events and formalized into an ontology,
and respectively services’ and devices’ semantic profiles. Finally, and as detailed in chapter 4, semantic
technologies are perfectly adapted to model contextual information, along with its peculiarities.

5.2.2 Semantic Technologies

A Metadata Data Graph Model

As introduced in section 4.3.1, the mainstream language for semantic technologies is RDF, a general-
purpose language for representing information build around a metadata data model [87]. A collection of
RDF statements intrinsically represents a labelled, directed multi-graph. As such, an RDF-based data
model is more naturally suited to certain kinds of knowledge representation than the relational model
underlying the SQL language among others. One can build additional ontology languages upon RDF,
as was demonstrated by RDF-S which basically is a set of RDF classes with given properties specifically
designed to provide a more functional and structured vocabulary for the description of ontologies [89].

Similarly OWL extends RDF with a entire family of vocabularies for authoring ontologies [90]. The
OWL family contains many species, serializations, syntaxes and specifications with similar names. OWL
and OWL 2 are used to refer respectively to the 2004 and 2009 specifications. The W3C-endorsed OWL
specification includes the definition of three variants of OWL, with different levels of expressiveness. In
order of increasing expressiveness, these variants are OWL Lite, OWL DL and OWL Full, each being
a syntactic extension of its predecessor [100]. In the case of OWL 2, profiles have been introduced and
are defined by placing restrictions on the structure of OWL 2 ontologies [101]. They are a trimmed
down version of OWL 2 that trades some expressive power for the efficiency of reasoning. Many profiles
are possible but three are considered more standard.

OWL Sublanguages as Defined by the W3C

OWL Lite OWL Lite supports users primarily needing a classification hierarchy with simple con-
straints. For example, while it supports cardinality constraints, it only permits cardinality values of 0
or 1. Since it has a lower formal complexity, it is simpler to provide tool support for OWL Lite than
its more expressive relatives.

43

CHAPTER 5. DESIGNING A SEMANTIC CONTEXT COMPREHENSION ENGINE

OWL DL OWL DL supports users who want the maximum expressiveness while retaining computa-
tional completeness (all conclusions are guaranteed to be computable) and decidability (all computa-
tions will finish in finite time). OWL DL includes all OWL language constructs, but they can be used
only under certain restrictions. For example, while a class may be a subclass of other classes, it cannot
be an instance of another class. OWL DL gets its name due to the correspondence with description
logics, a field of research that has studied the logics that form the formal foundation of OWL.

OWL Full OWL Full is meant for users who want maximum expressiveness and the syntactic free-
dom of RDF with no computational guarantees. For example, in OWL Full a class can be treated
simultaneously as a collection of individuals and as an individual in its own right. OWL Full allows an
ontology to augment the meaning of the pre-defined (RDF or OWL) vocabulary. Hence, it is unlikely
that any reasoning software will be able to support complete reasoning for every feature of OWL Full.

OWL 2 EL OWL 2 EL is particularly useful in applications employing ontologies that contain a very
large number of properties and/or classes. This profile captures the expressive power mostly used by
such ontologies and is a subset of OWL 2 for which the basic reasoning problems can be performed in
time that is polynomial with respect to the size of the ontology. Dedicated reasoning algorithms for
this profile are available and have been demonstrated to be implementable in a highly scalable way.
The EL acronym reflects the profile’s basis in the EL family of description logics (EL++), a level that
provide only Existential quantification.

OWL 2 QL OWL 2 QL is aimed at applications that use very large volumes of instance data, and
where query answering is the most important reasoning task. In OWL 2 QL, conjunctive query an-
swering can be implemented using conventional relational database systems. Using a suitable reasoning
technique, sound and complete conjunctive query answering can be performed in logarithmic time with
respect to the size of the data (assertions). As in OWL 2 EL, polynomial time algorithms can be used
to implement the ontology consistency and class expression subsumption reasoning problems. The QL
acronym reflects the fact that query answering in this profile can be implemented by rewriting queries
into a standard relational Query Language.

OWL 2 RL OWL 2 RL is aimed at applications that require scalable reasoning without sacrificing
too much expressive power. It is designed to accommodate OWL 2 applications that can trade the full
expressivity of the language for efficiency. OWL 2 RL reasoning systems can be implemented using
rule-based reasoning engines. The ontology consistency, class expression satisfiability, class expression
subsumption, instance checking, and conjunctive query answering problems can be solved in time that
is polynomial with respect to the size of the ontology. The RL acronym reflects the fact that reasoning
in this profile can be implemented using a standard Rule Language.

Notation3 (N3): an Assertion and Logic Language for Humans

RDF is used with a variety of data serializations, among which the most common is certainly the XML
format. This format is often called simply RDF because it was introduced among the other W3C
specifications defining RDF. However, it is important to distinguish the XML format from the abstract
RDF model itself. In addition to serializing RDF as XML, the W3C introduced N3 as a serialization
of RDF models designed with human-readability in mind. N3 is much more compact and readable
than XML RDF notation because it is based on a tabular notation which makes the underlying triples
encoded in the documents more easily recognizable. The format, developed by Tim Berners-Lee and
others from the Semantic Web community, was motivated by the frustrations resulting from their use
of RDF over the years. N3 has several features that go beyond the serialization of RDF models, such
as the support of RDF-based rules. It is in fact a full assertion and logic language, a superset of

44

5.2. RELATED WORK IN RULE-BASED REASONING TECHNIQUES

RDF which extends the latest’s datamodel by adding formulae (literals which are graphs themselves),
variables, logical implication, and functional predicates. The aims of the language are:

– to optimize expression of data and logic in the same language,

– to allow RDF to be expressed,

– to allow rules to be integrated smoothly with RDF,

– to allow quoting so that statements about statements can be made, and

– to be as readable, natural, and symmetrical as possible.

A full description of the syntax extracted from the W3C submissions website [102] is available in
section C.2. Beside the extension of RDF by the N3 syntax, a vocabulary of new predicates is also
introduced, which lets us write about the provenance of information, contents of documents on the
Web, and provide a variety of useful functionality such as string manipulation, cryptographic, and
mathematic functions. These properties are defined by the Notation3 Logic (N3Logic) specification;
they are not part of the N3 language, but are properties that allow N3 to be used to express rules, and
express statements about the concepts defined above. Just as OWL is expressed in RDF by defining
properties, so rules, queries, differences, and so on can be expressed in RDF with the N3 extension
to formulae. N3Logic uses the N3 syntax and also includes a set of predicates. Its vocabulary is the
union of the N3 syntax and the set of URI references defined in the log:, crypto:, list:, math:, os:,
string:, and time: namespaces. While N3Logic properties can be used simply as ground facts in a
knowledge base, they are more powerful when taking advantage of the fact that they can actually be
calculated. N3Logic includes axiom schemas for each of these terms; reasoners can use these axioms
to evaluate formulae and bind variables. These are called built-in functions and they can be used to
provide a variety of functionality. The fact that the rule language and the data language are the same
gives a certain simplicity (there is only one syntax) and completeness (rules can operate on themselves,
anything written in N3 can be queried in N3). This would be broken if a special syntax were added
for built-in functions and operators. Instead, these are simply represented as RDF properties. Rules
may have full N3, even with nested graphs, on both sides of the implication. This gives a form of
completeness where rules can generate rules [103].

Rule Syntaxes and Inference Engines

As described above, the N3 syntax can be used in conjunction with N3Logic predicates used as built-in
functions in order to write rules that infer ontologies. In this case, the implementation of the N3Logic
specifications is left to the inference engine. In the field of knowledge engineering, an inference engine
is a program that tries to derive conclusions from a knowledge base, usually by using a combination
of deductive logic (in which specific examples are derived from general propositions) and inductive
logic (in which general propositions are derived from specific examples). Inference engines are consid-
ered as a special case of reasoning engines, which can use more general methods of reasoning. An
inference engine is given the ontology to infer and the rules to be applied. Optionally, it may hold
internally standard formulae and/or rules that will be applied in the inference. It then provides as
output all reached conclusions, eventually with a generated proof of inference. The inference engine
commonly used for N3Logic is closed-world machine (cwm), a general-purpose data processor written
in Python by Tim Berners-Lee. However, I recommend using the more efficient engine developed by
Jos De Roo from AGFA Healthcare called Euler YAP Engine (EYE). EYE is based on Euler, an
inference engine supporting logic based proofs, and is a backward-chaining reasoner enhanced with Eu-
ler path detection. It is interoperable with cwm via N3 and offers much higher performance due to its
Prolog optimised implementation and compilation via Yet Another Prolog (YAP), a high-performance
Prolog compiler developed at the University of Porto.

45

CHAPTER 5. DESIGNING A SEMANTIC CONTEXT COMPREHENSION ENGINE

Naturally, numerous other rule syntaxes and inference engines are available. Among others, Jena
is a Java framework for building semantic web applications on the basis of RDF ontologies. Jena can
perform ontology inference using its internal inference engine and a dedicated rule language described
fully in section C.1. One can also use the Jena framework with the more standard reasoner Pellet.
Pellet is one of the top-tier OWL 2 reasoners, it performs OWL DL reasoning and supports OWL 2
EL profile by default. It notably supports rules in the Semantic Web Rule Language (SWRL)
syntax [104], a proposed language for the Semantic Web that can be used to express rules as well as
logic, combining OWL DL or OWL Lite with a subset of the Rule Markup Language (RuleML),
a markup language developed to express both forward (inductive) and backward (deductive) rules in
XML for deduction, rewriting, and further inferential tasks [105]. Other independent inference engines
are also available, supporting various (sometimes dedicated) rule languages and with uneven levels of
expressivity, thus impacting the decidability of the engine. To compare inference engines, other features
can be taken into account as well. E.g. RacerPro is a commercial semantic web reasoning system which
provides an integrated knowledge repository. RacerPro performs OWL DL reasoning using its own rule
format.

5.2.3 Usage in the AmI and AAL Communities

There is much research work on reasoning systems to build context-aware service frameworks. However
the notions put behind the word “context” are different for each work, as are the way models or
ontologies are used and the approach to their inference [106]. Zhu et al. propose an approach based on
DSL to their reasoning engine [47]. They use Drools, a business rule management system to incorporate
high level domain knowledge and common sense in their inference system for smart homes. This kind
of decision support system is however not optimised for the knowledge maintenance tasks needed in
context-aware spaces. Indeed, as Goldberg et al. noted, “decision support rules are not easily accessible
to knowledge engineers for maintenance; new rules require programming resources to implement rules
and custom data fetches; deployments are not reusable across multiple systems” [107].

Broadened to the AmI community, numerous ontological syntaxes and reasoning engines have been
used with specific goals and use scenarios. To name but a few systems, Gaia provides a generic com-
putational environment mixing ubiquitous computing with its physical space of embodiment [108]. It
is based on ontologies written in DAML+OIL, an early ontological language that was superseded
by OWL. Gaia can perform rule-based inference as well as employ machine learning techniques, the
rule-based part being implemented with first-order logic rules given priorities such that only one rule
can be applied at a time. The Context Broker Architecture (CoBrA) is an infrastructure support-
ing the development of context-aware agents or applications by providing raw and inferred context
information via its “context broker” which is handling the context inference in a centralised manner
[109, 110]. The context broker uses several layers for the reasoning, the first being implemented using
Jena as a rule-based engine inferring OWL ontologies. Semantic Space is yet another infrastructure
for building context-aware pervasive applications around a shared ontological knowledge base [77, 99].
Several layers of ontological representations are used in the framework and links are made with existing
and well-accepted ontologies such as friend-of-a-friend (FOAF). Semantic Space uses two complemen-
tary context reasoners based respectively on description logic and first-order logic, both implemented
using Jena with forward chaining rules. SAMOA is a framework to support the creation of semantic
context-aware social networks around mobile users, based on physical proximity and sharing of com-
mon interests [111]. SAMOA provides context-aware social matchmaking services which are based on
a semantic matching of the profiles of places, people and their discovery wishes. It relies on the Pellet
DL reasoner to implement the matching algorithms involved. OWL-SF is another semantic service
framework dedicated to ubiquitous and distributed services [112]. It is build around an OWL represen-
tation of context information and uses both an RDF inference mechanism implemented with Jena and
OWL-DL reasoning responsible for the classification and answering of OWL-DL queries implemented
with RacerPro.

46

5.3. WHICH INFERENCE ENGINE FOR AAL?

More focused on AAL, Meditskos et al. studied the combination of Jena and Pellet into a practical
reasoner for the OWL 2 RL profile that combines the forward-chaining rule engine of Jena and the
Pellet DL reasoner [113]. More recently, the same authors proposed for the Dem@Care European
project an ontology of activity patterns where activities are defined in a composite manner, partly
as models and partly as rules expressed in SPARQL based on the SPIN extension [114]. SPIN is an
RDF representation of the semantic web query language SPARQL that enables rules using SPARQL
CONSTRUCT queries [115]. Chen et al. used Euler to perform rule-based inference of activities based on
a knowledge driven approach [116]. Foo et al. proposed an ontology-based system to monitor and react
to agitation for people with dementia where an OWL ontology is held into the Sesame framework for
querying and analysing RDF data [117]. Though Sesame does not provide any inference mechanism,
context reasoning is proposed through the use of DL Implementation Group (DIG) classifiers and
specifically RacerPro. DIG specifies a common interface for DL reasoners and allows a variety of tools
such as ontology editors to make use of these reasoners [118].

5.2.4 Conclusion

The main observation emerging from the analysis of the literature concerning reasoning systems for
context aware applications is the numerous and heterogeneous technologies involved. I have explained
why knowledge-based approaches are more suited for the coarse sensing of situations, I also noted
the better maintainability and extensibility of semantic technologies compared to other knowledge
based approaches such as DSL. Still, many languages, rule syntaxes and reasoning engines are possible
and have been used in the AmI and AAL communities, each offering different levels of expressivity,
decidability and in a more general manner practicality of use.

The numerous semantic web tools available have very disparate characteristics and performance.
Moreover, benchmarks for such tools have limitations and a more qualitative observation on the re-
quirements is needed to give useful hints to developers [119]. As explained by Luther et al., ”choosing
the appropriate combination of a reasoning engine, a communication interface and expressivity of the
utilized ontology is an underestimated complex and time consuming task” [95]. I provide in the next
section a detailed study of the requirements on semantic reasoning engines in order to be used efficiently
in pervasive context-aware frameworks. I also propose a comparison of selected engines with regard to
the requirements gathered. Responding to the complexity in choosing a suitable reasoning engine for
our use, I contribute here to the community by putting in place an appropriate test-case in order to
give useful hints to AAL researchers and developers.

5.3 Which Inference Engine for AAL?

As explained above, it is a challenging and important task to build an appropriate test-case in order to
compare quantitatively and qualitatively inference engines to make informed technological choices and
provide useful insight to the community. I spent a year putting in place an appropriate test-case in order
to give useful hints to researchers and developers, curious about the requirements and recommendations
on inference engines that may be used in AAL use-cases. This particular study was done in a nursing
home in Singapore, at the early stages of deployment described in details in section 9.3. I detail below
the results of the study and the choices that emerged from it. Section 5.3.1 describes the requirements
gathered for reasoners and ontology/rules syntaxes to be efficiently integrated in AAL systems. Section
5.3.2 provides a comparison of some reasoners with regard to the suggested requirements and my final
choices and recommendations.

47

CHAPTER 5. DESIGNING A SEMANTIC CONTEXT COMPREHENSION ENGINE

5.3.1 Requirements Gathering

In this part, I try to highlight the “must have” features of a semantic reasoner in order to be used
efficiently into an AAL system.

Negation As Failure (NAF) and Retractability of Knowledge

This requirement emerges from a fundamental pre-requisite of Semantic Web. Indeed, Semantic Web
is based on DL which is monotonic and adhere to the Open World Assumption (OWA), i.e.
conclusions drawn from a Knowledge Base (KB) must be based on information explicitly present in the
KB. This differs from classical reasoning formalisms, usually non-monotonic, that apply the Closed
World Assumption (CWA). Under this assumption, all non-provable expressions are assumed to
be false, which is known as Negation As Failure (NAF). NAF is a non-monotonic inference rule in
logic programming, used to derive not p (i.e. that p is assumed not to hold) from failure to derive p.
Note that not p can be different from the statement ¬p of the logical negation of p, depending on the
completeness of the inference algorithm and thus also on the formal logic system. NAF has been an
important feature of logic programming since the earliest days of Prolog.

The choice to rely on the OWA is natural considering the envisioned applications of the Semantic
Web. Indeed, when scaling to the Web, the absence of a piece of knowledge should not generally be
taken as an indication that this piece of knowledge is false. However, there are also application scenarios
where the CWA, or at least the partial closure of the KB, is a more natural choice. Such scenarios can
for example occur if ontology-based reasoning is done in conjunction with data stored in a database.
Databases are often considered to be complete, thus statements not in the database should be taken
as false. Knorr et al. provide the following example where a combination of OWA and CWA is desired
[120]. Consider the large case study described in [121], containing millions of assertions about matching
patient records with clinical trials criteria. In this clinical domain, open world reasoning is needed in
radiology and laboratory data. For example, unless a lab test asserts a negative finding, no arbitrary
assumptions about the results of the test can be made. That is, we can only be certain that some
patient does not have a specific kind of cancer if the corresponding test has a negative result. However,
the closed world assumption can and should be used with data about medical treatment to infer that
a patient is not on a medication unless otherwise stated. The work described applies only open world
reasoning but claims that the usage of closed world reasoning in data about medical treatment would
be highly desirable and that the combination of OWA and CWA is an open problem in their work [121].

In assisted living spaces, contextual information is evolving and a detected situation is valid for a
short period of time only. The most needed feature for a reasoner to be used in AAL is the possibility
and ease to retract information, and derive its negation, both for asserted and inferred information.
It has not been ignored that removing pieces of knowledge from an ontology is traditionally not a
good practise. However, there are several reasons to support this choice in the targeted use-case.
Most importantly, we do not want to overload the triplestore with deprecated triples having an older
timestamp. We would also prefer to avoid dedicating processing time to select triples with the newest
timestamp. To support this choice, I propose a mechanism such that the existence of a “thing” is
never removed from the ontology. In other words, triples defining a new class, property or individ-
ual will never be removed. In an ontological graph, nodes are therefore anchored, while branches can
be changed freely to represent the current contextual information available. E.g. if a resident walks
to another room, the triple ns:resident aal:locatedIn ns:kitchen is replaced by ns:resident

aal:locatedIn ns:bedroom, whereas the “existential” triples ns:kitchen rdf:type aal:Room and
ns:bedroom rdf:type aal:Room remain untouched. This approach leverages the relatively short life-
cycle of statements in the KB as compared to resources. Indeed, if statements are dynamically added
and removed according to the evolution of the situational data, resources are more of a static entity
in our use-case. For instance, classes and properties define the model of the KB and are created at
the design level; while individuals characterise the environment of deployment (e.g. spacial organisa-

48

5.3. WHICH INFERENCE ENGINE FOR AAL?

tion, sensing hardware, people) and are created at the deployment level or when the environment is
structurally modified.

We would like as well to retract inferred triples easily, when the conditions necessary to their infer-
ence are not fulfilled anymore. Using a graphical analogy, let us consider an asserted piece of knowledge
as a node, and the knowledge inferred partly from this node as new nodes branching downwards (uni-
directional relation) from it. The expected behaviour is that if a node is removed, which means the
represented piece of knowledge is withdrawn, all nodes branching downwards from it should be removed
as well. Although it is easy to use SPARQL queries, among others, to update the asserted triples in
the ontology, the automatic removal of inferred triples as described above is more complex. Due to the
OWA of RDF, and SWRL being built on top of RDF, SWRL rules can be written to add new triples
into an ontology but not to retract triples from it [122]. If one tries to assert a new value for a prop-
erty, two values will then be coexisting. Optionally, the property can be characterised as functional to
indicate that only one value is possible. However, this does not mean that the property will be updated
but rather that the KB will become inconsistent when the two values are coexisting.

Some reasoners—e.g. Pellet as mentioned above—have a rule syntax that is not expressive enough
to allow the retraction of knowledge. Others—like EYE or Prolog—provide a syntax for partial closure
and negation (Scoped Negation As Failure (SNAF)) which can however be used only in rule
antecedents. It is thus possible to verify the negation of a statement but not to infer it. In both
cases, one must annotate a part of the knowledge as deprecated and write external queries (e.g. with
SPARQL) to filter it out. Finally, some reasoners—e.g. Jena, RacerPro—use rules that can remove
triples directly. In the three cases, it is needed to manually retract knowledge inferred from the asserted-
then-retracted “nodes” (same graphical analogy). I did implement some inference rules dedicated to
cleaning the ontology after a retraction happened. Although it is working well, this increases the
complexity at design level and naturally decreases the performance of the system. I finally realized
when experimenting with EYE that even though its expressiveness did not allow the retraction of
knowledge, the reasoner having no live state, the knowledge previously inferred from now-deprecated
data is simply not inferred anymore. The live state of a reasoner is the state in which the reasoner
remains in between two inferences. It is used to keep in memory the inferred state of an ontology, thus
inferred knowledge does not need to be inferred again. In our use-case however, I’d rather use a rule
engine with no live state (i.e. no memory), as it is then only needed to care about information being
asserted or retracted, and the rest is handled automatically, similarly to the “downwards branching
nodes” approach described above. I observed that reasoners often implement complex mechanisms to
infer knowledge with incremental updates; but I found more suitable, in the AAL use-case, to use a
naive-only inference (i.e. with no live state) like what is provided by EYE. To summarise the life-cycle
of statements in the KB when adopting EYE, asserted statements live as long as they are not retracted,
they are not affected by other retractions than their own; inferred statements’ lifespan is conditioned by
the life of their inference conditions, if the conditions have not changed, the statement will be inferred
again, whereas if one of the conditions was retracted the statement does not hold anymore.

In conclusion, although combining the OWA and CWA is desirable, it has fundamental implications
as well as an impact on the decidability of the inference. I find that the limited and more conservative
use of SNAF in EYE may be a good middle ground. Moreover, EYE’s peculiarity of not having a
live state, although counter-productive in some use-cases, seems helpful with maintaining a reasonably
sized ontology as needed in semantically driven context-aware systems.

Processing Efficiency

Taking into account more common applications of the Semantic Web in the cloud, one can easily
imagine having reasonable resources to process knowledge. However, in the AAL use-case, it may be
necessary to embed the reasoner into a low processing power and low power consumption device, so that
this device can be easily integrated anywhere in a house. E.g. the reasoner used for our deployment
in Singapore runs on a tiny debian machine whose CPU turns at 500MHz with 500Mb of RAM, and

49

CHAPTER 5. DESIGNING A SEMANTIC CONTEXT COMPREHENSION ENGINE

consuming only 5W. Moreover, the data inferred is highly dynamic; unlike traditional web data which
is updated by human users with a low frequency, context information is derived from ambient sensors’
activations representing people’s behaviour in real-time, therefore the update rate is below the minute.
Finally, the inference is used to compute which services should be provided in the environment and
with which interaction modality depending on users’ action. Users should have the feeling of an almost
instant response time, therefore the inference period has to be set very low (i.e. high frequency). These
three peculiarities of the AAL use-case form the requirement on the processing time, thus on processing
efficiency.

Scalability of Inference

Our service framework for assistive living is usually tested in a few rooms, or at most a few houses. But
it is difficult to estimate the extent of the monitored/serviced space in which it will be deployed once
AAL technologies get a larger adoption. Let us consider that we are deploying at the scale of a whole
building. A standard public housing block holds over 90 apartments in Singapore. Should we plan to
have one reasoner per room, per apartment or even per building? With regard to the Linked Data
philosophy [123] and due to the interconnection of events inside the building, it makes sense to think of
a reasoner per building to be able to draw relations between the data from all apartments. Considering
the numerous smart cities initiatives that suggest the extension of smart spaces to the city level [124],
the number of triples to be considered at the reasoning step might suffer a genuine explosion. Thus we
have to include a requirement on the scalability of the system, e.g. reasoners inferring with quadratic
cost should be prioritized compared to those running with exponential cost. Although I expressed
in the beginning of this section some reservations towards semantic reasoners’ benchmarks, I give in
section 5.3.2 some figures to compare selected reasoners in this perspective.

5.3.2 Comparison on Inference Engines

The previous section introduced the main requirements I believe are to be fulfilled by a semantic
reasoner in order to be used efficiently in the AAL use-case. Some are immediate necessities like the
retractability of knowledge or the processing efficiency, others are key challenges enabling larger scale
deployments like the scalability. Below, in a bit of a narrative manner to preserve the thought process I
had during the study, I analyse the suitability of four available reasoners that I have selected and tried
as part of this doctoral work.

Jena: The Predominant Semantic Framework

In the AAL community, the Jena framework [125] is predominantly used. This might partly be
explained by a certain unawareness about the possible alternatives, as well as by the apparent ease of
use of Jena compared to other reasoning engines. Indeed, Jena has a few advantages compared to its
rivals. For instance, it probably provides the most complete Java Application Programming Interface
(API) for building semantic applications. Unlike most of the other alternatives, Jena was designed
to be used in Java and its principles of programming are therefore more natural for a programmer
getting a first hand on semantic web technologies. Actually, taking into account the possibility to
implement Java built-ins that can be called directly from an inference rule, one might not even realize
the differences induced by the declarative reasoning paradigm. Moreover, Jena comes fully featured
with, among others, an API to build, populate and modify ontologies, an inference engine using its own
rule format, and an integrated SPARQL query point.

Despite all the above, I am having mixed feelings about my experience developing using Jena and
would like to express some reservations about it. In fact, without having to load the ontology much, I
could observe some inconsistencies in the reasoning when trying to use several rules to collaborate on one
decision. I could indeed infer the same ontology with the same rules consecutively and obtain different

50

5.3. WHICH INFERENCE ENGINE FOR AAL?

results. This is of course not the general case but could be easily observed when introducing some
dependencies between the antecedent of a rule and the conclusion of another, which is something quite
basic. While trying to explain this flimsy behaviour, I found out that Jena’s integrated inference engine,
although more expressive than OWL-DL, was actually providing an incomplete OWL-DL entailment
[126]. Using Pellet as an external reasoner through the DIG interface was advised. Consequently I
started to compare the features of available semantic reasoners and their ease of use in our peculiar
use-case. My motivation towards this particular part of the doctoral work grew as I met researchers in
the community interested in finding an appropriate reasoner.

Pellet: The Famous Alternative

Since Jena can be used through DIG with Pellet [127] as an external reasoner, it lets developers switch
reasoners while keeping the system infrastructure in place. They do not need to implement again the
non-inference-related modules, such as the module updating the ontology depending on sensors inputs.
Thus, Pellet is a popular inference engine that is often adopted to replace Jena while being combined
with it since Jena remains the central component of the semantic framework although it does not
handle the inference anymore. Through DIG, Pellet can also be used directly from Protégé, a popular
ontology editor, making it a valuable tool at the ontology/rules design level. Moreover, Pellet’s rules
are based on SWRL which makes it interchangeable with some other inference engines at the rule level.
I logically decided to try out Pellet, however as explained in section 5.3.1, SWRL does not support the
retraction of triples and makes it difficult to be used in the AAL use-case. I consequently abandoned
Pellet due to basic expressivity issues.

RacerPro: The Fully-Featured Commercial Option

I then searched a reasoner able to tackle the knowledge retractability issue (see section 5.3.1) and
found RacerPro∗ [128], a commercial reasoner with add-ons to the W3C recommendations. RacerPro
provides an integrated knowledge repository with custom optimizations to enhance performance and,
more essentially for us, to increase the expressiveness of inference as it enables the retraction of triples
from the repository. Hence, although it is necessary to write rules dedicated to retract triples in order
to clear the ontology, the system is at least functional. Other than being a closed-source shareware,
RacerPro has its own downsides emerging from its expressive rule/query language. Indeed, this lan-
guage is actually the most complex that I have used, which increases significantly the workload at the
implementation phase.

EYE: The Lightweight “Naive” Reasoner

While facing implementation difficulties with RacerPro, I stumbled upon another alternative with Euler
[129], and more specifically the EYE implementation by Jos De Roo from AGFA Healthcare who is
also involved in the W3C Semantic Web Activity Working Group. EYE is notably using N3, the most
human-readable RDF syntax. It has the advantage to be among the fastest reasoners I found that had
a full OWL-DL entailment, and it is also the most lightweight of the reasoners I selected. However, if
EYE provides a syntax for SNAF, it can only be used in rules antecedent and I therefore faced again an
expressivity issue related to statements retraction from the ontology. Despite this limitation, I realized
that EYE providing a naive inference, the issue could in fact be bypassed to some level as I explained
in section 5.3.1. My current choice remains EYE for the reasons stated above, and the remainder of
this chapter has been designed and implemented using it.

∗I would like to express my gratitude to Racer Systems for according me a free educational license of RacerPro following
their effort to support education and research.

51

CHAPTER 5. DESIGNING A SEMANTIC CONTEXT COMPREHENSION ENGINE

Synthetic Comparison

I have described above the selection process I went through and highlighted the advantages and draw-
backs for each selected reasoner. Table 5.1 summarizes the aspects taken into consideration with some
key specifications for each of the four reasoners. The first half of the table provides a good represen-

Table 5.1: A Comparative Table of Semantic Reasoners

Jena Pellet RacerPro EYE

OWL-DL entailment incomplete full full full

Rule format own, basic &
built-ins

SWRL own, powerful N3 & restricted
built-ins

Retractability yes can emulate
stateless

yes stateless

Ease of use average easy complex easy

Response time for 100
triples*

783ms 442ms ∼503ms 4ms

Response time for 1,000
triples*

29,330ms 38,836ms ∼44,166ms 40ms

Response time for 10,000
triples*

out of memory out of memory out of memory 436ms

Scalability Very limited Average Limited Good

Size (download) 22.3Mb 24.3Mb 60.3Mb 12.9Mb

Licensing freeware, open
source

freeware, open
source

shareware, closed
source

freeware, open
source

*Figures extracted from the linear relationship benchmark [130] for Jena, Pellet and EYE (cwm also available).
Cross-integration of RacerPro through a comparison with Pellet [95].

tation of the engines’ expressiveness, the ease of use being purely qualitative, subjective, and based on
my hands-on experience. It is interesting to note that the languages closest to the W3C specifications
are the ones I found the most straightforward to use. Based on this first half, Pellet and EYE appear
to be the two best options (when considering that the naive reasoning style of EYE can be emulated
for Pellet). I refined then my analysis with more quantitative specifications (second half of the table),
addressing in a way the concerns about processing efficiency and scalability of inference described in
section 5.3.1. Despite the reservations I hold about such benchmarks, we observe in the response time
the superiority of EYE. Finally, the qualitative classification of engines’ scalability is given subjectively,
taking into account the response time profile, the ease of use and the inference completeness (OWL-DL
entailment). These multiple aspects and requirements taken into consideration, I have argumented and
explained my choice of EYE as the premier inference engine used in our context-aware service frame-
work. To be specific about the scope of this choice and recommendations, I would like to highlight
that EYE has two advantages applicable to any use-case: its processing efficiency due to its optimized
implementation and compilation based on YAP, and its human readable formalization language using
N3. However, EYE is a naive (memoryless) reasoner, which is crucial from our perspective but might
be counter-productive in many applications. Here lies the main trade-off in my choice.

At this point, one might also wonder about the level of reasoning chosen in my implementation.
Using EYE for the inference, developers are able to use any subset of rules catering to their specific
needs. The chosen subset simply needs to be written in an N3 file and fed to EYE when launching the
inference. My implementation is so far using a subset of OWL 2 RL, but I might choose to use rules
from a higher level of reasoning if needed in the future.

52

5.4. RULE DESIGN FOR CONTEXT COMPREHENSION

5.4 Rule Design for Context Comprehension

5.4.1 General Concepts of The Rule Design

Following my design principle, the rules described in this section can be interpreted according to
the “Data-Information-Knowledge-Wisdom” (DIKW) hierarchy. This hierarchy, which refers
loosely to a class of models for representing structural and/or functional relationships between levels
of formalisation of a domain [131], has been defined as follows by D. P. Wallace [132]: Data is a
nonsensical stimuli providing a subjective observation that is meaningless and mostly useless on its
own; Information is data endowed with meaning and purpose, obtained by the fusion of multiple
sources of data inferred with common sense, making it valuable; Knowledge is a fluid mix of framed
experience, values, contextual information, expert insight and grounded intuition. There is less reference
toWisdom which has a more debatable meaning, hence I choose to downplay its role in the hierarchy.
To summarize, I consider that the rule-based inference of residents’ context from sensor data should
be seen as the structuration and linkage of situational data into contextual knowledge. In our peculiar
domain, Data is a meaningless (no semantics) and mostly useless (redundancy) signal coming from
sensors. Information is non-redundant and has attached semantics since it is available in an ontological
form; thus it is more useful and calculable. Knowledge is inferred from Information and formalises the
contextual information at a higher level, closer to how a human being would formulate it. The main
difference between my consideration and the definition by D. P. Wallace is that I choose to fuse sources
and incorporate common sense one stage later, i.e. at the inference of information into knowledge.

The inference itself, based on DL, is composed of a set of first-order rules like “antecedent (i.e.
conditions) ⇒ consequent (i.e. conclusions)”. Such rules can be written in many ways and at disparate
levels of abstraction. Here lies one of the challenges of such systems: we seek to design rules that
are simple enough to enable fast deployment, iterative design and collaboration between rules; but
complex enough to be generic, handle complex situations and keep the number of rules limited. The
direction I have been taking is to characterize individuals in the model with parameters that capture
key information and can be used in rule antecedents to perform the inference. The rules’ conditions
are then set on the parameters of instances rather than on the instances themselves, which abstracts
the reasoning and tends to replace implementation of rules by their implementability. In summary, I
try to write abstracted rules that rely on a better model parametricity.

In some cases, such as for the selection of an interaction device based on the context of the user,
a good level of parametricity can be achieved and abstract rules can therefore be written. In other
cases, the parametrisation of the model is more challenging and other techniques must be used. Let us
consider the simplified example below:

∀ Service s, Resident r, Location l, Device dc, Activity a, Deviance da
(r hasContext da) ∧ (s helpsWith da) ⇒ (s runningFor r)

(s runningFor r) ∧ (r locatedIn l) ∧ (dc deployedIn l) ∧ ¬(dc fitted false) ⇒ (s onDevice dc)

(r hasContext a) ∧ (a needHands true) ∧ (dc handheld true) ⇒ (dc fitted false)

In this example, three rules are used. The second and the third one, handling the selection of a device
of interaction, are well parametrised. Indeed, the device is selected based on its location in the second
rule, and on its ability to be used hands free in the third rule. For the first rule however, the model
parametrisation is more challenging as it concerns the comprehensive representation of the residents’
context. As explained in section 4.5, the context model designed as part of this doctoral work is kept
simple and its parametrisation of the context is insufficient to write abstract rules inferring the services
to start based on the residents’ context. In this specific case, services can be directly linked to a given
context since they are designed to respond to a given context. This is how we can still, in the first rule,
write an abstract rule which, although less parametrised and thus less adaptive, performs the selection
of services to provide to the residents.

53

CHAPTER 5. DESIGNING A SEMANTIC CONTEXT COMPREHENSION ENGINE

When no obvious parametricity can be incorporated in the model and no abstraction of the rules
can be achieved, we must find mechanisms to ease the design of rules and keep it iterative, while
preserving the collaboration between rules. This is for example the case when we want to infer the
lowly parametrised context of residents based on situational data gathered from sensors. It is even
truer when we place ourselves in a bottom-up use-case where only drastically limited situational data is
available. First, I believe that a scope of inference must be defined in order to preserve a good control
on the number of rules while ensuring that all the necessary situations are being addressed. We must
then find a way to leverage as much of what can be abstracted in the rules as possible, and, in parallel,
simplify the way in which the domain knowledge and common sense are formalized. I describe in the
next section the approach I propose to infer activities in a bottom-up use-case.

5.4.2 Activity Inference: Balancing Rationalism and Empiricism

Scope of the Activity Inference

Taking into account the constraints described above, I had to define properly the scope of the activity
recognition. I decided to reduce the possible outcomes of the inference to a selected set of primordial
activities thought to be high-level enough such that their detection would be possible with the limited
situational data available and with minimal assumptions made about the resident’s lifestyle. The
activities chosen are listed and described shortly in Table 5.2.

Table 5.2: Scope of Activities to be Detected by the System

Activity Description

Sleep Present with little motion in a bedroom

Get up Fixed duration after sleep, if no other notable activity

Go toilet Go to the toilet (limited duration)

Hygiene Go to the bathroom (limited duration)

Cook Prepare a meal in the kitchen

Eat Eat the meal in any room

Clear table Clear table and clean dishes back in the kitchen

Take a nap Similar to sleep out of the bedroom

Occupied Encompass several finer grain activities with motion

Go outside Go out of home

Come home Fixed duration after go outside

Socialize Meet other people at home

Run away Go out in the middle of the night or for too long

Fall Unusual lack of movement in the home

Naturally, each resident has his own lifestyle where activities could be differentiated based on time or
duration factors. E.g. we could take into account that a resident usually takes a nap of approximately
80 minutes (spanning between 45 and 110 minutes) around 14:00 in order to differentiate it from a
possible fall. However, I present here a method with no cold-start, i.e. which does not require any
learning in order to perform the inference. The only data available for the inference is therefore the
motion of residents in their home. This method could therefore be used to provide estimated labels for
the supervised learning of other methods.

Rule-Based Activity Inference

As introduced above, in order to ensure the recognition of activities in real-time and with no cold-
start, i.e. without requiring any learning of the lifestyle of the resident, I define an explicit rule-based

54

5.4. RULE DESIGN FOR CONTEXT COMPREHENSION

inference of the activities performed by the residents with no assumption made about their habits. This
implies that I cannot use any time-based condition for the inference since elderly people, especially when
facing some level of dementia, are prone to have their lifestyle lightly to heavily shifted from the social
standards. For example, they could be sleeping late at night and for a short period of time, while
compensating by naps during the day. The time at which they take their meals might be unpredictable
as well. After consulting with doctors, we learned that this was not an issue, whereas observing changes
overtime in their own habits was more likely to indicate some clinical issue. Taking into account these
observations, I propose for the activity inference a mechanism based on three complementary types of
rules: rules of reasoning, rules of fact and arbitration rules.

As explained by Dargie et al., knowledge in context-aware systems can be acquired through pure
reasoning alone or via experiences as perceived through the senses and stored in the memory [106]. This
is highly related to the philosophical opposition between rationalists and empiricists, who for centuries
debated the epistemological question of how knowledge is acquired by humans. Dargie however tends
to agree with both sides. Philosophically, my position would be the closest to the ideas defended by
Gottfried W. Leibniz, a German mathematician and philosopher. Leibniz was known, among others,
as one of the great seventeenth century advocates of rationalism. He notably claims in his famous
work, the Monadology [133], that “there are two kinds of truths, those of reasoning and those of fact.
The truths of reasoning are necessary and their opposite is impossible; the truths of fact are contingent
and their opposites are possible”. This recognises the role played by empiricism in epistemology, but
highlights the superiority of rationalism. He defends in this work that in principle, all knowledge can
be accessed by rational reflection (truths of reasoning). However, due to the shortcomings in their
rational faculties, human beings must also rely on experience as a mean of acquiring knowledge (truths
of fact). This is to provide an alternative in formulating knowledge when we face a too high complexity
in rational reflection. Leibniz calls this the infinite analysis.

Similarly and applied to the AmI field, rules use to infer contextual knowledge should ideally be
rules of reasoning, i.e. abstract rules that translate some irrevocable knowledge or common sense
and can be applied with no doubt about the existence of a contradiction. However, due to limitations
emerging from both the situational data available and our modelling faculties, such rules cannot always
be written. Hence, we need to introduce rules of fact to translate products of experience and intuition,
which however may find holding contradictions. These types of rules are described in details below.

Type I – Rules of Reasoning These rules perform the fusion and augmentation of contextual data
received from sensors into higher-level contextual information such as residents’ location or their use
of objects. They also compute durations from timestamps. The relation to rationalism is due to the
rules being translated from known scientific models or common sense. In Source 5.1, the first rule is
tracking the location of residents in their house. This rule is formalized in DL below for reference and
comparison with its N3 syntax (Source 5.1).

∀ Sensor se; SensorState st; Room r, r2; House h; Resident u; Timestamp t;
(se hasCurrentState st) ∧ (se hasLastUpdate true)
∧ (st indicateLocation true) ∧ (se deployedIn r)

∧ (r partOf h) ∧ (u liveIn h)
∧ (u detectedIn r2) ∧ (r2 6= r) ∧ (se lastUpdate t)

⇒ (u detectedIn r) ∧ (u cameFrom r2) ∧ (u inRoomSince t)

Source 5.1: Rules of Reasoning (N3, Type I)

1 @prefix log: <http ://www.w3.org /2000/10/ swap/log#>.

@prefix math: <http ://www.w3.org /2000/10/ swap/math#>.

@prefix ts: <triplestore #>.

track resident location [live + persistent]

55

CHAPTER 5. DESIGNING A SEMANTIC CONTEXT COMPREHENSION ENGINE

6 {?se qol:hasCurrentState ?st. ?se qol:hasLastUpdate true. ?st qol:indicateLocation true

. ?se qol:deployedIn ?r. ?r qol:partOf ?h. ?u qol:liveIn ?h. ?u qol:detectedIn ?r2.

?r log:notEqualTo ?r2. ?se qol:lastUpdate ?t} => {?u qol:detectedIn ?r. ?u qol:

cameFrom ?r2. ?u qol:inRoomSince ?t. ts:n3store ts:update {?u qol:detectedIn ?r. ?u

qol:cameFrom ?r2. ?u qol:inRoomSince ?t}}.

infer durations [live only]

{?since qol:hasDurationEquivalent ?for. ?x ?since ?start. hom:clock qol:hasValue ?now.

(?now ?start) math:difference ?duration} => {?x ?for ?duration }.

In the first rule, lastUpdate marks for each sensor the timestamp of the last event received, while
the predicate hasLastUpdate is a boolean flagging the sensor which sent the last event that started the
reasoning cycle. We also note that rules can have a live and/or persistent range, i.e. their consequent
can be inferred temporarily and hold until the end of the reasoning cycle or written in the triplestore
(using ts:n3store ts:update) so that it still holds in the next reasoning cycle. The second rule
in Source 5.1 infers the value of all duration properties “?for” for which a binding exists with their
timestamp equivalent “?since”. This binding, if any, should be declared in the model using the
property hasDurationEquivalent.

Type II – Rules of Fact The rules from this second type correspond to the evolution from informa-
tion to knowledge in the DIKW hierarchy. Their relation to empiricism is due to their incorporation of
domain knowledge emerging from experts’ experience, intuition and insight. Each rule votes indepen-
dently in favour or against an activity by giving it a score ranging from -10 to 10. The score given by
a rule should increase when either the activity or the rule is more meaningful; for example the “sleep”
activity in Source 5.2 is considered specific and can be distinguished easily from others so it receives a
high score, whereas the “occupied” activity is more like a default activity when movement is detected
and nothing more specific can be inferred about the context of the resident, thus it receives a lower
score. Dangerous activities that cannot be missed are also given a high score as can be seen for “fall”
and “run away”. Rules can also give a negative score to vote against activities in order to balance
positive scores given by other rules. E.g. we can see that the second rule for “occupied” and “sleep”
decreases the score obtained by the activity when it has been inferred continuously for a long time.
This is useful to take into account the maximum duration for which it is safe to accept an activity—we
do not want to detect showering for three hours. Of course the score is decreased in one step in this
example but some fuzzy scoring is also possible.

Source 5.2: Rules of Fact (N3, Type II)

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

@prefix xsd: <http ://www.w3.org /2001/ XMLSchema #>.

4 @prefix func: <http ://www.w3.org /2007/rif -builtin -function#>.

@prefix prof: <profile#>.

@prefix : <rules#>.

definition of localy useful property

9 :getScore a owl: DatatypeProperty;

rdfs: comment " Indicates that a rule is in favor of recognizing an activity with a

score."@en;

rdfs: comment "the score should be from -10 to 10."@en;

rdfs: domain qol:Activity;

rdfs: range xsd:int.

14

go to the toilet (+ max duration)

{?u qol:detectedIn ?r. ?r a qol:Toilet. ?u qol:inRoomFor ?d. ?d math:lessThan ?u!prof:

maxToiletDuration} => {hom:goToilet :getScore 7}.

occupied (+ max duration)

56

5.4. RULE DESIGN FOR CONTEXT COMPREHENSION

19 {?u qol:liveIn ?h. ?h qol:motionMeasured ?m. ?m math:notLessThan ?u!prof:

minOccupiedMotion} => {hom:occupied :getScore 2}.

{?u qol:believedToDo hom:occupied. ?u qol:doesActivityFor ?d. ?d math:notLessThan ?u!

prof:maxOccupiedDuration} => {hom:occupied :getScore -1}.

sleep (+ max duration)

{?u qol:detectedIn ?r. ?r a qol:Bedroom. ?u qol:inRoomFor ?d. ?d math:notLessThan ?u!

prof:minSleepInitiation. ?r qol:motionMeasured ?m. ?m math:lessThan ?u!prof:

maxSleepMotion} => {hom:sleep :getScore 6}.

24 {?u qol:believedToDo hom:sleep. ?u qol:doesActivityFor ?d. ?d math:notLessThan ?u!prof:

maxSleepDuration} => {hom:sleep :getScore -5}.

run away

{?u qol:useNow ?d. ?d a qol:Door. hom:clock qol:hasValue ?t. ?t func:hours -from -

dateTime ?h. ?h math:notLessThan ?u!prof:outTooLate. ?h math:lessThan ?u!prof:

outTooEarly} => {hom:runAway :getScore 9}.

{?u qol:detectedIn ?o. ?o a qol:Outside. ?u qol:inRoomFor ?d. ?d math:notLessThan ?u!

prof:outTooLong} => {hom:runAway :getScore 9}.

29

fall

{?u qol:believedToDo hom:nothing. ?u qol:doesActivityFor ?d. ?d math:notLessThan ?u!

prof:maxInactiveDuration} => {hom:fall :getScore 8}.

meet people at home

34 {?u qol:isAlone false} => {hom:socialize :getScore 8}.

Generally, scores should be set by a system expert who understands the impact that high or low
scores might have, as well as the relative importance of scores between the rules of potentially over-
lapping activities. In the rules of Source 5.2, one can also note the use of the prof: namespace to
query information stored in the resident’s profile, as well as another syntactic sugar of N3 with the “!”.
“!” is a syntactic sugar specific to EYE which would actually be replaced by “.” according to the N3
specifications. It allows the creation of forward traversal paths of the graph that would be read as “ ’s”
in English. For instance:

?d math:lessThan ?u!prof:maxSleepDuration.

would be recomposed as

?u prof:maxSleepDuration ?x.

?d math:lessThan ?x.

in full N3. The prof: namespace provides a number of datatype properties that can be used to describe
the habits of residents. E.g. properties like maxSleepDuration or maxSleepMotion are profiling details
about residents that can be learned statistically overtime. However, to ensure the proper cold-start
performance of the framework, I have pre-filled each resident’s profile with default values set purposely
very loosely such that conditions using them would not be affected. For example, maxSleepDuration
and outTooLate were respectively set to 10 hours and 23:00, which is in both cases so much that it
gets alarming for any elderly person. Thus, I do as little assumptions as possible about the residents’
lifestyle, yet I leave opportunities for performance improvements when meaningful customized behaviour
analytics will be available. Another avenue of improvement would be to add to all activities timely
conditions as I did for the “run away” rules. This also requires an historic to be built to mine the
statistical time of the day for each activity, if any relevant value can be found.

Type III – Arbitration Rules The rules from the third type arbitrate the scoring system by
computing the Rule-Based Confidence Score (RBCS) of each activity and decide on the most
probable activity. The RBCS of an activity represents the percentage of all distributed points given
to the activity. It requires to compute the total score getFinalScore for each activity (first rule in

57

CHAPTER 5. DESIGNING A SEMANTIC CONTEXT COMPREHENSION ENGINE

Source 5.3). In the second rule, if the total amount of points distributed is not over a given threshold, we
consider that no activity is really standing out and a score of 10 is given to the activity “nothing”, which
might result in a fall being detected. The threshold used is fixed according to the score distribution
profile of the type II rules such that the “nothing” activity comes up in case no activity gets sufficient
confidence to be inferred. For instance, in the example provided “occupied” and “sleep” both go down
to 1 point in case they have been inferred for a too long time; the threshold is hence set to 2 point
such that “nothing” takes over in such case. The threshold must be fixed by the system expert who
has given the score of the different type II rules. The third rule computes the RBCS for each activity
and the fourth infers that the resident performs the activity with the highest RBCS. The arbitration is
kept simple for now as we take the maximum RBCS to infer the activity but more complex mechanism
could be tested and a global arbitration with results coming from other activity recognition algorithms
may be introduced here.

Source 5.3: Arbitration Rules (N3, Type III)

@prefix e: <http :// eulersharp.sourceforge.net /2003/03 swap/log -rules#>.

definition of localy useful property

4 :getFinalScore a owl: DatatypeProperty;

rdfs: comment "Computed total score over all single -rule scores."@en;

rdfs: domain qol:Activity;

rdfs: range xsd:int.

9 ## sum scores and compute confidence [live only]

if no activity stand out then give score to hom:nothing [live only]

{?ac :getScore ?x. ?SCOPE e:findall (?sc {?ac :getScore ?sc} ?list). ?list math:sum ?

total} => {?ac :getFinalScore ?total}.

{?SCOPE e:findall (?sc {?ac :getScore ?sc} ?list). ?list math:sum ?grandtotal. ?

grandtotal math:lessThan 2} => {hom:nothing :getScore 10}.

{?SCOPE e:findall (?sc {?ac :getFinalScore ?sc} ?list). ?list math:sum ?grandtotal. ?

grandtotal math:notLessThan 0.1. ?ac0 :getFinalScore ?fs. (?fs ?grandtotal) math:

quotient ?cs} => {?ac0 qol:getRBConfidenceScore ?cs}.

14

infer most probable activity [persistent only]

{?SCOPE e:findall (?rbc {?ac qol:getRBConfidenceScore ?rbc} ?list). ?list e:max ?maxrbc

. ?ac qol:getRBConfidenceScore ?maxrbc. ?u qol:liveIn ?h. hom:clock qol:hasValue ?

now} => {ts:n3store ts:update {?u qol:believedToDo ?ac. ?u qol:doesActivitySince ?

now }}.

We note here the use of e:findall which needs to be further detailed. In order to make semantic
technologies more usable and practical to use in applications, the W3C semantic workgroup provides
non-W3C-endorsed extensions under the Semantic Web Application Platform (SWAP) initiative [134].
One extension is the possibility to use built-in functions, often specific to an inference engine, which
are properties that the engine can infer, or use to infer statements. The most commonly used built-ins
are from the logic framework defined by the W3C under the namespace prefixed log: in Source 5.1.
For instance, we use the log: namespace in all the rules as the inference capability is provided by the
log:implies built-in hidden behind the syntactic sugar “=>”. EYE also has its own dedicated built-ins
declared in the namespace prefixed e: in Source 5.3, among which e:findall can be found. Used as
?SCOPE e:findall (?SELECT ?WHERE ?ANSWER), it unifies ?ANSWER with a list that contains all the
instantiations of ?SELECT satisfying the ?WHERE clause within the ?SCOPE of all asserted and inferred
N3 formulae.

5.4.3 Rules Verification Using Formal Methods

The heterogeneity of technology and the reliance on ad-hoc communication networks make pervasive
systems highly complex [135]. Furthermore, various environmental inputs and unpredictable user be-
haviours might drive the system beyond control, especially when multiple users are interacting with it

58

5.4. RULE DESIGN FOR CONTEXT COMPREHENSION

simultaneously. Therefore, it is a challenging task to guarantee the correctness and even the safety of
such systems. Traditional validation methods such as simulation and testing have their limitations in
performing this task since they can only cover partial system behaviours based on selected scenarios.
Our system, and especially my rules have been validated using formal methods to analyse all reachable
states of the system in order to overcome these limitations. This work was realised in collaboration
with a specialised team of the National University of Singapore, and notably through the corresponding
doctoral work of Ms. Zhang Xian & Ms. Liu Yan [136].

To begin, we identify critical properties of the system and provide their specification patterns in cor-
responding logics. According to the stakeholders (designers, engineers and users), safety requirements
are essential to pervasive computing systems. Arapinis et al. proposed some critical requirements of
a homecare system [137]. For instance, sensors should never be offline when a patient is in danger;
or if a patient is in danger, assistive services should be provided within a given time. In our work,
we classify the important requirements into safety properties (i.e. nothing bad should happen) and
liveness properties (i.e. something good should eventually happen). Furthermore, formal specification
patterns of these properties are proposed; and consequently we can verify the critical properties against
the system model by using automatic verification techniques like model checking [138]. Hence, design
flaws can be detected at the early design stage.

Properties to Check

Liveliness Properties I provide here two examples of liveliness properties that have been checked
to certify the system’s behaviour.

1. Deadlock freeness: This is one of the important requirements. A deadlock happens when the
system reaches a state where no more action can be performed. It can lead to serious consequences
such as undetected falls of the resident. Deadlock checking is supported in most model checking
tools.

2. Guaranteed services: A well-designed service framework should impose a fundamental respon-
siveness requirement on the service provision. For example, if a resident falls, it should be
guaranteed that a notification is sent within a reasonable amount of time. Effectiveness of
these services is an important characteristic of the system for the users. To specify this re-
quirement, we propose patterns of liveness properties using Linear Temporal Logic (LTL) such
as M (ResidentFall → ♦ FallAlertSent). In this example, M and ♦ are LTL operators read
as “always” and “eventually” respectively. The services are usually required to be delivered in
bounded time. To specify the bounded liveness properties, one can use Timed Computational
Tree Logic that integrates clock constraints in model checking.

Safety Properties Like in the development and prototyping of numerous systems, cost can be re-
duced by the early detection of issues, which is desirable considering the re-engineering workload. For-
tunately, unwanted scenarios can be specified in properties and checked using reachability verification
algorithms. I give as example three safety properties that can be checked in this manner.

1. System inconsistency: Sensor failures or wireless networks may cause situational data in the
system to be out-dated. The KB may consequently be inconsistent with the actual environment.
By defining and formalising such states, one can test against the system model to see if they are
reachable and how. Hence these states may be avoided by fine tuning the rule design.

2. Conflicting services: Guaranteeing that services are eventually delivered is not enough. It is also
important to check if these services are sent properly. Some problems have been reported by
domain experts, such as conflicts of reminders [139]. These problems are especially common in
multi-user settings. They can however be specified as states and checked using reachability tests.

59

CHAPTER 5. DESIGNING A SEMANTIC CONTEXT COMPREHENSION ENGINE

3. Rules properties: The correctness of rules is essential to the correct behaviours of systems. Prob-
lems include duplicate rules, conflicting rules and unreachable rules. This is also easy to specify.
For example, to check whether a rule is unreachable, the condition of the rule can be defined as
a state and a property can be expressed to test if the state is reachable.

Verification of the Properties

To summarise, a property that we want to check must first be defined as a state. We then use reach-
ability verification algorithms to exhaustively search the system state space to see if such a state is
reachable. The certification is obtained when liveliness properties are reachable and safety properties
are not. The system state space is defined as a representation of the whole system (human, hard-
ware and software) into a giant state machine where properties can be defined. This state machine is
composed of individual state machines that describe all possible behaviours of each component of the
system. This is illustrated in Figures 5.1 and 5.2 which represent the state machines implemented to
describe the behaviour of a resident as well as the bed pressure sensor respectively.

BED BeR BaR

OUT
OUT - Outside
BeR - Bedroom
BaR - Bathroom

start openBeRDoor
closeBeRDoor

openBeRDoor
closeBeRDoor
openBaRDoor
closeBaRDoor

sitUp
LieDown

leaveBed

sitOnBed

exitBeR enterBeR

enterBaR

exitBaR

wander
turnOnTap
turnOffTap
pressSoap
openBaRDoor
closeBaRDoor

Figure 5.1: State Machine Describing Residents Behaviour

EMP
TY SIT LIEstart

sitOnBed

leaveBed

lieDown

sitUp

Reasoning Engine

port!empty port!sitting
port!lying

Figure 5.2: State Machine Describing the Bed Pressure Sensor Behaviour

The remaining components of the system, including the various rules in use, are also described in
the same manner. Rules and their properties can therefore be checked with the rest of the system to
detect design issues before the deployment. All states of the machine are checked exhaustively to know
whether the state of given properties are ever possibly reached. In case a state is reached, a example
path to that state is provided, in the other case it is certify non reachable. Table 5.3 provides a sample
of the results obtained during the model checking process that is described in more details in [136].

We can conclude a few things from these results. First, model checking for systems as complex
as smart homes is very computationally challenging. The number of states and transitions that the

60

5.4. RULE DESIGN FOR CONTEXT COMPREHENSION

Table 5.3: Results of the Model Checking Verification of the System

Property Result Nb of states Nb of transitions Time (s)

Global deadlock freeness - - - out of memory

Bathroom deadlock freeness True 10.8M 15.8M 7045

Guaranteed wrong bed reminder True 1.6M 2.43M 1945

Guaranteed tap not off reminder False 70K 131K 39

algorithms have to scan to provide an exhaustive test is of the order of millions. For instance, we were
not able to certify a global deadlock freeness for the system (test going out of memory) and had to
divide it into deadlock freeness per room. For information, the experiment was run on an Intel Xeon
CPU running at 2.13GHz with 32GB RAM. This computational issue aside, model checking techniques
were found to be a very good tool for the rule design. From our experience, it provides valuable
feedback concerning eventual issues present in the reasoning, and which would probably take hours of
deployment to be detected. Hence we feel that it is a primordial way to improve the system safety,
especially for early adopters of AmI technologies. Indeed, it is important to find unexpected bugs based
on the stakeholders requirements before the deployment of the whole system. The model checking test
revealed, among others, an insufficiency in the rules antecedent for the selection of the “tap not off”
service. For instance, this service should be provided to a resident that has left the bathroom without
turning off the water tap. It was however sent to the wrong person when someone would enter the
bathroom at the same moment as someone else would leave it. Thanks to model checking tools, we
were able to add conditions in the rules to correct this mistake, thus reducing the risk of troubling
residents.

61

62

Machine learning is the science of
getting computers to learn without
being explicitly programmed.

— Andrew Ng, Stanford 6
Incorporating Data Driven Techniques and Quality of

Information

6.1 Limitations of a Purely Rule-Based Approach

I argued in the first part of this document my choice of a knowledge driven approach to context
comprehension with rule-based inference techniques. Indeed, such approach makes it easy to leverage
the important domain knowledge and common sense inherent to understanding people’s behaviour. It
also performs better than other techniques in situations where a very coarse granularity of situational
data is available. Finally, it solves the cold-start issue that we would face if we were using data driven
statistical techniques.

This being said, using a purely rule-based and knowledge driven approach has limitations as well.
Since this approach relies on the availability of structured and formalized data and prior knowledge,
it does not let information emerge from frequently observed patterns implicitly present in the data. I
believe that this could be compensated by combining data driven techniques and semantic reasoning.
It would indeed make a powerful coupling of rule-based techniques capturing domain knowledge, expert
knowledge and common sense; and statistical techniques extracting patterns from data itself in a less
“human bound” manner (i.e. without relying on prior knowledge and rules written by experts), which
would perhaps be more scalable. A data driven approach would also enable longer term observations
of the behaviours without having to make the semantic model used more complex and augment the
size of the ontology processed. Hence, shifts in the residents’ lifestyle could be observed and translated
into health assessment markers. The extensions proposed in this regard are described in section 6.2.

Another limitation of the semantic approach as I designed it, is the unavailability of previous
ontological states, and thus previous sensor states or activities for example. This makes it impossible
to write rule antecedents with conditions on the past activities of a resident. This limitation and the
related extensions are discussed in section 6.3.

Finally, although Quality of Information (QoI) is an important aspect of contextual information,
it has not been addressed yet as the reasoning engine proposed treats each piece of information as an
absolute truth. I describe in section 6.4 the challenges related to representing uncertainty in ontologies,
and propose an extension of the model to attach QoI metrics to ontological statements, together with
the corresponding rule syntax to integrate and propagate such metrics at the reasoning level.

6.2 Data Driven Analysis of Ontological Knowledge

6.2.1 Traditional Machine Learning Techniques on Ontologies

As a format for the storage of structured data, ontologies represent a convenient media on which
to perform machine learning. Although the triple-based representation is not the most conductive,

63

CHAPTER 6. INCORPORATING DATA DRIVEN TECHNIQUES AND QUALITY OF
INFORMATION

mechanisms can be introduced to lift the data into a more suitable format and lower it back into
its triple-based form. Indeed, data can be extracted from ontologies using deterministic queries and
serialized to a suitable format, say vectorised, in order to be fed to machine learning algorithms.
Moreover, the lowering of the results back into their semantic representation makes it easier to translate
results into meaningful observations. Using semantically labelled input data and being able to project
eventual patterns found in the data into a semantic space enables the semi-automatic translation of
these patterns in the vocabulary defined for the observation domain. This bridges the gap between
extracting interesting patterns and extracting meaning from the data.

In order to enable such connections, I propose the introduction in our framework of a module in
charge of the vectorisation of selected data or information at the end of each reasoning cycle. This
module queries the triplestore to extract a subset of the knowledge that will be analysed offline using
machine learning techniques. It then computes a vector version of this knowledge, together with a
label vector enabling the reverted translation of the vector into its semantic representation. Vectors are
finally logged in a database used by offline analysis modules. The implementation of this feature helped
us to start a research collaboration with colleagues from the data mining and machine learning fields,
since a common vocabulary and data format was defined as comparison ground for the heterogeneous
contributions. Some techniques, coupled with relevant visualisations, have already shown interesting
insight concerning the habits of residents (see Figure 6.1) and are studied further in order to inject the
extracted knowledge back into the ontology. E.g. through enhanced user profiling information which
would enable a better rule-based activity inference. In conclusion, I currently rely mainly on explicit
rule-based inference but am prepared to leverage any useful knowledge coming from back-end analytics.

6.2.2 Rule-Based Clustering

In the previous section, I give an example of how unsupervised learning could be performed on onto-
logical data through the vectorisation of a subset of the ontology. Machine learning techniques, and
especially unsupervised approaches, are powerful in extracting useful information from data; yet they
remain extremely difficult to parameterize and the selection of features is also a challenge. Although
rule-based inference is not as autonomous in term of knowledge extraction, it is much easier to setup and
results are more “expectable”. Hence, I hope to make the best out of both paradigms by introducing
the Rule-Based Clustering (RBC). RBC consists in using the results of the rule-based inference as
an approximate label for the corresponding data during the vectorisation. The labelled data can then
be clustered using supervised learning, where setup and parameterisation is easier compared to unsu-
pervised techniques. Finally, new vectorised data can be classified by the supervised learning algorithm
and the result may be compared and/or combined with the rule-based inference.

Let us develop the concept of an example RBC engine. To begin, we must consider each ontological
state as a graph-based map where nodes and branches correspond to statements of the ontology. My
idea is to log each map with its corresponding inferred activity. We can then retrieve a stack of maps
corresponding to a single activity and compute the average map for the activity: I call it the Fuzzy
Activation Map (FAM) of the activity. It can be seen as a graph where nodes and branches appear
in a gradient of colour where the temperature of the colour corresponds to the statistical activation of
the statement for the activity. When a new ontological state is available, its map can then be compared
to the FAM of each activity by calculating the temperature distance. The state is then labelled with
the activity of the closest FAM. The same operation can be computed on two versions of the maps,
an instant Fuzzy Activation Map (iFAM) and a time-windowed Fuzzy Activation Map (wFAM). I call
the overall process Fuzzy Activation Map Engine (FAME) and its implementation, based on a vector
representation of the maps, is under way.

64

6.2. DATA DRIVEN ANALYSIS OF ONTOLOGICAL KNOWLEDGE

0.4

0.3

0.2

0.1

0

30

20

10

0
0:00 6:00 12:00 18:00 0:00

Time of the day

N
um

be
r o

f c
lu

st
er

s
Fe

at
ur

es
 v

al
ue

s

Figure 6.1: Unsupervised Segmentation and Hierarchical Clustering of Activities
Note: This is the result of a work by Guillaume Dufour and Antoine Veillard at IPAL on data vectorised by our

framework. The dataset used is described in section 9.4. The method has yet to be published and consists in a

pre-segmentation of the data on the inflection points of the main feature, followed by the tree-based hierarchical

clustering of the segments.

6.2.3 Combining Different Techniques

To conclude on the dilemma between knowledge driven and data driven context comprehension, I
believe that both approaches have specific advantages and drawbacks. Both can also be implemented
using numerous techniques that involve trade-offs as well. We observe an interesting parallel between
the limitations of data driven approaches and the advantages of knowledge driven approaches, and
vice-versa. Hence, I strongly believe that combining them would probably improve the results in
context comprehension. I proposed above a system where different algorithms can be used in parallel,
extracting from the ontology the knowledge they can analyse, and providing their result back in an
ontological format. A final decision may finally be made by dedicated semantic rules, taking into
account all available results and employing any arbitration mechanism judged relevant. Such arbitration
mechanisms were not studied as part of this doctoral work and are proposed as perspective work,
together with the proposition of tighter interfaces between the heterogeneous inference modules. The
contribution of this doctoral work in this aspect is limited to a more technical side of designing and
implementing the interface to enable the plugging of data-driven inference modules on a semantic
platform, and highlighting the possibilities that it creates.

65

CHAPTER 6. INCORPORATING DATA DRIVEN TECHNIQUES AND QUALITY OF
INFORMATION

6.3 Introducing Memory in the Reasoning

As introduced in section 4.3.4, my semantic model does not provide any kind of memory. In other words,
it does not support the storage in the ontology of previous sensor events, previous activities performed
by the residents, or more generally previous states of the ontology. It should be seen as a contextual
snapshot, providing the latest known state of each sensor, the current location and activity of the
residents and the current motion measured in each room. Naturally, concepts like motion do not have
any meaning without taking duration into account and an alternative must be found. This limitation
of the model is a trade-off that lets us keep a better control on the size and understandability of the
ontology, on the complexity of the rules design, and on the processing time required for the inference. To
compensate this limitation, I introduce in the design of the framework alternative reasoning modules to
compute memory-bound concepts or variables (such as the motion). For instance, memory is introduced
as a projection in the ontology of a time-windowed observation.

To illustrate the mechanism involved, let us detail how we incorporate the motion measurement
in the ontology. To begin, we add for each room the datatype property motionMeasured, which holds
an integer indicating the number of activations received from sensors in the room during a given
time window (e.g. five minutes). Semantic reasoning modules do not have access to previous sensor
events since they are not available in the triplestore, so they cannot compute the motion values. We
therefore implement a specific module called MotionEstimator which handles the calculation of the
motion independently. This module does not use semantic inference and can build its own dedicated
model and/or memory. Referring to the vocabulary introduced in Figure 7.2, MotionEstimator is
a Cerebration module. This will be detailed later on. On start-up, MotionEstimator queries the
triplestore to get information such as the different rooms and the sensors deployed in them. It builds
its own Java model to store such information and initializes some arrays (the memory) to store all
the events grouped by room. At runtime, after each event is received, MotionEstimator queries the
triplestore to get the latest event, i.e. the only one not yet in its memory, and stores it in memory. This
event remains in memory for as long as it is within the five minutes time window. Finally the number
of events for each room is counted and the motion values updated in the triplestore. This mechanism
is an example of how to build time-windowed observations that are projected as a single value in the
ontology. In this case we simply count the events on the time-window, but other kinds of analysis, such
as pattern matching in sequences (e.g. HMM), can naturally be implemented in Cerebration modules.

6.4 Quality of Semantic Information

6.4.1 Representing Uncertainty in N3

QoI is crucial when handling context information in AAL systems. Imprecise or incorrect information
can indeed lead to decisions that may affect the safety or serenity of the assisted person. On one hand,
ontological knowledge is naturally processed as an absolute truth if no notion of uncertainty or QoI is
introduced in the semantic model or if the reasoner is not conceived to consider these notions during the
inference. On the other hand, it is common for sensor events to carry a measurable level of uncertainty.
Thus, we propose to introduce in the semantic model an alternative context representation with classes
of information and associations corresponding to the observable aspects of QoI. As noted by Kokar et
al., this becomes particularly important if the system performs data fusion or higher-order reasoning
[140].

Some work related to uncertainty integration into semantic models can be found in the literature.
Hybrid semantic models combining fuzzy logic [141, 142, 143], Bayesian networks [144], probabilistic
representations [145] or Dempster-Shafer theory [146] have been proposed. However, these models
suggest a complete re-design of the used ontologies. We propose instead a representation that is
retro-compatible with a no-QoI model, hence allowing the simultaneous representation and inference

66

6.4. QUALITY OF SEMANTIC INFORMATION

of knowledge with or without QoI metric. We also make sure that the representation scales to any
kind of QoI, present in the data or introduced by reasoning, by bringing it down to a core labelling of
the various QoI metrics on the ontology’s triples. The contribution described below is detailed in the
doctoral work of Hamdi Aloulou [147] and was realised thanks to my contribution in semantic models
and rule-based reasoning using N3.

Due to the triple-based representation of knowledge in ontologies, it is complex to represent uncer-
tainty attached to a piece of knowledge. It is indeed necessary to introduce a fourth element in each
triple that is carrying the QoI for the triple, which goes against the most basic requirement for RDF-
based representations. In more details, a subject may be related to various objects through various
predicates, thus the subject cannot carry the QoI information alone; it has to be attached to each spe-
cific relation. The problem is exactly symmetrical on the object and the predicate sides; these cannot
carry the QoI information either. Since this is similar to the issue related to timestamping triples, we
compensated the limited literature in uncertainty representation for ontologies by drawing a parallel
with the work done in the linked stream data community. Linked Stream Data is the RDF data
model extended for representing stream data generated from sensors and social network applications
[148]. Indeed, in the same way we are unable to attach QoI metrics to triples, this community has
faced the problem of attaching a timestamp to triples for years. The recent work by Anissa Rula et
al. summarises and compares the various approaches to representing temporal information on Linked
Stream Data [149]. Our representation of uncertainty is based on their recommendation of the N-ary
relationship design patterns [150]. These patterns model an N-ary relation with a set of RDF state-
ments by (1) introducing a specific resource to identify the relation, and (2) creating links between this
resource and the constituents of the relation. For instance, let 〈s, p, o〉 be an RDF statement, r a new
resource, p1 and p2 two properties, qr a property holding QoI information, and lu a level of uncertainty;
the N-ary-relationship-based representation is defined as follows:

〈s, p1, r〉〈r, p2, o〉〈r, qr, lu〉

Although p1 and p2 can be two new properties, one of the two is usually equal to p as in the example
presented in Figure 6.2.

With Uncertainty

Without Uncertainty

objectsubject

<unnamed>
relatedObject

uncertaintyLevel
86.4

predicate

source

accordingTo

objectsubject

predicate

Figure 6.2: Uncertainty Representation in N3

In our use-case, we have combined the N-ary-relationship-based representation with the blank nodes,
also known as unnamed resources, which have been introduced in N3 [151]. Our representation is
illustrated in Figure 6.2 and the corresponding TBox extension is given in Source 6.1.

Source 6.1: Uncertainty modelling in N3

@prefix unc: <uncertainty #>.

67

CHAPTER 6. INCORPORATING DATA DRIVEN TECHNIQUES AND QUALITY OF
INFORMATION

unc:Uncertainty a rdfs: Class.

4 unc:relatedObject a owl: ObjectProperty;

rdfs: comment "Nominal object of the property under uncertainty ."@en;

rdfs: domain unc:Uncertainty.

unc:accordingTo a owl: ObjectProperty;

rdfs: comment "Source of the information under uncertainty ."@en;

9 rdfs: domain unc:Uncertainty.

unc:uncertaintyLevel a owl: DatatypeProperty;

rdfs: comment "Measure of the uncertainty , equivalent to quality of information ."@en;

rdfs: comment "Between 0 and 100, higher means more uncertain"@en;

rdfs: domain unc:Uncertainty;

14 rdfs: range xsd:double.

This extension incorporates a new class Uncertainty with two object properties and one data
property. An unnamed resource of the class Uncertainty is instantiated each time we need to express
the notion of uncertainty over a triple. This unnamed resource is related to the subject through
the nominal predicate of the triple and to the object through the property relatedObject. The
data property uncertaintyLevel represents the level of uncertainty for the whole triple, based on the
information received from the source linked via accordingTo. The N3 syntax representing the evolution
from a classic triple to a triple including uncertainty is given in Source 6.2.

Source 6.2: Uncertainty Representation in N3

1 ## Classical Representation

_:subject a _:Class.

_:object a _:AnotherClass.

_:predicate a rdf: ObjectProperty;

rdfs: domain _:Class;

6 rdfs: range _:AnotherClass.

_:subject _:predicate _:object.

11 ## Representation including Uncertainty

_:subject a _:Class.

_:object a _:AnotherClass.

_:source a _:SourceOfInformation. # e.g. sensor , algorithm , etc.

_:predicate a rdf: ObjectProperty;

16 rdfs: domain _:Class;

rdfs: range _:AnotherClass.

_:subject _:predicate [a unc:Uncertainty;

unc:uncertaintyLevel 86.4;

21 unc:relatedObject _:object;

unc:accordingTo _:source].

6.4.2 Reasoning under Uncertainty in N3

The QoI level measured from the sensor stream should be propagated through the reasoning in order to
achieve the representation of high-level-context uncertainty. In other words, when a rule is applied and
infers higher-level context information based on low-level situational data that incorporates some QoI
metric, the quality of context resulting from the inference should be estimated and incorporated within
the rule conclusion [152]. This estimation can be based on the quality of the information in the rule
antecedent, as well as on the average quality of inference of the given rule. The first approach has been
adopted in our framework, where the uncertainty is propagated from sensors level to high-level context
information using semantic rules. To illustrate this, I provide in Source 6.3 a simplified rule tracking

68

6.4. QUALITY OF SEMANTIC INFORMATION

the resident’s location and its evolution when incorporating QoI metrics to propagate uncertainty from
the sensing level to the context level.

Source 6.3: Rule Modification to Include Uncertainty in N3

Classical Representation of Example Rule

{ ?se qol:hasCurrentState ?st. ?se qol:hasLastUpdate true. ?se qol:deployedIn ?r. ?r

qol:partOf ?h. ?u qol:liveIn ?h } => { ?u detectedIn ?r }.

3

Example Rule With Uncertainty

{ ?se qol:hasCurrentState [a unc:Uncertainty; unc:uncertaintyLevel ?ul; unc:

relatedObject ?st]. ?se qol:hasLastUpdate true. ?se qol:deployedIn ?r. ?r qol:

partOf ?h. ?u qol:liveIn ?h } => { ?u detectedIn [a unc:Uncertainty; unc:

uncertaintyLevel ?ul; unc:relatedObject ?r; unc:accordingTo ?se] }.

In conclusion, we believe that the uncertainty aspect will not be tackled by the engine itself, but
it is rather the way the engine is used and coupled with other techniques that can ever address this
aspect.

69

70

The unconscious is the real psychic; its inner na-
ture is just as unknown to us as the reality of
the external world, and it is just as imperfectly
reported to us through the data of consciousness
as is the external world through the indications
of our sensory organs.

— Sigmund Freud, 1856–1939 7
A Cognitively Inspired Reasoning Architecture

7.1 Conscious and Unconscious Minds

In the design of the reasoning architecture, two main challenges are to be tackled. On one hand, a
balance must be found between purely rule-based reasoning on the ontology and more computational
methods that can perform better for some kinds of operations. For instance, when we count the number
of sensor activations per room over a time window, it is much easier and efficient to build a dedicated
module keeping in memory all the events for a certain amount of time and counting them, rather
than trying to find a way around the constraining rule syntax to perform an equivalent operation.
Rule-based reasoning comes with great potential but also great constraints, thus it needs to be used
with precaution and only when optimal. On the other hand, a mechanism must be proposed to avoid
conflicts or deadlocks that might arise from using rule-based reasoning with various modules performing
independent yet correlated inference, i.e. inferring the KB with no cooperative strategy though their
results might affect one another.

For the first challenge, I introduce in the reasoning architecture two families of reasoning modules.
Of course, there are the semantic modules that infer the KB based on rule-based methods using EYE
reasoning engine. Additionally, I propose a second family encompassing a variety of other techniques
which are individually defined with a specific scope of inference and a dedicated reasoning process.
This second family lets us use more computational inference processes, as described above. In these
modules, any computation or any additional modelling layer can be designed and implemented.

For the second challenge, I make use of the capability of EYE to handle interdependent rules by
leaving it to the engine to solve the conflicts emerging from such rules. Indeed, when the conditions
for some rule have changed due to the conclusions of another rule, EYE automatically proceed to a
new inference iteration, and such until a stable ontological state is reached. The strategy here is to
centralise the inference of all semantic modules into a single reasoning pass, i.e. one call to the inference
service provided by EYE. Therefore, I propose a registration mechanism whereby all modules register
their rules to a central “intelligence” module.

In summary, I propose a hybrid reasoning architecture composed of a central “intelligence” module
that handles all of the rule-based inference, and a family of heterogeneously designed and implemented
modules performing independent and well scoped reasoning actions. A parallel must be drawn here
with the cognitive model for human thinking proposed in the beginning of the twentieth century by
Sigmund Freud, Austrian neurologist and founding father of psychoanalysis [153]. Indeed, this model
was in great part the inspiration for the design described above. I illustrate in Figure 7.1 the actual
cognitive reference that I consider as the basis for this design. The reader must note that although
I find great inspiration in Freud’s model, I have distanced myself from it freely in order to propose
the best possible design for my digital context-awareness mechanism. I must also highlight that this
design is “cognitively” inspired, and not “biologically” inspired, since the representation in Figure 7.1
is biologically wrong. Such work in cognitive science is in fact closer to philosophy, than it is to biology.

Freud’s cognitive model introduces the concepts of conscious and unconscious mind, where the

71

CHAPTER 7. A COGNITIVELY INSPIRED REASONING ARCHITECTURE

Stimulus (~ event)

Cogitation: conscious reasoning

Cerebration: subconscious reasoning

Knowledge structuration & formalisation

Cerebral cortex

Figure 7.1: “La Pensée”: UbiSMART’s Hybrid Reasoning Cognitive Inspiration

unconscious mind consists of the processes in the mind that occur automatically and are not available to
introspection, including thought processes, memory, affect, intuition, and motivation [154]. Back to the
design—and to Figure 7.1 which define “La Pensée”, my free interpretation of the cognitive model—I
introduce the centralised semantic and rule-based inference mechanism as an equivalent to the conscious
mind. I call it Cogitation. It is the part of the reasoning that translates domain and expert knowledge
in an understandable manner. Its model, as well as its logic, are implemented with attached semantics.
It can therefore be expressed in natural language and a proof for its conclusions can be generated
to express the transitions of reasoning leading from known facts to conclusions. Complementarily,
I define an equivalent to the unconscious mind with the family of heterogeneous reasoning modules
called Cerebration. Such reasoning processes can hardly be expressed in natural language. They
automatically provide information based on complex models capturing data in an implicit way, storing
it in semantically unavailable memory, and processing it in a very computational manner. In other
words, Cogitation is the parallel to conscious thinking about a problem in term of known facts and
logic and what can be deduced from it. It is very similar to the way we would solve a physics problem
in school for example. In opposition, Cerebration is the parallel to the unconscious data processing
that happens in the brain and is needed for our grasp of situations but stays beyond understanding. It
is similar to the processes that help us recognise objects, dodge obstacles, estimate weights, etc.

Additionally to Cogitation and Cerebration, some mechanisms are necessary to structure the knowl-
edge into a formal syntax that is calculable by Cogitation. This is true for stimuli (let us consider events
coming from sensors) and is implemented in a module called Stimulistener. It is also valid for the
internal stimuli that result from the Cerebration processes. Thus, although Cerebration modules can
be implemented using any technique, they must provide their conclusion in a semantically valid syntax,
in order to enable the collaboration between Cogitation and Cerebration modules.

Finally, a supervision and arbitration is necessary between these modules. The reasoning cycles
must be handled to let Cogitation and Cerebration alternatively infer the KB. Conditions must be

72

7.2. LIVE EVENT PROCESSING USING EYE THROUGH THE NTRIPLESTORE

determined to decide when to stop the reasoning, and eventual conflicts in the decisions need to be
handled. These tasks are implemented in a module called Cortex in reference to the cerebral cortex
where human thinking happens.

In the following, Cerebration is represented as a single module standing for all of the independent
Cerebration modules running in the framework. For instance, a call to the think() method of Cer-
ebration means that all of the modules’ inference service are actually invoked in an arbitrary order.
Eventual conflicts due to interdependent inference actions are handled by Cortex which ensures that a
stable decision is reached before the reasoning stops. The following section describes how the different
modules composing the reasoning were integrated.

7.2 Live Event Processing Using EYE Through the NTriple-
store

In our context-aware service framework, called Ubiquitous Service MAnagement & Reasoning archi-
Tecture (UbiSMART), EYE was integrated and is used by Cogitation in order to perform rule-based
inference of activities (and related decision making) based on the projection of the live datastream of
sensor events into a semantic model. Cerebration modules are using any reasoning technique to infer
semantically labelled knowledge from data and information that they query from the KB shared with
Cogitation. Figure 7.2 provides an architectural and functional overview of the framework, highlighting
the integration of EYE through our triplestore.

UbiSMART being based on the Open Service Gateway initiative (OSGi) specification [155], it
is implemented in a modular manner where the various features of the framework are handled by
independent modules called bundles. Figure 7.2 illustrates the service invocations and data exchange
between the different bundles. The numbering indicates the sequence of the processing of an event and is
used in the detailed description below. Firstly, static N3 files are loaded in the triplestore on framework
start-up (0). This loads the semantic model as well as the file containing a static description of the
peculiarities of the environment. Other environment related information is added in the triplestore by
the environment discovery module, however this is not represented in the graph. Relying on a publish
& subscribe event bus, sensor events are pushed in real time to Stimulistener (1). For each event,
Stimulistener queries the related statements in the triplestore to find relevant bindings and translates
the event into its semantic expression to update the triplestore (2). It then invokes Cortex to handle
the reasoning cycles (3). Actions within a reasoning cycle are numbered in Roman in Figure 7.2 so that
they can be differentiated. For each cycle, Cortex alternately invokes the inference methods provided by
Cerebration (i) and Cogitation (iv) until stability is observed in the decision made by Cogitation (xi).
A variety of stop conditions can be defined to rule the behaviour of Cortex when it comes to handling
the number of reasoning cycles. Taking the previous example of solving a physics problem, one will
stop reasoning about the problem once he reaches a solution that is contradicted neither by related
physics laws, nor by his intuition. Similarly, Cortex will observe the decisions made by Cogitation over
the cycles of reasoning and stop when the decisions are judged stable (e.g. when they came out three
times in a raw). This is ensuring that a decision made is not contradicted in the next reasoning cycle,
neither by Cogitation, nor by Cerebration. Additionally, we add a condition on the maximum number
of cycles that Cortex can perform. This ensures that a result, even approximate, is found in finite
time, and can be compared to a human passing a question in the physics test when he cannot find the
exact result. After a decision is made, Cortex sends it to be processed for further actions (5). In the
further actions, persistent updates to the triplestore can be made, services can be started or stopped,
information can be logged for offline analysis, etc.

Within a reasoning cycle, Cerebration modules are performing a scoped inference of the KB using
a variety of reasoning techniques. In order to do this, they start by querying the KB to extract the
information to analyse (ii). I consider each Cerebration module as a black box at this level, and each

73

CHAPTER 7. A COGNITIVELY INSPIRED REASONING ARCHITECTURE

model.n3 home.n3 rules.n3 dump.n3

Stimulistener Cortex

Cerebration* Cogitation

EYE

...

NTriplestore

1.live event

0.loaded once
when ubismart starts

2.update(live event)

3.think

i.think iv.think

ii.query iii.update v.dump

vii.think

x.update
ix.inferred triples

vi.ontological dump
at each inference

viii.loaded in memory
at each inference

5.decision

xi.decision

Legend

invoke
service

exchange
data

Figure 7.2: Functional Integration of EYE Through NTriplestore, a Purpose-Build N3
Triplestore for Live Events Processing

box provides semantically labelled inferred knowledge as output. This knowledge is updated in the
KB by the module itself (iii) and becomes available for other Cerebration modules and for Cogitation.
Cogitation is the single module handling the semantic rule-based inference of higher-level contextual
knowledge and activities. This inference, for which details are described in section 5.4.2, is further
“subcontracted” to EYE. EYE has been wrapped as an OSGi bundle to be integrated as a service in
the UbiSMART framework. This bundle provides EYE’s inference as a service through the think()

method registered publicly in the framework. This method performs the inference in a completely
stateless way, which means that no state of the ontology is kept in memory by EYE. At each invocation
of think(), EYE parses the ontology, infers it, returns the inferred statements, and free the memory
altogether. To start the inference, Cogitation dumps the content of the triplestore in a N3 file (v, vi)
and then invokes EYE (vii) who parses the dumped file and the N3 file containing rules to infer (viii)
to perform the inference. A short sample of a dump file is provide in 7.1 for reference but a full dump
file usually contains several hundreds of such statements. Selected inferred statements, i.e. statements
queried as output in the rule file, are then returned to Cogitation (ix) which extracts the decisions
and triplestore updates. Updates are made to the triplestore (x) and the statements (including the
decisions) are returned to Cortex (xi) to be evaluated, and either start a new cycle of inference or
proceed with these decisions.

Source 7.1: Sample from a Triplestore Dump File

74

7.3. COMPLEX ONTOLOGICAL MANIPULATION IN THE INFERENCE MECHANISM

hom:johndoe qol:inRoomSince "2012 -06 -05 T11 :15:34+01:00 "^^xsd:dateTime.

qol:indicateLocation a rdf: DatatypeProperty.

qol:detectedIn rdfs: range qol:Environment.

hom:house1203001 qol:motionMeasured 9.

5 qol:believedToDo rdfs: range qol:Activity.

hom:a7 qol:hasCurrentState hom:a7_on.

hom:a7 qol:lastUpdate "2012 -06 -05 T12 :12:43+01:00 "^^xsd:dateTime.

hom:b4_on a qol:SensorState.

7.3 Complex Ontological Manipulation in the Inference Mech-
anism

7.3.1 Ontological States

Since my inference mechanism essentially consists in complex ontological manipulation, I believe that
it would be useful to provide an overview of the different states the ontology (a.k.a. the KB) goes
through during a reasoning pass. I illustrate this in Figure 7.3 where the states are represented with
the transitions between them. From the final state Of (n − 1) of the previous reasoning cycle, the

"Next Event"

update

Of(n-1) O(n)

O0(n)

Of(n)

cache

query

decisions
& updates

O1(n) Ok(n)

infer infer infer...

loop until stable decision

Figure 7.3: Inference Mechanism: Ontological States Transitions

ontology is updated following the reception of a new event by Stimulistener. It is in state O(n), the
initial state of a reasoning pass. A copy of O(n) is cached into O0(n) which becomes the operational
state from which the ontology will be inferred. Cortex then proceeds to invoke the inference methods
of Cogitation and Cerebration and the ontology is inferred iteratively. Each inference by a Cerebration
module or Cogitation brings the ontology from state Oi(n) to Oi+1(n), and such until Cortex reaches
a stop condition, which leaves the ontology in state Ok(n). At the end of each inference by Cogitation,
non-updating queries are performed on the ontology to extract the decisions and updates to be passed
to Cortex. In the last Cogitation inference queries are performed on Ok(n) and the updates extracted
are applied by Cortex on O(n), which results in the final ontological state of this reasoning pass: Of (n).

7.3.2 Semantic I/O

For a greater understanding of the ontological manipulation in the inference mechanism, I provide in
Figure 7.4 a bird’s eye view of all the inputs/outputs (I/O) of the KB, before, during and after the
inference. One can actually consider the KB as a sea of semantic information where modules can “pick”
information by query or “dump” it by update. I call this vision of the KB semantic sea (semsea).

75

CHAPTER 7. A COGNITIVELY INSPIRED REASONING ARCHITECTURE

Originally, the semsea is loaded only with the content of the N3 files illustrated in Figure 7.2, model.n3

triplestore a.k.a semantic sea (semsea)

cached semsea

ServiceGateway

Binder

DeviceGateway

Stimulistener

Cortex

Cogitation Cerebration*

ThoughtInterpretor

ServiceGateway

Configuration Level Event Processing

services
description

sensor bindings,
possible states

and type of data

devices
description sensors

bindings

sensor
event

update

decisions

inferred triples

whole
ontology

whole
ontology

inferred
updates

selected
triples

inferred
updates

persistant
triplestore
updates

service
status

updates

Figure 7.4: Bird’s Eye View on the Inputs and Outputs to the Triplestore

and home.n3, which respectively contain the semantic model (TBox) that defines the vocabulary used
by all modules, and the description of the peculiarities of the home in which the framework is deployed.
At the configuration level (left in Figure 7.4), i.e. as a one-time process when the framework is deployed,
initial updates are made to the semsea to represent the services installed in the framework, the devices
detected in the environment, and the various descriptions concerning the sensors deployed and their
configuration. At the event processing level (right in Figure 7.4), one can split the semantic I/O into
before, during and after the actual inference, respectively positioned on the left, on top, and on the
right of the cached semsea. Before the inference, Stimulistener receives an event, queries the semsea
to get the corresponding sensor bindings in order to translate the event into its semantic expression
and update it into the semsea. As was presented in Figure 7.3, the whole ontology is copied into a
cached version on which the actual inference is performed. This allows temporary updates to be made
on the semsea for the sake of the inference mechanism and to let Cerebration and Cogitation modules
exchange information seamlessly. Using a cached semsea avoids having to label and remove temporary
updates from the final state of the semsea (Of (n) in Figure 7.3). For the inference, Cerebration modules
query some triples from the semsea according to their scope of inference, whereas Cogitation dumps
the whole ontology into a file and provide it to EYE for the inference. In both cases, inferred triples are
dumped back into the cached semsea. Cogitation also provides the permanent updates and decisions to
Cortex. After the last cycle of reasoning, Cortex invokes a module called ThoughInterpretor to take
care of the further processing of the decisions and permanent updates. ThoughtInterpretor applies the
permanent updates in the original semsea (not the cached version) and starts/stops services as needed
using the service gateway that updates the status of services in the semsea when they change.

7.4 Integration Into a Context-Aware Service Framework

In order to be tested and used in deployments for AAL, the reasoning system proposed above has been
integrated in a context-aware service framework for AAL. We call this framework Ubiquitous Service
MAnagement & Reasoning archiTecture (UbiSMART).

76

7.4. INTEGRATION INTO A CONTEXT-AWARE SERVICE FRAMEWORK

UbiSMART’s situational data is provided by a Wireless Sensor Network (WSN) for which dedicated
applications are implemented based on use-cases to process sensor signals and extract useful states. This
is handled in the sensing modules block illustrated in Figure 7.5. The states are then processed by the
reasoning modules where a higher level of contextual knowledge is inferred, enabling the context-aware
selection of services, together with relevant interaction modalities (central block in Figure 7.5). Finally,
services are instantiated and their interface is adapted to the constraints of the interaction modality
in use. The service delivery is handled by specific modules illustrated in the block to the right in
Figure 7.5.

In parallel, specific modules catering to the configuration needs of such a framework are developed in
order to ease the deployment of the system. These modules, which compose the Smart Space Composer
(S2C), are illustrated in an independent block in Figure 7.5.

More details about the implementation of UbiSMART are provided in chapter 8.

77

CHAPTER 7. A COGNITIVELY INSPIRED REASONING ARCHITECTURE

S
ervice D

elivery M
o

d
u

les

S
en

sin
g

 M
o

d
u

les

C
o

n
fi

g
u

ratio
n

 M
o

d
u

les

R
easo

n
in

g
 M

o
d

u
les

"X
"

S
ensorFlow

M
anag

er (R
outing

)

- m
erg

e all "X
" sig

nals
- reg

istration of S
ensA

p
p

s
- forw

ard
 d

ata to relevant S
ensA

p
p

- forw
ard

 inform
ation to InfoC

onsum
ers

- d
iscovery of new

 sensors
- config

uration g
ate for B

ind
er

- sensors to S
ensA

p
p

s b
ind

ing
s

S
ensA

p
p

*

- p
rocess d

ata
- p

rod
uce inform

ation

B
ind

erU
I*

S
ensA

p
p

R
ep

ository*

- list S
ensA

p
p

s p
er categ

ory of sensor
- p

rovid
e S

ensA
p

p
 for d

ow
nload

"X
" G

atew
ay*

- low
 level

- p
rotocol d

ep
end

ent (cod
e is sp

ecific)
- norm

alization of d
ata (e.g

. H
E

X
2D

E
C

)
- sig

nal forw
ard

ing
D

 I K
 W

?

- flow
- no m

eaning
- m

ostly useless

- in the sem
sea (ontolog

y)
- sem

antic (m
eaning

)
- useful &

 calculab
le

S
ensA

p
p

 d
ev.

>
 introd

uce lib
s in

S
ensA

p
p

 A
P

I
>

 restructure d
ata in a

m
ore m

eaning
ful w

ay
using

 p
rocesses

IN
FE

R
E

N
C

E
>

 p
rocess is not necessary

sem
antic b

ut I/O
 g

oes
throug

h sem
antic sea

B
ind

er

- config
uration tool (b

uild
, d

eclarative)
- choice, d

ow
nload

 &
 installation of S

ensA
p

p
s

- p
aram

etrization of S
ensA

p
p

s
- b

ind
 sem

antics (to sensor +
 its events)

C
ortex

- hand
le reasoning

 cycle (until stab
le cog

itative state)
- alternate b

etw
een cog

itation p
ass &

 cereb
ration p

ass

start/stop
 &

 feed
b

ack

R
E

S
T +

 E
vent B

us

hand
leE

vent

p
rocessE

vent

p
rocessThoug

hts

R
E

S
T +

 d
ow

nload

L
eg

en
d

S
m

artS
p

aceC
om

p
oser (S

2C
): config

uration

* this m
od

ule can have several instances
 this m

od
ule is sem

antic-aw
are, i.e. linked

 w
ith N

Trip
lestore

E
xternal M

od
ule

Internal M
od

ule

A
b

stract C
lass

E
ventB

rid
g

e*

X
M

P
P

B
rid

g
e

D
P

W
S

B
rid

g
e

H
TTP

B
rid

g
e

O
S

G
iB

rid
g

e

p
ub

lish

sub
scrib

e

S
tim

ulistener

- m
atch sensor/state w

ith sem
sea b

ind
ing

s
- w

rite context inform
ation in sem

sea
sub

scrib
e

N
Trip

lestore

- A
P

I to sem
antic sea (sem

sea)
- p

rovid
e C

R
U

D
 access to the trip

lestore
- im

p
lem

ented
 as a service

think

C
og

itation

- hig
h level rule-b

ased
 reasoning

- d
ecision m

aking
- conscious p

rocess

C
ereb

ration*

- thread
ed

 asynchronous inference
- low

 level, sp
ecific, com

p
utational task

- I/O
 in seam

sea
- sub

conscious p
rocess

C
lassification

S
tatistical A

nalysis

N
um

eric C
om

p
utation

C
oreE

ng
ine*

E
Y

E

S
V

M

 think

Thoug
htInterp

retor

- interp
ret thoug

hts (reasoning
 results)

- up
d

ate trip
lestore

- start/stop
 service

- etc.

S
erviceG

atew
ay

- reg
istration of services

- control over services
- status up

d
ate in trip

lestore

start/stop
/up

d
ate

U
b

iS
ervice*

B
ackE

nd
S

ervice*
FrontE

nd
S

ervice*

A
tom

icS
ervice*

C
oup

led
S

ervice*

R
em

ind
er*

C
allC

enter*

A
ctivityLog

*
N

otification*

d
isp

lay(<
S

erviceS
kin>

) &
 ack

reg
ister

D
eviceG

atew
ay

- reg
istration &

 m
anag

em
ent of d

evices
- sem

sea I/O

reg
ister

C
om

Layer*

X
M

P
P

A
P

N
s

U
b

iD
evice*

IP
hone*

IP
TV

*

send
 &

 ack

S
erviceS

kin*

M
ob

ileG
U

I*

TextToS
p

eech*

...

- fused
 inform

ation
- d

om
ain know

led
g

e
- hig

her level

sub
scrib

e

InfoC
onsum

er*

- p
latform

 or ap
p

lication using
 the sam

e d
ata

F
ig
u
re

7
.5
:
In
teg

ra
tio

n
of

th
e
C
o
g
n
itively

In
sp
ired

R
ea
so
n
in
g
A
rch

itectu
re

In
to

a
F
u
lly

F
ea
tu
red

S
erv

ice
F
ra
m
ew

ork

78

Part III

UbiSMART Framework: Ubiquitous
Service MAnagement and
Reasoning archiTecture

79

There’s many a slip between a potential
brave new technological world and a real-
ity that could improve the quality of life of
a significant proportion of humankind.

— Peter Lucas, Carnegie Mellon 8
Detailed Description of UbiSMART Framework

UbiSMART is a context-aware service framework that was designed over time to match the require-
ment of both the top-down and the bottom-up approach (see section 3.1.2). Its design has naturally
evolved with the various research focuses and I present here two milestones of its development. The ver-
sion 1 described in section 8.2 is better suited for the top-down approach and focused on the interaction
between numerous modules around a shared KB. The version 2 presented in section 8.3 leverages the
first design and modifies it to take into account the peculiarities of the bottom-up approach by making
it more server-side ready. It introduces a novel hybrid reasoning architecture and includes unique fea-
tures such as its N3 triplestore and the plug & play mechanism designed to ease the customization of
the system deployed in each house. The UbiSMART framework is the major tangible contribution of
this doctoral work; it is based on and encompasses the implementation of the contributions conceived
in Part II.

8.1 Enabling Technologies

8.1.1 Service Oriented Architecture (SOA)

The Service Oriented Architecture (SOA) is a top-down design approach that emphasizes the
separation of system functionalities into independent, loosely coupled and interchangeable modules.
Each module contains everything that is necessary to provide a defined function or set of functions.
The coordination between the modules of a system is ensured via their interfaces. These interfaces are
the signature of the modules as they specify the functionalities provided by them to the others. There is
no need to be aware of the working code (implementation) corresponding to the functionalities declared
in the interfaces. This design approach is very beneficial to AAL solutions since, as complex systems,
SOA enforces their logical structure by breaking their complexity into simpler tasks making them
more efficient and easier to understand and modify. Moreover, designing and developing AAL systems
involve different disciplines (sensing, networking, reasoning, data mining, human-machine interaction),
thus adopting such an approach allows multidisciplinary players to work on several parts of the system
at the same time with little need for communication, thus making the development of the system more
straight forward. It allows making drastic changes to one module without requiring any change to other
modules. In fact, modules are substitutable and reusable. A module can replace another at design time
or even at run-time without reassembling the whole system. It can also be integrated into another
system to provide its functionalities.

More concretely, SOA represents a set of principles and methodologies for designing and developing
systems in the form of interoperable services delivered and used on demand [156]. Its architecture is
composed of the three main components shown in Figure 8.1:

– The service provider is the entity which implements one or more services and publishes them
for others to invoke.

81

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

Service
Registry

Service
Requester

Service
Provider

Find Publish

Bind

Figure 8.1: The Key Components of the Service Oriented Approach

– The service requester, also called consumer, is like the “client” that invokes a service. It can
be a front-end application or another back-end service.

– The service registry is a software entity that acts as a service locator where new services are
published. It implements the discovery mechanism and suggests service providers for the requester
of a specific service.

These elements play different roles which define the contracts between them as follow:

– Publish is an operation that acts as service registration or advertisement. It operates between
the service registry and service provider. The service provider publishes a service in the service
registry.

– Find (or Discover) is the contract between a service requester and a service registry. This
operation is executed on the registry according to a list of search criteria specified by the re-
quester. Search criteria may be the type of service, Quality of Service (QoS), etc... The service
requester queries for a specific service in the service registry. The service registry replies with the
identification of service providers that provide the requested service.

– Bind is the operation that binds both the service provider and requester in a client/server-like
relationship. The service requester invokes the service from the service provider.

As Forrester analyst Jeffrey Hammond was explaining at the recent EclipseCon 2013 conference
in Boston, “by breaking down applications and systems into loosely coupled services, service oriented
architecture has paved the way for enterprise architects to support smaller, more numerous, and even
more experimental projects within their organizations”. One of the advantages SOA brings to organi-
zations is the ability to abstract important parts of applications as reusable, standardized services that
can be run in any and all connecting systems. The emergence of these flexible service layers means
architects, developers, and even business users can more readily put together new business workflows
and processes without the need to rewire or rewrite underlying applications.

8.1.2 Open Service Gateway initiative (OSGi)

The OSGi framework is a standardized module system for networked services that is the foundation
of enhanced SOA. OSGi is a specification for Java of the principles defined by SOA. Its standards are
defined by the OSGi Alliance and published in the OSGi specification documents. The scope of this
service framework is as follows [157]:

82

8.1. ENABLING TECHNOLOGIES

– Providing a standard, non-proprietary, software component framework for manufacturers, service
providers, and developers. The fact that the OSGi specifications are an open standard enables a
fair playing field for all participants.

– A cooperative model where applications can dynamically discover and use services provided by
other applications running inside the same OSGi service platform. This cooperative service model
is considered as a key element for service dependencies.

– A flexible remote management architecture that allows platform operators (the organization that
manages the platform) and enterprises to manage thousands of service platforms from a single
management domain.

An OSGi platform is basically a container running functional components called bundles. Life cycle
management is one of the most prominent features of the OSGi framework. It provides the necessary
mechanisms to allow remote management of bundles and also allows bundles to manage other bundles
life cycles. Using these mechanisms and based on the OSGi dynamic component model, bundles can
be remotely installed, started, stopped, updated and uninstalled at runtime without acting on other
bundles or restarting the platform. The OSGi dynamic service registry allows bundles to register, listen
and detect the addition or removal of services, and thus adapt accordingly [158]. The different layers
of the OSGi framework are represented in Figure 8.2.

Service

Life Cycle

Service Registry

Class Loading

Java VM

Native Operating System

Security

Bundle

Figure 8.2: OSGi Framework Stack

Any framework that implements the OSGi standard provides an environment for the modularization
of applications into smaller bundles. Each bundle is a tightly coupled, dynamically loadable collection
of classes, jars, and configuration files that explicitly declare their external dependencies (if any). The
framework is conceptually divided into the following areas:

– Bundles: Bundles are normal jar components with extra manifest headers.

– Services: The services layer connects bundles in a dynamic way by offering a publish-find-bind
model for Plain Old Java Interfaces (POJI) or Plain Old Java Objects (POJO).

– Services Registry: The API for management services, namely service registration, service tracking
and service reference.

– Life Cycle: The API for life cycle management, namely install, start, stop, update and uninstall
bundles.

– Modules: The layer that defines encapsulation and declaration of dependencies, i.e. how a bundle
can import and export code.

– Security: The layer that handles the security aspects by limiting bundle functionality to predefined
capabilities.

83

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

– Execution Environment: Defines what methods and classes are available in a specific framework.

To conclude, OSGi provides several useful APIs to manage systems composed of services and has
been used in numerous projects for smart home development [159, 160, 161]. It is however build around
the assumption of a single container, hosting the different bundles composing the system. Therefore
it defines no inter-container communication protocol and needs to be extended in order to be used in
a distributed environment. As such and in the AmI field, it is only relevant if we think of a service
framework as running on a local home set-top box.

8.1.3 Representational State Transfer (REST)

Considering the bottom-up approach described in section 3.1.2 where cost can be shared among nu-
merous houses through a server-based deployment, it is useful to look into server-side architectures
for SOA. In this aspect, several technologies, architectures and approaches are possible, among which
Representational State Transfer (REST) is well accepted. REST is a style of software architecture
for distributed systems that has emerged as a predominant web API design model [162]. REST-style
architectures conventionally consist of clients and servers. Clients initiate requests to servers; servers
process requests and return appropriate responses. Requests and responses are built around the transfer
of representations of resources. A resource can be essentially any coherent and meaningful concept that
may be addressed. A representation of a resource is typically a document that captures the current or
intended state of a resource. Key goals of REST include the scalability of component interactions, the
generality of interfaces and the independent deployment of components.

Server-side

Sensing

Services

Knowledge Base

Services

Binary

REST

REST

Gateway

Processing

REST

REST

Gateway

REST

Binary

Gateway

Figure 8.3: REST Architecture for Ambient Intelligence

In Figure 8.3, I illustrate the components and protocols that would make a REST-compliant system
for AmI. Sensors (whether intrinsic hardware or embedded in more complex devices such as smart-
phones) and actuators are connected to the network using a REST or binary protocol. The gateway
is a bridge between the binary-bound entities and the cloud data network, i.e. essentially the KB. It
can aggregate or dispatch events between entities and the network. The minimal implementation of a
gateway would provide simple relaying of binary to REST protocol. Gateways may also have custom
event processing logic to provide more sophisticated event processing actions. The KB on the server is
the core of the event processing. It can be located either in the cloud or on local network. The main
tasks of the server are to provide event fusion, processing into higher-level knowledge and transmission
to other modules or entities on the network (e.g. context-aware applications). Services can be imple-
mented as web applications, eventually with attached mobile clients, that provide information about

84

8.2. FULLY DISTRIBUTED REASONING ARCHITECTURE: UBISMART V1

the situation in the home or the result of trends analysis. They can also control actuators in the home
in real-time.

Binary protocols should be used for small and simple devices that do not have enough processing
capabilities or have no Transmission Control Protocol - Internet Protocol (TCP/IP) support and are
connected to other devices via simple protocols (RS-232, ZigBee, etc.). REST protocol is more adapted
for devices or computers that support TCP/IP connections and have enough hardware capabilities to
serialize/deserialize the state to be transferred into the chosen data interchange format, e.g. JavaScript
Object Notation (JSON).

8.2 Fully Distributed Reasoning Architecture: UbiSMART v1

8.2.1 UbiSMART’s Service Architecture

UbiSMART’s first version is based on the SOA paradigm and provides a fully distributed reasoning
architecture where numerous independent reasoners are deployed around a shared KB to collaborate
on the inference of the context, services and devices. In this approach, each module queries the KB
to extract the part of the knowledge to be processed; then process it to update the KB and/or react
accordingly. This implementation is naturally adapted for the top-down approach and makes it easy to
plug new modules to the framework. This version was implemented at a time when we were focused on
building a service framework that is context-aware and provides services with an adapted user interface.
As illustrated in Figure 8.4 (full page, page 86), the framework addresses three main aspects (context
awareness, service management and service delivery) composed of several collaborative modules. All
modules share a semantic KB on a producer-consumer basis where each producer provides a semantic
description of its contribution, thus all consumers can make sense of it. The KB can be inferred by
producers using description logic rules (among others) and then queried by consumers.

Context Producers

Context producers are basically the modules linked to specific sensors. They provide application specific
code that extracts low-level sensor data from the sensor signal received on a binary channel (ZigBee
at the time of implementation). The sensor data is then communicated to the framework through
an event bus acting as middleware communication layer (1.2 in Figure 8.4). This event bus has been
implemented using ActiveMQ and the Extensible Messaging and Presence Protocol (XMPP) a.k.a.
Jabber for our first deployment. The context acquisition module is handling the reception of the data
from the numerous sensor specific modules. It then publishes each event into the context stream (2) and
the KB (KB.1). The ubiquitous component registry provides a registration scheme (1.1) that enables
the plug & play mechanism described further in section 8.3.5.

Context Synthesisers

The context synthesisers are a class of modules for which the purpose is to provide a higher level of
context information to other modules. The reasoning paradigm used by these modules can be anything
from imperative algorithms to machine learning, passing of course by semantic inference engines. Each
module extracts the information it needs from the KB or its non-semantic counterparts. An up-to-date
semantic snapshot of the context is available from the KB (KB.2), a listener can alternatively be set on
the context stream (KB.4) and the historical events of the stream are to be queried from the persistent
storage (KB.5). The context synthesiser modules then process the information to possibly infer more
contextual knowledge. The inferred knowledge is then added or updated in the KB (KB.2).

I have implemented the context understanding module using semantic inference as described earlier
in the thesis. Other context synthesisers such as the grammar based activity recognition or the multiple
hypothesis (MHT) over DBN modules were implemented by other researchers participating to the

85

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

Context Producer

Context Synthetiser

Context Consum
er

Knowledge Base [KB]
based on Jena Fram

ework

Archiver

Sensor
Specific
M

odule

Ubiquitous
Com

ponent
Registry
(sensor)

Context
Acquisition

M
odule

Privacy
M

anagem
ent

M
odule

KB
Q

uery
Service
Registry

Service
Selection
M

odule

Service
Service

Service Service

Service
Fram

ework
Publisher

User Interface
Plasticity
M

odule

Ubiquitous
Com

ponent
Registry
(device)

M
odality

Selector
User Interface

G
enerator

Interaction
Handler

Persistant Storage
Context Stream

Context
Understanding

M
HT over DBN

G
ram

m
ar

based AR

...

UI Parser
Service Fram

ework
Lookup M

odule

Service

M
anagem

ent
Context

Aw
areness

Service
Delivery

Legend

M
iddleware

com
m

unication

O
SG

i Bundle

external m
odule

1.1

1.2

KB.1
KB.1

2

7.2

KB.2

KB.2

5.3

KB.1

KB.1

4.1

5.2
5.1

6

3.1

KB.2

3.2

7.1

KB.5 KB.3

4.2

KB.5
KB.4

1.1 Registers to fram
ework

1.2 Sends augm
ented sensor data

2 W
rites in context stream

3.1 Registers to fram
ework

3.2 Q
ueries KB (high level language)

4.1 Shake hand with fram
ework

4.2 Registers to fram
ework

5.1 Selects m
odality of interaction

5.2 G
enerate UI

5.3 Starts interaction handler
5.4 Sends final UI description
6 Exchange abstract UI representation
7.* Rem

ote interaction protocol
KB.1 W

rites in KB
KB.2 Infer KB
KB.3 Q

ueries KB
KB.4 Access to context stream
KB.5 Access to context history

5.4

F
ig

u
re

8
.4

:
S

erv
ice

A
rch

itectu
re

o
f

U
b

iS
M

A
R

T
(fi

rst
v
ersion

)

86

8.2. FULLY DISTRIBUTED REASONING ARCHITECTURE: UBISMART V1

AMUPADH project and have been integrated in the framework for the shared deployment in a nursing
home in Singapore (see section 9.3).

Knowledge Base

In this version, the KB is implemented using the Jena Framework used as a triplestore for RDF
triples. Knowledge producers (which are almost all modules considering the fully distributed reasoning
paradigm) provide Jena with triples to be added or updated in the KB (KB.1 and KB.2 in Figure 8.4)
whereas knowledge consumers such as the context understanding module or the service selection module
query the KB through Jena to extract the knowledge of their interest (KB.2 and KB.3). A non-semantic
version of the context is also available to non-semantic context synthesisers through the live context
stream (implemented using an event bus) or its persistently stored version. A dedicated archiver module
ensures the storage of the context stream.

Service Management

The framework administrates a list of services that can be provided to the residents and are described
semantically. Each installed service automatically registers to the service registry module. This module
is an extension of the native OSGi registry that adds support for the semantic description of services.
A reasoning engine performs semantic matching to select services that are useful to residents in real-
time based on the contextual information present in the KB. This is supported by the service selection
module which implements the rules described in section 5.4.1. Information about the (de)activation
of services is updated in the KB (KB.2) so that the service delivery modules can handle the actual
provision to the resident.

It has also been designed but not implemented that services could query the KB using a high level
language to obtain some contextual information in order to adapt their content. The theoretical “KB
Query” module and its associated privacy management module are dedicated to this (3.2).

Service Delivery

Finally, the interaction must be instantiated between residents and services. The User Interface Plas-
ticity (UIP) module adapts the interaction to residents’ profile and their context of use in order to
build the most natural and seamless interaction possible. First the modality of interaction is chosen
using semantic inference by matching the context, the selected services and the available devices for
interaction into the KB (KB.2 and 5.1, see section 5.4.1). An adapted User Interface (UI) must then be
generated (5.2) based on the abstract UI provided by the service (6) and the parameters of the device
available in the KB. The generated UI is then sent to the device (5.4) where a parser instantiates the
service. A module is finally handling the feedbacks and interaction between the device (7.1), the service
(7.2) and the UIP module (5.3).

It has also been designed that devices might have to discover a service framework before it registers
and communicates with it. The theoretical service framework publisher (which is like a broadcaster of
the framework’s identity) and service framework lookup module are planned for the discovery of the
framework (4.1). A registration to the framework is then needed in the same way as for sensors (4.2).

8.2.2 Communication

One can observe from the reasoning architecture presented above that independent reasoning engines
do not communicate results to one another. Instead, all inferred knowledge is updated in the shared
KB, thus made available to other modules. This has been designed to avoid low-level dependencies
between modules in the framework, thus increasing the modularity and easing the hot plugging of new
modules. Consequently, there is no service invocation used to start the inference of each module and
a mechanism must be found to handle the reasoning cycles. Naturally, the naive approach would be

87

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

to set all reasoning engines to perform their inference at a given frequency. However, as the inference
is the most time consuming process in the framework, I wish to avoid the unnecessary processing that
would result from such approach. Hence we must find a way for modules to receive a “token” when it
is their turn to perform the inference.

The system designed is based on a publish and subscribe mechanism around topics, which
modules can publish on, or subscribe to. When a knowledge producer updates the KB, it publishes a
token on the topic corresponding to the update, then knowledge consumers that have subscribed to this
topic are forwarded the token and can perform their inference. Topics are actually linked with the type
of knowledge that producers are updating and consumers are interested in. For instance, there could
be a topic “location” on which modules tracking the location of residents would publish and modules
using such information (e.g. activity recognition modules) would subscribe to. The token sent on the
topic can be anything from a simple “flag” to inform that an update was made, to the triple that was
updated itself.

We assume that the communication protocol chosen should allow reasoners distributed over a net-
work to communicate and should preserve the modularity of the system. Each module should indeed
be able to (un)register freely without having any impact on other modules. The flexibility of registra-
tion for the modules reminds of course of the capabilities offered by OSGi and its packaged event bus.
However, it is not a valid option since OSGi is meant as a single framework system, whereas we seek
to provide a pervasive event bus system.

Our choice has been to create the pervasive event bus based on an XMPP server and Multi-User
Chat (MUC) rooms to implement the topic system. XMPP is an open source technology for real-time
communication, which powers a wide range of applications including Instant Messaging (IM), MUC,
voice and video calls, collaboration, lightweight server-based middleware and generalized routing of
XML data [163, 164]. We have used it as an open-standard communication protocol for event-based
communication between modules. The system runs an XMPP server using openfire, a cross-platform
open source XMPP server [165]. For each topic, we open on the server a MUC room that modules can
connect to and share messages through. Sending a message on a room is equivalent to publishing on
the corresponding topic, whereas logging in to a room and setting a listener to receive its messages is
equivalent to subscribing to the topic.

XMPP provides a platform independent communication protocol. Indeed, since it is used by many
IM services like Google Talk (up to May 2013) or Skype, libraries are available in numerous programming
languages running on all kinds of connected media-enabled devices like computers, smartphones or
tablets. It enables lightweight IM services but is also used in many industrial projects as middleware
for pervasive computing systems. It is known to be scalable as it can be used for small applications as
well as deployed on a worldwide scale to build services such as Google Talk.

8.2.3 Sequence Diagram

For a better understanding of this “distributed” reasoning architecture, and to ease the comparison
with the “hybrid” reasoning architecture described in section 8.3, Figure 8.5 provides an overview of
the sequence of service invocations between the different modules. One can see that several engines
are contributing to the inference in each of the three aspects of the framework (Activity Recognition,
Service Selection and User Interface Plasticity). The context understanding module is a special case as
it does not updates the KB (Jena) directly, but instead does it through the service selection module.
The update() calls between engines actually corresponds to the token being passed over XMPP as
described in section 8.2.2. It is not implemented as an actual service invocation but this representation
is used for improved clarity.

88

8.2. FULLY DISTRIBUTED REASONING ARCHITECTURE: UBISMART V1

Context
Acquisition

<event>

processEvent(event)

"ack"

Context
Understanding Jena Service

Selection
UI

Plasticity
Interaction

Handler

contextUpdate(context)

update(context)

"ack"

infer(ssRules)

update()

"ack"

infer(uipRules)

update()

service, device

query(service, device)

start
service

Figure 8.5: Sequence Diagram for the Reasoning in UbiSMART v1

8.2.4 Detailed Implementation Using Jena Inference Engine

As explained in section 8.2.1, the first version of UbiSMART is implemented around a shared KB
developed with Jena, and relies on the inference capability of Jena to perform the semantic selection
of services and devices depending on the contextual information available. Jena is a Java framework
for building semantic web applications that provides a programmatic environment for RDF, OWL and
SPARQL and includes a rule-based inference engine. The implementation following the SOA paradigm,
the framework is developed as an OSGi container hosting the different modules. Jena has been bundled
as required and publishes a handful of services constituting the API to query and infer the KB. This
API is used by the reasoning modules of the framework, such as the modules for service selection
or UI plasticity. This implementation is illustrated in Figure 8.6. The figure also includes a second
OSGi container that hosts all the low-level modules that gather and process sensor signals to provide
contextual information to the service selection module. The inter-container communication, which is
not defined by the OSGi specification, relies here on the same XMPP and MUC protocol as the one used
in intra-container communication for the tokenization of the inference between the different reasoning
modules (3 and 5 in Figure 8.6). I describe in this section how the KB API provided by Jena is used,
e.g., for the invocations numbered 1, 2 and 4 in Figure 8.6.

Syntactic Introduction

Jena has its own syntax for rule writing, which can be parsed by the integrated engine. A full description
of the rule grammar is available in annex C.1 and some elements necessary to the comprehension of
this section are given hereafter. Jena rules allow the use of prefixes to shorten the URIs of the models
where classes and properties are defined. Prefixes like rdf: or owl: are used to refer to standard RDF
or OWL properties. The prefix pre: is used to shorten the URI of our own model. Rules can call
some built-in primitives which are predefined procedural functions like lessThan(?x, ?y) (return true
if the value of x is less than the value of y) or notEqual(?x, ?y) (return true if both variables are

89

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

Jena Engine

OSGi container
Se

rv
ic

eS
el

ec
tio

n

UI
Pl

as
tic

ity

In
te

ra
ct

io
nH

an
dl

er

KB (API)
Jena

OSGi container

Se
ns

or
Re

gi
st

ry

Co
nt

ex
tA

cq
ui

sit
io

n

Co
nt

ex
tU

nd
er

st
an

di
ng

1 2 34 5

sensor-specific
protocol

XMPP

XMPP

Figure 8.6: OSGi Bundling of the Jena Engine

different). As Jena rule expressivity is quite limited (some operators are missing like logical negation
or the existential qualifier), I implement specific built-in methods to fit our needs. Built-in methods
can be defined and registered to the reasoner in Java using the following Java line of code:

BuiltinRegistry.theRegistry.register();

A very basic rule, corresponding to the transitivity associated to the subclass relation between the
classes Resident and People, is given below for example:

[Transitivity: (?X rdf:type pre:Resident) -> (?X rdf:type pre:People)]

Implemented Ruleset

In this section, I describe the rules used and their implementation. The work described here is inspired
by the doctoral work of Mossaab Hariz [27]. I differentiate three types of rules: population, propagation
and access rules. These have nothing to do with, and must not be mixed up or compared with the
types of rules described in section 5.4.2. Population rules are combined with model queries into what
I call the population mechanism, which uses information received from the event bus to instantiate or
remove new individuals or relations in the model. Propagation rules are in charge of building more
knowledge based on the data already in the model, they are mainly finding the changes made to the
model by population mechanisms and propagating these changes further in the model. Access rules play
the “output” role; they can for example search for undelivered services for which a device of interaction
has been selected and send the services to the corresponding devices.

Population mechanism The population mechanism instantiates new individuals or relations in the
model depending on the messages received through the event bus. For example, when an update of
the contextual information is received, we must link in the KB the resident to his context with the
hasContext relation. The first thing is to check the model to know whether this relation already exists
or not. This is done using the Java querying code in Source 8.1 where user and context are arguments
of the corresponding API method.

Source 8.1: Existantial Query with Jena

String sQuery = "PREFIX pre: <"+modelURI+"> " +

90

8.2. FULLY DISTRIBUTED REASONING ARCHITECTURE: UBISMART V1

2 "PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>" +

"SELECT DISTINCT ?U ?C WHERE { " +

"?U rdf:type pre:Resident . " +

"?C rdf:type pre:Context . " +

"?U pre: hasContext ?C ." +

7 "?U pre:name \""+user+"\" ." +

"?C pre:name \""+context+"\" ." +

"}";

Query query = QueryFactory.create(sQuery);

12 QueryExecution qe = QueryExecutionFactory.create(query , model);

ResultSet result = qe.execSelect ();

When the query is executed, results are bound to the ResultSet object result which can be
checked to know about the prior existence a such a relation in the model. In case the relation does not
exist, rules are applied to infer the model and create it. The rules used are given in Source 8.2 with the
Java code starting the inference. In this case, the ruleset is defined as a string in Java since variables
like user and context are required. However, when no variables are required, it is preferable to define
the rules in a separate file.

Source 8.2: Population Rules in Jena

// prepare built -ins

2 BuiltinRegistry.theRegistry.register(new stopService ());

BuiltinRegistry.theRegistry.register(new clearContext ());

// call rule to clear similar context and instantiate new one

PrintUtil.registerPrefix("pre", modelURI);

7 PrintUtil.registerPrefix("rdf", rdfURI);

String rules =

"[StopService : (?U rdf:type pre:Resident) (?C rdf:type pre:Context) (?S rdf:type pre

:Service) (?U pre:name \"" + user + "\")" + "(?C pre:name ? contextName) notEqual

(? contextName , \"" + context + "\")" + "(?U pre: hasContext ?C) (?S pre:helpsWith

?C) (?S pre: runningFor ?U) -> stopService (?S)]" +

"[ClearContext : (?U rdf:type pre:Resident) (?C rdf:type pre:Context) (?U pre:name \""

+ user + "\") (?C pre:name ? contextName) notEqual (? contextName , \"" + context +

"\") (?U pre: hasContext ?C) -> clearContext (?C)]" +

"[NewContext : (?U rdf:type pre:Resident) (?C rdf:type pre:Context) (?U pre:name \""

+ user + "\") (?C pre:name \"" + context + "\") -> (?U pre: hasContext ?C)]";

12

Reasoner reasoner = new GenericRuleReasoner(Rule.parseRules(rules));

InfModel infModel = ModelFactory.createInfModel(reasoner , model);

infModel.prepare ();

Here again we define prefixes first. The rule ClearContext checks for an older context of the
resident to remove it from the model, it uses the primitive built-in notEqual and calls the built-in
clearContext. The rule StopService works similarly to the previous rule but stop running services
linked to an eventual older context of the resident. The rule NewContext creates the relation between
the resident and his new context.

Built-ins are registered to the reasoner as shown in Source 8.2; they can then be used in the rules as
long as they comply with some requirements emerging from their extension of the class BaseBuiltin.
I provide in Source 8.3 the skeleton for the implementation of a built-in method.

Source 8.3: Built-in Skeleton for Jena

static class BuiltinSkeleton extends BaseBuiltin {

// VARIABLES

final private String NAME = " BuiltinSkeleton "; // name of the builtin

final private int NBOFARGS = 2; // number of arguments of the builtin

5

91

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

public String getName () {

return NAME;

}

10 public int getArgLength () {

return NBOFARGS;

}

public void headAction(Node[] args , int length , RuleContext context) {

15 //TODO implement here action to perform when builtin called from a rule consequent

}

public boolean bodyCall(Node[] args , int length , RuleContext context) {

boolean result;

20 //TODO implement here test to perform when builtin called from a rule antecedent

return result;

}

}

Four methods must be implemented, getName has an obvious role, getArgLength returns the number
of argument the built-in call should have in the rule, the two last methods are the one called by the rule.
bodyCall is called when the built-in is used in the rule antecedent. It should test some conditions and
return a boolean. headAction is called when the built-in is used in the rule consequent and implements
the desired processing.

Propagation rules As explained shortly, propagation rules detect changes made by the population
mechanism and infer more knowledge emerging from these modifications. For example, when a new
context is detected which should trigger the provision of a service, propagation rules can be used to
infer the service to start and link it to the relevant resident. The corresponding simplified rule is given
in Source 8.4. The rule used in this example is generic, and thus does not use any variables; it can
be defined in a file that is parsed by Jena using the code in Source 8.5. Here, as earlier, the rules are
parsed into a Reasoner object which is applied on the ontological model to create an inferred model.

Source 8.4: Example of a Propagation Rule in Jena

@prefix pre: <example.owl#>

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

Start service for new context

[StartService: (?U rdf:type pre:Resident) (?C rdf:type pre:Context) (?S rdf:type pre:

Service) (?U pre:hasContext ?C) (?S pre:helpsWith ?C) notExist (?S, pre:runningFor ,

?U) -> (?S pre:runningFor ?U) (?S pre:sent "false")]

Source 8.5: Parsing of a Rule File in Jena

List <Rule > rules = Rule.rulesFromURL(" localPathToRuleFile ");

Reasoner reasoner = new GenericRuleReasoner(rules);

InfModel infModel = ModelFactory.createInfModel(reasoner , model);

infModel.prepare ();

Access rules I take here the example mentioned above where access rules are used to start services
that need to be started. The implementation is similar to the propagation rules, only the rule file used
changes as described in Source 8.6.

Source 8.6: Example of an Access Rule in Jena

@prefix pre: <example.owl#>

92

8.2. FULLY DISTRIBUTED REASONING ARCHITECTURE: UBISMART V1

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

send service when it has not been sent yet

[CheckService: (?U rdf:type pre:Resident) (?S rdf:type pre:Service) (?S pre:runningFor

?U) (?S pre:sent "false ") (?U pre:name ?user) (?S pre:name ?service) ->

sendService (?service , ?user)]

Here we search for services that have not been sent by verifying the value of the sent property.
If there is a candidate, the name of the service is held in the ?service variable and the name of the
corresponding resident in the ?user variable. The service is then sent to the user using the built-in
sendService.

Summary The ruleset described here is similar to the real implementation, the differences lies in the
number of rules deployed and in the complexity of the related queries or built-ins. Queries are always
similar to the one given here in the way they are written. Built-ins also remain similar to the example
explained above: the call gives in argument URIs or names of resources to use, the ontological model
can then be navigated from these resources to eventually find other resources or statements (triples) to
remove or to bind new ones.

8.2.5 Performance Validation and Discussion

In order to validate the performance of this first version of UbiSMART, we implemented and integrated
it into a context-aware reminder and notification system, which we deployed in a nursing home in
Singapore (details in section 9.3). The first aspect in which I wish to judge the system’s performance
is regarding its uptime. In this aspect, we learnt a lot from our deployment in the nursing home. Due
to malfunctions coming from different parts of the system, we started with an uptime of three days
in December 2011. After identifying and solving or improving the issues one by one, we managed to
increase the system’s uptime to eleven days in May 2012. Over this six months period, we observed
and gathered data about the different reasons that would cause the system to malfunction. In order of
frequency, the main reasons observed were the failure of sensors’ batteries, packets being lost over
the WSN, failures in the reasoning, sensors being removed, and WiFi disconnections. Figure 8.7
represents the relative frequency of these issues. The sensors’ battery issue was reduced by changing

WiFi disconnection

Sensor packet lost
Sensors removed

Reasoning failure

Sensor out
of battery

22%

51%

12%

8%

7%

Figure 8.7: Relative Frequency of the System’s Malfunctions in Peacehaven

the class of the batteries used, shortening the maintenance cycle, and reducing the frequency of wireless
communication as this is the most power consuming process. The loss of sensor packets was reduced
in two ways: by using a mesh topology for the WSN but this increased power consumption, and

93

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

subsequently by calculating Cyclic Redundancy Check (CRC) and sending an acknowledgement on the
messages received. WiFi disconnections have been limited by upgrading the hardware used for the
WiFi network. Sensors removed could not be helped much, except by explaining again the reasons of
the deployment to the residents. Reasoning failures are detailed hereafter.

We observe that reasoning failures are responsible for 12% of the system’s malfunctions. Further
debugging of the engine demonstrated that flaws of reasoning could be observed in simple cases when
increasing the complexity of rules in a way that several rules would collaborate on a single decision.
As explained in section 5.3.2, I believe that this reasoning issue is due to Jena’s partial OWL-DL
entailment. Without requiring any further profiling or load test to estimate the performance of my
reasoning engine, I decided to compare Jena with other inference engines to make a more informed
technological choice. Consequently, I stopped using Jena in favour of EYE as argued in section 5.3.2.

In parallel, we gathered information about other areas in which the framework could be improved.
I describe below the main points that were addressed in the second design of UbiSMART.

1. I believe it should be simpler to implement inference modules. Developers should only need to
focus on rules while relying completely on the declarative approach to separate application logic
and underlying models. The convenience of use of Jena is limited because is it a bit too low-level
and its implementation-style remains close to the imperative paradigm. Moreover, the inference
sequence should not have to be fixed a-priori, since this is an obstacle to the deployment of more
heterogeneous inference modules. These issues are addressed by the centralized semantic inference
proposed in section 8.3.

2. It should be possible to use non-semantic processes for more computational operations of inference,
or even introduce data-driven techniques in the reasoning. This concern is addressed by the
hybrid reasoning architecture proposed in section 8.3, and more specifically by the introduction
of Cerebration modules in the engine.

3. We want to introduce a communication layer with interchangeable protocols to move part of the
framework to a remote server when and if needed. Such a layer would also allow adapting the
communication protocols used to the peculiar settings of each deployment. This communication
layer is proposed and described in section 8.3.4.

4. It would be useful to reuse sensor signal processing algorithms based on use-cases. In order to do
so, we introduce the SensorFlowManager and SensApps in section 8.3.

5. We must make it easier to deploy and configure the framework and its related hardware (sensors
and devices). A semantic plug & play mechanism is proposed in section 8.3.5 and enable our
configuration tool called Smart Space Composer (S2C).

8.3 Hybrid Reasoning Architecture: UbiSMART v2

8.3.1 UbiSMART’s RESTful Architecture

The second version of UbiSMART is based on the first one and improves it in two main aspects: its
cloud-readiness and its semantic inference as a service. Indeed, the architecture of the framework
was modified towards two distinct purposes. On one hand, emerging from the bottom-up approach
described in section 3.1.2, there is a need to go towards a “cloud-proof” design in order to provide
services over hundreds of homes with health assessment features. Modules have been added to handle
the heterogeneity in the communication protocols used for the sensor networks deployed in various
homes, as well as between the gateways and the server. The new design allows for the pre-processing
of the sensor data to be performed on a local server or in the cloud (see the “Sensor Flow Manager &
SensApps” section below). Therefore flexibility has been added in the communication layer as detailed

94

8.3. HYBRID REASONING ARCHITECTURE: UBISMART V2

in section 8.3.4. On the other hand, the architecture has been reviewed from the ground up in order to
provide not only a share KB to the various modules but also a shared semantic inference service, which
modules can register their rules to be processed in a centralised manner. This centralisation allows for
rules of the same level (i.e. rules that feed each other or provide similar information) to be used without
generating conflicts or deadlocks, as it would have been with the first architecture of UbiSMART due to
the predefined order in which rules would be applied. In other words, where UbiSMART v1 would have
had modules infer the KB one by one in a predefined order, thus giving a sort of priority to some rules
over others, UbiSMART v2 actually gathers the rules of all modules using semantic inference and run
them at once leaving the inference engine (i.e. EYE) to handle the multiple pass of inference needed
to reach a stable inferred ontological state. The second architecture, called “RESTful” since it relies
on a REST design to enable the communication between the deployed hardware and the server-based
framework, is illustrated in Figure 8.8.

As explained in section 5.4.1 and illustrated in Figure 8.8, the inference mechanism follows the
“Data-Information-Knowledge-Wisdom” (DIKW) paradigm. Data is the meaningless (i.e. no semantics
attached) and mostly useless (due to its redundancy) signal coming from the sensors. Information is
non-redundant and has attached semantics; it is available in an ontological form; thus it is more useful
and calculable. Among the modules described below, Information is derived from Data by the SensApps
and its semantics is attached by the Stimulistener. Knowledge is inferred from Information by fusing
different sources and by incorporating domain knowledge; it formalises the contextual information at
a higher level, closer to how a human being would formulate. The transformation of Information
into Knowledge happens at the reasoning stage, especially in the Cogitation module and the various
Cerebration modules as will be described further in section 8.4.

NTriplestore (KB API)

In the first design, all modules were sharing a central KB implemented using the Jena framework for
Java. In this design, we keep a shared KB with an attached API to update the ontology following the
Create Read Update Delete (CRUD) paradigm. Since we are using the N3 syntax in this new version
of UbiSMART, nor Jena neither any triplestore can be used to implement the KB. Thus we implement
our own triplestore, focusing mainly on the features required for our specific use-case and keeping for
further development the full standard implementation. More details are provided about this triplestore
in section 8.3.3.

The tricolour cube represented on top of the NTriplestore module in Figure 8.8 is the Semantic Web
logo. Over the rest of graph, each module containing the logo represents a “semantic-aware” module,
i.e. a module able to query the triplestore following the CRUD paradigm through the NTriplestore
services.

“X” Gateway

An “X” Gateway is a sensor gateway written specifically for the “X” communication protocol. For
instance, we have implemented a ZigBee Gateway for our sensor deployment and a DB Gateway in order
to use historical data stored in relational databases. Other gateways can be implemented according
to the needs and choices made to deploy wireless sensor networks. A gateway is a low level, protocol
specific implementation providing features like the normalisation of data coming from sensors, the
forwarding of the data over a REST link to the server-based framework, etc. It is dependent on the
specific link to the hardware gateway (the wireless communication module receiving the signals from
all sensors) which can for example use RS232 or USB connectivity.

95

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

S
ervice D

elivery M
o

d
u

les

S
en

sin
g

 M
o

d
u

les

C
o

n
fi

g
u

ratio
n

 M
o

d
u

les

R
easo

n
in

g
 M

o
d

u
les

"X
"

S
ensorFlow

M
anag

er (R
outing

)

- m
erg

e all "X
" sig

nals
- reg

istration of S
ensA

p
p

s
- forw

ard
 d

ata to relevant S
ensA

p
p

- forw
ard

 inform
ation to InfoC

onsum
ers

- d
iscovery of new

 sensors
- config

uration g
ate for B

ind
er

- sensors to S
ensA

p
p

s b
ind

ing
s

S
ensA

p
p

*

- p
rocess d

ata
- p

rod
uce inform

ation

B
ind

erU
I*

S
ensA

p
p

R
ep

ository*

- list S
ensA

p
p

s p
er categ

ory of sensor
- p

rovid
e S

ensA
p

p
 for d

ow
nload

"X
" G

atew
ay*

- low
 level

- p
rotocol d

ep
end

ent (cod
e is sp

ecific)
- norm

alization of d
ata (e.g

. H
E

X
2D

E
C

)
- sig

nal forw
ard

ing
D

 I K
 W

?

- flow
- no m

eaning
- m

ostly useless

- in the sem
sea (ontolog

y)
- sem

antic (m
eaning

)
- useful &

 calculab
le

S
ensA

p
p

 d
ev.

>
 introd

uce lib
s in

S
ensA

p
p

 A
P

I
>

 restructure d
ata in a

m
ore m

eaning
ful w

ay
using

 p
rocesses

IN
FE

R
E

N
C

E
>

 p
rocess is not necessary

sem
antic b

ut I/O
 g

oes
throug

h sem
antic sea

B
ind

er

- config
uration tool (b

uild
, d

eclarative)
- choice, d

ow
nload

 &
 installation of S

ensA
p

p
s

- p
aram

etrization of S
ensA

p
p

s
- b

ind
 sem

antics (to sensor +
 its events)

C
ortex

- hand
le reasoning

 cycle (until stab
le cog

itative state)
- alternate b

etw
een cog

itation p
ass &

 cereb
ration p

ass

start/stop
 &

 feed
b

ack

R
E

S
T +

 E
vent B

us

hand
leE

vent

p
rocessE

vent

p
rocessThoug

hts

R
E

S
T +

 d
ow

nload

L
eg

en
d

S
m

artS
p

aceC
om

p
oser (S

2C
): config

uration

* this m
od

ule can have several instances
 this m

od
ule is sem

antic-aw
are, i.e. linked

 w
ith N

Trip
lestore

E
xternal M

od
ule

Internal M
od

ule

A
b

stract C
lass

E
ventB

rid
g

e*

X
M

P
P

B
rid

g
e

D
P

W
S

B
rid

g
e

H
TTP

B
rid

g
e

O
S

G
iB

rid
g

e

p
ub

lish

sub
scrib

e

S
tim

ulistener

- m
atch sensor/state w

ith sem
sea b

ind
ing

s
- w

rite context inform
ation in sem

sea
sub

scrib
e

N
Trip

lestore

- A
P

I to sem
antic sea (sem

sea)
- p

rovid
e C

R
U

D
 access to the trip

lestore
- im

p
lem

ented
 as a service

think

C
og

itation

- hig
h level rule-b

ased
 reasoning

- d
ecision m

aking
- conscious p

rocess

C
ereb

ration*

- thread
ed

 asynchronous inference
- low

 level, sp
ecific, com

p
utational task

- I/O
 in seam

sea
- sub

conscious p
rocess

C
lassification

S
tatistical A

nalysis

N
um

eric C
om

p
utation

C
oreE

ng
ine*

E
Y

E

S
V

M

 think

Thoug
htInterp

retor

- interp
ret thoug

hts (reasoning
 results)

- up
d

ate trip
lestore

- start/stop
 service

- etc.

S
erviceG

atew
ay

- reg
istration of services

- control over services
- status up

d
ate in trip

lestore

start/stop
/up

d
ate

U
b

iS
ervice*

B
ackE

nd
S

ervice*
FrontE

nd
S

ervice*

A
tom

icS
ervice*

C
oup

led
S

ervice*

R
em

ind
er*

C
allC

enter*

A
ctivityLog

*
N

otification*

d
isp

lay(<
S

erviceS
kin>

) &
 ack

reg
ister

D
eviceG

atew
ay

- reg
istration &

 m
anag

em
ent of d

evices
- sem

sea I/O

reg
ister

C
om

Layer*

X
M

P
P

A
P

N
s

U
b

iD
evice*

IP
hone*

IP
TV

*

send
 &

 ack

S
erviceS

kin*

M
ob

ileG
U

I*

TextToS
p

eech*

...

- fused
 inform

ation
- d

om
ain know

led
g

e
- hig

her level

sub
scrib

e

InfoC
onsum

er*

- p
latform

 or ap
p

lication using
 the sam

e d
ata

F
ig
u
re

8
.8
:
R
E
S
T
fu
l
A
rch

itectu
re

of
U
b
iS
M
A
R
T

(S
eco

n
d
V
ersio

n
)

N
o
te:

T
h
e
rea

so
n
in
g
m
o
d
u
les

a
re

d
eta

iled
in

F
ig
u
re

8
.1
4
.

96

8.3. HYBRID REASONING ARCHITECTURE: UBISMART V2

Sensor Flow Manager and SensApps

The SensApps are independent applications that process sensor data in order to produce information
related to a specific use-case. For example, a SensApp could detect the usage of a water jug based
on the signal coming from a accelerometer/gyroscope sensor attached to it. Such application can be
written specifically for a deployment, shared into a repository on the web and downloaded on demand.

Sensor Flow Manager is making the link between incoming sensor signals and SensApps. Therefore
it matches the sensor event received with the different SensApps that can process this event based
on the configuration of each sensor. The processEvent method uses a publish & subscribe event bus
with SensApps based on semantic topics of communication that are generated according to the sensors’
configurations. Sensor Flow Manager is an entry point to the framework for the signals coming from
the various “X” Gateways in use. It can be running on a local or cloud server. If it runs locally,
handleEvent makes a local REST query while the event bus to Stimulistener connects to the cloud
server with an XMPP or Hypertext Transfer Protocol (HTTP) bus for example. If it runs in the cloud,
handleEvent makes a internet REST query while the event bus to Stimulistener can be local, for
example using OSGi’s EventAdmin service. More details is given about the event bus communication
in section 8.3.4.

Sensor Flow Manager is also handling a part of the discovery and configuration of new sensors.
Indeed, when it receives the signal of an unknown sensor, it forwards it to the Binder module described
below which provides configuration features for sensors. Binder will then send the relevant parameters
back to Sensor Flow Manager for the binding between the new sensor and available SensApps.

Configuration with Binder

The configuration aspect of the framework is pretty much at the design level for the time being as
the full mechanism has not been implemented. It is however extending the plug & play mechanism
described in section 8.3.5 which was implemented. Binder receives the signals from new sensors that
lets it extract information such as sensor type, identification number, etc. Binder is also connected to
the SensApp repository from which he obtains all available SensApps compatible with the new sensor
(based on its type). It then combines all information needed for the configuration of the new sensor.
This information is provided as a web service to the BinderUI module which is a front-end client for the
configuration of sensors. BinderUI is dynamically updated using AJAX in web browsers and XMPP or
push notifications on native mobile applications.

The configuration of a sensor is partly saved in the triplestore, partly sent to the Sensor Flow
Manager. The semantic description of the bindings between the sensor and its deployment environment,
its possible states and the type of data it may provide are written in the triplestore in order to enable the
inference of contextual information. The information needed for the binding of the sensor’s signal to the
relevant SensApps is sent back to the Sensor Flow Manager. Once a sensor is configured successfully,
its signal is automatically forwarded to the relevant SensApps and then to Stimulistener, it disappears
from the Binder’s duty and client.

Stimulistener

Stimulistener is the entry point to the framework from a semantic point of view. It is the module
updating the triplestore with each event received after its translation into the semantic syntax. It
subscribes to the topics where the information coming from sensors (augmented by SensApps or not)
is published by Sensor Flow Manager. When an event is received, it translates it based on the sensors’
semantic description available in the triplestore and updates the triplestore accordingly. Once the
update done, it starts a reasoning cycle by invoking Cortex’s think method.

97

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

Reasoning Modules

The reasoning mechanism in UbiSMART v2 is a hybrid mechanism that incorporates semantic inference
centralised as a service in the Cogitation module, and a distributed non-semantic inference through
various ad-hoc approaches implemented under the Cerebration family of modules. The Cortex module
is handling the reasoning cycles between Cogitation and Cerebration. It makes sure a stable decision is
reached before the result is sent for further processing. The designed mechanism is described in details
in the dedicated section 8.4.

Persistent Triplestore Updates and Service Control

Once a stable inferred state of the ontology is reached, the inferred triples are sent to be interpreted
by the Thought Interpretor module which performs the relevant actions. For instance, persistent
updates to the triplestore are made and services are started, stopped or updated as required using the
corresponding services provided by the Service Gateway module. The Service Gateway is handling the
registration of the end user services started in the framework and provides control methods as services.
It also updates the status of the services in the triplestore when it changes. In this aspect, the second
design is very similar to the first one. Similarly, the services and devices modules are used in the same
manner as in the first design.

8.3.2 Sequence Diagram

As introduced above in the “Reasoning Modules” paragraph, UbiSMART v2’s reasoning has evolved
into a centralised semantic inference, coupled with a distributed network of ad-hoc non-semantic rea-
soning engines. For the semantic inference, each independent reasoning module provides its rules to the
Cogitation module through a registration step at the framework start-up. The Cogitation module then
single-handedly infer the ontology, applying all registered rules and thus leaving to EYE engine itself
the handling of potential conflicts or deadlocks that might emerge from the independently designed
rules. In the case of the non-semantic engines, factorisations have yet to be needed, thus a distributed
mechanism is satisfactory. The sequence diagram resulting from this evolution is given in Figure 8.9
and is meant for comparison with Figure 8.5.

We observe among others how the serial organisation of the semantic engines from Figure 8.5 has
evolved into a parallel organisation in the new design. Indeed, the modules for context understanding,
service selection and UI plasticity now register their rules at the framework start-up, and all rules are
inferred at once by Cogitation. One can also note the combination between the Cogitation module
handling the semantic inference, and the various Cerebration modules introducing other reasoning
techniques. These modules are put at the same level in the design and feed each other with ontological
updates until a stable decision can be made by Cogitation. The whole hybrid reasoning mechanism is
further detailed in the coming section 8.4.

8.3.3 Extra: N3 Triplestore

Motivation

The context-awareness aspect in UbiSMART is ensured by the “live” processing of events gathered
from sensors on field. These events are fetched in real-time and added in the KB to be processed by
the reasoning engine. The premier engine used in the hybrid architecture is EYE which uses primarily
the N3 language, hence the KB is implemented as a N3 triplestore. N3 is a superset of RDF, the
mainstream semantic language, which extends it in many ways in order to enable the expression of
statements describing logic, and their inference. Despite its fundamental superiority on RDF, N3 has
not yet received the adoption it deserves from the Semantic Web community. Therefore some tools
are still not available off-the-shelf, such as triplestores which are dedicated databases for the storage,

98

8.3. HYBRID REASONING ARCHITECTURE: UBISMART V2

event processing

SensApp Stimulistener Cortex EYE Cerebration* Thought
Interpretor

Context
Understanding

Service
Selection Cogitation

<event>

processEvent(event)

think()

"done"

think()

framework startup

register(cuRules)

register(ssRules)

register(uipRules)

NTriplestore UI
Plasticity

sensor information

query(sensor)

"ack"

update(event)

"done"

think()

loop [until decisions stable]

triples

query(triples)

"ack"

update(triples)

decisions

think()

"ack"

dump()

inferred triples

think()

isStable()

processThoughts()

process()

Figure 8.9: Sequence Diagram for the Reasoning in UbiSMART v2

99

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

update and retrieval of triples. Consequently, and in order to use EYE reasoning engine and N3, we
have several options:

– store the triples into N3 files,

– store the triples into a RDF store and feed RDF to EYE which can handle the translation,

– store the triples into a relational database and use some existing but yet to be completed approach
to handle the translation (SPARQL CONSTRUCT e.g. via D2RQ, a database to RDF mapper),

– or implement our own N3-compliant triplestore.

The first option is our legacy approach but is rather tedious when it comes to implementing the
file parsing and modification. I observed that it is also very inefficient in term of processing time.
Not relying on N3 file parsing is actually the main motivation behind using a triplestore. Due to the
fundamental loss of expressivity incurred by the second option and the apparent technical complications
of the third, we choose to design and implement our own purpose-build triplestore, i.e. a triplestore
designed with as much modularity and abstraction as possible to ease further developments but for
which only specifically required features are implemented. We call it NTriplestore.

As far as I am aware of, there has been only one prior initiative to provide a triplestore for N3.
This initiative was supported by Ruben Verborgh, a doctoral researcher at the Ghent University’s
Multimedia Lab, Belgium [166]. However, the store in its current state does not yet support the use of
namespaces, which is essential in our case. Thus we hope to switch to it if it reaches completion as it
aims to be fully compliant with the standards, but we choose to implement our purpose-built version
for the time being.

Implementation

The class diagram for NTriplestore is given in Figure 8.10. It is built around four main functional
requirements. First, it is implemented as a service that any other module can invoke based on its
interface published through the OSGi architecture. Second, it is able to read N3 files and parse them,
including the various syntactic sugars and prefixes. Third, it serves as a cache for the quick manipulation
of triples. Thus, queries are implemented to search, add, remove and update triples. Finally, it can
dump the whole content of the triplestore or a part of it into a file, in order e.g. to launch EYE reasoner.

<<implements>>

+add(NTriple), add(String formula)
+remove(NTriple), clear()
+read(File), load(String filename)
+write(String filename)
+updateSubject(NTriple)
+updateObject(NTriple)
+boolean exist(NTriple)
+List<NTriple> searchNTriples(NTriple)
+List<NTriple> sortNTriples(List<NTriple>)

-HashSet<NTriple> prefixes
-HashSet<NTriple> statements

NTriplestoreImpl

NTriplestore

N3 File

+String getSubject()
+String getPredicate()
+String getObject()
+boolean isPrefix()
+boolean equals(NTriple)

-String subject
-String predicate
-String object

NTriple
+parse()
+List<NTriple> readFile(File)
+List<NTriple> readFormula(String)

N3Reader

+write(File)

N3Writer

fill

dump

read

write

10..*

Figure 8.10: Triplestore Simplified Class Diagram

100

8.3. HYBRID REASONING ARCHITECTURE: UBISMART V2

To ease the manipulation of N3 triples, the NTriple class is available providing the basic repre-
sentation of {subject, predicate, object} triples, together with accessors and usability methods for the
comparison of triples for example. In NTriplestore, the collection of NTriples are stored in a Hash-
Set—a collection that uses a hash table for storage—in order to ensure the uniqueness of each NTriple.
The searchNTriples method requires as argument a partial description of the triples to be found where
unknown fields (e.g. the object) should be replaced by “∗”. Searching for the triple {∗, ∗, ∗} would thus
return the whole content of the triplestore, whereas searching for {Bob, hasDaughter, ∗} will return
the triples binding Bob with each of his daughters. Update methods are dedicated to update one field
of a triple, for example updateObject will remove all triples with similar subject and predicate from
the triplestore and replace it by the triple given in argument. exist(NTriple) performs a search for
the triple in argument and returns true if a match is found, false otherwise. The N3Reader provides
methods to parse either files or formulae, i.e. String variables that contain one or several triples. Thus
readFile is invoked by the methods read(File) and load(String Filename), while readFormula is
invoked by add(String formula).

Performance Gain

In order to evaluate the gain in performance due to the triplestore, we have conducted an experience
over 10,000 events gathered in our deployment in France (about a week of data for a single occupant in
a private home). For each event, the corresponding triples are added or updated in the ontology; then
the inference is performed by EYE reasoning engine. During the experience, we measure the overall
reasoning time, which we refine into the time taken for the inference by EYE itself, and the time taken
for the various updates to the KB. There are about 10 to 20 updates for each event: a few when the
event is received before the reasoning, and more after the inference to perform the persistent updates
in the KB. All updates are implemented using file parsing and rewriting in one case, and by invoking
triplestore methods in the other. The size of the ontology inferred varied only a little and was of 350
triples in average. The results of the experience are presented in Table 8.1.

Table 8.1: Performance Comparison: N3 File Parsing vs. NTriplestore

Processing time for: File parsing NTriplestore Improvement factor

Whole reasoning 1,226ms 150ms 8

EYE inference only 148ms (12%) 147ms (98%) -

KB updates only 1,078ms (88%) 3ms (2%) 359

Nota: Average measurement over 10,000 iterations corresponding to a single house with an average of 350 triples.
Computed on a Linux server (Ubuntu 12.10 32-bit) powered by an Intel Core 2 Duo CPU E6550 at 2 x 2.33GHz and

3.8GB RAM.

We observe that using a triplestore is much more efficient in term of processing time as compared to
parsing and rewriting N3 files as we used to do. The overall reasoning is performed 8 times faster than
it used to be. Moreover, when discarding the time taken by EYE itself, which is independent from my
implementation, the KB updates are performed 359 times faster in average. In conclusion, the main
issue met when using N3 due the unavailability of off-the-shelf tools is solvable and my choice of this
language consists less of a trade-off.

8.3.4 Communication

Following the “cloud-proofing” of UbiSMART’s design, it is necessary to rethink the communication
layer since the protocols used in the first design are more suited for a home set-top box kind of
deployment. We particularly wish to gain modularity in the choice of the protocols used for the
deployments in order to adapt to the peculiarities of each deployment, for example making it possible
to shift either the SensApp processing, or the whole reasoning from the cloud to a local server and back.

101

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

Taking into account the peculiarities of each deployment would also let us make an appropriate choice
of the communication protocols used depending on the volume of data, or the use of mobile devices,
etc. We introduce in this second design an abstract event bus called Event Bridge, which has numerous
protocol-specific implementations. For instance, and as illustrated on Figure 8.11, interchangeable
bridges can be implemented based on XMPP, Devices Profile for Web Services (DPWS), HTTP or
simply OSGi’s EventAdmin service. Each bridge provides access to a publish and subscribe event bus
by wrapping the underlying communication protocol. E.g. OSGi already is based on the publish and
subscribe paradigm so the wrapping is trivial, however an equivalence needs to be made between XMPP
MUC rooms and the publish and subscribe topics. This can be done as described in section 8.2.2. In
each of the bridges, events are actually dictionaries of (label, value) pairs.

EventBridge*

XMPPBridge

DPWSBridge

HTTPBridge

OSGiBridge

publish subscribe

send listen

<producer> <consumer>

Figure 8.11: Abstracted Event Bridge for In-Place Replacement of Communication Layer

The main idea here is to enable a standard in-place exchange between interchangeable event buses
in order to easily adapt to the requirements of deployments. For instance, we rely in the UbiSMART
v1 on XMPP MUC for the communication. This is not a high-speed eventing channel, thus it may
be inadequate if rapid inferencing is required. The abstracted event bridge allows to select another
eventing protocol and replace XMPP MUC as and if needed. In Figure 8.8, I have represented the
Event Bridge only for the communication between the Sensor Flow Manager and the Stimulistener
due to space constraints, but this mechanism is actually used for the processEvent call between the
Sensor Flow Manager and the SensApps (see details in the dedicated section above), as well as for the
handleEvent call from the Gateways to the Sensor Flow Manager. For instance, in the handleEvent

call, the HTTP bridge can be used by the sensor gateway gathering binary signals from a wireless
sensor network, thus decreasing the processing power needed and enabling a minimal gateway that
could be running on an Arduino platform. On the contrary, to receive signals from a smartphone where
a two-way communication may be desirable, an XMPP bridge might be a more suitable choice.

8.3.5 Extra: Semantic Plug’n’Play

This section describes a work realised in close collaboration with Hamdi Aloulou, for which the me-
chanical part of the mechanism and most of the implementation was part of his doctoral work defended
successfully in June 2013. More details can therefore be found in his doctoral dissertation.

Introduction

To build AAL spaces or smart spaces in general, one must integrate a line-up of entities: a network
of sensors, a reasoning engine, environment actuators, interactive devices and services. By enhancing
the modularity and flexibility of our UbiSMART framework, we could go towards a larger scale of
deployment without decreasing the customizability of the proposed solution. SOA is beneficial since it
provides mechanisms for the deployment and maintenance of entities as well as for the communication

102

8.3. HYBRID REASONING ARCHITECTURE: UBISMART V2

between them [61]. However, these mechanisms only apply to software entities that are packaged into
OSGi bundles. Hence, in order to extend the OSGi-based modularity we enjoy with services to hardware
entities as well, we propose an OSGi-based discovery protocol of hardware entities enabled by the auto-
matic generation of software bundles representing them into the framework [167]. This mechanism acts
as plug & play support for the sensors, actuators and devices deployed in the environment. Although
adding and removing entities is made much faster and simpler, we only provide here a mechanical
plug & play where entities can discover each other and start exchanging data. They actually ignore
each other’s bindings with the environment, which makes the full understanding of the data exchanged
impossible. E.g. it could be useful to know where is one particular motion detector deployed, or who
is carrying a given handphone. Being able to parse data received from a new unknown entity is not
enough; you need to be aware of its semantics. We therefore designed a semantic plug & play where
entities (services, sensors, actuators or devices) provide their semantic profile when “shaking hands”
with the framework. This profile can be edited during the development, the deployment, or updated
at run-time by users or even other entities. Hence, a real plug & play behaviour is created where new
entities are able to genuinely understand each other to collaborate.

Discovery and Bundle Automatic Generation

In the literature, pervasive systems often utilize a layer providing a level of abstraction common to all
entities, helping communication, discovery and collaboration using protocols and data formats [61]. Our
alternative approach is to use semantic web technologies to bring down to each entity the possibility to
understand newly discovered other entities, thus decreasing the overhead on this layer, which is then
solely in charge of a higher level system coordination.

I illustrate in Figure 8.12 the communication steps between a newly added entity and the service
framework. Steps are divided in (numbered according to Figure 8.12):

1. discovery and registration on a entity-specific communication protocol (e.g. ZigBee for sensors,
IP over 3G or Bluetooth for devices),

2. bundle automatic generation by the module in charge of the registration,

3. system-level registration to the environment discovery module which updates the KB accordingly.

OSGi Sensor Gateway OSGi Device Gateway

Sensors

S
en

so
r

R
eg

is
tr

y

S
en

so
r

i

S
en

so
r

j

1.
"X" protocol

DPWS DPWS

2. auto-generation

D
ev

ic
e

R
eg

is
tr

y

S
en

so
r

i

S
en

so
r

j

2. auto-generation

Devices

1.
Wi-Fi/3G/BT

OSGi Service Platform

R
ea

so
ni

ng

E
ng

in
e

E
nv

iro
nm

en
t

D
is

co
ve

ry

S
er

vi
ce

 R
eg

is
tr

y

S
er

vi
ce

 i

S
er

vi
ce

 j

3. WS-Discovery 3. WS-Discovery

1. lo
cal s

ervi
ce in

vo
ke

3. lo
cal s

ervi
ce in

vo
ke

Legend

1. discovery & registration

2. bundle auto-generation

3. system registration

DPWS DPWS

Figure 8.12: Discovery, Registration and Communication Protocols for the Plug & Play

A sensor registry bundle has been implemented to handle the ZigBee communication between sensors
and the framework. When a sensor is turned on in the environment, this bundle receives the new signal
(1 in Figure 8.12) and automatically generates a bundle representing and describing the sensor in the

103

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

framework (2 in the Figure). A similar mechanism ensuring hot plugging for devices is partially imple-
mented and supports heterogeneous communication layers (e.g. WiFi, Bluetooth, 3G). To handle the
discovery and events exchange between the different bundles in the framework, we are using the DPWS
protocol. DPWS uses several standards from the web services specification—namely the Web Services
Description Language (WSDL), Web Services (WS)-Discovery, WS-Eventing and Simple Object Access
Protocol (SOAP)—in order to advertise and discover bundles, as well as for events exchange. Once a
bundle representing an entity in the environment is generated, it uses the WS-Discovery protocol to
advertise itself and send a description of its capabilities (3 in the Figure). A DPWS client (the environ-
ment discovery bundle) is handling the discovery of this bundle on the framework side and updates the
KB with a semantic description of the entity. Other modules can then obtain the entity’s description
from the KB and start exchanging data.

Knowledge Base Update

Let us consider that the ontology is build from a set of files written in N3 and containing different kinds
of information; its update (e.g. by the environment discovery module) is reduced to files parsing and
modification. As illustrated in Figure 8.13, there is a file (skeleton.n3) constituted of the classes and
properties that can be instantiated in the whole system to represent the current contextual information.
It is the TBox of the ontological model. Another file (environment.n3) contains the knowledge coming

OSGi service platform

Sensors Devices

R
em

in
d

er
S

er
vi

ce

H
om

eC
on

tro
lS

er
vi

ce

S
er

vi
ce

C
on

tro
l

E
nv

iro
nm

en
t D

is
co

ve
ry

S
en

so
r

R
eg

is
tr

y

D
ev

ic
e

R
eg

is
tr

y

Sensors

Devices

KB (API)

rules.n3 & query.n3
environment.n3

skeleton.n3
input.n3

DPWS"X" protocol Wi-Fi/3G/BT

1

2

3

46

5

bundle auto-generation
1. profiles of users, devices, sensors
2. context information, devices status
3. selected service and device
4. start/stop service on a device
5. services status
6. service instantiation on device

Figure 8.13: Detailed Semantic Process Supporting the Plug & Play Mechanism

from the environment discovery phase: e.g. actual users and their profile, or sensors, devices and
services along with their semantic profile. Two files (rules.n3 and query.n3) contain the rules and queries
necessary for the inference process, thus centralize the application logic, i.e. is the system context-aware
decision-making. Finally, a file named input.n3 is updated at run-time through a dedicated interface
to reflect the changes in the environment: real-time context information, services or devices status,
etc. On Figure 8.13—a single container version of Figure 8.12 that removes the pervasive aspect of
the mechanism but helps to understand the different updates and queries of the KB by the different
modules—one can see that the environment discovery module updates the environment file (1), thus
making it possible for the events coming from the sensors or devices to be translated, added into the
KB (2) and understood by other modules and used, among others, for the context inference (3).

104

8.4. DETAILED IMPLEMENTATION OF THE HYBRID ARCHITECTURE

8.4 Detailed Implementation of the Hybrid Architecture

In this section, I describe in details the implementation of the reasoning part of UbiSMART v2. I
provide as main support the detailed class diagram of the reasoning modules in Figure 8.14. This
diagram covers only the part of Figure 8.8 related to reasoning; the modules concerned are Stimulistener,
Cortex, Cogitation, Cerebration and EYE. As Cerebration is an abstract class, I consider as example
MotionEstimator, an implementation of Cerebration that computes an estimate of the motion in each
room of the house. In order to keep the diagram readable, I have omitted the multiplicity information
when it was equal to 1. The reader should thus take 1 as the default multiplicity throughout the
diagram. The NTriplestore module is not described in details here as it was already done in Figure 8.10.
Considering a replacement of the interface in Figure 8.14 by the full diagram of Figure 8.10 is however
correct and advised; one must then add the Activator for the NTriplestore bundle, which was not
represented in Figure 8.10.

In the class diagram, each bundle is delimited by a dotted line. One can note that each module has
an Activator implementing the BundleActivator class provided by OSGi API; this is a requirement
under the OSGi specification. The Activator provides generic methods for starting and stopping
a bundle, it is an equivalent of the Main class in traditional Java, since it is the class creating the
instances of other classes, linking them together, starting them, and more specifically here registering
their services to the OSGi container’s service registry.

In the following, I will also describe how each module updates the ontology in order to clarify the
mechanism and highlight the complementary roles of all modules. Therefore, I take one simple example,
used as a guiding thread, and illustrate partly the ontology and its updates around the example use-
case. Figure 8.15 is the initial state of the ontology to be considered. In this example, a person named
John Doe lives in a house and is currently detected moving in the livingroom; there is no movement
in any other room of the house, and the activity inferred previously is “occupied”, i.e. John Doe is
moving without alarming behaviour but we do not know exactly what he is doing. The ontology is
represented here from a purely ABox point of view, i.e. the individuals of the ontology are represented
without being attached explicitly to their classes. The objects’ and properties’ names are a simplified
and more readable version of their URI.

8.4.1 Stimulistener

Stimulistener is the module receiving all events coming from sensors and updating the ontology accord-
ingly. As represented on Figure 8.14, the Stimulistener class extends EventHandler, which is the
class for the reception of events under OSGi API. Activator creates a StimulistenerImpl object and
registers it as the listener on the relevant topic of the event bridge in use. Thus, the handleEvent()

method of this object is called by the event bridge each time a new event is published. handleEvent()
adds the event in the LinkedBlockingQueue publicly provided by the Activator, where it is fetched
by StimuliDecoder. StimuliDecoder is a thread started by Activator that retrieves events from the
queue and performs the ontological updates illustrated in Figure 8.16.

In the example, an event is received from sensor “A2” with state “on”. The decoder queries the
triplestore to get the URI of the sensor with id “A2”; answer is pir2. The sensor state’s URI is then
obtained by appending the state to the URI of the sensor: pir2 on. And the new state is updated in
the ontology replacing the triple (pir2, hasCurrentState, pir2 off) by (pir2, hasCurrentState,

pir2 on). The timestamp of the event is also used to update the hasLastUpdate datatype property.
A simplified extract of the corresponding source code is given in Source 8.7.

Source 8.7: Triplestore Query and Update by Stimulistener

// extract values from event

sensor = (String) event.getProperty("sensor");

value = (String) event.getProperty("value");

105

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

C
og

itation
S

tim
ulistener

E
yeR

easoner

M
otionE

stim
ator

C
ereb

ration
C

ortex

B
und

le

<
<

im
p

lem
ents>

>

<
<

extend
s>

>

<
<

im
p

lem
ents>

>

load

+
hand

leE
vent(E

vent)

S
tim

ulistenerIm
p

l

S
tim

ulistener

E
ventH

and
ler

+
start()

+
stop

()
+

load
Trip

leS
tore()

+
eventQ

ueue:Linked
B

locking
Q

ueue<
E

vent>
-stim

ulitop
ic:S

tring
-b

rid
g

e:S
tring

-load
Files:A

rrayList<
S

tring
>

A
ctivator

B
und

leA
ctivator

+
run()

+
req

uestH
alt()

-g
etS

ensorU
R

I()
-g

etS
ensorS

tateU
R

I()

S
tim

uliD
ecod

er

Thread

<
<

extend
s>

>

<
<

Interface>
>

q
uery &

 up
d

ate

create &
 start

em
p

ty event q
ueue

fill event q
ueue

start inference

E
ventB

rid
g

e

sub
scrib

e to top
ic

create &
 set as listener

<
<

im
p

lem
ents>

>

create &
 d

ecod
e

start inference

start inference

C
ortex

+
d

ecod
e(S

tring
[] result)

C
ortexD

ecision

+
start()

+
stop

()

A
ctivator

B
und

leA
ctivator

<
<

im
p

lem
ents>

>

create

Thoug
htInterp

retor

p
rocess d

ecisions

<
<

im
p

lem
ents>

>

<
<

im
p

lem
ents>

>

create

+
think():S

tring
[]

+
p

assO
W

L(S
tring

[] load
Files):S

tring
[]

-d
um

p
File:S

tring

C
og

itationIm
p

l

C
og

itation
+

start()
+

stop
()

A
ctivator

B
und

leA
ctivator

+
d

ecod
e(S

tring
[])

E
yeD

ecod
er

create &
 d

ecod
e

N
Trip

lestore

d
um

p
 to file

start inference

up
d

ate

<
<

im
p

lem
ents>

>

<
<

im
p

lem
ents>

>

create

create &
 install

read

N
3 File

w
rite

+
think(S

tring
[] eulerA

rg
s):S

tring
[]

-p
roofE

ng
ine:P

roofE
ng

ineS
ervice

E
yeR

easonerIm
p

l

E
yeR

easoner
+

start()
+

stop
()

A
ctivator

B
und

leA
ctivator

+
installE

uler()

-eyeB
in:S

tring

E
ulerInstaller

+
runP

roofE
ng

ine():S
tring

[]

P
roofE

ng
ineS

ervice

create &
 run

<
<

im
p

lem
ents>

>

C
ereb

ration
+

start()
+

stop
()

A
ctivator

B
und

leA
ctivator

create

<
<

im
p

lem
ents>

>

q
uery &

 up
d

ate
q

uery &
 up

d
ate

-p
rivate m

ethod
+

p
ub

lic m
ethod

-p
rivate attrib

ute
+

p
ub

lic attrib
ute

C
lass

Leg
end

 for non stand
ard

 U
M

L

hand
le

event

+
think()

-find
C

ereb
rations()

-cereb
raList:S

et<
S

tring
>

C
ortexIm

p
l

1

+
increm

entM
otion()

+
setM

otion()
+

g
etM

otion()
+

g
etU

R
I()

-uri:S
tring

-m
otion:int

R
oom

1

0..*

+
setO

nS
tates()

+
g

etO
nS

tates()
+

g
etU

R
I()

-uri:S
tring

-onS
tates:A

rrayList<
D

ate>

S
ensor

1..*

0..*

<
<

im
p

lem
ents>

>

<
<

im
p

lem
ents>

>

create

M
otionE

stim
ator

+
start()

+
stop

()

A
ctivator

B
und

leA
ctivator

+
think():void

+
g

etN
am

e():S
tring

C
ereb

rationIm
p

l

0..*
+

think():void
+

g
etN

am
e():S

tring

-room
s:A

rrayList<
R

oom
>

-sensors:A
rrayList<

S
ensor>

M
otionE

stim
atorIm

p
l

1
1

F
ig
u
re

8
.1
4
:
D
eta

iled
C
la
ss

D
ia
g
ra
m

o
f
th
e
R
ea
so
n
in
g
M
o
d
u
les

in
U
b
iS
M
A
R
T

v
2

N
o
te:

D
efa

u
lt

lin
k
m
u
ltip

licity
is

1
.

106

8.4. DETAILED IMPLEMENTATION OF THE HYBRID ARCHITECTURE

Legend

johndoe

occupied livingroom

toilet

house

pir2

pir2_off

pir6

pir6_on

believedToDo detectedIn
partOf

liveIn

deployedIn

deployedIn

hasCurrentState

hasCurrentState

motion

partOf

object

datatype property

litteral

object

object property

7

motion
0

motion 7

id

A2

id

A6
hasLastUpdate

2012-06-27 13:07:58

hasLastUpdate

2012-06-27 08:42:27
update

query

Figure 8.15: Ontology Evolution Example: Initial Ontology

Legend

johndoe

occupied livingroom

toilet

house

pir2

pir2_on

pir2_off

pir6

pir6_on

believedToDo detectedIn
partOf

liveIn

deployedIn

deployedIn

hasCurrentState

hasCurrentState

motion

partOf

object

datatype property

litteral

object

object property

7

motion
0

motion 7

id

A2

id

A6
hasLastUpdate

2012-06-27 13:07:58

hasLastUpdate

2012-06-27 13:08:08

hasCurrentState

update

query

Figure 8.16: Ontology Evolution Example: New Event Update

time = (String) event.getProperty("time");

5

// update sensor current state

n3Store.updateObject(getSensorURI(sensor), MODEL_NS+" hasCurrentState ",

getSensorStateURI(sensor , value));

n3Store.updateSubject(getSensorURI(sensor), MODEL_NS+" hasLastUpdate ", "true");

10 // update last update time

n3Store.updateObject(getSensorURI(sensor), MODEL_NS+" lastUpdate ", dater.getN3Time(time)

);

8.4.2 Cortex

After updating the ontology, StimuliDecoder invokes Cortex to start the inference using the think()

method. This is possible because Cortex’s Activator has created a CortexImpl object and published
its interface into the service registry. Cortex is the module managing the reasoning cycles, calling
alternatively Cerebration and Cogitation to perform their inference on the ontology, and observing

107

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

the stability of the resulting decisions to decide whether to stop and proceed with the results, or
launch a new reasoning cycle. Cogitation is a single bundle, which Cortex discovers in the same
way StimuliDecoder has discovered Cortex: through the service registry. Cerebrations, however, are
numerous and a-priori unknown to Cortex. Cortex here makes use of the dictionary-based discovery
mechanism provided by OSGi’s service registry and finds all modules that have published their service
with the type “cerebration”. This is how each Cerebration implementation’s Activator publishes the
bundle’s services. The Cerebration modules are cached in Cortex for better performance.

Essentially, Cortex’s think() method consists in a loop where each Cerebration module is in-
voked in an arbitrary order, then the Cogitation module is invoked and returns its result. The result
is decoded and analysed by CortexDecision which keeps an history of the decisions and analyses
their stability. When a stable decision is reached, the loop is terminated and the decision is given to
ThoughtInterpretor for further processing.

8.4.3 Cerebration and MotionEstimator

As indicated previously, Cerebration was introduced to perform more complex or processor-hungry
inference. For instance my semantic model is a stateless, memoryless model that can be seen as a
snapshot of the contextual knowledge; so if memory is needed to infer some kind of information, a
Cerebration module can be implemented with an imperative approach to handle the memory locally
(i.e. out of the ontology), perform the inference and dump the result back in the ontology. This allows
not to complicate the semantic model too much, in order to preserve the sanity of the knowledge base
designer and the low processing time of the overall inference. Similarly, when inference operations
are too computational, using semantic rules might not be optimized so Cerebration modules offer the
possibility to perform the computational part in imperative, with all necessary optimizations, and
dump the result back into the ontology. Input data for Cerebration modules are always queried by the
modules themselves, and output data updated by them as well. Hence, the Cerebration modules are
aware of the semantics of their I/O but are not bound to any processing technique for the inference.

For instance, we see in Figure 8.14 that MotionEstimator uses a Java model for the rooms and
sensors in order to keep the history of the sensor events (the onStates ArrayList in the Sensor class).
When the bundle’s think() method is called, the current states of the sensors are queried from the
ontology (see Figure 8.17), filtered and stored in the onStates ArrayList. onStates is then filtered
according to the time-window of observation and event are counted as an estimate of the motion in each
room. The values obtained are stored in objects of the Room class and later translated to be updated
in the ontology as can be seen in Figure 8.17. A simplified version of the corresponding source code
is given in Source 8.8. One can note that in order to switch the knowledge between the ontological
representation and the Java representation, the URI for each Java object is preserved in its attributes.

Source 8.8: An Example Cerebration Process for Windowed Motion Estimation

// get clock time

String sClock = (String) n3Store.searchURIs("hom:clock", "qol:hasValue", "?").toArray ()

[0];

Date clock = dater.getDate(sClock);

4

// remove on states out of time window and compute motion in each room (sensor by

sensor)

for (int i=0; i<sensors.size(); i++) {

ArrayList <Date > on = sensors.get(i).getOnStates ();

for (int j=0; j<on.size(); j++) {

9 // remove if too old

if(clock.getTime () - on.get(j).getTime () > TIME_WINDOW) {

on.remove(j);

}

108

8.4. DETAILED IMPLEMENTATION OF THE HYBRID ARCHITECTURE

Legend

johndoe

occupied livingroom

toilet

house

pir2

pir2_onpir6

pir6_on

believedToDo detectedIn
partOf

liveIn

deployedIn

deployedIn

hasCurrentState

motion

partOf

object

datatype property

litteral

object

object property

7

motion
1

motion 8

id

A2

id

A6
hasLastUpdate

2012-06-27 13:07:58

hasLastUpdate

2012-06-27 13:08:08

hasCurrentState

update

query

Figure 8.17: Ontology Evolution Example: Motion Estimation by Cerebration

}

14 sensors.get(i).setOnStates(on);

int roomID = sensors.get(i).getRoom ();

rooms.get(roomID).incrementMotion(sensors.get(i).getOnStates ().size());

}

19 // check latest sensor update and update motion estimation (sensor by sensor)

for (int i=0; i<sensors.size(); i++) {

// get last update from triple store

String slU = (String) n3Store.searchURIs(sensors.get(i).getURI (), "qol: lastUpdate ", "

?").toArray ()[0];

Date lU = dater.getDate(slU);

24 // get arraylist of previous on states

ArrayList <Date > pon = sensors.get(i).getOnStates ();

// check if last update different from the one in arraylist

if(pon.size() != 0) {

if(lU.getTime () - pon.get(pon.size() -1).getTime () != 0) {

29 String state = (String) n3Store.searchURIs(sensors.get(i).getURI (), "qol:

hasCurrentState ", "?").toArray ()[0];

// check if state is on

if(state.endsWith("on")) {

// add to arraylist

pon.add(lU);

34 sensors.get(i).setOnStates(pon);

rooms.get(sensors.get(i).getRoom ()).incrementMotion (1);

}

}

} else {

39 String state = (String) n3Store.searchURIs(sensors.get(i).getURI (), "qol:

hasCurrentState ", "?").toArray ()[0];

// check if state is on

if(state.endsWith("on")) {

// add to arraylist

pon.add(lU);

44 sensors.get(i).setOnStates(pon);

rooms.get(sensors.get(i).getRoom ()).incrementMotion (1);

}

}

}

49

// sum motion of whole house and update triple store

109

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

int homeMotion = 0;

for (int i=0; i<rooms.size(); i++) {

int roomMotion = rooms.get(i).getMotion ();

54 n3Store.updateObject(rooms.get(i).getURI (), "qol: motionMeasured ", Integer.toString(

roomMotion));

homeMotion = homeMotion + roomMotion;

}

n3Store.updateObject(house , "qol: motionMeasured ", Integer.toString(homeMotion));

8.4.4 Cogitation and EyeReasoner

Cogitation is the module where the semantic inference described in chapter 5 is performed. Its imple-
mentation is quite straight forward as it relies mainly on the inference service provided by EyeReasoner.
Indeed, as illustrated on Figure 8.14, the process consists in invoking NTriplestore to dump the whole
ontology to a given file, feed EyeReasoner with this file as well as the files containing the rules and
queries for the centralised inference, and call EyeDecoder to decode the results provided by EyeRea-
soner.

Cogitation and EyeReasoner have been deliberately separated in order to ease an eventual change of
reasoning engine in the future. EyeReasoner is a bundled version of EYE that contains several classes:

– EulerInstaller in charge of performing a one-time installation of EYE when the framework
starts,

– ProofEngineService which is a native class of EYE’s Java API, which I modified to fit with the
peculiarities of OSGi, notably the dynamic class loading feature,

– and EyeReasonerImpl, the higher level class which creates an instance of ProofEngineService
and provides the inference service.

The ontology updates resulting from the inference using the rules described in section 5.4.2 are
illustrated in Figure 8.18. The rules that have fired resulting in these updates are given in Source 8.9.

Legend

johndoe

occupied

hygiene

livingroom

toilet

house

pir2

pir2_onpir6

pir6_on

believedToDo cameFrom
partOf

liveIn

deployedIn

deployedIn

hasCurrentState

motion

partOf

object

datatype property

litteral

object

object property

7

motion
1

motion 8

id

A2

id

A6
hasLastUpdate

2012-06-27 13:07:58

hasLastUpdate

2012-06-27 13:08:08

believedToDo detectedIn

hasCurrentState

update

query

Figure 8.18: Ontology Evolution Example: Cogitation Inference

Source 8.9: Fired Rules Leading to Update in Figure 8.18

tracks resident location in house [persistent]

110

8.4. DETAILED IMPLEMENTATION OF THE HYBRID ARCHITECTURE

{?se qol:hasCurrentState ?st. ?se qol:hasLastUpdate true. ?st qol:indicateLocation true

. ?se qol:deployedIn ?r. ?r qol:partOf ?h. ?u qol:liveIn ?h. ?u qol:detectedIn ?r2.

?r log:notEqualTo ?r2. ?se qol:lastUpdate ?t} => {?u qol:detectedIn ?r. ?u qol:

cameFrom ?r2. ?u qol:inRoomSince ?t. ts:n3store ts:update {?u qol:detectedIn ?r. ?u

qol:cameFrom ?r2. ?u qol:inRoomSince ?t}}.

3

hygiene activities (limited to 30 minutes)

{?u qol:detectedIn ?r. ?r a qol:Bathroom. ?u qol:inRoomFor ?d. ?d math:lessThan 1800}

=> {hom:hygiene :getScore 9}.

8.4.5 Performance Validation

I performed some load test on my reasoning engine by simulating an increasing number of houses (with
residents, sensors, rooms, etc.) in the ontology. I run the test for a number of houses ranging from 1
to 250, corresponding to a number of triples in the ontology ranging from 344 to more than 40,000.
The result obtained is provided in Figure 8.19. We observe a quadratic evolution of the processing
time when increasing the number of houses, while keeping EYE constantly responsible for 98% of the
processing duration. I also calculated on one month data the average frequency of events for each one-
hour period of the day and found a maximum frequency during the 11:00 to 12:00 period corresponding
to one sensor event received every 34 seconds (see Figure 8.20).

y = 0.0009x2 - 0.0143x + 0.6321
R² = 0.99987

0

10

20

30

40

50

60

1 (
34

4)

16
 (2

80
4)

31
 (5

26
4)

46
 (7

72
4)

61
 (1

01
84

)

76
 (1

26
44

)

91
 (1

51
04

)

10
6 (

17
56

4)

12
1 (

20
02

4)

13
6 (

22
48

4)

15
1 (

24
94

4)

16
6 (

27
40

4)

18
1 (

29
86

4)

19
6 (

32
32

4)

21
1 (

34
78

4)

22
6 (

37
24

4)

24
1 (

39
70

4)

E
Y

E
 R

ea
so

ni
ng

 D
ur

at
io

n
(s

)

Number of houses (Numbers of triples)

Load Test Results
Polynomial Trendline

34s

20
0

ho
m

es

Figure 8.19: Reasoning Load Test up to 250 Houses (40K+ Triples)

Based on the activity observed in this particular house, I estimate that one processor core of the
desktop could be processing 200 houses in parallel while preserving just-in-time processing of events.
The correspondence between 34 seconds and 200 houses is highlighted in Figure 8.19. The test was
performed on a Linux server (Ubuntu 12.10 32-bit) powered by an Intel Core 2 Duo CPU E6550 at 2 x
2.33GHz and 3.8GB RAM. Since a normal server has a much higher processing power, I consider this
result as a solid proof of concept of the commercial feasibility.

111

CHAPTER 8. DETAILED DESCRIPTION OF UBISMART FRAMEWORK

16

18

20

22

24

26

28

30

0 3 6 9 12 15 18 21

Fr
eq

ue
nc

y
of

 e
ve

nt
s

(m
H

z)

Time Period (e.g. 11 for 11:00 to 12:00)

Figure 8.20: Average Frequency of Events for Each 1-Hour Period

8.5 Discussion: Arbitration Between Reasoning Techniques

I have discussed in chapter 6 the potential of combining my semantic approach with more computational
methods such as machine learning and data mining techniques. This short section is dedicated to
highlight how such a combination can be realised from an implementation and integration point of
view. Indeed, we have designed UbiSMART v2 with this integration in mind and did our best to enable
it straight from the framework’s architecture.

Using data mining techniques requires a two-fold approach. First, a learning phase is required in
order to build the relevant model based on knowledge implicitly present in the data. This should be
done offline and on a dedicated machine since it is usually a processor-hungry operation and since it
requires several steps following a trial and error process in order to be fine-tuned by a data scientist.
The requirement here is to be able to log a chosen subset of the KB that will be analysed by various
algorithms. In the framework, we enable this by adding dedicated logging features. In the queries
performed by EYE to extract decisions and KB updates, I add a predicate to extract selected triples of
interest and log them on a specific topic. For instance, ts:n3store ts:update {formula} is the rule
conclusion used to extract triplestore updates; so I define in the same manner lgr:a topic lgr:append

{formula} as the rule conclusion to log triples on the topic “a topic” given in the subject. The logging
is then performed by a dedicated method in ThoughtInterpretor and I have also implemented a
module to vectorise such triples to prepare for the learning step. The vectorisor module can be used to
translate triples into vectors, as well as vectors back into a triple form or a barycentric representation
of triples. Hence it allows the representation of the learning results in the ontological syntax.

Then, the actual classification of the context can be performed online based on the model built during
the learning phase. This step can be seen as a projection of a subset of the KB into a data-driven space
obtained by learning and enabling the classification of the context. The context classification result is
finally written in the KB to be fused with the results of other algorithms. Classification algorithms
query a part of the KB, vectorise it, classify it using specific techniques, and write the result back into
the KB. Hence they fit with the definition of Cerebration modules, so they can actually be implemented
and integrated in the framework as such. Numerous techniques can be used for the classification, and
each technique might be used in several manners. Thus we propose for core tools (e.g. SVM) used by
several modules of data mining to be implemented as a service and shared between these modules, in
the same way EYE is available as a service. This can be seen in Figure 8.8.

112

Part IV

Validation

113

Nothing is as empowering as real-world
validation, even if it’s for failure.

— Steven Pressfield, 1943– 9
Deployments and Validation

9.1 Validation Approach

The validation of this doctoral work has been done in a three-fold manner. Firstly, we validated the
rule design from a purely logical point of view by performing rules verification using formal methods.
This serves as a proof that under defined circumstances, certain properties of the system are verified
and certified. The verification process was presented in section 5.4.3. Then we deployed our framework
in real settings with users recruited among genuine stakeholders. This in-situ “ecological” testing
serves as a verification that the system works properly in the environment of use, i.e. without being
permanently monitored and maintained, providing sustained functionality in harsh network conditions,
and considering the unpredictable behaviour of real users which might act erratically due to their
dementia. Finally, as the rules tested are defined only according the use-cases related to the actual
deployments, we ensure that adding complexity in the reasoning by including more triples does not
affect the system’s behaviour through a load test that has been performed and which result is given in
section 8.4.5.

Concerning the in-situ testing of the framework, we have had three complementary deployment
phases in different settings. First, we focused on a technical validation of the integrated framework in
a controlled yet realistic environment. We deployed UbiSMART in A*STAR’s StarHome, a designer 2
bedroom flat with fully equipped kitchen, bathroom, and livingroom. This is described in section 9.2.
Then we deployed the system in a nursing home in Singapore where three rooms were set up for activity
recognition, enabling real-time reminder and notification services, hence corresponding to the top-down
approach (see section 3.1.2). This is described in section 9.3. Finally, we moved to individual private
homes in France, with a stripped-down hardware deployment corresponding to the bottom-up approach
(see section 3.1.2). This is described in section 9.4. In each deployment, UbiSMART is recomposed
from its building blocks according to the peculiarities of the environment and the needs of the residents.

9.2 Technical Validation: STARhome Showcase

9.2.1 Context of the Deployment

The Activity Monitoring and UI Plasticity for supporting Ageing with mild Dementia at Home (AMU-
PADH) project is a two-year research project (2010–2012) involving the Image & Pervasive Access
Laboratory (IPAL), Singapore’s Institute for Infocomm Research (I2R) and the School of Computing
at the National University of Singapore (NUS). AMUPADH is one of the eleven A*STAR Science &
Engineering Research Council (SERC) Home2015 projects. Home2015 is a national research program
of Singapore promoting cross-disciplinary research enabling technologies, foundations, or frameworks
for future home systems. AMUPADH is focused on the automated recognition of behaviours in smart
homes for people with dementia, and aims at proposing a framework for the context-aware provision

115

CHAPTER 9. DEPLOYMENTS AND VALIDATION

of assistive services.
The first deployment of the UbiSMART framework was done in STARhome. An innovative pro-

gramme initiated and funded by SERC, STARhome provides a home equipped with state of the art
technology that facilitate household affairs and build environments catering to the lifestyles of modern
families. It is a fully furnished and functional 180 square metres apartment located in the Fusionopolis
building where I2R is hosted. STARhome is a technology showcase and a realistic platform featuring
leading-edge technologies and sophisticated home concepts that enhance everyday living with ease and
convenience. With cameras and one-way mirrors enabling usability studies, researchers are able to gain
insights into the needs of future users, thus connecting technology and people cohesively. STARhome
has for objectives to be a technology showcase for smart home projects and to provide a technical
test-bed in a realistic environment.

The main objective of this experimentation was to perform a technical validation of the system.
This phase was not user driven but mandatory before deploying in real conditions with the involvement
of end users. My role was to provide a suitable reasoning engine to manage the delivery of services in
a context-aware manner. I have collaborated with engineers and other researchers to achieve this goal.

9.2.2 System Description

In STARhome, we deployed our system in each possible space, namely the livingroom, kitchen, bed-
room and bathroom. Servers and sensor gateways were setup in the technical part of the apartment,
hidden behind one-way mirrors. The hardware architecture of the system deployed is summarised and
illustrated in Figure 9.1.

Kitchen Livingroom Bedroom Bathroom

Pressure mat
(ZigBee)

iPad
(WiFi)

Ultrasound
(ZigBee)

TV + Set top box
(LAN)

Karotz
(WiFi)

Karotz
(WiFi)

Pressure mat
(Web Service)

Water meter
(Web Service)

Backend

ZigBee
gateway

Wi-Fi router

Tiny debian
machine

Server with web
service repository

Serial/USB

LAN

Figure 9.1: Hardware Architecture of the Deployment in STARhome

As presented in Figure 9.1, the system deployed in STARhome incorporates a variety of sensors and
devices. We rely partly in this deployment on sensors already deployed in the environment and which
data or enhanced states can be consumed via web services available on a local server. This is for example
the case for the bed pressure profile detector located in the bedroom (A in Figure 9.2) and the water
meter in the bathroom (C in Figure 9.2). The bed pressure profile detector is the product of a previous
project deployed in STARhome, which interprets the data received from the fibre optic cable spread
under the mattress and provides over the network the occupancy state of the bed (empty, sitting or
lying). We also deploy dedicated sensors communicating events to the ZigBee gateway attached to the

116

9.2. TECHNICAL VALIDATION: STARHOME SHOWCASE

debian machine centralising the event processing and reasoning. Over ZigBee, we setup the proximity
sensor (ultrasound) represented as B in Figure 9.2 which provides information about the presence of
people in the kitchen, as well as a pressure mat (force sensing resistor) placed under the sofa in the
livingroom.

Figure 9.2: Photos of the Sensors Deployed in STARhome
A. Bed pressure profile detector accessed via web service

B. Proximity sensor to detect presence in kitchen
C. Water meter in bathroom accessed via web service

Concerning the interaction for the service delivery, we use in the livingroom an IPTV constituted
of an HD TV and our tailor-made set top box. The set top box interface is based on a full screen
web browser that fetches a video stream and displays reminders on an upper layer using AJAX and
XMPP. Air is also used to provide highly interactive features such as cognitive games, home control or
Skype calls. The IPTV is represented as B in Figure 9.3. Additionally, we use in the kitchen an iPad
with a dedicated app developed to display reminders received over XMPP (C in Figure 9.3). Finally,
we installed in the bedroom and bathroom two Karotz (A in Figure 9.3), which are smart internet-
connected rabbits which can move their ears, display some colours through LED illuminated bellies,
and play audio files. We used the Karotz mainly as an audio interface with an avatar. The rabbit also
embeds a Radio-Frequency Identification (RFID) reader, a small camera and a microphone, which we
did not use.

9.2.3 Results

Beside the technical validation, we seize the opportunity of this deployment to estimate the time needed
to setup the system into a new environment. Indeed, our goal was to build a flexible system that can
adapt to different environments and needs. Therefore, we have analysed the time needed to adapt the
operational framework to a new use-case, counting on a team of two engineer-researchers. With the
imperative approach used before our adoption of semantic technologies, the first reasoner was written
in five days and its subsequent adaptation took three days. We then needed several months to build the
first semantic version of the framework. As we were not experienced, we had to discover the existing
tools, as well as design the required models/rules. The subsequent adaptation to a new deployment
with its peculiarities took us only two to three hours, mostly to adapt the ontological description of
the environment. In our semantic framework, the model, the rules, and thus the system logic are kept

117

CHAPTER 9. DEPLOYMENTS AND VALIDATION

Figure 9.3: Photos of the Devices Deployed in STARhome
A. Karotz, smart rabbit for sound, light and avatar movements in the bathroom

B. IPTV with dedicated set-top box in the living room
C. iPad with dedicated app in the kitchen

unchanged. We conclude that the flexibility of the platform has been greatly improved due to our
reliance on semantic descriptions enabling the separation of application logic from underlying models.

9.3 Top-Down Approach: Nursing Home in Singapore

9.3.1 Context of the Deployment

Within the AMUPADH project, and in order to validate our framework in real conditions, we also
worked in close collaboration with Dr. Philip Yap, senior consultant geriatrician, director of the geriatric
centre and clinician leader of the Memory and Dementia Care Service in Khoo Teck Puat Hospital
(KTPH), Singapore. In partnership with Dr. Yap, we could initiate discussions with the staff of
Peacehaven, a nursing home for people with dementia in Singapore, in order to gather stakeholders’
requirements and opinions. These discussions led to the staff of Peacehaven accepting to be our pilot
site.

The deployment in Peacehaven adopts a top-down approach where user needs are analysed exten-
sively and formalised ahead of the technical requirements. This is the observation stage. User needs are
translated in assistive services whose technical feasibility is then analysed, leading to an eventual tech-
nical design of the solution to be deployed. E.g., in order to guide a resident who is wandering during
the night (which is a common problem for people with dementia), motion sensors can be installed on
the bedroom ceiling to detect abnormal movements, pressure sensors can be placed under the mattress
to detect a prolonged absence from bed, and speakers can be used to interact with the resident. During
the observation period, I visited Peacehaven regularly to understand the user needs and translate them
into technical requirements. This was done in an iterative way with constant feedback from the care-
givers involved. During the observation stage, an initial prototype of the framework was developed. We
integrated the prototype for a proof of concept demonstration to the nursing home staff and manage-
ment in May 2011. Good feedback was received about the features and apparent performance. Shortly
after this, an ethics approval was submitted for a real-world deployment with genuine residents. In
August 2011, we received the approval from the Institutional Review Board of NUS under the number
11-222, and deployed a part of the system for technological real-world experimentation. This system
trial period started in August 2011 and lasted until October, the peculiarity being that interaction was
instantiated only with caregivers so as to test the system without affecting residents with eventual false
alarms. The rest of the deployment was organised in three phases, alternating between deployment and
analysis/improvements. The timeline of our work in Peacehaven is detailed in Table 9.1. Beside the
analysis of the user needs, I was in charge in this experimentation of the design and implementation of
the reasoning engine handling the context-aware service provision.

118

9.3. TOP-DOWN APPROACH: NURSING HOME IN SINGAPORE

Table 9.1: Timeline for the Development and Deployment of our Solution in the Nursing
Home (14 Months Trial)

Timeline Description Activities

Mar. 2010 – Mar. 2011 Observations, discussions and prototyping

Pre-
deployment

Apr. – June 2011 Prototyping and demo

Jul 2011 Application for ethics approval

Aug. 2011 Ethics approval obtained

Aug. – Oct. 2011 Initial trial setup and field testing of system

Oct. – Jan 2012 First phase (1 room) Deployment
+
Ground
truth
+
Data
analysis

Jan. – Feb. 2012 Analysis, features update and performance tuning

Feb. – May 2012 Second phase (1 room)

May – June 2012 Analysis and questionnaire survey

June – Nov. 2012 Third phase (3 rooms)

Nov. – Dec. 2012 Analysis and questionnaire survey

9.3.2 Description of the Use-Case

Peacehaven is a three-storey nursing home depending from Singapore’s Salvation Army. It hosts around
400 residents with dementia ranging from stage 4 to 5 according to the GDS (see Appendix B). Residents
living on the second floor usually have a dementia of stage 5 (moderate), while residents on the third
floor have a mild dementia evaluated at stage 4. Each floor is managed by eight professional caregivers
who assist residents day and night, although residents from the second floor require more assistance
and help. We decided to conduct our study on residents with moderate dementia, on the second floor,
where caregivers have a greater need for a solution to reduce their workload. The deployment of our
framework in the nursing home assists the residents with reminders to increase their independence and
autonomy, as well as the caregivers by raising targeted notifications when an abnormal situation is
detected and cannot be solved independently by the resident.

Results of the Observation Stage

During the observation stage, we conducted weekly visits to the nursing home and participated in
focused group discussions with caregivers. We also followed the daily common schedule of the residents,
accompanying two or three of them, or participating in group activities organized by the caregivers for
10 to 15 residents. From our observations and discussions, we could understand better the living
conditions in the nursing home and identify the different problems that residents and caregivers are
facing. We noticed that although residents are free to move around in the common areas, they spend
most of their “unsupervised” time in their bedroom and visit the attached bathroom alone frequently.
Hence, we decided to focus our action around these two environments.

Apart from pure assistance in performing ADLs, most of the caregiving work consists in a few
tasks, namely encouraging residents to initiate some activities by showing them the first steps, serving
medication, or reminding them to drink water. It is however challenging for them to follow and assist
all the residents’ activities. This is especially true during the night when there are fewer caregivers on
duty, and when residents are prone to more critical situations. Therefore, caregivers have considered
that notifications could be helpful to remain informed of how residents are performing their ADLs,
and to provide support as and when appropriate. In order to avoid increasing the attention needed
from caregivers, we decided that the system should stay silent in the background when no issue is
detected. Moreover, in order to help residents overcome their problems, caregivers have emphasized
that reminders should first be sent to the residents to encourage them to think and retain some level
of independence. Caregivers should interfere only when the residents lose their way and are not able

119

CHAPTER 9. DEPLOYMENTS AND VALIDATION

to solve their problems independently.

Services Deployed

Residents face a variety of problems due to their dementia. Some may shower several times because
they forget the activities that they have already done. Others may remain in the shower very long and
let the water run due to an initiation problem, i.e. they do not remember how to start an activity. A
lot of wandering is observed where residents walk around aimlessly, which is more dangerous at night
due to the ambient darkness. Sometimes, they might use other residents’ belongings, e.g. sleep on
someone else’s bed or wear someone else’s clothes. In Peacehaven, the services deployed have been
designed in collaboration with the caregivers according to the specific needs of the residents who agreed
to participate in the trial. These services are monitoring deviances (i.e. problematic behaviours) that
are the most likely to lead to a fall. On one hand, there are bathroom activities where the space is
narrow and ground wet, with notifications being raised when a resident has been showering for an
unusual time or when he forgets to turn off the tap of the basin. And on the other hand, we raise a
notification when a resident is detected to be wandering during the night.

Profile of the Participating Residents

During phases 1 and 2 of the deployment, two residents living in the same room (room 9) and two
caregivers were first involved in the study. Later on in phase 3, six other residents from two other
rooms (three in room 8 and three in room 11) have granted their approval to participate in the trial.
The eight residents are women living on the second floor of the nursing home and aged between 78
and 92 years old. Two of them need minimal assistance, e.g. to walk or to lie on the bed, while the
six others need moderate assistance, i.e. they require help to take their shower or to eat. Table 9.2
provides an overview of the different residents’ profile.

Table 9.2: Profile of the Residents Involved in the Peacehave Trial

Resident Age Level of assistance requied Room number

Resident 1 90 minimal* 8

Resident 2 92 moderate** 8

Resident 3 85 moderate 8

Resident 4 79 minimal 9

Resident 5 87 moderate 9

Resident 6 92 moderate 11

Resident 7 82 moderate 11

Resident 8 78 moderate 11

* Minimal assistance: consists only in elementary activities such as walking, lying, etc.
** Moderate assistance: includes more critical activities such as eating, toileting, etc.

9.3.3 System Description

I provide in Figure 9.4 a partial floor plan of the nursing home in which we deployed our framework. It
includes the room number 9 with the beds of the residents 4 and 5, and the attached bathroom; as well as
the common room (not to scale) where all residents can meet, watch TV, and where the caregivers have
their central desk. On the plan, I also represent the various sensors and devices deployed, and the central
computer that hosts the processing of the signals and the inference of the context. For this deployment,
UbiSMART is running on a tiny (115 x 115 x 35 mm, 505g) fanless debian machine, mounted with a
500MB RAM/500Hz CPU, a 4GB Compact Flash drive, and having a power consumption of only 5W.

120

9.3. TOP-DOWN APPROACH: NURSING HOME IN SINGAPORE

iPhone/Android
for nurse (3G)

over ZigBee

Passive infrared

Shake sensor

Pressure sensor

RFID reader

RFID bracelet on resident

IPTV
(Wi-Fi)

Nursing console
(Wi-Fi)

Speaker (Bluetooth)

Cupboard

Shower
Bed

ZigBee gateway
Wi-Fi router

Tiny debian machine

Figure 9.4: Partial Floor Plan of the Deployment in Peacehaven

Sensors are using the ZigBee communication protocol on a wireless sensor network based on Crossbow’s
IRIS mote platform. A Crossbow node is connected via serial port to the debian machine, serving as
gateway. The communication with other devices in the environment uses bluetooth for the speakers,
XMPP over WiFi for the IPTV and the nursing console (a touchscreen Windows 7 machine), and
XMPP over 3G for the caregivers’ smartphones (Samsung Galaxy S2 with Android 2.3 and Apple
iPhone 4 with iOS 5).

Figure 9.5 is a photomontage of some of the sensors deployed in Peacehaven. Motion sensors (passive
infra-red, B in Figure 9.5) are positioned on the ceiling of both the bedroom and the bathroom to detect
the presence of people and measure the amount of activity by estimating the motion in the rooms. The
bedroom also has pressure mats (force sensing resistors, A in Figure 9.5) installed under each mattress
and RFID readers attached to the bedsides (D in Figure 9.5), allowing respectively the detection of
residents and their identification. The RFID readers were paired with RFID bracelets worn by the
residents around their wrist to enable the detection of a resident using the wrong bed or also to infer by
deductive rules who is inside the toilet so as to adapt the services. RFID readers are off by default and
are turned on only for a short period of time when the corresponding pressure mat changes state. The
activities in the bathroom are monitored using shake sensors (accelerometers, C in Figure 9.5) placed
on the different pipes to detect the usage of the taps or the shower. A shake sensor is also embedded
in the soap dispenser of the shower to determine whether residents are using soap, as this allows the
detection of initiation problems.

Similarly, I provide in Figure 9.6 a photomontage of the interaction devices deployed in Peacehaven
and used for the provision of the assistive services described above. Bluetooth speakers were thought
of as an efficient and easy to deploy modality of interaction for the residents. Being small and cost
effective, they can be deployed in many places, making the interaction more pervasive. They do not

121

CHAPTER 9. DEPLOYMENTS AND VALIDATION

Figure 9.5: Photos of the Sensors Deployed in the Nursing Home
A. Bed pressure mat under the bed

B. Motion sensors on the ceiling of the bedroom and bathroom
C. Shake sensors on the bathroom pipes
D. RFID reader on the side of the bed

require learning from the residents who simply need to be informed about the presence of such devices.
For instance, the residents were already used to speakers being used for management announcements in
the nursing home. Finally, speakers have a greater reach than screen-based modalities as they do not
require the resident to be close or able to see properly. We deployed such speakers in both the bedroom
and the bathroom (respectively B and A in Figure 9.6). The communication with caregivers is ensured
through dedicated apps on smartphones which can be carried around (C in Figure 9.6) or through a
central nursing console shared by all caregivers and that centralises all notifications (D in Figure 9.6).
When a notification is received, the phones vibrate and beep until the notification is acknowledged.
On iPhone, Apple Push Notifications service is also implemented to ensure that all notifications go
through independently of the app’s sleep/connection status. The nursing console remains connected
24/7 and play an alert sound when a notification is received. Alerts automatically disappear when they
are detected as solved. Moreover, the console also displays continuously the context status related to
deployed services. E.g. if a resident is taking his shower, this information would be silently available
to the caregivers.

In order to evaluate the performance of our system, and as we are committed not to use video
recording to preserve the privacy of the residents and caregivers, we have chosen to rely on log-sheets
filled by the caregivers. During the trial, we collected system logs related to numerous aspects of the
framework and extracted information concerning sensors states, or residents’ context, among others.
Such information was then cross-referenced with the content of the caregivers’ log-sheets. As explained
in the comparison of reasoning approaches (see section 3.2.2), we believe that it is close to impossible
to gather genuine ground truth in a real AAL deployment. Therefore, the caregivers’ log-sheets are
considered as an approximate ground-truth for our validation. Caregivers have been asked to fill the
log-sheets with hourly information about the location, the abnormal behaviours and other possible
remarks concerning the residents. I provide below a sample of the log-sheet used for our ground-truth
collection.

1. Where is the resident right now?

(a) bedroom

122

9.3. TOP-DOWN APPROACH: NURSING HOME IN SINGAPORE

Figure 9.6: Photos of the Devices Deployed in the Nursing Home
A. Bluetooth speaker in the bathroom
B. Bluetooth speaker in the bedroom

C. iPhone with dedicated app for the caregivers
D. Central nursing console for the caregivers

(b) bathroom

(c) dining area

(d) common area

(e) other (specify): ...

2. Did the resident shower for too long?

(a) yes

(b) no

3. Did the resident forget to turn off the tap?

(a) yes

(b) no

4. Did the resident forget to flush the toilet?

(a) yes

(b) no

5. Did the resident wander around aimlessly?

(a) yes

(b) no

6. Did the resident ask for something?

(a) yes (specify): ...

(b) no

123

CHAPTER 9. DEPLOYMENTS AND VALIDATION

9.3.4 Results

The deployment in Peacehaven was useful as a technical validation of the system in a real environment
with harsh networking conditions and unexpected issues such as residents pulling off sensors. It was
also the first long-term deployment, which tested other issues such as sensors batteries. The technical
part of this validation has been presented and commented in section 8.2.5. In this part, we are more
focused on the human side of the validation. We are notably interested in analysing what can be
detected by the framework in real conditions, and what kind of services can consequently be provided
to the different stakeholders.

Firstly, we wish to estimate the accuracy of the context detected by the framework. Detection
and recognition errors can indeed be incurred at the sensing, low-level event processing and higher-
level context recognition steps. The accuracy is estimated only, by comparing logs from the system
with the log-sheets filled by the caregivers. Results are given based on the analysis of the logs for
the two bathroom services described previously, during an uptime period of nine days. We consider
atomic events first—e.g. the use of taps and shower—that happened 34 times a day in average with
a recognition accuracy of 71% (Figure 9.7, left). Complex events—which correspond to deviances and
the provision of services—happened 7 times a day in average, with an accuracy of service delivery of
70%. This accuracy characterises the ratio between the number of times a service was delivered over
the number of times it was needed. Since complex events are derived from atomic events, we conclude
that little error is introduced by the higher-level context recognition, most of it being introduced either
by sensing issues or low-level processing of the sensors signal. These results were obtained in February
2012, during the second phase of our deployment. After improving the system, notably from the
hardware point of view, we estimated again the accuracy of the system in the same room, considering
the same services and over a second nine-days period. The improved recognition accuracy obtained was
of 83% for the atomic events, up from 71% (Figure 9.7, right). As for the accuracy of service delivery,
it followed up to 82%, confirming the low error introduced by the context recognition algorithm. We
conclude here that the context recognition algorithm performs well, provided that the sensor events in
input are non-noisy. We will see in the results of the next deployment that noisy data is however a big
issue for knowledge driven reasoning.

events missed

correct
recognition

events missed

correct
recognition

Feb. 2012 (phase 2) Sep. 2012 (phase 3)

17%29%

71% 83%

Figure 9.7: Recognition Rate of Atomic Events in Phase 2 & 3 of the Deployment

Beside the specific deviances that we focused on for the services provided in the nursing home, we
have also observed the possibility to raise early alerts concerning the deterioration of the condition of
a resident. As shown in Figure 9.8, we observed for one of the residents an abnormal increase in the
number of reminders delivered in early March 2012. This resident who would usually receive about
2 reminders a day, varying between 0 and 6, up to the 3rd of March, suddenly was sent between 8
and 12 reminders each day for ten consecutive days. The resident eventually was hospitalised after a
degradation of her situation. We conclude that the observation of the evolution of a resident’s lifestyle
overtime enables the early detection of health related issue, and may be helpful in preventing the
degradation a one’s condition.

124

9.4. BOTTOM-UP APPROACH: INDIVIDUAL PRIVATE HOMES IN FRANCE

0

2

4

6

8

10

12

14

24
/02

/12

25
/02

/12

26
/02

/12

27
/02

/12

28
/02

/12

29
/02

/12

01
/03

/12

02
/03

/12

03
/03

/12

04
/03

/12

05
/03

/12

06
/03

/12

07
/03

/12

08
/03

/12

09
/03

/12

10
/03

/12

11
/03

/12

12
/03

/12

13
/03

/12

N
um

b
er

 o
f r

em
in

d
er

s

Date

Figure 9.8: Early Detection of the Deterioration of a Resident’s Condition

From a more qualitative point of view, the feedback received from the nursing home staff has been
very encouraging. The deployment was promising in terms of demonstrated features and capabilities.
In view of the expected benefits, the head of the nursing home has remarked that the staff would like to
have the full system deployed in every room. This was encouraging since there has been a perceptible
change in attitude over the months during which the deployment had taken place. The caregivers have
become more adept in the use of smartphones and have appreciated the value of the underlying sensor-
based services. Although the staff participated well in filling the manual log-sheets, which was crucial as
it was the only form of ground-truth available, they admitted having difficulties to cope systematically
with the extra work it represented. We discussed simplifying the logging process by providing a more
automated logging media through tablets embedded in the environment and bringing logging down to
a few clicks on a touchscreen. Doctors carry a positive attitude towards the deployment and feel that
it would go a long way to improve the residents’ safety and would add to their well being and comfort.

9.4 Bottom-Up Approach: Individual Private Homes in France

9.4.1 Context of the Deployment

Complementarily to the validation of the top-down approach realized in the nursing home in Singapore,
we extend our deployment effort towards individual homes in order to validate the bottom-up approach
as well. Therefore, my research contributions were integrated to the Quality of Life (QoL) Chair. The
QoL Chair is supported by the Fondation Télécom of the Institut Mines Télécom in France, and by
La Mutuelle Générale which figures among the major healthcare insurance companies in France. The
project involves research teams from IPAL, Handicom laboratory in Institut Mines Télécom Evry and
Age, Imagerie, Modélisation (AGIM) laboratory in Grenoble University Hospital. Finally, it is possible
thanks to our close collaboration with Handco, an SME based in Paris region who offers dedicated
solutions to people with disabilities or in a dependent situation.

The main goal of the QoL Chair is to maintain the quality of life of ageing people in their own home
through the incorporation of ICT. The challenges are to:

– Investigate the methods for the analysis of the use and acceptance of ICT-based assistive homes,
using qualitative (on-site observations) and quantitative (analysis of system data) evaluations.

125

CHAPTER 9. DEPLOYMENTS AND VALIDATION

– Deploy a framework in pilot sites to estimate the impact of ICT-based assistive homes on the
independence towards ADLs and the quality of life of elders.

– Design and implement algorithms for the comprehension of situational data and the formalisation
of contextual knowledge based on a coarse grain hardware deployment.

– Find techniques for the continuous assessment of people’s health condition in their own home, as
well as for their stimulation towards a healthier lifestyle and a greater social inclusion.

In order to provide a proof of concept that valuable knowledge can be derived—and thus valuable
services can be provided—from a coarse sensor deployment in a private home, we have deployed our
system in three houses in France. The three residents, women aged over 75 years old, are subject
to mild dementia, live alone at home, and receive support from caregivers or family around one hour
daily-to-biweekly. Each family was contacted through its insurance company, following a survey about
the dependence of elderly living alone, and accepted to take part in the trial. The data gathered
was naturally anonymised. This proof of concept is an opportunity to validate the activity inference
mechanisms (section 5.4.2) and reasoning architecture (chapter 7) described in this doctoral work. My
contribution to this experimentation mainly concerned the adaptation of the reasoning engine to the
specific challenges emerging from the coarse situational data available. The partial datasets considered
for the validation are summarised in Table 9.3.

Table 9.3: Partial Datasets Used from our Deployment in France

Home Resident’s age Dataset duration

Home 1 84 39 days

Home 2 79 15 days

Home 3 77 26 days

9.4.2 System and Data Description

Bedroom 1

Livingroom

Bedroom 2

Kitchen

WC

Bath

Open/close sensor

Motion sensor

Internet-connected
gateway (BeagleBone)

Figure 9.9: QoL Map

The system deployed in France and represented in Figure 9.9 gathers in each house a live sensor
stream from a WSN based on the radio version of the industrially standardized X10 communication
protocol. Sensor events are received by a X10 module used as gateway and mounted on a BeagleBone

126

9.4. BOTTOM-UP APPROACH: INDIVIDUAL PRIVATE HOMES IN FRANCE

credit-card-sized Linux (Debian) machine that connects to the Internet to post events to a MySQL
database. This MySQL database is shared for the three houses and the data of each house is stored
in an independent table. Our UbiSMART framework fetches its input from the MySQL database to
process the live datastream available. It can alternatively replay a given time window from the database.
Each house is processed in a separate instance of the framework, which was setup as a single house
processor for the time being. UbiSMART has been tested on a Linux server (Ubuntu 12.10 32-bit)
powered by an Intel Core 2 Duo CPU E6550 at 2 x 2.33GHz and 3.8GB RAM. In the three houses,
motion sensors were installed on the ceiling of each room, sometimes with two sensors in one room to
avoid uncovered areas (blind spots). A reed switch indicating the opening or closing of the entrance
door was also deployed. The motion sensors were calibrated to send an “on” event when a motion
is detected and an “off” event after one minute of inactivity. After each event, the sensor observes a
ten-seconds period of silence. The X10 protocol being energy efficient, we estimate the autonomy of
the sensors to several months (three to six months depending on the amount of activity in the house).
The dataset used for our validation is coming from the first house (Home 1 in Table 9.3) since this is
the “cleanest” dataset, i.e. the data seems to match the most with the specification described above
(10s silence and 60s to off signal). A short extract of the dataset is given as example in Table 9.4. The
corresponding sensor description table is given in Table 9.5.

Table 9.4: Extract of the Dataset Used for the Validation

Timestamp Sensor id State

2012-06-06 07:02:45 A7 on

2012-06-06 07:03:29 A7 on

2012-06-06 07:03:55 A3 on

2012-06-06 07:04:29 A7 off

2012-06-06 07:04:22 A3 on

2012-06-06 07:05:22 A3 off

2012-06-06 07:09:39 A3 on

2012-06-06 07:09:37 A3 on

2012-06-06 07:10:14 A7 on

2012-06-06 07:10:28 A2 on

Table 9.5: Sensor Location for the Dataset Used for the Validation

Sensor id Sensor type Location

A2 motion kitchen

A3 motion bedroom

A4 motion bedroom2

A6 motion bathroom

A7 motion livingroom

B1 door open/close main door

9.4.3 Results

The goal of this experimentation was to confirm the feasibility of reasoning in an AAL solution based on
a stripped-down hardware deployment. This means that we must demonstrate that valuable knowledge
can be extracted about an elderly person’s lifestyle from coarse sensor data. Moreover, we must verify

127

CHAPTER 9. DEPLOYMENTS AND VALIDATION

that the scalability of the incurred processing remains within an economical level, where an economy
of scale is possible with one server providing enough processing power to cater for hundreds of houses.

Firstly, we observe that the data itself with no further processing already provides significant in-
formation about a person’s day if it is well visualized. For example, the Figure 9.10 is a “donut”
representation of the resident’s lifestyle. Each circle corresponds to one day of sensing data with a
colour-coded representation of the person’s location. This representation is given relatively to the num-
ber of events received from the sensors in each room, thus it incorporates a notion of activity in the
room and not only presence. In other words, if the resident spends half his time in the bedroom and the
other half in the livingroom, but is twice as active in the livingroom as compared to the bedroom, then
the livingroom will occupy two thirds of the circumference of the circle. The vertical rectangle beside
each circle indicates the total number of events for that day, i.e. it shows whether the resident was
at home and his general amount of activity for the day. From this visualization, we can immediately

2012-06-04

640640640640640

2012-06-05

824824824824824

2012-06-06
339339339339339

2012-06-07

11111

2012-06-08 362362362362362 2012-06-09

781781781781781

2012-06-10 470470470470470

2012-06-11
543543543543543

2012-06-12

835835835835835

2012-06-13 388388388388388 2012-06-14
340340340340340

2012-06-15
585585585585585

2012-06-16 362362362362362 2012-06-17 371371371371371

2012-06-18
590590590590590

2012-06-19 409409409409409 2012-06-20

134134134134134

2012-06-21
274274274274274

2012-06-22

44444

2012-06-23 394394394394394 2012-06-24
256256256256256

2012-06-25
288288288288288

2012-06-26 471471471471471 2012-06-27 422422422422422 2012-06-28 446446446446446 2012-06-29
518518518518518

2012-06-30 418418418418418 2012-07-01

191191191191191

2012-07-02
309309309309309

2012-07-03
250250250250250

2012-07-04
299299299299299

2012-07-05

11111

2012-07-06

11111

2012-07-07

11111

2012-07-08

11111

2012-07-09

4242424242

2012-07-10
309309309309309

2012-07-11

172172172172172

2012-07-12

199199199199199

Outside
Living room
Kitchen
Bedroom3
Bedroom2
Bedroom

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Figure 9.10: Calendar Dashboard: Location Data Visualisation

identify the days when the resident was out the whole day, whether for a hospitalisation or for leisure.
These are the days where the rectangle is a line and/or the circle fully coloured in green (e.g. 5th to 8th

July). One can also estimate efficiently the amount of activity and most common location for each day,
which provides an average of the lifestyle of the resident. For instance, “bluish” days with more activity
in the bedroom and less activity in total might indicate that the resident feels sick or weak (e.g. 10th

to 12th July), whereas “orangey” days spent moving a lot and mostly in the livingroom most probably
correspond to a resident in good spirit (e.g. 24th to 29th June). Most importantly, it helps to visualise
the evolution of this lifestyle over the days. We wish to study more in depth the effectiveness of such
visualisations for real-time situation awareness as well as continuous and ambient health assessment
purpose.

Concerning the actual context comprehension, I provide in Figures 9.11 and 9.12 the results of

128

9.4. BOTTOM-UP APPROACH: INDIVIDUAL PRIVATE HOMES IN FRANCE

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

00:00 06:00 12:00 18:00 00:00

Go out
Nap
Occupied
Sleep

time

da
y

Figure 9.11: Chronological Visualisation of the Result of the Activity Inference

0%

25%

50%

75%

100%

00:00 06:00 12:00 18:00 00:00

Nap
Occupied
Sleep

time

st
at

ist
ic

al
 p

ro
ba

bi
lity

 o
f i

nf
er

en
ce

Figure 9.12: Statistical Visualisation of the Result of the Activity Inference

my rule-based activity inference on the first house’s dataset in a chronological and statistical manner.
The figures represent the inferred activity (colour legend) depending on the time of the day (on the
horizontal axis) and respectively the day or the statistical probability of inference (on the vertical axis).
These figures illustrate very well the night rhythm of the resident as we detect a clear zone of “sleep”
activity between 0:30 and 6:00, despite the fact that some nights seem to be spent in the livingroom
and detected as “nap” during the exact same time period. We also see a tendency to start the night by
a series of short naps in the livingroom from 18:00 onwards. These naps may actually correspond to
the resident watching TV as he would be present in the livingroom without motion (thus understood
as having a “nap”) and it also matches with the time for evening entertainment shows, news and then
movies on French TV. We detect in Figure 9.12 two other major “nap” picks around 8:00 to 9:00 after

129

CHAPTER 9. DEPLOYMENTS AND VALIDATION

some time spent in the bathroom and kitchen (no supporting graphics for location here though) and
around 13:00 to 14:00 probably during the news and the early afternoon TV series that target an elder
audience at this time on several French channels. In Figure 9.11, we see an additional and unusually
long “nap” period on the three first Sundays (week starts on Monday) from 13:00 to 17:00; this matches
perfectly with popular Sunday’s afternoon-long TV series broadcast on French channel TF1. Finally,
we observe two picks of activity (large “occupied” area in Figure 9.12) around 11:00 to 12:00 when the
resident might be preparing his lunch and after 15:00. While these results can still be improved, they
already provide some elements that can be matched to the resident’s profile; which offers an avenue
of improvement by modifying the rules accordingly as explained in section 6.2.1. We also believe that
such visualisations with the highlight of potentially dangerous or abnormal behaviours would be useful
to remotely “keep an eye” on residents, which is a service companies or families have expressed interest
for. We are also able to compute some metrics about the resident’s habits and track the evolution of
these metrics over longer periods of time to lift early alerts about the condition of the person, as we
have done in the Peacehaven deployment with the number of reminders sent to one of the residents.
One of the main limitations here is the restriction to coarse grain activities such as “occupied”. This
highlights the need for a finer sensing in the house, possible if using more types of sensors. A trade-off
is therefore necessary between the scalability of deployment and the appropriate context granularity in
order to reach an optimal marketable solution.

9.5 Lessons Learned

9.5.1 Get Out of the Lab

A lot of technical issues have emerged from deploying technological systems in real living spaces. To
perform the validation, these issues had to be dealt with, which is often considered as a “waste of
time” by researchers. However, this experience allowed us to learn a lot about the targeted users and
stakeholders in general, and it provided us with essential and extremely valuable knowledge related to
bringing value out of our research work and making an impact in society. This knowledge is mainly
related to the feedback received from the stakeholders, to the acceptance of the solutions, their ease
of deployment and maintenance, usage issues, etc. Even though such deployments felt like a burden
at some point in time, we can only recommend to researchers in our field to get out of the lab, deploy
their solutions, and include stakeholders early in the research work.

9.5.2 The Suitable Sensing Granularity

Looking back on our two approaches (top-down and bottom-up), and analysing the experience and
results of the corresponding validation deployments, we feel that we are more apt today to identify the
trade-offs they set forth. The main question that emerges from our validation effort is: What is the
most optimal granularity of sensing for an impactful and economical adoption of AAL technologies?

The purely top-down approach has revealed very wide possibilities for the provision of context-
aware services, both in real-time and looking at longer-term analysis of lifestyles. For example, in our
deployment in the nursing home, we were able to detect an average of seven critical situations per day
for two people sharing the same room (e.g. residents left the tap on, or showered for too long). These
types of information are crucial for the caregiver and provides strategic information on the quality of life
of end-users living in both the nursing home and their own home. In the case of longer-term services,
we have seen the potential of smart homes as tools for the assessment of one’s condition and the early
detection of its deterioration. The top-down approach is however very complex from both hardware
and software perspectives. On the hardware side, the wide range of technologies used makes it difficult
to deploy and maintain the system. In term of software, the hardware complexity and specificity can
only be leveraged by scenario-based algorithms for the comprehension of the context. Overall, taking

130

9.5. LESSONS LEARNED

into account the poor scalability of the solution, it seems a bit far fetch to imagine systems of this
complexity being deployed and maintained in large scale by third-party service providers.

On the contrary, bottom-up solutions are just right in term of deployment scalability. The reduced
technological spread of the system makes it easier to deploy and cheaper to maintain, even in large
scale. The skill-set required to handle the maintenance is being greatly reduced, which opens the
door to economically viable deployments by third-party service providers. However, in this case the
possibilities of the solution in term of services that can be provided are dramatically reduced as well.
Only critical situations may be detected and not really in real-time. The reminders and notifications
available with the top-down approach are impossible without adding more specific sensors to gather
finer grain situational data. The long-term analysis of one’s lifestyle is still possible, although it may
not be as detailed or accurate.

In conclusion, I believe that the bottom-up approach is the only one that might make an impact on
societies in the future. It would be good, however, to make it possible for users to add on to the basic
features of the solution in order to enable more targeted services that respond to their specific needs
and wishes in a personalised fashion.

131

132

Part V

Conclusion

133

The true function of philosophy is to edu-
cate us in the principles of reasoning and
not to put an end to further reasoning by
the introduction of fixed conclusions.

— George Henry Lewes, 1817–1878 10
Conclusions and Perspectives

10.1 Conclusions

This thesis studies the strategies that can be put in place for the comprehension of context in smart
homes for the elderly. Two approaches to AAL are considered: a top-down approach similar to what
can be found in the literature, and a novel bottom-up approach that introduces a stripped-down vision
of AAL systems with coarse sensing granularity. The specific scientific contributions can be summarised
as follows:

– In the first part of this thesis, I make the case of knowledge driven methods and semantic rule-
based inference techniques. A functional model for the provision of context-aware services is
proposed. This model complements the very exhaustive and declarative ones found in the liter-
ature by being more system oriented, and introduces several layers for the representation of the
context. It is therefore more usable for the computed inference of activities based on situational
data.

– Since semantic web technologies are very wide ranging, I analyse which specific languages and
engines are more suitable for AAL systems. Core requirements are gathered, usually emerging
from the differences between web applications which semantic web tools have been designed for,
and the real-time and pervasive services that AAL systems provide. My resulting choice and
recommendation is to use EYE reasoning engine with the N3 ontological language.

– I then propose a rule design based on EYE/N3 which takes into account the different aspects of
context comprehension. This design relies on abstract and parameterised rules when possible, and
introduces three complementary types of rules. Rules of reasoning and rules of fact contribute
to balancing rationalism and empiricism in the inference such that common sense or domain
knowledge can be leveraged as much as more deterministic aspects of the contextual knowledge.

– Next, I highlight the needs and propose techniques to incorporate novel aspects into the semantic
rule engine. Indeed I extend the reasoning architecture and the model to integrate quality of
information metrics on a statement basis, and to enable the use of data driven techniques in the
inference.

– I finally propose a cognitively inspired reasoning architecture, and describe in details the mecha-
nisms involved and the integration in the UbiSMART framework.

In addition to the scientific research contributions listed above, this work has been implemented
and integrated into a context-aware service framework as described below. As part of this doctoral
work, UbiSMART should be considered as a main tangible deliverable, and a tool that enables the
validation of the research contributions summarized above. The framework has evolved greatly in
its three years of development, from a proof of concept prototype implemented imperatively, to a

135

CHAPTER 10. CONCLUSIONS AND PERSPECTIVES

semantic framework based on Jena, and later on to an optimized semantic framework based on EYE
and enabling proof of value deployments. At its heart, the reasoning mechanism changed from a fully
distributed architecture to a hybrid approach where semantic inference is centralized and coupled to
more heterogeneous reasoning modules, thus improving both scalability and flexibility of the reasoning
in UbiSMART. We have also introduced unique and novel features in the framework, such as our tailor-
made triplestore, the semantic plug & play mechanism, and the abstract event bridge. All these more
technical contributions are detailed in chapter 8.

Both the research and technical contributions have been validated following a three-fold process:

– The rule design was formally verified along certain properties such as deadlock-freeness or reach-
ability, thus certifying a correct behaviour of the framework under defined circumstances. The
verification was done using formal model checking methods and is detailed in section 5.4.3.

– Then, we realized in-situ ecological testing of the framework in three complimentary settings,
namely in a realistic research facility, in a nursing home in Singapore with the involvement of
eight residents and three caregivers, and in three individual homes in France involving three
families. Our deployment effort and results are described in details in chapter 9.

– Finally, we performed load tests and performance analysis on the platform to ensure its scalability
in charge and confirm the economical processing power needed to analyse hundreds of home. This
tests and the results are described in section 8.4.5.

I must highlight the importance of deployments in real settings, since it enables an interdisciplinary
research effort by involving stakeholders early in the research. This allows a better design of the
solutions, ensuring an optimal acceptance in society. It also raises our framework for AAL from a proof
of concept to a proof of value by, e.g., showing the kind of services that can be provided. Despite the
low number of users in our validation, we are able to provide today a framework that can be deployed in
projects of larger scale. This is something we actually are working on as part of the VHP@interactive
research project and the QoL Chair project. Both projects have for objective to demonstrate the
economic viability of human and technological services enabling ageing in place, VHP@interactive
handling chronic disease related dependencies, and the QoL Chair being focused on dementia related
dependencies. In this context, our framework will also allow therapeutic education, rehabilitation and
lifestyle coaching services which are essential services to bring into elders’ homes in order to assess and
advice them towards a healthier lifestyle.

10.2 Perspective Work

The future work at the end of this thesis contains both short-term and long-term perspectives. The
short-term research aspect that I wish to study more in depth is the Fuzzy Activation Map Engine
(FAME) described in section 6.2.2. I am especially interested in analysing the duality between iFAM
and wFAM. This will probably be part of my early post-doctoral research effort. True to our “get out
of the lab” spirit, and taking into account the vision expressed in Appendix F, I would also like to
get a multi-disciplinary team together working on the design, development and deployment of a smart
home in a box solution. My idea is to involve stakeholders as early as possible in the design process
and gather continuous feedback throughout the project to ensure a good level of acceptance for the
solution proposed.

Concerning the long-term perspectives, I believe that my doctoral work has highlighted two distinct
areas in which in-depth studies would be interesting and consistent enough to propose two new doctoral
thesis subjects:

– The first aspect is related to context modelling and would be to build a more parametric context
model, with multiple facets of representation for the context. As explained in section 4.5, this

136

10.2. PERSPECTIVE WORK

would empower reasoning algorithms to automatically understand situations and estimate the
danger even for unknown situations. It might help to go beyond scenario-based activity recog-
nition. Moreover it would enable the provision of services without relying on pre-programmed
context-service bindings.

– As explained in section 6.2, I believe that the combination of data driven techniques and knowledge
driven techniques opens interesting paths for future research. The second thesis subject I would
like to propose concerns this combination. It would address the design, implementation and
validation of mechanisms for combining both techniques. It should introduce new paradigms
for the real-time interchange of data and/or results between semantic and statistical reasoning
techniques, as well as for the arbitration of heterogeneous reasoning results.

137

138

Part VI

Appendix

139

Home is a place you grow up want-
ing to leave, and grow old wanting
to get back to.

— John Ed Pearce, 1917–2006 A
Overview of AAL Research Bottlenecks

TE
CH

NO
LO

G
Y

HU
M
AN

BU
SI
NE

SS

M
ul

ti-
D

is
ci

pl
in

ar
y

Ap
pr

oa
ch

El
de

rc
ar

e
Te

ch
no

lo
gy

Tr
an

sf
er

H
um

an
 N

ee
ds

H
um

an

Be
ha

vi
ou

rs

Li
vi

ng

En
vi

ro
nm

en
t

Im
pa

ct

El
de

rc
ar

e

Li
fe

 S
up

po
rt

Sy
st

em
s

R
ob

ot
ic

s
Sy

st
em

 V
er

ifi
ca

tio
n

Fa
ilu

re
 H

an
dl

in
g

U
bi

qu
ito

us
 C

om
pu

tin
g

C
ar

eg
iv

er
s

Su
pp

or
t

Sm
ar

t E
nv

iro
nm

en
t

Figure A.1: Coarse-Grain Overview of AAL Research Activities

141

APPENDIX A. OVERVIEW OF AAL RESEARCH BOTTLENECKS
TE

CH
NO

LO
G

Y

HU
M

AN

BU
SI

NE
SS

M
ul

ti-
D

is
ci

pl
in

ar
y

Ap
pr

oa
ch

El
de

rc
ar

e
Te

ch
no

lo
gy

Tr
an

sf
er

H
um

an
 N

ee
ds

H
um

an

Be
ha

vi
ou

rs

Li
vi

ng

En
vi

ro
nm

en
t

Im
pa

ct

El
de

rc
ar

e
Li

fe
 S

up
po

rt
Sy

st
em

s

R
ob

ot
ic

s

Sy
st

em
 V

er
ifi

ca
tio

n

Fa
ilu

re
 H

an
dl

in
g

U
bi

qu
ito

us
 C

om
pu

tin
g

C
ar

eg
iv

er
s

Su
pp

or
t

Sm
ar

t E
nv

iro
nm

en
t

In
te

rn
et

 o
f T

hi
ng

s
W

eb
 o

f T
hi

ng
s As

si
st

in
g

R
ob

ot
s

D
om

ot
ic

s

Te
le

-p
hy

si
ot

he
ra

py

Te
le

-re
ha

bi
lit

at
io

n

Fa
ll

de
te

ct
io

n

AD
Ls

Ab
no

rm
al

ity

Pr
iv

at
e

ho
m

e

N
ur

si
ng

 h
om

e

H
ea

lth

So
ci

al

So
ci

et
al

Ec
on

om
ic

al

Bu
si

ne
ss

 M
od

el

C
er

tifi
ca

tio
ns

Se
rv

ic
e

Pr
ov

id
er

s

In
su

ra
nc

e
Fi

rm
s

U
se

r A
cc

ep
ta

nc
e

St
ak

eh
ol

de
r

in
vo

lv
em

en
t

U
se

r C
en

tre
d

D
es

ig
n

Fo
rm

al
 M

et
ho

ds

D
es

ig
n

fo
r f

ai
lu

re

Pr
of

es
si

on
al

In
fo

rm
al

eC
om

pa
ni

on

W
el

l-b
ei

ng
 /

Q
oL

Ag
ei

ng
: n

or
m

al
&

pa
th

ol
og

ic
al

In
de

pe
nd

en
t L

iv
in

g
Ph

ys
ic

al
 d

ec
lin

e

So
ci

al
 In

cl
us

io
n

C
og

ni
tiv

e
de

cl
in

e

eH
ea

lth

Cl
in

ic
al

He
al

th
ca

re

M
ed

ic
at

io
n

R
em

in
de

r

H
ea

lth
M

on
ito

rin
g

Li
fe

 L
og

gi
ng

M
em

or
y

As
si

st
an

ce

M
ed

ic
al

 D
ec

is
io

n

Ex
pe

rt
Kn

ow
le

dg
e

Re
as

on
in

g

U n c e r t a i n t y

C
on

te
xt

 M
od

el
in

g

P r i v a c y

Se
ns

in
gM

id
dl

ew
ar

e

UI
 P

la
st

ic
ity

W
SN

M
ul

tim
od

al
ity

W
ea

ra
bl

e

Ta
ng

ib
le

M
ul

tim
od

al
ity

Po
ly

m
or

ph
is

m

D
yn

am
is

m

Ad
ap

ta
bi

lit
y

Se
m

an
tic

 P
lu

g'
n'

Pl
ay

C
om

m
un

ic
at

io
n

Se
rv

ic
e

Ap
pr

oa
ch

Se
m

an
tic

 W
eb

H
ea

lth
 A

ss
es

sm
en

t

D
is

tri
bu

te
d

C
om

pu
tin

g

M
ac

hi
ne

 L
ea

rn
in

g

M
ul

tip
le

 u
se

rs

C
on

te
xt

 In
fe

re
nc

e

Se
rv

ic
e

Se
le

ct
io

n

U
I P

la
st

ic
ity

D
at

a
Fu

si
on

D
es

cr
ip

tio
n

Lo
gi

c

R
ul

e-
ba

se
d

cl
us

te
rin

g

Figure A.2: Fine-Grain Overview of AAL Research Bottlenecks

142

The art of medicine consists of
amusing the patient while nature
cures the disease.

— Voltaire, 1694–1778 B
Global Deterioration Scale (GDS)

Some healthcare professionals use the GDS, also called the Reisberg Scale, to measure the progression
of Alzheimer’s disease. This scale divides Alzheimer’s disease into seven stages of ability. Table B.1
and Table B.2 were extracted from [14] and provide a description for each of the seven stages.

Table B.1: The Global Deterioration Scale for Assessment of Primary Degenerative
Dementia (1)

Level Clinical characteristics

1 No cognitive decline No subjective complaints of memory deficit. No memory deficit evident on clin-
ical interview.

2 Very mild cognitive decline
(age-associated memory
impairment)

Subjective complaints of memory deficit, most frequently in the following ar-
eas: (a) forgetting where one has placed familiar objects; (b) forgetting names
one formerly knew well. No objective evidence of memory deficit on clinical
interview.

3 Mild cognitive decline (mild
cognitive impairment)

Earliest clear-cut deficits. Manifestations in more than one of the following ar-
eas: (a) patient may have got lost when traveling to an unfamiliar location; (b)
co-workers become aware of patients relatively poor performance; (c) word- and
name-finding deficits become evident to intimates; (d) patient may read a pas-
sage of a book and retain relatively little material; (e) patient may demonstrate
decreased facility in remembering names upon introduction to new people; (f)
patient may have lost or misplaced an object of value; (g) concentration deficit
may be evident on clinical testing. Objective evidence of memory deficit ob-
tained only with an intensive interview. Decreased performance in searching for
employment and social settings. Denial begins to become manifest in patient.
Mild to moderate anxiety accompanies symptoms.

4 Moderate cognitive decline
(mild dementia)

Clear-cut deficit on careful clinical interview. Deficit manifest in the following
areas: (a) decreased knowledge of current and recent events; (b) may exhibit
some deficit in memory of ones personal history; (c) concentration deficit elicited
on serial subtractions; (d) decreased ability to travel, handle finances. Frequently
no deficit in following areas: (a) orientation to time and place; (b) recognition of
familiar persons and faces; (c) ability to travel to familiar locations. Inability to
perform complex tasks. Denial is the dominant defense mechanism. Flattening
of affect and withdrawal from challenging situations frequently occur.

Continued in Table B.2

143

APPENDIX B. GLOBAL DETERIORATION SCALE (GDS)

Table B.2: The Global Deterioration Scale for Assessment of Primary Degenerative
Dementia (2)

Continued from Table B.1

Level Clinical characteristics

5 Moderately severe
cognitive decline
(moderate dementia)

Patient may no longer survive without assistance. Patient is unable to recall a
major relevant aspect of their current lives during an interview, e.g. an address
or telephone number of many years, the names of close family members (such as
grandchildren), the name of the high school or college from which they graduated.
Frequently, some disorientation to time (date, day of week, season, etc.) or to
place. An educated person may have difficulty counting back from 40 by 4s or from
20 by 2s. Persons at this stage retain knowledge of many major facts regarding
themselves and others. They invariably know their own names and generally know
their spouses and childrens names. They require no assistance with toileting and
eating, but may have some difficulty choosing the proper clothing to wear.

6 Severe cognitive decline
(moderately severe
dementia)

May occasionally forget the name of the spouse upon whom they are entirely de-
pendent for survival. Will be largely unaware of all recent events and experiences
in their lives. Retain some knowledge of their past lives but this is very sketchy.
Generally unaware of their surroundings, the year, the season, etc. May have dif-
ficulty counting from 10 both backward and, sometimes, forward. Will require
some assistance with activities of daily living, e.g. may become incontinent, will
require travel assistance but occasionally will be able to travel to familiar loca-
tions. Diurnal rhythm frequently disturbed. Almost always recall their own name.
Frequently, continue to be able to distinguish familiar from unfamiliar persons in
their environment. Personality and emotional changes occur. These are quite vari-
able and include: (a) delusional behavior, e.g. patients may accuse their spouse of
being an impostor, may talk of imaginary figures in the environment, or to their
own reflection in the mirror; (b) obsessive symptoms, e.g. person may continually
repeat simple cleaning activities; (c) anxiety symptoms, agitation and even pre-
viously nonexistent violent behavior may occur; (d) cognitive abulia, i.e. loss of
willpower because the individual cannot carry the thought long enough to deter-
mine a purposeful course of action.

7 Very severe cognitive
decline (severe dementia)

All verbal abilities are lost over the course of this stage. Frequently there is no
speech at all only unintelligible utterances and rare emergence of seemingly for-
gotten words and phrases. Incontinent of urine, requires assistance toileting and
feeding. Basic psychomotor skills, e.g. ability to walk, are lost with the progression
of this stage. The brain appears to no longer be able to tell the body what to do.
Generalized rigidity and developmental neurologic reflexes are frequently present.

In short, we can summarize the stages as follow:

– Stage 1: no cognitive decline, experiences no problems in daily living.

– Stage 2: very mild cognitive decline, forgets names and locations of objects, may have trouble
finding words.

– Stage 3: mild cognitive decline, has difficulty travelling to new locations, has difficulty handling
problems at work.

– Stage 4: moderate cognitive decline, has difficulty with complex tasks (finances, shopping, plan-
ning dinner for guests).

– Stage 5: moderately severe cognitive decline, needs help to choose clothing, needs prompting to
bathe.

– Stage 6: severe cognitive decline, loss of awareness of recent events and experiences, requires
assistance bathing; may have a fear of bathing, has decreased ability to use the toilet or is
incontinent.

144

– Stage 7: very severe cognitive decline, vocabulary becomes limited, eventually declining to single
words, loses ability to walk and sit, requires help with eating.

145

146

A man’s grammar, like Caesar’s
wife, should not only be pure, but
above suspicion of impurity.

— Edgar Allan Poe, 1809–1849 C
Grammars for the Semantic Web

C.1 Jena Rule Grammar

Following is a short rule grammar tutorial handy to understand how Jena rules must be formatted. This
annex is inspired by the Jena sourceforge website [168]. A rule for the rule-based reasoner is defined
by a Java Rule object with a list of body terms (premises), a list of head terms (conclusions) and an
optional name and optional direction. Each term or ClauseEntry is either a triple pattern, an extended
triple pattern or a call to a built-in primitive. A rule-set is simply a List of Rules. For convenience
a rather simple parser is included with Rule which allows rules to be specified in reasonably compact
form in text source files. However, it would be perfectly possible to define alternative parsers which
handle rules encoded using, say, XML or RDF and generate Rule objects as output. It would also be
possible to build a real parser for the current text file grammar which offered better error recovery and
diagnostics. An informal description of the simplified text rule grammar is provided in Source C.1,
where “,” separators are optional.

Source C.1: Jena Simplified Grammar

Rule := bare -rule or [bare -rule] or [ruleName : bare -rule]

bare -rule := term , ... term -> hterm , ... hterm // forward rule

or bhterm <- term , ... term // backward rule

hterm := term or [bare -rule]

term := (node , node , node) // triple pattern

or (node , node , functor) // extended triple pattern

or builtin(node , ... node) // invoke procedural primitive

bhterm := (node , node , node) // triple pattern

functor := functorName(node , ... node) // structured literal

node := uri -ref // e.g. http :// foo.com/eg

or prefix:localname // e.g. rdf:type

or <uri -ref > // e.g. <myscheme:myuri >

or ?varname // variable

or ’a literal ’ // a plain string literal

or ’lex ’^^ typeURI // a typed literal , xsd:* type names supported

or number // e.g. 42 or 25.5

The difference between the forward and backward rule syntax is only relevant for the hybrid ex-
ecution strategy — see website. The functor in an extended triple pattern is used to create and
access structured literal values. The functorName can be any simple identifier and is not related to
the execution of built-in procedural primitives, it is just a data-structure. It is useful when a single

147

APPENDIX C. GRAMMARS FOR THE SEMANTIC WEB

semantic structure is defined across multiple triples and allows a rule to collect those triples together in
one place. To keep rules readable qname syntax is supported for URI refs. The set of known prefixes
is those registered with the PrintUtil object. This initially knows about rdf, rdfs, owl, daml, xsd and
a test namespace eg, but more mappings can be registered in java code. In addition it is possible to
define additional prefix mappings in the rule file, see below. Source C.2 provides some example rules
which illustrate most of these constructs.

Source C.2: Jena Rule Examples

[allID: (?C rdf:type owl:Restriction), (?C owl:onProperty ?P),

(?C owl:allValuesFrom ?D) -> (?C owl:equivalentClass all(?P, ?D))]

[all2: (?C rdfs:subClassOf all(?P, ?D)) -> print(’Rule for ’, ?C)

[all1b: (?Y rdf:type ?D) <- (?X ?P ?Y), (?X rdf:type ?C)]]

[max1: (?A rdf:type max(?P, 1)), (?A ?P ?B), (?A ?P ?C)

-> (?B owl:sameAs ?C)]

allID illustrates the functor use for collecting the components of an OWL restriction into a single
data-structure which can then fire further rules. all2 illustrates a forward rule which creates a new
backward rule and also calls the print procedural primitive. max1 illustrates use of numeric literals.

Rule files may be loaded and parsed using one of the three Java commands in Source C.3.

Source C.3: Jena Rules Loading

List rules = Rule.rulesFromURL("file:myfile.rules");

2

BufferedReader br = /* open reader */ ;

List rules = Rule.parseRules(Rule.rulesParserFromReader(br));

String ruleSrc = /* list of rules in line */ ;

7 List rules = Rule.parseRules(rulesSrc);

In the first two cases (reading from a URL or a BufferedReader) the rule file is pre-processed by
a simple processor which strips comments and supports some additional macro commands:

– # ... is a comment line.

– // ... is a comment line too.

– @prefix pre: <http://domain/url#>. defines a prefix “pre” which can be used in the rules.
The prefix is local to the rule file.

– @include <urlToRuleFile>. includes the rules defined in the given file in this file. The included
rules will appear before the user defined rules, irrespective of where in the file the @include

directive appears. A set of special cases is supported to allow a rule file to include the predefined
rules for RDFS and OWL — in place of a real URL for a rule file use one of the keywords RDFS

OWL OWLMicro OWLMini (case insensitive).

To conclude, Source C.4 is an example complete rule file which includes the RDFS rules and defines
a single extra rule.

Source C.4: Jena Example Rule File

Example rule file

@prefix pre: <http :// jena.hpl.hp.com/prefix#>.

@include <RDFS >.

[rule1: (?f pre:father ?a) (?u pre:brother ?f) -> (?u pre:uncle ?a)]

148

C.2. N3 GRAMMAR

C.2 N3 Grammar

The aims of the N3 language are:

– to optimize expression of data and logic in the same language,

– to allow RDF to be expressed,

– to allow rules to be integrated smoothly with RDF,

– to allow quoting so that statements about statements can be made, and

– to be as readable, natural, and symmetrical as possible.

The language achieves these with the following features:

– URI abbreviation using prefixes which are bound to a namespace (using @prefix) a bit like in
XML,

– repetition of another object for the same subject and predicate using a comma “,”,

– repetition of another predicate for the same subject using a semicolon “;”,

– bnode syntax with a certain properties just put the properties between “[” and “]”,

– formulae allowing N3 graphs to be quoted within N3 graphs using “{” and “}”,

– variables and quantification to allow rules, etc. to be expressed,

– and, a simple and consistent grammar defined by the context free grammar in Source C.5.

Source C.5: N3 Grammar in N3

1 # Notation3 in Notation3

Context Free Grammar without tokenization

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

6 @prefix cfg: <http :// www.w3.org /2000/10/ swap/grammar/bnf#>.

@prefix rul: <http :// www.w3.org /2000/10/ swap/grammar/bnf -rules#>.

@prefix : <http ://www.w3.org /2000/10/ swap/grammar/n3#>.

@prefix n3: <http :// www.w3.org /2000/10/ swap/grammar/n3#>.

@prefix list: <http ://www.w3.org /2000/10/ swap/list#>.

11 @prefix string: <http ://www.w3.org /2000/10/ swap/string#>.

@keywords a, is, of.

language a cfg:Language;

cfg:document document;

16 cfg:whiteSpace "@@@@@".

document a rul:Used;

cfg:mustBeOneSequence(

(

21 statements_optional

cfg:eof

)

).

26 statements_optional cfg:mustBeOneSequence (() (statement "." statements_optional)).

Formula does NOT need period on last statement

149

APPENDIX C. GRAMMARS FOR THE SEMANTIC WEB

formulacontent cfg:mustBeOneSequence (

(statementlist)

31).

statementlist cfg:mustBeOneSequence (

()

(statement statementtail)

36).

statementtail cfg:mustBeOneSequence (

()

("." statementlist)

41).

statement cfg:mustBeOneSequence (

(declaration)

(universal)

46 (existential)

(simpleStatement)

).

universal cfg:mustBeOneSequence (

51 (

"@forAll"

[cfg:commaSeparatedListOf symbol]

)).

56 existential cfg:mustBeOneSequence(

("@forSome"

[cfg:commaSeparatedListOf symbol]

)).

61 declaration cfg:mustBeOneSequence(

("@base" explicituri)

("@prefix" prefix explicituri)

(" @keywords" [cfg:commaSeparatedListOf barename])

).

66

simpleStatement cfg:mustBeOneSequence ((subject propertylist)).

propertylist cfg:mustBeOneSequence (

()

71 (predicate object objecttail propertylisttail)

).

propertylisttail cfg:mustBeOneSequence (

()

76 (";" propertylist)

).

objecttail cfg:mustBeOneSequence (

()

81 ("," object objecttail)

).

predicate cfg:mustBeOneSequence (

(expression)

86 ("@has" expression)

("@is" expression "@of")

("@a")

("=")

("=>")

91 (" <=")

).

150

C.3. OWL 2 RL GRAMMAR

subject cfg:mustBeOneSequence ((expression)).

96 object cfg:mustBeOneSequence ((expression)).

expression cfg:mustBeOneSequence(

(pathitem pathtail)

).

101

pathtail cfg:mustBeOneSequence(

()

("!" expression)

("^" expression)

106).

pathitem cfg:mustBeOneSequence (

(symbol)

("{" formulacontent "}")

111 (quickvariable)

(numericliteral)

(literal)

("[" propertylist "]")

("(" pathlist ")")

116 (boolean)

boolean cfg:mustBeOneSequence (

("@true")

("@false")

121) .

pathlist cfg:mustBeOneSequence (() (expression pathlist)).

symbol cfg:mustBeOneSequence (

126 (explicituri)

(qname)

).

numericliteral cfg:mustBeOneSequence (

131 (integer)

(rational)

(double)

(decimal)

) .

136

rational cfg:mustBeOneSequence ((integer "/" unsignedint)).

literal cfg:mustBeOneSequence ((string dtlang)).

141 dtlang cfg:mustBeOneSequence(() ("@" langcode) ("^^" symbol)).

C.3 OWL 2 RL Grammar

Source C.6 provides an overview of the expressivity allowed by OWL 2 RL by describing its grammar.
It is extracted from the late 2012 W3C recommendation about OWL 2 profiles [101]. The reader
should note that the Internationalized Resource Identifier (IRI) is a generalization of the URI which
may contain non ASCII characters.

Source C.6: OWL 2 RL Grammar

Class := IRI

151

APPENDIX C. GRAMMARS FOR THE SEMANTIC WEB

Datatype := IRI

ObjectProperty := IRI

DataProperty := IRI

AnnotationProperty := IRI

Individual := NamedIndividual | AnonymousIndividual

NamedIndividual := IRI

AnonymousIndividual := nodeID

Literal := typedLiteral | stringLiteralNoLanguage | stringLiteralWithLanguage

typedLiteral := lexicalForm ’^^’ Datatype

lexicalForm := quotedString

stringLiteralNoLanguage := quotedString

stringLiteralWithLanguage := quotedString languageTag

ObjectPropertyExpression := ObjectProperty | InverseObjectProperty

InverseObjectProperty := ’ObjectInverseOf ’ ’(’ ObjectProperty ’)’

DataPropertyExpression := DataProperty

DataRange := Datatype | DataIntersectionOf

DataIntersectionOf := ’DataIntersectionOf ’ ’(’ DataRange DataRange { DataRange } ’)’

zeroOrOne := ’0’ | ’1’

subClassExpression :=

Class other than owl:Thing |

subObjectIntersectionOf | subObjectUnionOf | ObjectOneOf |

subObjectSomeValuesFrom | ObjectHasValue |

DataSomeValuesFrom | DataHasValue

subObjectIntersectionOf := ’ObjectIntersectionOf ’ ’(’ subClassExpression

subClassExpression { subClassExpression } ’)’

subObjectUnionOf := ’ObjectUnionOf ’ ’(’ subClassExpression subClassExpression {

subClassExpression } ’)’

subObjectSomeValuesFrom :=

’ObjectSomeValuesFrom ’ ’(’ ObjectPropertyExpression subClassExpression ’)’ |

’ObjectSomeValuesFrom ’ ’(’ ObjectPropertyExpression owl:Thing ’)’

superClassExpression :=

Class other than owl:Thing |

superObjectIntersectionOf | superComplementOf |

superObjectAllValuesFrom | ObjectHasValue | superObjectMaxCardinality |

DataAllValuesFrom | DataHasValue | superDataMaxCardinality

superObjectIntersectionOf := ’ObjectIntersectionOf ’ ’(’ superClassExpression

superClassExpression { superClassExpression } ’)’

superObjectComplementOf := ’ObjectComplementOf ’ ’(’ subClassExpression ’)’

superObjectAllValuesFrom := ’ObjectAllValuesFrom ’ ’(’ ObjectPropertyExpression

superClassExpression ’)’

superObjectMaxCardinality :=

’ObjectMaxCardinality ’ ’(’ zeroOrOne ObjectPropertyExpression [subClassExpression

] ’)’ |

’ObjectMaxCardinality ’ ’(’ zeroOrOne ObjectPropertyExpression owl:Thing ’)’

superDataMaxCardinality := ’DataMaxCardinality ’ ’(’ zeroOrOne DataPropertyExpression [

DataRange] ’)’ |

equivClassExpression :=

Class other than owl:Thing |

equivObjectIntersectionOf |

ObjectHasValue |

DataHasValue

equivObjectIntersectionOf := ’ObjectIntersectionOf ’ ’(’ equivClassExpression

equivClassExpression { equivClassExpression } ’)’

ObjectOneOf := ’ObjectOneOf ’ ’(’ Individual { Individual }’)’

ObjectHasValue := ’ObjectHasValue ’ ’(’ ObjectPropertyExpression Individual ’)’

DataSomeValuesFrom := ’DataSomeValuesFrom ’ ’(’ DataPropertyExpression {

DataPropertyExpression } DataRange ’)’

DataAllValuesFrom := ’DataAllValuesFrom ’ ’(’ DataPropertyExpression {

DataPropertyExpression } DataRange ’)’

DataHasValue := ’DataHasValue ’ ’(’ DataPropertyExpression Literal ’)’

152

C.3. OWL 2 RL GRAMMAR

Axiom := Declaration | ClassAxiom | ObjectPropertyAxiom | DataPropertyAxiom |

DatatypeDefinition | HasKey | Assertion | AnnotationAxiom

ClassAxiom := SubClassOf | EquivalentClasses | DisjointClasses

SubClassOf := ’SubClassOf ’ ’(’ axiomAnnotations subClassExpression superClassExpression

’)’

EquivalentClasses := ’EquivalentClasses ’ ’(’ axiomAnnotations equivClassExpression

equivClassExpression { equivClassExpression } ’)’

DisjointClasses := ’DisjointClasses ’ ’(’ axiomAnnotations subClassExpression

subClassExpression { subClassExpression } ’)’

ObjectPropertyAxiom :=

SubObjectPropertyOf | EquivalentObjectProperties |

DisjointObjectProperties | InverseObjectProperties |

ObjectPropertyDomain | ObjectPropertyRange |

FunctionalObjectProperty | InverseFunctionalObjectProperty |

IrreflexiveObjectProperty |

SymmetricObjectProperty | AsymmetricObjectProperty

TransitiveObjectProperty

SubObjectPropertyOf := ’SubObjectPropertyOf ’ ’(’ axiomAnnotations

subObjectPropertyExpression superObjectPropertyExpression ’)’

subObjectPropertyExpression := ObjectPropertyExpression | propertyExpressionChain

propertyExpressionChain := ’ObjectPropertyChain ’ ’(’ ObjectPropertyExpression

ObjectPropertyExpression { ObjectPropertyExpression } ’)’

superObjectPropertyExpression := ObjectPropertyExpression

EquivalentObjectProperties := ’EquivalentObjectProperties ’ ’(’ axiomAnnotations

ObjectPropertyExpression ObjectPropertyExpression { ObjectPropertyExpression } ’)’

DisjointObjectProperties := ’DisjointObjectProperties ’ ’(’ axiomAnnotations

ObjectPropertyExpression ObjectPropertyExpression { ObjectPropertyExpression } ’)’

InverseObjectProperties := ’InverseObjectProperties ’ ’(’ axiomAnnotations

ObjectPropertyExpression ObjectPropertyExpression ’)’

ObjectPropertyDomain := ’ObjectPropertyDomain ’ ’(’ axiomAnnotations

ObjectPropertyExpression superClassExpression ’)’

ObjectPropertyRange := ’ObjectPropertyRange ’ ’(’ axiomAnnotations

ObjectPropertyExpression superClassExpression ’)’

FunctionalObjectProperty := ’FunctionalObjectProperty ’ ’(’ axiomAnnotations

ObjectPropertyExpression ’)’

InverseFunctionalObjectProperty := ’InverseFunctionalObjectProperty ’ ’(’

axiomAnnotations ObjectPropertyExpression ’)’

IrreflexiveObjectProperty := ’IrreflexiveObjectProperty ’ ’(’ axiomAnnotations

ObjectPropertyExpression ’)’

SymmetricObjectProperty := ’SymmetricObjectProperty ’ ’(’ axiomAnnotations

ObjectPropertyExpression ’)’

AsymmetricObjectProperty := ’AsymmetricObjectProperty ’ ’(’ axiomAnnotations

ObjectPropertyExpression ’)’

TransitiveObjectProperty := ’TransitiveObjectProperty ’ ’(’ axiomAnnotations

ObjectPropertyExpression ’)’

DataPropertyAxiom :=

SubDataPropertyOf | EquivalentDataProperties | DisjointDataProperties |

DataPropertyDomain | DataPropertyRange | FunctionalDataProperty

SubDataPropertyOf := ’SubDataPropertyOf ’ ’(’ axiomAnnotations subDataPropertyExpression

superDataPropertyExpression ’)’

subDataPropertyExpression := DataPropertyExpression

superDataPropertyExpression := DataPropertyExpression

EquivalentDataProperties := ’EquivalentDataProperties ’ ’(’ axiomAnnotations

DataPropertyExpression DataPropertyExpression { DataPropertyExpression } ’)’

DisjointDataProperties := ’DisjointDataProperties ’ ’(’ axiomAnnotations

DataPropertyExpression DataPropertyExpression { DataPropertyExpression } ’)’

DataPropertyDomain := ’DataPropertyDomain ’ ’(’ axiomAnnotations DataPropertyExpression

superClassExpression ’)’

DataPropertyRange := ’DataPropertyRange ’ ’(’ axiomAnnotations DataPropertyExpression

DataRange ’)’

FunctionalDataProperty := ’FunctionalDataProperty ’ ’(’ axiomAnnotations

153

APPENDIX C. GRAMMARS FOR THE SEMANTIC WEB

DataPropertyExpression ’)’

DatatypeDefinition := ’DatatypeDefinition ’ ’(’ axiomAnnotations Datatype DataRange ’)’

HasKey := ’HasKey ’ ’(’ axiomAnnotations subClassExpression ’(’ {

ObjectPropertyExpression } ’)’ ’(’ { DataPropertyExpression } ’)’ ’)’

Assertion :=

SameIndividual | DifferentIndividuals | ClassAssertion |

ObjectPropertyAssertion | NegativeObjectPropertyAssertion |

DataPropertyAssertion | NegativeDataPropertyAssertion

sourceIndividual := Individual

targetIndividual := Individual

targetValue := Literal

SameIndividual := ’SameIndividual ’ ’(’ axiomAnnotations Individual Individual {

Individual } ’)’

DifferentIndividuals := ’DifferentIndividuals ’ ’(’ axiomAnnotations Individual

Individual { Individual } ’)’

ClassAssertion := ’ClassAssertion ’ ’(’ axiomAnnotations superClassExpression Individual

’)’

ObjectPropertyAssertion := ’ObjectPropertyAssertion ’ ’(’ axiomAnnotations

ObjectPropertyExpression sourceIndividual targetIndividual ’)’

NegativeObjectPropertyAssertion := ’NegativeObjectPropertyAssertion ’ ’(’

axiomAnnotations ObjectPropertyExpression sourceIndividual targetIndividual ’)’

DataPropertyAssertion := ’DataPropertyAssertion ’ ’(’ axiomAnnotations

DataPropertyExpression sourceIndividual targetValue ’)’

NegativeDataPropertyAssertion := ’NegativeDataPropertyAssertion ’ ’(’ axiomAnnotations

DataPropertyExpression sourceIndividual targetValue ’)’

154

I think everybody in this country should
learn how to program a computer because
it teaches you how to think.

— Steve Jobs, 1955–2011 D
UbiSMART v2 Source Code Extracts

In this appendix, we provide the source code written for the reasoning modules inside UbiSMART v2.
Each source below corresponds to one of the bundles described in section 8.4.

D.1 Stimulistener

Source D.1: Stimulistener Bundle

package sg.ipal.pawm.ubi.stimulistener;

3 import org.osgi.service.event.Event;

import org.osgi.service.event.EventHandler;

public interface Stimulistener extends EventHandler {

public void handleEvent(Event event);

8 }

===

package sg.ipal.pawm.ubi.stimulistener.internal;

import java.io.File;

13 import java.io.FilenameFilter;

import java.io.IOException;

import java.util.concurrent.LinkedBlockingQueue;

import sg.ipal.pawm.ubi.cogitation.Cogitation;

18 import sg.ipal.pawm.ubi.eventbridge.EventSubscriber;

import sg.ipal.pawm.ubi.ntriplestore.NTripleStore;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceReference;

23 import org.osgi.service.event.Event;

import org.osgi.util.tracker.ServiceTracker;

import sg.ipal.pawm.tools.toolbox.ConfigR;

import sg.ipal.pawm.tools.toolbox.LogR;

28

public class Activator implements BundleActivator {

/** PARAMETERS **/

private static final String STIMULITOPIC = " stimulistener ";

private static final String LOAD_PREFIX = "load -";

33 private static String EULER_DIR;

private static final String S_BRIDGE = "sg.ipal.pawm.ubi. osgibridge . OSGiSubscriber ";

public static String SYSTEM_LOG;

private static boolean DEBUG = true;

38 /** VARIABLES **/

155

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

public static BundleContext bc;

public static NTripleStore n3Store;

public static LinkedBlockingQueue <Event > eventQueue;

public static LogR log;

43 private ServiceTracker st;

private StimuliDecoder decoder;

public void start(BundleContext context) throws Exception {

48 /** BUNDLE START **/

// init variables

bc = context;

eventQueue = new LinkedBlockingQueue <Event >();

ServiceReference ref = Activator.bc.getServiceReference(ConfigR.class.getName ());

53 ConfigR conf = (ConfigR) Activator.bc.getService(ref);

SYSTEM_LOG = conf.getProperty(" system_log ");

// get logR service

ref = Activator.bc.getServiceReference(LogR.class.getName ());

58 log = (LogR) Activator.bc.getService(ref);

// load n3 files into the triplestore

loadTripleStore ();

63 // start the StimuliDecoder thread that process the eventQueue

decoder = new StimuliDecoder ();

decoder.start ();

// instantiate stimulistener and subscribe to information topic

68 // since there is no formal dependency: use service tracker in case service not

started yet

st = new ServiceTracker(bc , S_BRIDGE , null) {

@Override

public Object addingService(ServiceReference reference) {

EventSubscriber bridge = (EventSubscriber) bc.getService(reference);

73 bridge.subscribe(STIMULITOPIC , new StimulistenerImpl ());

return super.addingService(reference);

}

@Override

78 public void remove(ServiceReference reference) {

super.remove(reference);

}

};

st.open();

83 }

public void stop(BundleContext context) throws Exception {

/** BUNDLE STOP **/

88 decoder.requestHalt ();

}

93 public void loadTripleStore () throws IOException {

/** LOAD N3 FILES IN TRIPLE STORE **/

System.out.println("Loading files in triple store ...");

// retrieve the nTripleStore service reference and get an instance

98 ServiceReference ref = Activator.bc.getServiceReference(NTripleStore.class.getName

());

n3Store = (NTripleStore) Activator.bc.getService(ref);

156

D.1. STIMULISTENER

// get euler directory

ref = Activator.bc.getServiceReference(ConfigR.class.getName ());

103 ConfigR conf = (ConfigR) Activator.bc.getService(ref);

EULER_DIR = conf.getProperty(" euler_dir");

// get the n3 files from the euler directory

File dir = new File(EULER_DIR);

108 String [] children = dir.list();

// this filter only returns n3 files with load prefix

FilenameFilter fileFilter = new FilenameFilter () {

public boolean accept(File dir , String name) {

113 return name.startsWith(LOAD_PREFIX) && name.endsWith(".n3") && !name.

endsWith("~");

}

};

children = dir.list(fileFilter);

118 // get cogitation service to get owl deductive closure

ref = Activator.bc.getServiceReference(Cogitation.class.getName ());

Cogitation cogit = (Cogitation) Activator.bc.getService(ref);

n3Store.load(cogit.passOWL(children));

if(DEBUG) {

123 for(String sale : cogit.passOWL(children)) {

System.out.println(sale);

}

}

}

128

}

===

package sg.ipal.pawm.ubi.stimulistener.internal;

133 import org.osgi.service.event.Event;

import sg.ipal.pawm.ubi.stimulistener.Stimulistener;

public class StimulistenerImpl implements Stimulistener {

138 /** PARAMETERS **/

private final boolean DEBUG = false;

@Override

143 public void handleEvent(Event event) {

/** MAIN METHOD CALLED WHEN STIMULISTER RECEIVES AN EVENT FROM SFM **/

// debug if wanted

if(DEBUG) {

System.out.println(" ---------- NEW EVENT ---------------");

148 for(String name : event.getPropertyNames ()) {

if(!name.equalsIgnoreCase("event.topics")) {

System.out.println(name + " = " + event.getProperty(name));

}

}

153 }

// add event to the eventQueue , to be decoded by the StimuliDecoder thread

try {

Activator.eventQueue.put(event);

158 } catch (InterruptedException e) {

e.printStackTrace ();

}

}

163 }

157

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

===

package sg.ipal.pawm.ubi.stimulistener.internal;

168 import org.osgi.framework.ServiceReference;

import org.osgi.service.event.Event;

import sg.ipal.pawm.tools.toolbox.DateR;

import sg.ipal.pawm.ubi.cortex.Cortex;

173 import sg.ipal.pawm.ubi.ntriplestore.NTripleStore;

public class StimuliDecoder extends Thread {

178 /** PARAMETERS **/

String HOME_NS = "hom:";

String MODEL_NS = "qol:";

String CALENDAR = HOME_NS+"calendar";

String CLOCK = HOME_NS+"clock";

183 boolean DEBUG = false;

/** VARIABLES **/

private Event event;

private NTripleStore n3Store;

188 private boolean halt;

public StimuliDecoder () {

/** CONSTRUCTOR **/

193 n3Store = Activator.n3Store;

halt = false;

}

198 public void run() {

/** DECODE EVENT IN A THREAD **/

String sensor , value , time , dayOfWeek;

boolean isState , isTime;

203 // init variables

dayOfWeek = "";

// get dater service

ServiceReference ref = Activator.bc.getServiceReference(DateR.class.getName ());

208 DateR dater = (DateR) Activator.bc.getService(ref);

while(!halt) {

try {

event = Activator.eventQueue.take();

213 } catch (InterruptedException e) {

e.printStackTrace ();

}

long startTime = System.nanoTime ();

218

// extract values from event

sensor = (String) event.getProperty("sensor");

value = (String) event.getProperty("value");

time = (String) event.getProperty("time");

223

if(DEBUG) {

System.out.println("sensor:"+sensor+" | value:"+value+" | time:"+time);

}

158

D.1. STIMULISTENER

228 // check kind of sensor: state or value

isState = n3Store.exist(getSensorURI(sensor), MODEL_NS+" hasPossibleState ", "*");

isTime = n3Store.exist(getSensorURI(sensor), MODEL_NS+"type", HOME_NS+"time");

if(isState) {

// update sensor current state

233 n3Store.updateObject(getSensorURI(sensor), MODEL_NS+" hasCurrentState ",

getSensorStateURI(sensor , value));

n3Store.updateSubject(getSensorURI(sensor), MODEL_NS+" hasLastUpdate ", "true");

// update time based on sensor event

n3Store.updateObject(CLOCK , MODEL_NS+"hasValue", dater.getN3Time(time));

// extract day of week and update if needed

238 if(! dater.getDayOfWeek(time).equalsIgnoreCase(dayOfWeek)) {

n3Store.updateObject(CALENDAR , MODEL_NS+"hasValue", "\""+dater.getDayOfWeek(

time)+"\"^^ qol: dayOfWeek");

}

} else if(isTime) {

// update time value

243 value = time;

n3Store.updateObject(getSensorURI(sensor), MODEL_NS+"hasValue", dater.getN3Time

(value));

// // extract day of week and update if needed

// if(!dater.getDayOfWeek(value).equalsIgnoreCase(dayOfWeek)) {

// n3Store.updateObject(CALENDAR , MODEL_NS +" hasValue", "\""+ dater.getDayOfWeek

(value)+"\"^^ qol:dayOfWeek ");

248 // }

} else {

// update sensor value

n3Store.updateObject(getSensorURI(sensor), MODEL_NS+"hasValue", value);

}

253

// update last update time

n3Store.updateObject(getSensorURI(sensor), MODEL_NS+" lastUpdate ", dater.getN3Time

(time));

long endTime = System.nanoTime ();

258 long duration = endTime - startTime;

Activator.log.append(" Stimulistener processing duration , " + duration , Activator.

SYSTEM_LOG , false);

// launch inference

startTime = System.nanoTime ();

263 ref = Activator.bc.getServiceReference(Cortex.class.getName ());

Cortex cortex = (Cortex) Activator.bc.getService(ref);

// pass isState to cortex in order to log for clustering only on sensor state

change

cortex.think(isState);

268 endTime = System.nanoTime ();

duration = endTime - startTime;

Activator.log.append("Cortex processing duration , " + duration , Activator.

SYSTEM_LOG , false);

Activator.log.append("Event queue size , " + Activator.eventQueue.size(),

Activator.SYSTEM_LOG , false);

}

273 }

private String getSensorURI(String sensorId) {

/** GIVE SENSOR URI FOR GIVEN SENSOR ID **/

278 return HOME_NS+sensorId.toLowerCase ();

}

private String getSensorStateURI(String sensorId , String value) {

159

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

283 /** GIVE SENSOR STATE URI FOR GIVEN SENSOR ID & VALUE **/

return HOME_NS+sensorId.toLowerCase ()+"_"+value.toLowerCase ();

}

288 public void requestHalt () {

/** ENDS THE DECODER THREAD **/

halt = true;

}

293 }

D.2 Cortex

Source D.2: Cortex Bundle

package sg.ipal.pawm.ubi.cortex;

2

public interface Cortex

{

void think(boolean isState);

void registerCerebration(String bundleClass);

7 void unregisterCerebration(String bundleClass);

}

===

package sg.ipal.pawm.ubi.cortex.internal;

12 import java.util.Dictionary;

import java.util.Hashtable;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

17 import org.osgi.framework.ServiceReference;

import sg.ipal.pawm.tools.toolbox.ConfigR;

import sg.ipal.pawm.tools.toolbox.LogR;

import sg.ipal.pawm.ubi.cortex.Cortex;

22

public final class Activator implements BundleActivator {

/** PARAMETERS **/

public static String SYSTEM_LOG;

27

/** VARIABLES **/

public static BundleContext bc;

public static int eventCount;

public static LogR log;

32

public void start(BundleContext context) throws Exception {

/** BUNDLE START **/

bc = context;

37 eventCount = 0;

// parse config file

ServiceReference ref = Activator.bc.getServiceReference(ConfigR.class.getName ());

ConfigR conf = (ConfigR) Activator.bc.getService(ref);

42 SYSTEM_LOG = conf.getProperty(" system_log ");

// get logR service

160

D.2. CORTEX

ref = Activator.bc.getServiceReference(LogR.class.getName ());

log = (LogR) Activator.bc.getService(ref);

47

// register services

Dictionary <Object , Object > props = new Hashtable <Object , Object >();

bc.registerService(Cortex.class.getName (), new CortexImpl (), props);

}

52

public void stop(BundleContext bc) throws Exception {

/** BUNDLE STOP **/

// no need to unregister our service - the OSGi framework handles it for us

57 }

}

===

62 package sg.ipal.pawm.ubi.cortex.internal;

import java.util.HashSet;

import java.util.Set;

67 import org.osgi.framework.ServiceReference;

import sg.ipal.pawm.ubi.cerebration.Cerebration;

import sg.ipal.pawm.ubi.cogitation.Cogitation;

import sg.ipal.pawm.ubi.cortex.Cortex;

72

public final class CortexImpl implements Cortex {

/** PARAMETERS **/

77 /** VARIABLES **/

private Set <String > cerebraList;

private CortexDecision decidor;

82 public CortexImpl () {

/** CONSTRUCTOR **/

cerebraList = new HashSet <String >(500);

decidor = new CortexDecision ();

}

87

public void think(boolean isState) {

/** HANDLE REASONING CYCLES **/

92 /* testing tweak below */

ServiceReference ref;

// launch cerebrations one by one (+ profiling)

for (String cereBundle : cerebraList) {

97 ref = Activator.bc.getServiceReference(cereBundle);

Cerebration cerebration = (Cerebration) Activator.bc.getService(ref);

long startTime = System.nanoTime ();

cerebration.think();

long endTime = System.nanoTime ();

102 long duration = endTime - startTime;

Activator.log.append(" Cerebration "+cerebration.getName ()+" processing time , "

+ duration , Activator.SYSTEM_LOG , false);

}

// launch cogitation (+ profiling)

107 ref = Activator.bc.getServiceReference(Cogitation.class.getName ());

161

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

Cogitation cogit = (Cogitation) Activator.bc.getService(ref);

long startTime = System.nanoTime ();

String [] res = cogit.think ();

long endTime = System.nanoTime ();

112 long duration = endTime - startTime;

Activator.log.append(" Cogitation processing time , " + duration , Activator.

SYSTEM_LOG , false);

// temporary make CortexDecision after cogitation when a sensor state change

// if(isState) {

117 decidor.decode(res);

// }

}

122 public void registerCerebration(String bundleClass) {

/** REGISTER A CEREBRATION SERVICE **/

cerebraList.add(bundleClass);

}

127

public void unregisterCerebration(String bundleClass) {

/** UNREGISTER A CEREBRATION SERVICE **/

cerebraList.remove(bundleClass);

}

132

}

===

package sg.ipal.pawm.ubi.cortex.internal;

137 import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

import java.util.Dictionary;

import java.util.HashMap;

142 import java.util.Hashtable;

import java.util.Map;

import org.osgi.framework.ServiceReference;

import org.osgi.service.event.Event;

147 import org.osgi.util.tracker.ServiceTracker;

import sg.ipal.pawm.tools.toolbox.DateR;

import sg.ipal.pawm.ubi.eventbridge.EventPublisher;

152 public class CortexDecision {

/** PARAMETERS **/

private static final String P_BRIDGE = "sg.ipal.pawm.ubi. osgibridge . OSGiPublisher ";

157 /** VARIABLES **/

private ServiceTracker st;

private EventPublisher bridge;

private boolean bridgeReady;

162

public CortexDecision () {

/** CONSTRUCTOR **/

// initialize variables

167 bridgeReady = false;

st = new ServiceTracker(Activator.bc, P_BRIDGE , null) {

@Override

162

D.2. CORTEX

public Object addingService(ServiceReference reference) {

172 bridge = (EventPublisher) Activator.bc.getService(reference);

bridgeReady = true;

return super.addingService(reference);

}

177 @Override

public void remove(ServiceReference reference) {

bridgeReady = false;

super.remove(reference);

}

182 };

st.open();

}

187 public void decode(String [] res) {

/** DECODE COGITATION RESULT LINE BY LINE **/

// set local variables

boolean logToSend = false;

Map <String , Integer > topicMap = new HashMap <String , Integer >();

192 int nbOfTopics = 0;

ArrayList <String > topics = new ArrayList <String >();

ArrayList <String > logs = new ArrayList <String >();

ArrayList <String > clocks = new ArrayList <String >();

Activator.eventCount ++;

197

// decoding ...

for(int i=0; i<res.length; i++) {

/* logging */

202 if(res[i]. contains("lgr:") && !res[i]. contains("@prefix")) {

// get triple to log

int beginIndex = res[i]. indexOf("{");

int endIndex = res[i]. indexOf("}");

String logtriple = res[i]. substring(beginIndex +1, endIndex);

207

// get topic for this log and add to map if needed

String topic = res[i].split(":")[1]. split("\\ ")[0];

if(topicMap.get(topic) == null) {

// new topic: create log line and related topic and default system clock

212 topicMap.put(topic , nbOfTopics);

topics.add(topic);

logs.add(logtriple);

clocks.add(new SimpleDateFormat("yyyy -MM -dd_HH").format(new Date()));

nbOfTopics ++;

217 } else {

// known topic: compile triple into its log line

String newLine = logs.get(topicMap.get(topic)).concat(" . "+logtriple);

logs.set(topicMap.get(topic), newLine);

}

222

// get time of log to replace default system clock

if(logtriple.contains("hom:clock qol:hasValue")) {

ServiceReference ref = Activator.bc.getServiceReference(DateR.class.getName ()

);

DateR dater = (DateR) Activator.bc.getService(ref);

227 String clock = new SimpleDateFormat("yyyy -MM -dd_HH").format(dater.getDate(

logtriple.split("\\ ")[2]));

clocks.set(topicMap.get(topic), clock);

}

// set flag to send compiled log

232 logToSend = true;

163

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

}

/* decisions */

else if(true) {

237 // TODO

}

}

// send log if needed

242 if(logToSend && bridgeReady) {

for(int i=0; i<nbOfTopics; i++) {

Dictionary <String , Object > props = new Hashtable <String , Object >();

props.put("log", logs.get(i));

props.put("clock", clocks.get(i));

247 props.put("topic", topics.get(i));

props.put(" eventcount ", Activator.eventCount);

bridge.send(new Event("log/"+topics.get(i), props));

}

}

252 }

}

D.3 Cogitation

Source D.3: Cogitation Bundle

1 package sg.ipal.pawm.ubi.cogitation;

public interface Cogitation

{

String [] think();

6 String [] passOWL(String [] loadFiles);

}

===

package sg.ipal.pawm.ubi.cogitation.internal;

11 import java.util.Dictionary;

import java.util.Hashtable;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

16 import org.osgi.framework.ServiceReference;

import sg.ipal.pawm.ubi.cogitation.Cogitation;

import sg.ipal.pawm.tools.toolbox.ConfigR;

import sg.ipal.pawm.tools.toolbox.LogR;

21

public final class Activator implements BundleActivator {

/** PARAMETERS **/

public static String SYSTEM_LOG;

26

/** VARIABLES **/

public static BundleContext bc;

public static LogR log;

31

public void start(BundleContext context) throws Exception {

/** BUNDLE START **/

164

D.3. COGITATION

// init variables

bc = context;

36

// get ConfigR service

ServiceReference ref = Activator.bc.getServiceReference(ConfigR.class.getName ());

ConfigR conf = (ConfigR) Activator.bc.getService(ref);

SYSTEM_LOG = conf.getProperty(" system_log ");

41

// get logR service

ref = Activator.bc.getServiceReference(LogR.class.getName ());

log = (LogR) Activator.bc.getService(ref);

46 // register services

Dictionary <String , Object > props = new Hashtable <String , Object >();

bc.registerService(Cogitation.class.getName (), new CogitationImpl (), props);

}

51

public void stop(BundleContext bc) throws Exception {

/** BUNDLE STOP **/

// no need to unregister our service - the OSGi framework handles it for us

}

56

}

===

package sg.ipal.pawm.ubi.cogitation.internal;

61 import java.io.File;

import java.io.FilenameFilter;

import java.io.IOException;

import sg.ipal.pawm.ubi.eyereasoner.EyeReasoner;

66 import sg.ipal.pawm.ubi.ntriplestore.NTripleStore;

import org.osgi.framework.ServiceReference;

import sg.ipal.pawm.tools.toolbox.ConfigR;

71 import sg.ipal.pawm.ubi.cogitation.Cogitation;

public final class CogitationImpl implements Cogitation {

/** PARAMETERS **/

76 private String EULER_DIR;

private String DUMP_FILE;

private String INFER_PREFIX = "infer -";

private String QUERY_PREFIX = "query -";

81 /** VARIABLES **/

private NTripleStore n3Store;

private EyeReasoner eye;

private EyeDecoder decoder;

86

public CogitationImpl () {

/** CONSTRUCTOR **/

// get triple store service

ServiceReference ref = Activator.bc.getServiceReference(NTripleStore.class.getName

());

91 n3Store = (NTripleStore) Activator.bc.getService(ref);

// get eye reasoner service

ServiceReference ref2 = Activator.bc.getServiceReference(EyeReasoner.class.getName

());

eye = (EyeReasoner) Activator.bc.getService(ref2);

165

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

96

// get euler directory

ref = Activator.bc.getServiceReference(ConfigR.class.getName ());

ConfigR conf = (ConfigR) Activator.bc.getService(ref);

EULER_DIR = conf.getProperty(" euler_dir");

101 DUMP_FILE = EULER_DIR + conf.getProperty(" dump_file");

// create decoder

decoder = new EyeDecoder(n3Store);

}

106

public String [] think() {

/** HANDLE RULE -BASED REASONING USING EULER **/

// get number of triples for profiling

111 Activator.log.append("N3Store triple count , " + n3Store.countTriples (), Activator.

SYSTEM_LOG , false);

// dump the triplestore into the dump.n3 file

long startTime = System.nanoTime ();

try {

116 n3Store.write(DUMP_FILE);

} catch (IOException e) {

e.printStackTrace ();

}

long endTime = System.nanoTime ();

121 long duration = endTime - startTime;

Activator.log.append("N3Store dump duration , " + duration , Activator.SYSTEM_LOG ,

false);

File dir = new File(EULER_DIR);

String [] rulesFiles = dir.list();

126 String [] queryFiles = dir.list();

// filter n3 files with infer prefix

FilenameFilter fileFilter = new FilenameFilter () {

public boolean accept(File dir , String name) {

131 return name.startsWith(INFER_PREFIX) && name.endsWith(".n3") && !name.endsWith(

"~");

}

};

rulesFiles = dir.list(fileFilter);

136 // filter n3 files with query prefix

fileFilter = new FilenameFilter () {

public boolean accept(File dir , String name) {

return name.startsWith(QUERY_PREFIX) && name.endsWith(".n3") && !name.endsWith(

"~");

}

141 };

queryFiles = dir.list(fileFilter);

// create arguments to call eye

String [] eulerargs = new String[rulesFiles.length + queryFiles.length + 4];

146 eulerargs [0] = DUMP_FILE;

for(int i=0 ; i<rulesFiles.length ; i++) {

eulerargs[i+1] = EULER_DIR + rulesFiles[i];

}

eulerargs[rulesFiles.length + 1] = "--think";

151 eulerargs[rulesFiles.length + 2] = "--query";

for(int i=0 ; i<queryFiles.length ; i++) {

eulerargs[rulesFiles.length + i + 3] = EULER_DIR + queryFiles[i];

}

eulerargs[rulesFiles.length + queryFiles.length + 3] = "--nope";

166

D.3. COGITATION

156

System.out.println(" ---------- START REASONING ----------");

startTime = System.nanoTime ();

String [] res = eye.think(eulerargs);

161 endTime = System.nanoTime ();

duration = endTime - startTime;

Activator.log.append(" EyeBundle reasoning duration , " + duration , Activator.

SYSTEM_LOG , false);

System.out.println(" ---------- REASONER OUTPUT ----------");

166

// decode the reasoner output

startTime = System.nanoTime ();

decoder.decode(res);

endTime = System.nanoTime ();

171 duration = endTime - startTime;

Activator.log.append(" EyeDecoder processing time , " + duration , Activator.

SYSTEM_LOG , false);

System.out.println(" -----------------------------------");

return res;

}

176

public String [] passOWL(String [] loadFiles) {

/** INFER WITH OWL RULES AND PASS ALL DEDUCTIVE CLOSURES **/

// create arguments to call eye

181 String [] eulerargs = new String[loadFiles.length + 4];

for(int i=0 ; i<loadFiles.length ; i++) {

eulerargs[i] = EULER_DIR + loadFiles[i];

}

eulerargs[loadFiles.length] = EULER_DIR + "infer -owl.n3";

186 eulerargs[loadFiles.length + 1] = "--think";

eulerargs[loadFiles.length + 2] = "--pass";

eulerargs[loadFiles.length + 3] = "--nope";

// infer and pass all

191 System.out.println(" Generating owl deductive closure for load files ...");

return eye.think(eulerargs);

}

}

196 ===

package sg.ipal.pawm.ubi.cogitation.internal;

import java.util.Collection;

201 import sg.ipal.pawm.ubi.ntriplestore.NTriple;

import sg.ipal.pawm.ubi.ntriplestore.NTripleStore;

public class EyeDecoder {

/** PARAMETERS **/

206

/** VARIABLES **/

NTripleStore n3Store;

211 public EyeDecoder(NTripleStore n3Store) {

/** CONSTRUCTOR **/

this.n3Store = n3Store;

}

216

public void decode(String [] res) {

167

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

/** DECODE EYE OUTPUT LINE BY LINE **/

// each line of result is contained separately in res list

for(int i=0; i<res.length; i++) {

221

/* updates to triple store */

if(res[i]. contains("ts:n3store ts:")) {

//print the reasoner output

int beginIndex = res[i]. indexOf("{");

226 int endIndex = res[i]. indexOf("}");

Collection <NTriple > tripleSet = n3Store.getNTriples(res[i]. substring(beginIndex

+1, endIndex));

System.out.println("N3 STORE >>> " + res[i]. substring(beginIndex +1, endIndex));

NTriple [] triples = new NTriple[tripleSet.size()];

tripleSet.toArray(triples);

231

for(int j= 0; j<triples.length; j++)

{

if(res[i]. contains("ts:update"))

{

236 n3Store.updateObject(triples[j]. getSubject (), triples[j]. getPredicate (),

triples[j]. getObject ());

}

else if(res[i]. contains("ts:add"))

{

n3Store.add(triples[j]. getSubject (), triples[j]. getPredicate (), triples[j].

getObject ());

241 }

else if(res[i]. contains("ts:remove"))

{

n3Store.remove(triples[j]. getSubject (), triples[j]. getPredicate (), triples[

j]. getObject ());

}

246 }

}

/* decisions */

else if(true) {

251 // TODO

}

}

}

256 }

D.4 EyeReasoner

Source D.4: EyeReasoner Bundle

package sg.ipal.pawm.ubi.eyereasoner;

public interface EyeReasoner

4 {

String [] think(String [] eulerArgs);

}

===

package sg.ipal.pawm.ubi.eyereasoner.internal;

9

import java.util.Dictionary;

import java.util.Properties;

168

D.4. EYEREASONER

import org.osgi.framework.BundleActivator;

14 import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceReference;

import sg.ipal.euler.ProofEngineService;

import sg.ipal.pawm.ubi.eyereasoner.EyeReasoner;

19

public final class Activator implements BundleActivator {

/** PARAMETERS **/

/** VARIABLES **/

24 public static BundleContext bc;

public static ProofEngineService proofEngine;

public void start(BundleContext context) throws Exception {

29 /** BUNDLE START **/

bc = context;

// install euler bin from a specific directory

new Euler().installEuler ();

34

// Register our services implementation in the OSGi service registry

Dictionary <?, ?> props = new Properties ();

bc.registerService(EyeReasoner.class.getName (), new EyeReasonerImpl (), props)

;

39 ServiceReference ref = bc.getServiceReference(ProofEngineService.class.getName

());

proofEngine = (ProofEngineService) bc.getService(ref);

}

44

public void stop(BundleContext bc) throws Exception {

/** BUNDLE STOP **/

}

49 }

===

package sg.ipal.pawm.ubi.eyereasoner.internal;

import sg.ipal.pawm.ubi.eyereasoner.EyeReasoner;

54

public final class EyeReasonerImpl implements EyeReasoner

{

59 public String [] think(String [] eulerArgs) {

/** LAUNCH EYE INFERENCE ONE TIME **/

return Activator.proofEngine.runProofEngine(eulerArgs).split("\n");

}

}

64 ===

package sg.ipal.pawm.ubi.eyereasoner.internal;

import java.io.File;

import java.io.FileInputStream;

69 import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

74 import org.osgi.framework.ServiceReference;

169

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

import sg.ipal.pawm.tools.toolbox.ConfigR;

public class Euler {

79 /** PARAMETERS **/

public static String EYE_BIN; // euler bin folder for installation

/** VARIABLES **/

84

public void config () {

ServiceReference ref = Activator.bc.getServiceReference(ConfigR.class.getName ());

ConfigR conf = (ConfigR) Activator.bc.getService(ref);

EYE_BIN = conf.getProperty(" euler_bin");

89 }

public void installEuler () {

/** INSTALLS EYE ON MACHINE **/

94

// get parameters from config file

config ();

// install depending on machine OS

99 boolean windows = System.getProperty("os.name").startsWith("Windows");

if(windows) {

String tmpdir = System.getProperty("java.io.tmpdir");

String sep = System.getProperty("file.separator ");

if (! tmpdir.endsWith(sep)) {

104 tmpdir += sep;

}

File tmpFolder = new File(tmpdir+"eye");

if(! tmpFolder.exists ()) {

System.out.println(" Installing eye in "+tmpdir+"eye");

109 File srcFolder = new File(EYE_BIN);

try {

copyDirectory(srcFolder , tmpFolder);

} catch (IOException e) {

e.printStackTrace ();

114 }

}

} else /* UNIX */ {

File tmpFolder = new File("/tmp/eye/");

if(! tmpFolder.exists ()) {

119 System.out.println(" Installing eye in /tmp/eye/");

File srcFolder = new File(EYE_BIN);

try {

copyDirectory(srcFolder , tmpFolder);

} catch (IOException e) {

124 e.printStackTrace ();

}

}

}

}

129

private void copyDirectory(File srcPath , File dstPath) throws IOException {

/** COPY GIVEN DIRECTORY TO GIVEN LOCATION **/

if (srcPath.isDirectory ()) {

134 if (! dstPath.exists ()) {

dstPath.mkdir ();

}

String files [] = srcPath.list();

for(int i = 0; i < files.length; i++) {

170

D.5. CEREBRATION

139 copyDirectory(new File(srcPath , files[i]), new File(dstPath , files[i]));

}

} else {

if(! srcPath.exists ()) {

System.out.println("File or directory does not exist.");

144 System.exit (0);

} else {

InputStream in = new FileInputStream(srcPath);

OutputStream out = new FileOutputStream(dstPath);

// Transfer bytes from in to out

149 byte[] buf = new byte [1024];

int len;

while ((len = in.read(buf)) > 0) {

out.write(buf , 0, len);

}

154 in.close ();

out.close();

// keep files executable

if(srcPath.canExecute ()) {

dstPath.setExecutable(true);

159 }

}

}

}

164 }

D.5 Cerebration

Source D.5: Cerebration Bundle (abstract class)

1 package sg.ipal.pawm.ubi.cerebration;

public interface Cerebration

{

void think();

6 String getName ();

}

===

package sg.ipal.pawm.ubi.cerebration.internal;

11 import java.util.Dictionary;

import java.util.Hashtable;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

16

import sg.ipal.pawm.ubi.cerebration.Cerebration;

public final class Activator implements BundleActivator {

21 /** PARAMETERS **/

/** VARIABLES **/

public static BundleContext bc;

26

public void start(BundleContext context) throws Exception {

/** BUNDLE START **/

bc = context;

171

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

31 // register services

Dictionary <String , Object > props = new Hashtable <String , Object >();

bc.registerService(Cerebration.class.getName (), new CerebrationImpl (), props);

}

36

public void stop(BundleContext bc) throws Exception {

/** BUNDLE STOP **/

// no need to unregister our service - the OSGi framework handles it for us

}

41 }

===

package sg.ipal.pawm.ubi.cerebration.internal;

import sg.ipal.pawm.ubi.cerebration.Cerebration;

46

public final class CerebrationImpl implements Cerebration {

/** ABSTRACT CLASS **/

public CerebrationImpl () {}

51

public void think() {

/** ABSTRACT METHOD **/

System.out.println("This is a test of Cerebration .think ()");

}

56

public String getName () {

/** ABSTRACT METHOD **/

return " AbstractCerebration ";

61 }

}

D.6 MotionEstimator

Source D.6: MotionEstimator Bundle (Cerebration example)

package sg.ipal.pawm.ubi.cerebration.motionestimator;

2

import sg.ipal.pawm.ubi.cerebration.Cerebration;

/**

* Public API representing an example OSGi service

7 */

public interface MotionEstimator extends Cerebration

{

void think();

}

12 ===

package sg.ipal.pawm.ubi.cerebration.motionestimator.internal;

import java.util.Dictionary;

import java.util.Hashtable;

17

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceReference;

172

D.6. MOTIONESTIMATOR

22 import sg.ipal.pawm.ubi.cortex.Cortex;

import sg.ipal.pawm.ubi.cerebration.motionestimator.MotionEstimator;

public final class Activator implements BundleActivator {

27 /** PARAMETERS **/

/** VARIABLES **/

public static BundleContext bc;

private Cortex cortex;

32

public void start(BundleContext context) throws Exception {

/** BUNDLE START **/

bc = context;

37

// register services

Dictionary <String , Object > props = new Hashtable <String , Object >();

bc.registerService(MotionEstimator.class.getName (), new MotionEstimatorImpl (),

props);

42 // register to cortex

ServiceReference ref = Activator.bc.getServiceReference(Cortex.class.getName ());

cortex = (Cortex) Activator.bc.getService(ref);

cortex.registerCerebration(MotionEstimator.class.getName ());

}

47

public void stop(BundleContext bc) throws Exception {

/** BUNDLE START **/

// no need to unregister our service - the OSGi framework handles it for us

52

// unregister from cortex

cortex.unregisterCerebration(MotionEstimator.class.getName ());

}

57 }

===

package sg.ipal.pawm.ubi.cerebration.motionestimator.internal;

import java.util.ArrayList;

62 import java.util.Date;

import java.util.Iterator;

import sg.ipal.pawm.ubi.ntriplestore.NTriple;

import sg.ipal.pawm.ubi.ntriplestore.NTripleStore;

67 import org.osgi.framework.ServiceReference;

import sg.ipal.pawm.tools.toolbox.ConfigR;

import sg.ipal.pawm.tools.toolbox.DateR;

import sg.ipal.pawm.ubi.cerebration.motionestimator.MotionEstimator;

72

public final class MotionEstimatorImpl implements MotionEstimator {

/** PARAMETERS **/

private int TIME_WINDOW;

private String NAME = " MotionEstimator ";

77

/** VARIABLES **/

private NTripleStore n3Store;

private String house;

private ArrayList <Room > rooms;

82 private ArrayList <Sensor > sensors;

173

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

public MotionEstimatorImpl () {

/** CONSTRUCTOR **/

87 // read time window in config file

ServiceReference ref = Activator.bc.getServiceReference(ConfigR.class.getName ());

ConfigR conf = (ConfigR) Activator.bc.getService(ref);

TIME_WINDOW = conf.getIntProperty(" motion_window_min ") * 60 * 1000; // in

milliseconds

92 // get triple store service

ref = Activator.bc.getServiceReference(NTripleStore.class.getName ());

n3Store = (NTripleStore) Activator.bc.getService(ref);

// get house URI

97 house = (String) n3Store.searchURIs("?", "a", "qol:House").toArray ()[0];

// get rooms URIs and fill room list

rooms = new ArrayList <Room >();

Iterator <String > roomURIs = n3Store.searchURIs("?", "a", "qol:Room").iterator ();

102 while(roomURIs.hasNext ()) {

rooms.add(new Room(roomURIs.next()));

}

// get sensors URIs and fill sensor list (room by room)

107 sensors = new ArrayList <Sensor >();

for (int i=0; i<rooms.size(); i++) {

Iterator <NTriple > sensorTriples = n3Store.searchNTriples("*", "qol: deployedIn ",

rooms.get(i).getURI ()).iterator ();

while(sensorTriples.hasNext ()) {

Sensor s = new Sensor(sensorTriples.next().getSubject ());

112 s.setRoom(i);

sensors.add(s);

}

}

}

117

public void think() {

/** ESTIMATE THE MOTION DETECTED IN EACH ROOM AND IN THE HOUSE **/

// reset motion of each room

122 for (int i=0; i<rooms.size(); i++) {

rooms.get(i).setMotion (0);

}

// get dater service

127 ServiceReference ref = Activator.bc.getServiceReference(DateR.class.getName ());

DateR dater = (DateR) Activator.bc.getService(ref);

// get clock time

String sClock = (String) n3Store.searchURIs("hom:clock", "qol:hasValue", "?").

toArray ()[0];

132 Date clock = dater.getDate(sClock);

// remove on states out of time window and compute motion in each room (sensor by

sensor)

for (int i=0; i<sensors.size(); i++) {

ArrayList <Date > on = sensors.get(i).getOnStates ();

137 for (int j=0; j<on.size(); j++) {

// remove if too old

if(clock.getTime () - on.get(j).getTime () > TIME_WINDOW) {

on.remove(j);

}

142 }

sensors.get(i).setOnStates(on);

int roomID = sensors.get(i).getRoom ();

174

D.6. MOTIONESTIMATOR

rooms.get(roomID).incrementMotion(sensors.get(i).getOnStates ().size());

}

147

// check latest sensor update and update motion estimation (sensor by sensor)

for (int i=0; i<sensors.size(); i++) {

// get last update from triple store

String slU = (String) n3Store.searchURIs(sensors.get(i).getURI (), "qol: lastUpdate

", "?").toArray ()[0];

152 Date lU = dater.getDate(slU);

// get arraylist of previous on states

ArrayList <Date > pon = sensors.get(i).getOnStates ();

// check if last update different from the one in arraylist

if(pon.size() != 0) {

157 if(lU.getTime () - pon.get(pon.size() -1).getTime () != 0) {

String state = (String) n3Store.searchURIs(sensors.get(i).getURI (), "qol:

hasCurrentState ", "?").toArray ()[0];

// check if state is on

if(state.endsWith("on")) {

// add to arraylist

162 pon.add(lU);

sensors.get(i).setOnStates(pon);

rooms.get(sensors.get(i).getRoom ()).incrementMotion (1);

}

}

167 } else {

String state = (String) n3Store.searchURIs(sensors.get(i).getURI (), "qol:

hasCurrentState ", "?").toArray ()[0];

// check if state is on

if(state.endsWith("on")) {

// add to arraylist

172 pon.add(lU);

sensors.get(i).setOnStates(pon);

rooms.get(sensors.get(i).getRoom ()).incrementMotion (1);

}

}

177 }

// sum motion of whole house and update triple store

int homeMotion = 0;

for (int i=0; i<rooms.size(); i++) {

182 int roomMotion = rooms.get(i).getMotion ();

n3Store.updateObject(rooms.get(i).getURI (), "qol: motionMeasured ", Integer.

toString(roomMotion));

homeMotion = homeMotion + roomMotion;

}

n3Store.updateObject(house , "qol: motionMeasured ", Integer.toString(homeMotion));

187 }

public String getName () {

return NAME;

192 }

}

===

package sg.ipal.pawm.ubi.cerebration.motionestimator.internal;

197

public class Room {

/** VARIABLES **/

private String uri;

private int motion;

202

public Room(String uri) {

175

APPENDIX D. UBISMART V2 SOURCE CODE EXTRACTS

/** CONSTRUCTOR **/

this.uri = uri;

207 }

public void incrementMotion(int i) {

motion = motion + i;

212 }

/** GETTERS & SETTERS **/

public void setMotion(int motion) {

217 this.motion = motion;

}

public int getMotion () {

return motion;

222 }

public String getURI () {

return uri;

}

227

}

===

package sg.ipal.pawm.ubi.cerebration.motionestimator.internal;

232 import java.util.ArrayList;

import java.util.Date;

public class Sensor {

/** VARIABLES **/

237 private String uri;

private int roomID;

private ArrayList <Date > onStates;

242 public Sensor(String uri) {

/** CONSTRUCTOR **/

this.uri = uri;

onStates = new ArrayList <Date >();

}

247

/** GETTERS & SETTERS **/

public void setRoom(int room) {

this.roomID = room;

252 }

public int getRoom () {

return roomID;

}

257

public String getURI () {

return uri;

}

262 public ArrayList <Date > getOnStates () {

return onStates;

}

public void setOnStates(ArrayList <Date > onStates) {

267 this.onStates = onStates;

}

176

D.6. MOTIONESTIMATOR

}

177

178

Always code as if the guy who ends
up maintaining your code will be
a violent psychopath who knows
where you live.

— John F. Woods E
Ontological Models and Rules

E.1 Ontology for the Service Delivery Aspect

Source E.1: Model (TBox) for the service delivery, in Notation3

@prefix log: <http :// www.w3.org /2000/10/ swap/log#>.

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

@prefix owl: <http ://www.w3.org /2002/07/ owl#>.

5 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#>.

@prefix ske: <skeleton#>.

CLASSES

10 ske:Person a rdfs: Class.

ske:Resident a rdfs: Class;

rdfs: subClassOf ske.People.

ske:Caregiver a rdfs: Class;

rdfs: subClassOf ske.People.

15 ske:Environment a rdfs: Class.

ske:Context a rdfs: Class.

ske:Service a rdfs: Class.

ske:Reminder a rdfs: Class;

rdfs: subClassOf ske:Service.

20 ske:Notification a rdfs: Class;

rdfs: subClassOf ske:Service.

ske:Activity a rdfs: Class;

rdfs: subClassOf ske:Context.

ske:Location a rdfs: Class;

25 rdfs: subClassOf ske:Context.

ske:Deviance a rdfs: Class;

rdfs: subClassOf ske:Context.

ske:EnvironmentState a rdfs: Class;

rdfs: subClassOf ske:Context.

30 ske:Device a rdfs: Class;

OBJECT PROPERTIES

ske:hasContext a owl: ObjectProperty;

35 rdfs: domain ske:Resident;

rdfs: range ske:Context.

ske:hasState a owl: ObjectProperty;

rdfs: domain ske:Environment;

rdfs: range ske:EnvironmentState.

40 ske:helpsWith a owl: ObjectProperty;

rdfs: domain ske:Service;

rdfs: range ske:Context.

179

APPENDIX E. ONTOLOGICAL MODELS AND RULES

ske:startFor a owl: ObjectProperty;

rdfs: domain ske:Service;

45 rdfs: range ske:Resident.

ske:stopFor a owl: ObjectProperty;

rdfs: domain ske:Service;

rdfs: range ske:Resident.

ske:runningFor a owl: ObjectProperty;

50 rdfs: domain ske:Service;

rdfs: range ske:Resident.

ske:solvedBy a owl: ObjectProperty;

rdfs: domain ske:Deviance;

rdfs: range ske:Context.

55 ske:mutuallyExclusiveWith a owl: ObjectProperty;

rdfs: domain ske:Context;

rdfs: range ske:Context.

ske:watchesAfter a owl: ObjectProperty;

rdfs: domain ske:Caregiver;

60 rdfs: range ske:Resident.

ske:usedBy a owl: ObjectProperty;

rdfs: domain ske:Device;

rdfs: range ske:Person.

ske:onDevice a owl: ObjectProperty;

65 rdfs: domain ske:Service;

rdfs: range ske:Device.

ske:deployedIn a owl: ObjectProperty;

rdfs: domain ske:Device;

rdfs: range ske:Location.

70 ske:hasAckService a owl: ObjectProperty;

rdfs: domain ske:Service;

rdfs: range ske:Service.

ske:escalateTo a owl: ObjectProperty;

rdfs: domain ske:Reminder;

75 rdfs: range ske:Notification.

DATATYPE PROPERTIES

ske:osgiClassName a owl: DatatypeProperty;

80 rdfs: domain ske:Service;

rdfs: range xsd:string.

ske:name a owl: DatatypeProperty;

rdfs: range xsd:string.

ske:snoozeTime a owl: DatatypeProperty;

85 rdfs: domain ske:Resident;

rdfs: range xsd:int.

ske:busy a owl: DatatypeProperty;

rdfs: domain ske:Caregiver;

rdfs: range xsd:boolean.

90 ske:stageForAlert a owl: DatatypeProperty;

rdfs: domain ske:Resident;

rdfs: range xsd:int.

ske:needHands a owl: DatatypeProperty;

rdfs: domain ske:Context;

95 rdfs: range xsd:boolean.

ske:solved a owl: DatatypeProperty;

rdfs: domain ske:Deviance;

rdfs: range xsd:boolean.

ske:asserted a owl: DatatypeProperty;

100 rdfs: domain log:Formula;

rdfs: range xsd:boolean.

ske:handheld a owl: DatatypeProperty;

rdfs: domain ske:Device;

rdfs: range xsd:boolean.

105 ske:repeat a owl: DatatypeProperty;

rdfs: domain ske:Service;

180

E.1. ONTOLOGY FOR THE SERVICE DELIVERY ASPECT

rdfs: range xsd:boolean.

ske:timeSent a owl: DatatypeProperty;

rdfs: domain ske:Service;

110 rdfs: range xsd:dateTime.

ske:stage a owl: DatatypeProperty;

rdfs: domain ske:Service;

rdfs: range xsd:int.

ske:acknowledgement a owl: DatatypeProperty;

115 rdfs: domain ske:Service;

rdfs: range xsd:string.

ske:ackHandled a owl: DatatypeProperty;

rdfs: domain ske:Service;

rdfs: range xsd:boolean.

Source E.2: Example ABox for the service delivery, in Notation3

1 @prefix log: <http :// www.w3.org /2000/10/ swap/log#>.

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

@prefix owl: <http ://www.w3.org /2002/07/ owl#>.

@prefix env: <environment #>.

6 @prefix ske: <skeleton#>.

INITIAL DATA

People

11 env:patient1 a ske:Resident;

ske:name """John"""@en.

env:patient2 a ske:Resident;

ske:name """Jane"""@en.

env:unknown a ske:Resident;

16 ske:name """Someone"""@en.

env:caregiver1 a ske:Caregiver;

ske:name """Tom"""@en;

ske:watchesAfter env:patient1 , env:patient2.

21 ## Location or environments

env:bathroom a ske:Environment;

a ske:Location.

env:bedroom a ske:Location.

26 ## Devices

env:speaker1 a ske:Device;

ske:deployedIn env:bathroom.

env:speaker2 a ske:Device;

ske:deployedIn env:bedroom.

31 env:iphone a ske:Device;

ske:usedBy env:caregiver1.

36 ## SCENARIOS ##

Tap left on

env:tapOff a ske:EnvironmentState.

env:leftTapOn a ske:Deviance;

ske:solvedBy env:tapOff;

41 ske:mutuallyExclusiveWith env:tapOff.

env:tapOnReminder a ske:Reminder;

ske:helpsWith env:leftTapOn;

ske:escalateTo env:tapOnNotif;

ske:osgiClassName """sg.ipal.aal.tapon. TapOnReminder """@en.

46 env:tapOnNotif a ske:Notification;

ske:helpsWith env:leftTapOn;

181

APPENDIX E. ONTOLOGICAL MODELS AND RULES

ske:osgiClassName """sg.ipal.aal.tapon. TapOnNotif """@en.

Shower too long

51 env:showerEmpty a ske:EnvironmentState.

env:showerTooLong a ske:Deviance;

ske:solvedBy env:showerEmpty;

ske:mutuallyExclusiveWith env:showerEmpty.

env:showerTooLongReminder a ske:Reminder;

56 ske:helpsWith env:showerTooLong;

ske:escalateTo env:showerTooLongNotif;

ske:osgiClassName """sg.ipal.aal. showertoolong . ShowerTooLongReminder """@en.

env:showerTooLongNotif a ske:Notification;

ske:helpsWith env:showerTooLong;

61 ske:osgiClassName """sg.ipal.aal. showertoolong . ShowerTooLongNotif """@en.

Wandering at night

env:sleeping a ske:Activity;

ske:mutuallyExclusiveWith env:showerTooLong.

66 env:wanderingTooLong a ske:Deviance;

ske:solvedBy env:sleeping;

ske:mutuallyExclusiveWith (env:showerTooLong env:sleeping).

env:wanderingTooLongNotif a ske:Notification;

ske:helpsWith env:wanderingTooLong;

71 ske:osgiClassName """sg.ipal.aal. wandering. WanderingNotif """@en.

Unknown

env:unknownContext a ske:Context;

ske:mutuallyExclusiveWith (env:sleeping env:wanderingTooLong env:showerTooLong).

Source E.3: Rules for the service delivery, in Notation3

@prefix log: <http :// www.w3.org /2000/10/ swap/log#>.

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

@prefix owl: <http ://www.w3.org /2002/07/ owl#>.

5 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#>.

@prefix rul: <rules#>.

@prefix ske: <skeleton#>.

10 ## RULES ##

@forAll :u, :c, :s, :sc, :es.

Infer services to start

{:u ske:hasContext :c. :c ske:hasService :s. </home/eye/nh-jan12/input.n3 >!log:

semantics log:notIncludes {:s ske:runingForUser :u}} => {:s ske:startForUser :u}.

15

Infer services to stop by environmental context

{:s ske:runingForUser :u. :c ske:hasService :s. :c ske:solvedBy :es. ?environment ske:

hasState :es} => {:s ske:stopForUser :u. {:u ske:hasContext :c} ske:asserted "false

"^^xsd:boolean }.

Infer services to stop by personal context

20 {:s ske:runingForUser :u. :c ske:hasService :s. :c ske:solvedBy :sc. :u ske:hasContext

:sc} => {:s ske:stopForUser :u. {:u ske:hasContext :c} ske:asserted "false"^^xsd:

boolean }.

CONVENIENCE RULES

Mutual exclusivity is symetric (could use existing owl properties and rules for

symmetry)

25 {?x ske:mutuallyExclusiveWith ?y} => {?y ske:mutuallyExclusiveWith ?x}.

182

E.2. ONTOLOGY FOR THE ACTIVITY RECOGNITION ASPECT

Source E.4: Queries for the service delivery, in Notation3

@prefix log: <http :// www.w3.org /2000/10/ swap/log#>.

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

@prefix owl: <http ://www.w3.org /2002/07/ owl#>.

5 @prefix string: <http ://www.w3.org /2000/10/ swap/string#>.

@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#>.

@prefix ske: <skeleton#>.

10 ## QUERIES ##

@forAll :u, :s, :scn , :f, :name.

Any service to be started?

{:s ske:startForUser :u. :u ske:name :name. :s ske:osgiClassName :scn. ("Start service

" :s " for " :u " - service class = " :scn " - user name = " :name) string:

concatenation ?print} => {:s log:outputString ?print }.

15

Any service to be stoped?

{:s ske:stopForUser :u. :u ske:name :name. :s ske:osgiClassName :scn. ("Stop service "

:s " for " :u " - service class = " :scn " - user name = " :name) string:

concatenation ?print} => {:s log:outputString ?print }.

Asserted formula to be added to input file

20 {:f ske:asserted "true"^^xsd:boolean} => {:f ske:asserted "true"^^xsd:boolean }.

{:f ske:asserted "false"^^xsd:boolean} => {:f ske:asserted "false"^^xsd:boolean }.

E.2 Ontology for the Activity Recognition Aspect

Source E.5: Model (TBox) for the activity recognition, in Notation3

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

@prefix owl: <http ://www.w3.org /2002/07/ owl#>.

4 @prefix xsd: <http ://www.w3.org /2001/ XMLSchema #>.

@prefix qol: <load -model#>.

9

CLASSES

qol:Person a rdfs: Class.

qol:Resident a rdfs: Class;

14 rdfs: subClassOf qol:Person.

qol:Environment a rdfs: Class.

qol:House a rdfs: Class;

rdfs: subClassOf qol:Environment.

qol:Outside a rdfs: Class;

19 rdfs: subClassOf qol:Environment.

qol:Room a rdfs: Class;

rdfs: subClassOf qol:Environment.

qol:Bedroom a rdfs: Class;

rdfs: subClassOf qol:Room.

24 qol:Livingroom a rdfs: Class;

rdfs: subClassOf qol:Room.

qol:Kitchen a rdfs: Class;

rdfs: subClassOf qol:Room.

qol:Bathroom a rdfs: Class;

183

APPENDIX E. ONTOLOGICAL MODELS AND RULES

29 rdfs: subClassOf qol:Room.

qol:Toilet a rdfs: Class;

rdfs: subClassOf qol:Room.

qol:Object a rdfs: Class.

qol:Furniture a rdfs: Class;

34 rdfs: subClassOf qol:Object.

qol:Door a rdfs: Class;

rdfs: subClassOf qol:Furniture.

qol:Sensor a rdfs: Class.

qol:SensorState a rdfs: Class.

39 qol:SensorType a rdfs: Class.

qol:Activity a rdfs: Class.

qol:Deviance a rdfs: Class;

rdfs: subClassOf qol:Activity;

rdfs: comment " Problematic activity"@en.

44 qol:DayOfWeek a rdfs: Class;

rdfs: comment "we did not find any equivalent "@en;

rdfs: comment "values: Monday , Tuesday , Wednesday , Thursday , Friday , Saturday , Sunday"

@en.

49

OBJECT PROPERTIES

qol:liveIn a owl: ObjectProperty;

rdfs: comment "House where the resident live."@en;

54 rdfs: domain qol:Resident;

rdfs: range qol:Environment.

qol:detectedIn a owl: ObjectProperty;

rdfs: comment "Room where the resident is detected."@en;

59 rdfs: domain qol:Resident;

rdfs: range qol:Environment.

qol:useNow a owl: ObjectProperty;

rdfs: comment "Object a person is currently using."@en;

64 rdfs: domain qol:Resident;

rdfs: range qol:Object.

qol:believedToDo a owl: ObjectProperty;

rdfs: comment "Activity a resident is believed to be doing."@en;

69 rdfs: domain qol:Resident;

rdfs: range qol:Activity.

qol:cameFrom a owl: ObjectProperty;

rdfs: comment "Room the resident was in before the current one."@en;

74 rdfs: domain qol:Resident;

rdfs: range qol:Environment.

qol:partOf a owl: ObjectProperty;

a owl: TransitiveProperty;

79 rdfs: comment "Describe inclusion of environments ."@en;

rdfs: domain qol:Environment;

rdfs: range qol:Environment.

qol:locatedIn a owl: ObjectProperty;

84 rdfs: comment "Location of a door in the environment ."@en;

rdfs: domain qol:Object;

rdfs: range qol:Environment.

qol:deployedIn a owl: ObjectProperty;

89 rdfs: comment " Deployment location of a sensor."@en;

rdfs: domain qol:Sensor;

rdfs: range qol:Environment.

184

E.2. ONTOLOGY FOR THE ACTIVITY RECOGNITION ASPECT

qol:attachedTo a owl: ObjectProperty;

94 rdfs: comment "Describe the binding of sensor to a furniture ."@en;

rdfs: domain qol:Sensor;

rdfs: range qol:Object.

qol:hasPossibleState a owl: ObjectProperty;

99 rdfs: comment "Possible state of a sensor."@en;

rdfs: domain qol:Sensor;

rdfs: range qol:SensorState.

qol:type a owl: ObjectProperty;

104 rdfs: comment "Type of a sensor."@en;

rdfs: domain qol:Sensor;

rdfs: range qol:SensorType.

qol:hasCurrentState a owl: ObjectProperty;

109 rdfs: comment "Current state of a sensor."@en;

rdfs: domain qol:Sensor;

rdfs: range qol:SensorState.

qol:hasDurationEquivalent a owl: ObjectProperty;

114 rdfs: comment "Links a date predicate with its equivalent duration predicate ."@en;

rdfs: domain owl: DatatypeProperty;

rdfs: range owl: DatatypeProperty.

119 ## DATATYPE PROPERTIES ##

qol:isAlone a owl: DatatypeProperty;

rdfs: comment "Is the resident alone in the environment ?"@en;

rdfs: domain qol:Resident;

124 rdfs: range xsd:boolean.

qol:inRoomSince a owl: DatatypeProperty;

rdfs: comment "The time when the resident entered his current location"@en;

rdfs: domain qol:Resident;

129 rdfs: range xsd:dateTime;

qol:hasDurationEquivalent qol:inRoomFor.

qol:inRoomFor a owl: DatatypeProperty;

rdfs: comment "The duration since the resident entered his current location , in

seconds"@en;

134 rdfs: domain qol:Resident;

rdfs: range xsd:duration.

qol:doesActivitySince a owl: DatatypeProperty;

rdfs: comment "The time when the resident supposedly started an activity"@en;

139 rdfs: domain qol:Resident;

rdfs: range xsd:dateTime;

qol:hasDurationEquivalent qol:doesActivityFor.

qol:doesActivityFor a owl: DatatypeProperty;

144 rdfs: comment "The duration since the resident supposedly started an activity , in

seconds"@en;

rdfs: domain qol:Resident;

rdfs: range xsd:duration.

qol:motionMeasured a owl: DatatypeProperty;

149 rdfs: comment " Measurement of the number of sensor activations in a given space during

a given time window."@en;

rdfs: domain qol:Environment;

rdfs: range xsd:int.

185

APPENDIX E. ONTOLOGICAL MODELS AND RULES

qol:hasValue a owl: DatatypeProperty;

154 rdfs: comment "value provided by the sensors which dont have fixed state."@en;

rdfs: domain qol:Sensor.

qol:lastUpdate a owl: DatatypeProperty;

rdfs: comment "Date and time of the last update of a sensor state."@en;

159 rdfs: domain qol:Sensor;

rdfs: range xsd:dateTime.

qol:lastUsed a owl: DatatypeProperty;

rdfs: comment "Date and time of the last time an object was used."@en;

164 rdfs: domain qol:Object;

rdfs: range xsd:dateTime;

qol:hasDurationEquivalent qol:doesActivityFor.

qol:notUsedFor a owl: DatatypeProperty;

169 rdfs: comment "Duration since an object was last used."@en;

rdfs: domain qol:Object;

rdfs: range xsd:duration.

qol:hasLastUpdate a owl: DatatypeProperty;

174 rdfs: comment "Indicate whether the sensor is the last one updated."@en;

rdfs: domain qol:Sensor;

rdfs: range xsd:boolean.

qol:indicateLocation a owl: DatatypeProperty;

179 rdfs: comment "Whether SensorState indicate the resident location."@en;

rdfs: domain qol:SensorState;

rdfs: range xsd:boolean.

qol:indicateUse a owl: DatatypeProperty;

184 rdfs: comment "Whether SensorState indicate the use of an object."@en;

rdfs: domain qol:SensorState;

rdfs: range xsd:boolean.

qol:getRBConfidenceScore a owl: DatatypeProperty;

189 rdfs: comment "Rule -Based confidence score obtained by an activity , given between 0

and 100."@en;

rdfs: domain qol:Activity;

rdfs: range xsd:decimal.

Source E.6: Example ABox for the activity recognition, in Notation3

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

@prefix owl: <http ://www.w3.org /2002/07/ owl#>.

4 @prefix xsd: <http ://www.w3.org /2001/ XMLSchema #>.

@prefix qol: <load -model#>.

@prefix hom: <load -home#>.

9

GENERATED DATA

14 ## House ##

hom:johndoe a qol:Resident;

qol:liveIn hom:house1203001.

hom:france a qol:Environment.

19 hom:notAtHome a qol:Outside;

qol:partOf hom:france.

186

E.2. ONTOLOGY FOR THE ACTIVITY RECOGNITION ASPECT

hom:house1203001 a qol:House;

qol:partOf hom:france.

24 hom:salon a qol:Livingroom;

qol:partOf hom:house1203001.

hom:chambre a qol:Bedroom;

qol:partOf hom:house1203001.

hom:chambre2 a qol:Bedroom;

29 qol:partOf hom:house1203001.

hom:chambre3 a qol:Bedroom;

qol:partOf hom:house1203001.

hom:toilettes a qol:Toilet;

qol:partOf hom:house1203001.

34 hom:cuisine a qol:Kitchen;

qol:partOf hom:house1203001.

hom:portedentree a qol:Door;

qol:locatedIn hom:house1203001.

39 ## Sensors ##

hom:pir a qol:SensorType.

hom:a2_on a qol:SensorState;

qol:indicateLocation true.

44 hom:a2_off a qol:SensorState.

hom:a2 a qol:Sensor;

qol:type hom:pir;

qol:deployedIn hom:cuisine;

qol:hasPossibleState hom:a2_on;

49 qol:hasPossibleState hom:a2_off.

hom:a3_on a qol:SensorState;

qol:indicateLocation true.

hom:a3_off a qol:SensorState.

54 hom:a3 a qol:Sensor;

qol:type hom:pir;

qol:deployedIn hom:chambre;

qol:hasPossibleState hom:a3_on;

qol:hasPossibleState hom:a3_off.

59

hom:a4_on a qol:SensorState;

qol:indicateLocation true.

hom:a4_off a qol:SensorState.

hom:a4 a qol:Sensor;

64 qol:type hom:pir;

qol:deployedIn hom:chambre2;

qol:hasPossibleState hom:a4_on;

qol:hasPossibleState hom:a4_off.

69 hom:a5_on a qol:SensorState;

qol:indicateLocation true.

hom:a5_off a qol:SensorState.

hom:a5 a qol:Sensor;

qol:type hom:pir;

74 qol:deployedIn hom:chambre3;

qol:hasPossibleState hom:a5_on;

qol:hasPossibleState hom:a5_off.

hom:a6_on a qol:SensorState;

79 qol:indicateLocation true.

hom:a6_off a qol:SensorState.

hom:a6 a qol:Sensor;

qol:type hom:pir;

qol:deployedIn hom:toilettes;

84 qol:hasPossibleState hom:a6_on;

187

APPENDIX E. ONTOLOGICAL MODELS AND RULES

qol:hasPossibleState hom:a6_off.

hom:a7_on a qol:SensorState;

qol:indicateLocation true.

89 hom:a7_off a qol:SensorState.

hom:a7 a qol:Sensor;

qol:type hom:pir;

qol:deployedIn hom:salon;

qol:hasPossibleState hom:a7_on;

94 qol:hasPossibleState hom:a7_off.

hom:reed a qol:SensorType.

hom:b4_on a qol:SensorState.

99 hom:b4_off a qol:SensorState;

qol:indicateUse true.

hom:b4 a qol:Sensor;

qol:type hom:reed;

qol:attachedTo hom:portedentree;

104 qol:hasPossibleState hom:b4_on;

qol:hasPossibleState hom:b4_off.

hom:time a qol:SensorType.

109 hom:clock a qol:Sensor;

qol:type hom:time.

Activities

114 hom:getUp a qol:Activity.

hom:goToilet a qol:Activity.

hom:hygiene a qol:Activity.

hom:cookMeal a qol:Activity.

hom:eatMeal a qol:Activity.

119 hom:clearMeal a qol:Activity.

hom:occupied a qol:Activity.

hom:sleep a qol:Activity.

hom:nap a qol:Activity.

hom:goOut a qol:Activity.

124 hom:runAway a qol:Deviance.

hom:comeHome a qol:Activity.

hom:fall a qol:Deviance.

hom:socialize a qol:Activity.

Source E.7: Rules for the activity recognition, in Notation3

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>.

@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>.

3 @prefix owl: <http ://www.w3.org /2002/07/ owl#>.

@prefix xsd: <http ://www.w3.org /2001/ XMLSchema #>.

@prefix log: <http ://www.w3.org /2000/10/ swap/log#>.

@prefix math: <http ://www.w3.org /2000/10/ swap/math#>.

@prefix func: <http ://www.w3.org /2007/rif -builtin -function#>.

8 @prefix e: <http :// eulersharp.sourceforge.net /2003/03 swap/log -rules#>.

@prefix qol: <load -model#>.

@prefix hom: <load -home#>.

@prefix ts: <infer -triplestore #>.

13 @prefix prof: <profile#>.

@prefix : <infer -qol#>.

188

E.2. ONTOLOGY FOR THE ACTIVITY RECOGNITION ASPECT

18 :getScore a owl: DatatypeProperty;

rdfs: comment " Indicates that a rule is in favor of recognizing an activity with a

score."@en;

rdfs: comment "the score should be from -10 to 10."@en;

rdfs: domain qol:Activity;

rdfs: range xsd:int.

23

:getFinalScore a owl: DatatypeProperty;

rdfs: comment "Computed total score over all single -rule scores."@en;

rdfs: domain qol:Activity;

rdfs: range xsd:int.

28

RULES

33

tracks resident location in house [persistent]

{?se qol:hasCurrentState ?st. ?se qol:hasLastUpdate true. ?st qol:indicateLocation true

. ?se qol:deployedIn ?r. ?r qol:partOf ?h. ?u qol:liveIn ?h. ?u qol:detectedIn ?r2.

?r log:notEqualTo ?r2. ?se qol:lastUpdate ?t} => {?u qol:detectedIn ?r. ?u qol:

cameFrom ?r2. ?u qol:inRoomSince ?t. ts:n3store ts:update {?u qol:detectedIn ?r. ?u

qol:cameFrom ?r2. ?u qol:inRoomSince ?t}}.

detects if resident goes outside [persistent]

38 {?u qol:liveIn ?h. ?h qol:motionMeasured 0. ?d a qol:Door. ?d qol:notUsedFor ?du. ?du

math:lessThan 300. ?u qol:detectedIn ?r. ?o a qol:Outside. ?d qol:lastUsed ?t} =>

{?u qol:detectedIn ?o. ?u qol:cameFrom ?r. ?u qol:inRoomSince ?t. ts:n3store ts:

update {?u qol:detectedIn ?o. ?u qol:cameFrom ?r. ?u qol:inRoomSince ?t}}.

tracks usage of objects [live + persistent]

{?se qol:hasCurrentState ?st. ?st qol:indicateUse true. ?se qol:attachedTo ?o. ?o qol:

locatedIn ?h. ?u qol:liveIn ?h. ?se qol:lastUpdate ?t} => {?u qol:useNow ?o}.

{?se qol:hasCurrentState ?st. ?se qol:hasLastUpdate true. ?se qol:attachedTo ?o. ?se

qol:lastUpdate ?t} => {?o qol:lastUsed ?t. ts:n3store ts:update {?o qol:lastUsed ?t

}}.

43

infer durations [live]

{?since qol:hasDurationEquivalent ?for. ?x ?since ?start. hom:clock qol:hasValue ?now.

(?now ?start) math:difference ?duration} => {?x ?for ?duration }.

48 ## ACTIVITY RECOGNITION (SCORE SYSTEM) ##

get up (+ max duration)

{?u qol:believedToDo hom:sleep. ?u qol:doesActivityFor ?d. ?d math:notLessThan ?u!prof:

minSleepDuration. ?u qol:detectedIn ?r. ?r qol:motionMeasured ?m. ?m math:

notLessThan ?u!prof:maxSleepMotion} => {hom:getUp :getScore 8}.

53 {?u qol:believedToDo hom:getUp. ?u qol:doesActivityFor ?d. ?d math:lessThan ?u!prof:

getupDuration} => {hom:getUp :getScore 5}.

go to the toilet (+ max duration)

{?u qol:detectedIn ?r. ?r a qol:Toilet. ?u qol:inRoomFor ?d. ?d math:lessThan ?u!prof:

maxToiletDuration} => {hom:goToilet :getScore 7}.

58 ## hygiene activities (+ max duration)

{?u qol:detectedIn ?r. ?r a qol:Bathroom. ?u qol:inRoomFor ?d. ?d math:lessThan ?u!prof

:maxHygieneDuration} => {hom:hygiene :getScore 9}.

cook

##{false} => {hom:cookMeal :getScore 0}. >> too coarse data

63

have meal

189

APPENDIX E. ONTOLOGICAL MODELS AND RULES

##{false} => {hom:eatMeal :getScore 0}. >> too coarse data

clear table and wash dishes

68 ##{false} => {hom:clearMeal :getScore 0}. >> too coarse data

occupied (+ max duration)

{?u qol:liveIn ?h. ?h qol:motionMeasured ?m. ?m math:notLessThan ?u!prof:

minOccupiedMotion} => {hom:occupied :getScore 2}.

{?u qol:believedToDo hom:occupied. ?u qol:doesActivityFor ?d. ?d math:notLessThan ?u!

prof:maxOccupiedDuration} => {hom:occupied :getScore -2}.

73

sleep (+ max duration)

{?u qol:detectedIn ?r. ?r a qol:Bedroom. ?u qol:inRoomFor ?d. ?d math:notLessThan ?u!

prof:minSleepInitiation. ?r qol:motionMeasured ?m. ?m math:lessThan ?u!prof:

maxSleepMotion} => {hom:sleep :getScore 6}.

{?u qol:believedToDo hom:sleep. ?u qol:doesActivityFor ?d. ?d math:notLessThan ?u!prof:

maxSleepDuration} => {hom:sleep :getScore -4}.

78 ## take a nap (+ max duration)

{?u qol:detectedIn ?r. ?r a qol:Livingroom. ?u qol:inRoomFor ?d. ?d math:notLessThan

600. ?r qol:motionMeasured ?m. ?m math:lessThan ?u!prof:maxNapMotion} => {hom:nap :

getScore 6}.

{?u qol:believedToDo hom:nap. ?u qol:doesActivityFor ?d. ?d math:notLessThan ?u!prof:

maxNapDuration} => {hom:nap :getScore -4}.

go out of home (+ max duration , see run away rule)

83 {?u qol:detectedIn ?o. ?o a qol:Outside} => {hom:goOut :getScore 6}.

come home (+ max duration)

{?u qol:believedToDo hom:goOut. ?u qol:useNow ?o. ?o a qol:Door} => {hom:comeHome :

getScore 5}.

{?u qol:believedToDo hom:comeHome. ?u qol:doesActivityFor ?d. ?d math:lessThan ?u!prof:

comehomeDuration} => {hom:comeHome :getScore 5}.

88

run away

{?u qol:useNow ?d. ?d a qol:Door. hom:clock qol:hasValue ?t. ?t func:hours -from -

dateTime ?h. ?h math:notLessThan ?u!prof:outTooLate. ?h math:lessThan ?u!prof:

outTooEarly} => {hom:runAway :getScore 9}.

{?u qol:detectedIn ?o. ?o a qol:Outside. ?u qol:inRoomFor ?d. ?d math:notLessThan ?u!

prof:outTooLong} => {hom:runAway :getScore 9}.

93 ## fall

{?u qol:believedToDo hom:nothing. ?u qol:doesActivityFor ?d. ?d math:notLessThan ?u!

prof:maxInactiveDuration} => {hom:fall :getScore 8}.

meet people at home

{?u qol:isAlone false} => {hom:socialize :getScore 8}.

98

must add scores and give confidence , if nothing up a given threshold then believe in

hom:nothing!

{?a :getScore ?x. ?SCOPE e:findall (?sc {?a :getScore ?sc} ?list). ?list math:sum ?

total} => {?a :getFinalScore ?total}.

{?SCOPE e:findall (?sc {?a :getScore ?sc} ?list). ?list math:sum ?grandtotal. ?

grandtotal math:lessThan 1} => {hom:nothing :getScore 10}.

103 {?SCOPE e:findall (?sc {?a :getFinalScore ?sc} ?list). ?list math:sum ?grandtotal. ?

grandtotal math:notLessThan 0.1. ?a0 :getFinalScore ?fs. (?fs ?grandtotal) math:

quotient ?cs} => {?a0 qol:getRBConfidenceScore ?cs}.

infer most probable activity

{?SCOPE e:findall (?rbc {?a qol:getRBConfidenceScore ?rbc} ?list). ?list e:max ?maxrbc.

?a qol:getRBConfidenceScore ?maxrbc. ?u qol:liveIn ?h. hom:clock qol:hasValue ?now

} => {?u qol:believedToDo ?a. ?u qol:doesActivitySince ?now. ts:n3store ts:update

{?u qol:believedToDo ?a. ?u qol:doesActivitySince ?now}}.

190

E.2. ONTOLOGY FOR THE ACTIVITY RECOGNITION ASPECT

191

192

Emancipate yourself from mental slavery,
None but ourselves can free our minds.

— Nesta Robert Marley, 1945–1981 F
Discussion: Business Models for iAAL

“Despite the overwhelming technology advancements in the recent years, the diffusion of smart home
products and services are still far from common reality, and a large-scale commercialization cannot be
observed.” This is the conclusion reached in 2011 by Solaimani et al. after an extensive review and
qualitative meta-analysis of the smart home landscape [169]. The Service, Technology, Organisation,
Finance (STOF) model provides a “holistic” view on business models organized around four interrelated
perspectives [170]. Service concerns the value proposition and customers, Technology is related to ICT,
applications and platforms, Organization has to do with the actors, resources and value network, while
Finance involves investments, cost and revenues. One of the reasons raised by Solaimani et al. for the
status of smart home services is the disequilibrium in the number of Technology-focused publications
against publications in the other aspects of the STOF model.

In this discussion chapter, I want to think in a novel way about pushing AAL technologies to the
market in order to increase the impact on society. I wish that some of the ideas I propose below,
maybe a bit too “creative”, certainly too immature, could spark some new initiatives in the market-
place. The challenge I try to raise is to bring independent Ambient Assisted Living (iAAL) to
society, approaching it from the point of view of the possible business models to ensure profitability and
acceptance, while taking into account the peculiarities of stakeholders in different regions, e.g. Europe
and Asia. Indeed, if big institutions such as insurance companies may trigger iAAL in Europe, it would
probably be more of a family-driven evolution in Asian countries (see section 3.1.2).

F.1 Smart Home in a Box

Smart home in a box is a term that was first coined by Sumi Helal from University of Florida as part
of the ICOST conference. I find it to be an excellent tangible way to deliver smart home products if a
reduced hardware complexity can be achieved. As such, it is extremely compatible with our bottom-up
approach and stripped-down vision of AAL solutions. I see the box itself purely as a gateway to push
sensor data to a cloud-based storage where it can be processed by server-side applications. Hence
the purchasing of the box should include the necessary subscriptions and configuration tools to access
cloud services. Moreover, I believe the end-user services should be designed as web applications for
which interfaces (e.g. a dashboard) can be implemented for any internet-connected terminal. The
priority should be given to services that address health concerns in the lifestyle of elders, while raising
implication and visibility for families, and professional caregivers. Below, I try to gather some technical
requirements that emerge from my vision of a smart home in a box.

F.1.1 A Box as Gateway in Each Home

The box’s main processing element can be built around a credit-card-sized linux machine such as the
BeagleBone or the Raspberry Pi. We identify in the following the box to this linux machine. It must

193

APPENDIX F. DISCUSSION: BUSINESS MODELS FOR IAAL

integrate wireless communication modules for one or a few protocols used by sensors and activators
(e.g. ZigBee, ANT, X10). It should act as gateway for the data between the local hardware entities on
binary protocols and the cloud storage and services over a REST protocol (see section 8.1.3). Both the
binary and REST communication protocols must be enhanced along efficiency and security aspects.
On the software side, we can leverage the small processing power to perform light pre-processing of the
data locally if needed. I imagine that the box could centralize all the configuration processes needed to
setup an environment. It could hold account information and handle the various authentication layers.

F.1.2 Web Browser as the Main Interface

As we cannot imagine a user logging in to a command line interfaced linux to access the settings, I believe
a lightweight web server can be installed on the box and the management features provided on the local
network as web service. These features can then be accessed via any web browser on another machine,
or on a dedicated app on mobile platforms. Dynamic management interfaces can be implemented using
AJAX for example. With such interfaces, we can also leverage the semantic plug & play mechanism
for the dynamic configuration of sensors and actuators (see section 8.3.5). From the implementation
point of view, the idea would be something similar, although at a different configuration level, to the
kickstarter project called Twine from design firm Supermechanical, based in Cambridge, Massachusetts
(http://supermechanical.com). A current status report can also be implemented summarizing in a
graphical way the real-time status of each of the sensor/actuator configured so far.

F.1.3 Server-Side Processing and Applications

The only way to scale things up while ensuring a possible maintenance and support for numerous homes
is to centralize the data storage and processing on servers. This ensures the safety of crucial data against
hardware failure or environmental problems. It makes it easier to share data driven services with family
members. It ensures that enough processing power is available for the data analysis while keeping the
cost for individual homes low. The cost of processing is instead transferred towards the service provider
who is able to realize economies of scale. Server-side processing also reduces the time needed for upgrade
cycles on the application side as everything is centralized. Thus every user automatically uses the latest
available version, which reduces the support effort as well. We can imagine that each box’s configuration
would be saved on server as well, hence allowing for remote debugging and support services. Finally,
dedicated applications could be implemented to analyse the consistency of the data coming from each
sensor, enabling early alerts when a sensor becomes faulty.

F.1.4 Sensors and Actuators

What a smart home in a box needs is a handful of “killer sensors and actuators” to start-up with, while
making it a breeze to plug new hardware components depending on one’s needs and wishes. Here, no
trade-off can be made: no level of wiring at all is acceptable from the end-user point of view, which
means most of the components are going to be battery-powered. Software aside, adding or changing
sensors and actuators should be as simple as hanging a frame or changing a light bulb. On the sensing
side, the basic sensor needed to monitor the amount of activity of a person is the motion sensor (passive
infra-red). It should be running months on batteries and attached to the ceiling of each room following
some placement guidelines. A good complementarity to the very general motion sensor can be found in
the shake sensor (accelerometer and gyroscope), as we used in Peacehaven (see section 9.3). The shake
sensor, which can possibly be miniaturized greatly, must also run months on batteries and is meant for
integration on any object to detect particular events or activities. For instance, we have used it on soap
dispensers, pipes, water jugs, medicine boxes and it can also be attached to doors, phone handsets,
etc. This part of the system would be similar to Lively, a new service available in the United States
only (http://www.mylively.com). On the actuator side, a wide range of home control applications

194

http://supermechanical.com
http://www.mylively.com

F.2. THE SMARTSTORE PROJECT

can be achieved simply by network-controlled electricity plugs and/or light bulbs. Additionally we
have observed the value of speakers as a rich and pervasive interaction modality. Since speakers, and
similarly microphones, are interesting components requiring more power, I suggest to integrate into a
single component a microphone for ambient sound analysis (level in decibel only at first), a speaker for
pervasive interaction, and a controlled power plug which enables both the continuous power supply to
the microphone and speaker and some home control applications. A research team at I2R in Singapore
is coming up with such a device, omitting the controlled power plug part, and integrating advanced
sound event classification techniques. The device is called soundeye (http://www.sound-eye.com).

Taking into account the power consumption issue, a major challenge resides in the power man-
agement of the battery-powered components. Firstly, it is known that most of the power is usually
consumed for wireless communication. Hence, the protocol used must be adapted to transfer only useful
states and make the messages overhead minimal. A study must be planned to choose between adding
redundancy to the signal or using acknowledgement messages. We can also look into sleep control
techniques for the devices. Finally, a study could compare the different wireless network topologies
from the ease of use, efficiency and power consumption aspects.

A significant add-on to the sensors mentioned above would be to embrace the numerous vital signs
monitoring devices such as bed pressure mats, blood pressure monitors, connected weighing machines.
In this aspect, the most efficient way would be to make our box interoperable with other systems
through a shared standard. Continua Health Alliance is a pioneer in establishing industry standards
for connected health technologies such as smartphones, gateways and remote monitoring devices. I
believe that following the guidelines and standard proposed by Continua would be the simplest way to
leverage and connect to the work of thousands around the world.

F.2 The SmartStore Project

Mounir Mokhtari, my thesis supervisor, was saying back in 2001 that “technology is beneficial only
when shared by all”. Thus, let us consider that the smart home in a box idea receives a good acceptance
from the stakeholders. How do we drive its adoption among elder people? What sales channels are
most suitable? How do we build a community of users? In a nutshell, the SmartStore idea consists in
opening a store where senior citizens may buy iAAL products on a component basis, where components
can be integrated at home with little support. Components should tackle specific needs and remain
lowly featured, thus keeping the technology understandable for elders and empowering them with tools
towards their own independence. The components’ integration in a home gateway increases the value by
creating collaborative system behaviours where a software service can be added like a plugin to provide
a new specific assistance based on the available knowledge of the user’s context. The store would also
feature a workshop area where customers can discover products, get some hands-on support, share their
experience, and thus, get socially involved. The SmartStore is the result of a creativity group project
at ICOST 2011 summer school and is described in details below.

F.2.1 Motivation

Our motivation towards the creation of a SmartStore is articulated around two main axes: getting
smart home products out of research laboratories, and working on the perception of iAAL technology
as an empowering, trendy, and non-stigmatizing movement. For the first aspect, the SmartStore is a
way to accelerate the commercialization process of iAAL products by identifying projects with business
opportunities and offering them an easy access to a community of users, thus skipping the need for
investors’ research, marketing and advertising. To increase the technology acceptance, I believe in
focusing on answering specific needs to empower elders. As explained previously, products and systems
would be sold in the store on a component basis, each component being integrated through a home
gateway in a modular way, thus supporting iterative deployments natively. The integration is seen to

195

http://www.sound-eye.com

APPENDIX F. DISCUSSION: BUSINESS MODELS FOR IAAL

be as automatic as possible in order to provide optimal ease of use for the elderly. Each component
having a specific role to play, the technology does not seem too complex and the elderly should feel
able to take control of their own independent living. The idea is really to pass the choice and the
control of the system over to the end-users, which would naturally feel less invasive and more rewarding
[6]. By proposing specific components for specific needs, elderly should better foresee the impact of
the technology in their daily life and understand what they are paying for. Coupled with the relative
affordability of the technology, we target at enhancing the acceptance of iAAL. I explain in the next
section what kind of needs the components could correspond to.

F.2.2 Concept Development

The Components

I have mentioned that components should integrate in a collaborative and modular way, but what
exactly are “components”? I explain in this section what components can be, what needs they can
fulfil, at which level of intervention, etc. First of all, components can be hardware or software. A
hardware component could be a sensor attached with a microchip for embedded processing and a
wireless communication module, or perhaps a modality of ambient interaction like a small light source
changing colour depending on wireless inputs. Software components would provide back-end or front-
end services. A back-end service could for example gather knowledge about the user’s context, infer
more from it and provide a high-level representation of this knowledge to other services. One of the
other services could be a front-end service detecting dangerous situations and reacting by turning off
the gas automatically, turning that small light red and sending a reminder to the TV or a warning to
a caregiver via SMS. These components can be adapted to different level of cognitive impairment, by
sensing and recognizing more fine-grain context information, or providing a more explicit user interface
with video instead of coloured light.

We can also design components for different fields of applications: assistance with daily activities,
help to forgetful people, health assessment, social link at home, leisure, and this is not comprehensive.
Figure F.1 illustrates some example products of each of these application fields. The CookStop system
in Figure F.1(a) assures safety of living while performing daily activities [171], some simple ambient
reminder systems like in Figure F.1(b) were developed as part of this doctoral work, the RFID slippers in
Figure F.1(c) enables heath assessment [172], Mazadoo project in Figure F.1(d) brings Facebook to the
television and is designed especially for elders [173], finally testimonies about elders playing Nintendo
Wii games like in Figure F.1(e) are getting more frequent lately. We can also imagine components to
control the system, like Bell Labs’ card board from the Casensa project [174] in Figure F.2(a), or even
to personify the system with avatars, like Karrotz [175] in Figure F.2(b).

(a) CookStop (b) TV reminder (c) RFID slippers (d) Mazadoo (e) Wii games

Figure F.1: Example Products for Diverse Applications

With the system set up and the components running, we can imagine adding tiny applications
that would make use of existing hardware and information from other software components to provide
additional services of miscellaneous kinds. As we stand today in a “there is an app for that” world

196

F.2. THE SMARTSTORE PROJECT

(a) Casensa project (b) Nabaztag RFID rabbit

Figure F.2: Products to Control or Personify the System

[176], we have the vision of a sort of AppStore for iAAL environments where free or few dollars apps
would be easily accessible to add value to our solution. We try to make sense here of the fact that
people do not buy technology for the sake of technology but for the services that come along with it.
An iAAL framework offering an AppStore with apps fitted for every task, every need and every person
would definitely gather some interest.

The Store

Figure F.3: Welcome to the SmartStore

The store as we imagine it, and as we modelled it (see Figure F.3 & F.4), follows the Apple Store
model, with a bright and spacious setting. It is a place to discover the technology, get some hands-
on experience and have face-to-face exchange with knowledgeable consultants. We want people to
receive good assistance when buying their iAAL components and go home with clear ideas about their
purchase. Figure F.4(a) shows an elder in a wheelchair in a conversation with a sales consultant in the
store area of Figure F.4(b). Moreover, we wish to introduce an educational aspect in our store in order
to enhance the acceptance of components. Therefore we designed the store coupled with a workshop
area as represented in Figure F.4(c). This area aims to be a social, collaborative and educational space
where elders can use the technology together, with assistance when necessary and where free thematic
workshops are held for a few weeks to promote best practices with the technology. For example, the
Figure F.4(d) shows elders collaboratively cooking in a smart kitchen, assisted by iAAL components.
We work here on making the store a social place to meet users and receive assistance, thus increasing
the acceptance of iAAL and enhancing social link among elders.

197

APPENDIX F. DISCUSSION: BUSINESS MODELS FOR IAAL

(a) (b) (c) (d)

Figure F.4: Pictures of the Store’s Model

F.2.3 Self-Review for the Summer School

As part of the summer school, the team was supposed to propose a crazy idea like this one, as well as a
short review of its feasibility. The main idea behind this project is to provide something different from
what we have seen throughout the scientific literature and business news. It resonates with the analysis
of Solaimani et al. by proposing a tangible solution with an almost immediate impact, as opposed to
the longer-term research efforts that are more common in our field. Moreover, there is no contradiction
with long-term research and the SmartStore can even support it.

Business Factors

The SmartStore project is clearly business oriented; it is about moving from exploration to exploitation
of the technology [169]. No company has really made its name in the AAL market yet; there is an
obvious opportunity. Risks must not be overlooked but the market is available, and investors making
the first move along a good vision might become market leaders within ten years. Our team had no
background legitimating an opinion concerning the viability of the project, but we feel that it is a
motivating, eye-catching idea, which might get the attention of potential investors.

Technology Factors

Though it is energizing, our project is also limited by its ambition. Is technology ready for this? The
solution might be more complex than how we picture it, especially in term of integration. It is however
close to the focus in the current state of the art and we believe that starting on a new research phase of
two to three years with a freshly envisioned mind-set would ready the team and technology for spin-off.
One of our technological strength is the capitalization of the state of the art, coupled with an iterative
approach creating an avenue for future advancements.

Human Factors in the Ageing Process

We see our solution as potentially having a high societal impact within a reasonable time. For this, we
take care of the acceptance of iAAL technology. We strongly believe that passing the choice and the
control of the system over to the elderly by proposing understandable iAAL would be rewarding for
them and help in this matter. We also work on creating a community, and a space for this community to
meet, discover and receive advices. We have to be careful with the amount of technology available being
overwhelming even for people with engineering background, even more so for the elderly. Therefore, a
real work is needed in collaboration with designers and marketers to plan how to bring iAAL to the
market. We must provide non-technical description of products using simple language and graphics,
use appropriate accessibility information and visualization [177]; finally the design must be kept non-
stigmatizing.

198

Politeness is the poison of collabo-
ration.

— Edwin Land, 1909–1991 G
Research & Development in Singapore

G.1 Introduction

In this appendix, an overview of the research context in Singapore is presented. The content was
adapted from the report by Christelle Gervasoni and Walid Benzarti [178] for the scientific section at
the French Embassy in Singapore.

Singapore is a small country with limited natural resources and an ever-growing energy consumption
due to the rapid urban development. The country is therefore facing difficulties in its development, but
is thinking about adapting itself and improving its urban organisation for a better expansion rather
than accepting the limits of this expansion. Hence, it is crucial for Singapore to seek and adopt modern
technologies to ensure the durability of its urban development. With this vision, big investments are
made on innovation, research and education, and the reliance on foreign talents is also important.
This approach has enabled institutes of higher education and research among the world’s best, as
well as internationally renowned scientists, to settle in Singapore. The presence of these institutes and
scientists also consolidates the local research capabilities. It favors the emergence of innovating solutions
by leveraging their strong and complementary expertise, especially in the domains of transport, energy
and urban technologies.

G.2 Singapore’s Research Organisation

G.2.1 Hierarchy of Singapore’s Research Institutions

In absence of a Ministry of Research, Singapore’s research is under the administrative co-supervision
of the Ministry of Trade & Industry (MTI) and the Ministry of Education (MOE). The funding of
research is handled mainly through the National Research Foundation (NRF), the MTI and the MOE;
and sometimes through the Ministry of Health (MOH) and the Ministry of Defence (MINDEF). The
orientation of Singapore’s research is defined in the five-year “Science & Technology” plans of the
Research, Innovation and Enterprise Council (RIEC). The last plan covers the 2011–2015 time period.
The intermediary funding organs — such as the Economic Development Board (EDB), the Agency for
Science, Technology and Research (A*STAR), the National Medical Research Council (NMRC) and the
Academic Research Fund (AcRF) — are making the link with the operators of research like universities,
research institutes of A*STAR and enterprises. The NRF is placed at the same decisional level as the
MOE and the MTI. A summary is given in Figure G.1.

G.2.2 The National Research Foundation (NRF)

The NRF was created on the 1st of January 2006, as a department to the office of the Prime Minister.
A S$5bn (e 3.1bn) budget was assigned to the NRF for 5 years with two main objectives:

199

APPENDIX G. RESEARCH & DEVELOPMENT IN SINGAPORE

R&D Performers

Intermediary Funders

EnterpriseVC
StartupPre-VCDevelopment

Applied
Industrial
Research

Mission
Oriented
Research

Exploratory
Research

MOE MTI
($7.5billion)

RIEC

AcRF
($1.05billion)

A*STAR
($5.4billion)

EDB
($2.1billion)

Cabinet

Corporate Research Units

Hospitals

Polytechnics

A*STAR Research
Institutes

Private Labs

Others (e.g. Think-
Tanks, Institutes)

Universities

New initiatives
& programs

NRF
($5billion)

Figure G.1: Singapore’s Research Organisation & Budget for 2006-2010

– transform Singapore into a Research & Development (R&D) hub in order to support an economy
focused on innovation, entrepreneurship and knowledge,

– transform Singapore into a pole of attraction for scientific excellence and innovation.

The foundation sets the national R&D orientation by developing several policies, road-maps and strate-
gies for research, innovation and entrepreneurship. It builds the country’s research capabilities through
the education of local talents and the attraction of renowned foreign scientists. It funds ambitious re-
search programs found to be strategic for long-term, while defining global research axes at the national
level and coordinating the different national agencies and research operators.

G.3 Orientation of Singapore’s Research

G.3.1 A Research Strategy Defined in Five-Year Plans

Since 1991, four “Science & Technology” plans have been developed by Singapore’s government in
order to provide a common direction to all the actors of the research of the country focusing their
efforts on common objectives that have been given the highest priority at a national level. In the
early 2000s, the challenges were to provide more resources to R&D, define which domains of research
would represent major economic stakes, stimulate private R&D, find a balance between fundamental
and applied research, and strengthen the bounds between research players and enterprises.

200

G.3. ORIENTATION OF SINGAPORE’S RESEARCH

G.3.2 Research Priorities at the 2015 Horizon

The fifth “Science & Technology” plan at horizon 2015 was launched in 2011. It is designed to foster
knowledge creation, and to develop innovation and corporate spirit. Its budget is S$16.1bn (e 10bn),
which is an increase of 20% compared to the previous five-year plan and its S$13.6bn (e 8.5bn) budget.

This new plan continues to support heavily the research activity of Singapore, trying to encour-
age private investments in R&D and to position research towards new markets. The awarding of
research funds is getting more and more competitive, aiming at galvanizing innovative, collaborative
and multidisciplinary research efforts between all research players in Singapore. The development of
public-private research partnership is for example stimulated. New funding schemes are destined to
technological transfer, to incite switching from fundamental research to commercialization. In parallel,
Singapore pursues its efforts in welcoming foreign scientific talents and grants are available to facil-
itate the development of young scientific talents, locals or foreigners. The RIEC has also launched
the “National Innovation Challenge” to develop solutions to national stakes such as the improvement
of energetic management towards the island’s autonomy, a sustainable development and a controlled
urbanization.

This funding effort aims at supporting prosperity through the creation of high added value employ-
ment for Singaporeans. Innovation and entrepreneurship maintain the competitiveness of companies,
opening doors to new markets and allowing the economy to grow through its high intellectual capi-
tal. The previous five-year plan targeted a dedication of 3% of the country’s Gross Domestic Product
(GDP) to R&D by 2010. The current plan is targeting at 3.5% by 2015, backed up by the growth in
private R&D activities.

201

202

Bibliography

[1] United Nations, World Population Ageing: 1950-2050. Population Division, Department of
Economic and Social Affairs, United Nations New York, NY, USA (http://www.un.org/esa/
population/publications/worldageing19502050/), 2010.

[2] M. Prince and J. Jackson, World Alzheimer Report 2009. Alzheimer’s Disease International, 2009.

[3] United Nations, World Population Prospects: The 2010 Revision. Population Division, Department
of Economic and Social Affairs, United Nations New York, NY, USA (http://esa.un.org/unpd/
wpp/index.htm), 2010.

[4] R. Cliquet and M. Nizamuddin, Population Ageing: Challenges for Policies and Programmes in
Developed and Developing Countries. United Nations Population Fund: Population and Family
Study Centre, 1999.

[5] K. Kinsella and V. A. Velkoff, An Aging World: 2001: International Population Reports. US
Cencus Bureau, Economic and Statistics Administration, Department of Commerce, 2001.

[6] S. Routhier, “Aging health and aging needs,” in ICOST 2011 Summer School Talks, 2011.

[7] K. W. Schaie, “What can we learn from longitudinal studies of adult development?,” Research in
human development, vol. 2, no. 3, pp. 133–158, 2005.

[8] T. A. Salthouse et al., “The processing-speed theory of adult age differences in cognition,” Psy-
chological review, vol. 103, no. 3, pp. 403–427, 1996.

[9] U. Lindenberger, P. B. Baltes, et al., “Sensory functioning and intelligence in old age: A strong
connection,” Psychology and aging, vol. 9, pp. 339–339, 1994.

[10] M. L. Johnson, V. L. Bengtson, and P. G. Coleman, The Cambridge handbook of age and ageing.
Cambridge University Press, 2005.

[11] W. C. Mann, “The aging population and its needs,” Pervasive Computing, IEEE, vol. 3, no. 2,
pp. 12–14, 2004.

[12] A. Wimo and M. J. Prince, World Alzheimer Report 2010: the global economic impact of dementia.
Alzheimer’s Disease International, 2010.

[13] J. Diamond, A report on Alzheimer’s disease and current research. Alzheimer Society of Canada,
2006.

[14] B. Reisberg, S. H. Ferris, M. J. de Leon, and T. Crook, “The global deterioration scale for assess-
ment of primary degenerative dementia.,” The American journal of psychiatry, 1982.

[15] R. Brookmeyer, E. Johnson, K. Ziegler-Graham, and H. M. Arrighi, “Forecasting the global burden
of alzheimers disease,” Alzheimer’s and Dementia, vol. 3, no. 3, pp. 186–191, 2007.

[16] “Gerontechnology.” Wikipedia, the free encyclopedia (http://en.wikipedia.org/wiki/
Gerontechnology).

[17] M. Mokhtari, H. Aloulou, T. Tiberghien, J. Biswas, D. Racoceanu, and P. Yap, “New trends to
support independence in persons with mild dementia – a mini-review,” in International Journal of
Experimental, Clinical, Behavioural, Regenerative and Technological Gerontology, vol. 58, pp. 554–
563, Karger Publishers, 2012.

203

http://www.un.org/esa/population/publications/worldageing19502050/
http://www.un.org/esa/population/publications/worldageing19502050/
http://esa.un.org/unpd/wpp/index.htm
http://esa.un.org/unpd/wpp/index.htm
http://en.wikipedia.org/wiki/Gerontechnology
http://en.wikipedia.org/wiki/Gerontechnology

BIBLIOGRAPHY

[18] T. Harrington and M. Harrington, “Gerontechnology. why and how.,” tech. rep., Shaker, Maas-
tricht, 2000.

[19] C. McCreadie and A. Tinker, “The acceptability of assistive technology to older people,” Ageing
and Society, vol. 25, no. 01, pp. 91–110, 2005.

[20] “Ambient assisted living joint programme: Ict for ageing well.” http://www.aal-europe.eu.

[21] L. C. for Aging Services Technologies (CAST), “Imagine: the future of ageing (video).” http:

//www.leadingage.org/Imagine-the-Future-of-Aging.aspx, 2010.

[22] TechRepublic and ZDNet, “The executive’s guide to the internet of things.” http://www.zdnet.

com/the-executives-guide-to-the-internet-of-things-free-ebook-7000009589/.

[23] M. Weiser, “The computer for the 21st century,” Scientific american, vol. 265, no. 3, pp. 94–104,
1991.

[24] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the physical world with pervasive
networks,” Pervasive Computing, IEEE, vol. 1, no. 1, pp. 59–69, 2002.

[25] H. Ishii and B. Ullmer, “Tangible bits: towards seamless interfaces between people, bits and
atoms,” in Proceedings of the ACM SIGCHI Conference on Human factors in computing systems,
pp. 234–241, ACM, 1997.

[26] M. Satyanarayanan, “Pervasive computing: Vision and challenges,” IEEE Personal communica-
tions, vol. 8, no. 4, pp. 10–17, 2001.

[27] M. Hariz, Mechanism for handling user interface plasticity in ambient assistive living. PhD thesis,
Institut National des Télécommunications, France, 2009.

[28] D. Thevenin and J. Coutaz, “Plasticity of user interfaces: Framework and research agenda,” in
Human-computer Interaction, INTERACT’99: IFIP TC. 13 International Conference on Human-
Computer Interaction, p. 110, IOS Press, 1999.

[29] J. Viterbo, L. Mazuel, Y. Charif, M. Endler, N. Sabouret, K. Breitman, A. E. F. Seghrouchni, and
J.-P. Briot, “Managing distributed and heterogeneous context for ambient intelligence,” Context-
Aware Self Managing Systems, CRC Studies in Informatics Series, pp. 79–128, 2010.

[30] J. Lindenberg, W. Pasman, K. Kranenborg, J. Stegeman, and M. A. Neerincx, “Improving ser-
vice matching and selection in ubiquitous computing environments: a user study,” Personal and
Ubiquitous Computing, vol. 11, no. 1, pp. 59–68, 2007.

[31] A. K. Dey, “Understanding and using context,” Personal and ubiquitous computing, vol. 5, no. 1,
pp. 4–7, 2001.

[32] G. Chen, D. Kotz, et al., “A survey of context-aware mobile computing research,” tech. rep.,
Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College, 2000.

[33] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles, “Towards a better
understanding of context and context-awareness,” in Handheld and ubiquitous computing, pp. 304–
307, Springer, 1999.

[34] G. J. Jones, “Challenges and opportunities of context-aware information access,” in Ubiquitous
Data Management, 2005. UDM 2005. International Workshop on, pp. 53–60, IEEE, 2005.

[35] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in First International Workshop
on Advanced Context Modelling, Reasoning and Management, 2004.

204

http://www.aal-europe.eu
http://www.leadingage.org/Imagine-the-Future-of-Aging.aspx
http://www.leadingage.org/Imagine-the-Future-of-Aging.aspx
http://www.zdnet.com/the-executives-guide-to-the-internet-of-things-free-ebook-7000009589/
http://www.zdnet.com/the-executives-guide-to-the-internet-of-things-free-ebook-7000009589/

BIBLIOGRAPHY

[36] C. Rougier, E. Auvinet, J. Rousseau, M. Mignotte, and J. Meunier, “Fall detection from depth
map video sequences,” in Toward Useful Services for Elderly and People with Disabilities, vol. 6719
of Lecture Notes in Computer Science, pp. 121–128, Springer, 2011.

[37] A. Sixsmith and N. Johnson, “A smart sensor to detect the falls of the elderly,” Pervasive Com-
puting, IEEE, vol. 3, no. 2, pp. 42–47, 2004.

[38] M. Alwan, P. J. Rajendran, S. Kell, D. Mack, S. Dalal, M. Wolfe, and R. Felder, “A smart
and passive floor-vibration based fall detector for elderly,” in Information and Communication
Technologies, 2006. ICTTA’06. 2nd, vol. 1, pp. 1003–1007, IEEE, 2006.

[39] M. Floeck, L. Litz, and T. Rodner, “An ambient approach to emergency detection based on location
tracking,” in Toward Useful Services for Elderly and People with Disabilities, vol. 6719 of Lecture
Notes in Computer Science, pp. 296–302, Springer, 2011.

[40] M. A. Stelios, A. D. Nick, M. T. Effie, K. M. Dimitris, and S. C. Thomopoulos, “An indoor
localization platform for ambient assisted living using uwb,” in Proceedings of the 6th international
conference on advances in mobile computing and multimedia, pp. 178–182, ACM, 2008.

[41] “Jawbone up fitness bracelet.” https://jawbone.com/up.

[42] P. Rashidi and D. J. Cook, “Keeping the resident in the loop: Adapting the smart home to
the user,” IEEE Transactions on Systems, Man and Cybernetics. Part A: Systems and Humans,
vol. 39, no. 5, pp. 949–959, 2009.

[43] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen, “The gator tech smart
house: A programmable pervasive space,” Computer, vol. 38, no. 3, pp. 50–60, 2005.

[44] F. Doctor, H. Hagras, and V. Callaghan, “A fuzzy embedded agent-based approach for realizing
ambient intelligence in intelligent inhabited environments,” IEEE Transactions on Systems, Man
and Cybernetics. Part A: Systems and Humans, vol. 35, no. 1, pp. 55–65, 2005.

[45] G. D. Abowd and E. D. Mynatt, “Designing for the human experience in smart environments,”
Smart environments: technologies, protocols, and applications, pp. 151–174, 2005.

[46] H. Aloulou, M. Mokhtari, T. Tiberghien, J. Biswas, C. Phua, J. H. K. Lin, and P. Yap, “Deployment
of assistive living technology in a nursing home environment: methods and lessons learned,” BMC
Medical Informatics and Decision Making, vol. 13, no. 1, p. 42, 2013.

[47] Z. Jiaqi, L. V. Yen, J. Biswas, M. Mokhtari, T. Tiberghien, H. Aloulou, et al., “Context-aware
reasoning engine with high level knowledge for smart home,” in 1st International Conference on
Pervasive and Embedded Computing and Communication Systems (PECCS), pp. 292–297, 2011.

[48] L. Chen and C. Nugent, “Ontology-based activity recognition in intelligent pervasive environ-
ments,” International Journal of Web Information Systems, vol. 5, no. 4, pp. 410–430, 2009.

[49] T. Tiberghien, M. Mokhtari, H. Aloulou, and J. Biswas, “Semantic reasoning in context-aware
assistive environments to support ageing with dementia,” in Proceedings of the 11th International
Semantic Web Conference (ISWC), pp. 212–227, Springer, 2012.

[50] M. Ros, M. Delgado, A. Vila, H. Hagras, and A. Bilgin, “A fuzzy logic approach for learning daily
human activities in an ambient intelligent environment,” in IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), pp. 1–8, IEEE, 2012.

[51] N. Roy, A. Roy, and S. K. Das, “Context-aware resource management in multi-inhabitant smart
homes a nash h-learning based approach,” in Fourth Annual IEEE International Conference on
Pervasive Computing and Communications (PerCom), pp. 158–169, IEEE, 2006.

205

https://jawbone.com/up

BIBLIOGRAPHY

[52] A. Tolstikov, X. Hong, J. Biswas, C. Nugent, L. Chen, and G. Parente, “Comparison of fusion
methods based on dst and dbn in human activity recognition,” Journal of Control Theory and
Applications, vol. 9, no. 1, pp. 18–27, 2011.

[53] P. Olivier, G. Xu, A. Monk, and J. Hoey, “Ambient kitchen: designing situated services using
a high fidelity prototyping environment,” in Proceedings of the 2nd International Conference on
Pervasive Technologies Related to Assistive Environments, p. 47, ACM, 2009.

[54] V. Jiménez-Mixco, J. L. Villalar González, A. Arca, M. F. Cabrera-Umpierrez, M. T. Arredondo,
P. Manchado, and M. Garćıa-Robledo, “Application of virtual reality technologies in rapid devel-
opment and assessment of ambient assisted living environments,” in Proceedings of the 1st ACM
SIGMM international workshop on Media studies and implementations that help improving access
to disabled users, pp. 7–12, ACM, 2009.

[55] C. Orwat, A. Graefe, and T. Faulwasser, “Towards pervasive computing in health care–a literature
review,” BMC Medical Informatics and Decision Making, vol. 8, no. 1, p. 26, 2008.

[56] R. Orpwood, C. Gibbs, T. Adlam, R. Faulkner, and D. Meegahawatte, “The design of smart
homes for people with dementia: user-interface aspects,” Universal Access in the Information
Society, vol. 4, no. 2, pp. 156–164, 2005.

[57] J. Chin, V. Callaghan, and G. Clarke, “Soft-appliances: A vision for user created networked
appliances in digital homes,” Journal of Ambient Intelligence and Smart Environments, vol. 1,
no. 1, pp. 69–75, 2009.

[58] V. Callaghan, G. Clarke, and J. Chin, “Some socio-technical aspects of intelligent buildings and
pervasive computing research,” Intelligent Buildings International, vol. 1, no. 1, pp. 56–74, 2009.

[59] M. Ball, V. Callaghan, M. Gardner, and D. Trossen, “Achieving human-agent teamwork in ehealth
based pervasive intelligent environments,” in 4th International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth), pp. 1–8, IEEE, 2010.

[60] “Random house kernerman webster’s college dictionary.” http://www.kdictionaries-online.

com.

[61] J. Hong and J. Landay, “An infrastructure approach to context-aware computing,” Human-
Computer Interaction, vol. 16, no. 2, pp. 287–303, 2001.

[62] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Modeling context information in pervasive
computing systems,” Pervasive Computing, pp. 79–117, 2002.

[63] A. Ranganathan, J. Al-Muhtadi, and R. Campbell, “Reasoning about uncertain contexts in per-
vasive computing environments,” IEEE Pervasive Computing, pp. 62–70, 2004.

[64] H. Lei, D. Sow, J. Davis II, G. Banavar, and M. Ebling, “The design and applications of a context
service,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 6, no. 4, pp. 45–
55, 2002.

[65] P. Gray and D. Salber, “Modelling and using sensed context information in the design of interactive
applications,” Engineering for Human-Computer Interaction, pp. 317–335, 2001.

[66] A. Artikis, M. Sergot, and G. Paliouras, “A logic programming approach to activity recognition,”
in Proceedings of the 2nd ACM international workshop on Events in multimedia, pp. 3–8, ACM,
2010.

206

http://www.kdictionaries-online.com
http://www.kdictionaries-online.com

BIBLIOGRAPHY

[67] G. Antoniou, “Rule-based activity recognition in ambient intelligence,” in Proceedings of the 5th in-
ternational conference on Rule-based reasoning, programming, and applications, pp. 1–1, Springer-
Verlag, 2011.

[68] W. Hu, D. Xie, T. Tan, and S. Maybank, “Learning activity patterns using fuzzy self-organizing
neural network,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 34, no. 3, pp. 1618–1626, 2004.

[69] T. Van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, “Accurate activity recognition in a
home setting,” in Proceedings of the 10th international conference on ubiquitous computing, pp. 1–
9, ACM, 2008.

[70] D. J. Patterson, D. Fox, H. Kautz, and M. Philipose, “Fine-grained activity recognition by ag-
gregating abstract object usage,” in Proceedings of the 9th IEEE International Symposium on
Wearable Computers, pp. 44–51, IEEE, 2005.

[71] D. L. Vail, M. M. Veloso, and J. D. Lafferty, “Conditional random fields for activity recognition,”
in Proceedings of the 6th international joint conference on Autonomous agents and multiagent
systems, p. 235, ACM, 2007.

[72] T.-y. Wu, C.-c. Lian, and J. Y.-j. Hsu, “Joint recognition of multiple concurrent activities using
factorial conditional random fields,” in Proceedings of the 22nd Conference on Artificial Intelligence
(AAAI), 2007.

[73] Y.-X. Hung, C.-Y. Chiang, S. J. Hsu, and C.-T. Chan, “Abnormality detection for improving
elders daily life independent,” in Aging Friendly Technology for Health and Independence (ICOST),
pp. 186–194, Springer, 2010.

[74] P. Rashidi, D. J. Cook, L. B. Holder, and M. Schmitter-Edgecombe, “Discovering activities to
recognize and track in a smart environment,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 23, no. 4, pp. 527–539, 2011.

[75] J. Loane, B. O’Mullane, B. Bortz, and R. B. Knapp, “Interpreting presence sensor data and
looking for similarities between homes using cluster analysis,” in 5th International Conference on
Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 438–445, IEEE, 2011.

[76] T. Gu, S. Chen, X. Tao, and J. Lu, “An unsupervised approach to activity recognition and segmen-
tation based on object-use fingerprints,” Data & Knowledge Engineering, vol. 69, no. 6, pp. 533–
544, 2010.

[77] X. Wang, J. S. Dong, C. Chin, S. R. Hettiarachchi, and D. Zhang, “Semantic space: An infras-
tructure for smart spaces,” Computing, vol. 1, no. 2, pp. 67–74, 2002.

[78] F. Razzak, “Semantic web technologies role in smart environments,” in On the Move to Meaningful
Internet Systems: OTM 2012 Workshops, pp. 54–58, Springer, 2012.

[79] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J. Burgelman, “Ambient intelligence:
From vision to reality,” IST Advisory Group Draft Report, European Commission, 2003.

[80] P. Carreira, V. Amaral, and B. Barroca, “The case for a systematic development of building
automation systems,” in 2nd IEEE PES International Conference and Exhibition on Innovative
Smart Grid Technologies (ISGT Europe), pp. 1–8, IEEE, 2011.

[81] C. Nugent, D. Finlay, R. Davies, H. Wang, H. Zheng, J. Hallberg, K. Synnes, and M. Mulvenna,
“homeml–an open standard for the exchange of data within smart environments,” Pervasive Com-
puting for Quality of Life Enhancement, pp. 121–129, 2007.

207

BIBLIOGRAPHY

[82] J. Hallberg, C. Nugent, R. Davies, K. Synnes, M. Donnelly, D. Finlay, and M. Mulvenna,
“Homeruleml-a model for the exchange of decision support rules within smart environments,”
in Automation Science and Engineering, 2007. CASE 2007. IEEE International Conference on,
pp. 513–520, IEEE, 2007.

[83] U. Akdemir, P. Turaga, and R. Chellappa, “An ontology based approach for activity recognition
from video,” in Proceeding of the 16th ACM international conference on Multimedia, pp. 709–712,
ACM, 2008.

[84] M. Rodŕıguez, C. Curlango, and J. Garćıa-Vázquez, “An agent-based component for identifying
elders’ at-home risks through ontologies,” in 3rd Symposium of Ubiquitous Computing and Ambient
Intelligence 2008, pp. 168–172, Springer, 2009.

[85] F. Arab, Quelles ressources pour le sujet vieillissant? Les ontologies, une perspective pour la
conception et l’évaluation des aides capacitantes. PhD thesis, Institut Telecom - Université de
Sherbrooke, 2010.

[86] F. Paganelli and D. Giuli, “An ontology-based context model for home health monitoring and
alerting in chronic patient care networks,” in Advanced Information Networking and Applications
Workshops, 2007, AINAW’07. 21st International Conference on, vol. 2, pp. 838–845, IEEE, 2007.

[87] O. Lassila and R. R. Swick, “Resource description framework (rdf) model and syntax specification.”
W3C Recommendation, http://www.w3.org/TR/PR-rdf-syntax/, 1999.

[88] T. R. Gruber et al., “A translation approach to portable ontology specifications,” Knowledge
acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[89] D. Brickley, R. V. Guha, and B. McBride, “Rdf vocabulary description language 1.0: Rdf schema.”
W3C Recommendation, http://www.w3.org/TR/rdf-schema/, 2004.

[90] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph, “Owl 2 web ontol-
ogy language primer,” W3C recommendation, http: // www. w3. org/ TR/ owl2-primer/ , vol. 27,
pp. 1–123, 2009.

[91] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, “Ep-sparql: a unified language for event
processing and stream reasoning,” in Proceedings of the 20th international conference on World
wide web, pp. 635–644, ACM, 2011.

[92] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus, “C-sparql: Sparql for
continuous querying,” in Proceedings of the 18th international conference on World wide web,
pp. 1061–1062, ACM, 2009.

[93] D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth, “A native and adaptive approach
for unified processing of linked streams and linked data,” in The Semantic Web–ISWC 2011,
pp. 370–388, Springer, 2011.

[94] P. Nurmi and P. Floréen, “Reasoning in context-aware systems.” Helsinki Institute for Information
Technology, 2004.

[95] M. Luther, T. Liebig, S. Böhm, and O. Noppens, “Who the heck is the father of bob?,” The
Semantic Web: Research and Applications, pp. 66–80, 2009.

[96] J. W. Lloyd, “Practical advantages of declarative programming,” in Joint Conference on Declar-
ative Programming, GULP-PRODE, vol. 94, p. 94, 1994.

[97] G. Antoniou and F. Van Harmelen, Semantic Web Primer. the MIT Press, 2004.

208

http://www.w3.org/TR/PR-rdf-syntax/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl2-primer/

BIBLIOGRAPHY

[98] A. Shehzad, H. Q. Ngo, K. A. Pham, and S. Lee, “Formal modeling in context aware systems,” in
Proceedings of the First International Workshop on Modeling and Retrieval of Context, Citeseer,
2004.

[99] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, “Ontology based context modeling and
reasoning using owl,” in Pervasive Computing and Communications Workshops, 2004. Proceedings
of the Second IEEE Annual Conference on, pp. 18–22, IEEE, 2004.

[100] D. L. McGuinness, F. Van Harmelen, et al., “Owl web ontology language overview,” W3C rec-
ommendation, http: // www. w3. org/ TR/ owl-features/ , vol. 10, no. 2004-03, p. 10, 2004.

[101] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, “Owl 2 web ontology
language: Profiles,” W3C recommendation, http: // www. w3. org/ TR/ owl2-profiles/ , vol. 27,
p. 61, 2009.

[102] T. Berners-Lee and D. Connolly, “Notation3 (n3): a readable rdf syntax.” W3C Team Submission,
http://www.w3.org/TeamSubmission/n3, 2011.

[103] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler, “N3logic: A logical framework
for the world wide web,” Theory and Practice of Logic Programming, vol. 8, no. 3, pp. 249–269,
2008.

[104] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, et al., “Swrl: A
semantic web rule language combining owl and ruleml,” W3C Member submission, http: // www.
w3. org/ Submission/ SWRL/ , vol. 21, p. 79, 2004.

[105] H. Boley, S. Tabet, and G. Wagner, “Design rationale of ruleml: A markup language for semantic
web rules,” in International Semantic Web Working Symposium (SWWS), pp. 381–402, 2001.

[106] W. Dargie, Context-aware computing and self-managing systems. Chapman and Hall/CRC, 2010.

[107] H. S. Goldberg, M. Vashevko, A. Postilnik, K. Smith, N. Plaks, and B. M. Blumenfeld, “Evalua-
tion of a commercial rule engine as a basis for a clinical decision support service,” in AMIA Annual
Symposium Proceedings, vol. 2006, p. 294, American Medical Informatics Association, 2006.

[108] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt, “A
middleware infrastructure for active spaces,” Pervasive Computing, IEEE, vol. 1, no. 4, pp. 74–83,
2002.

[109] H. L. Chen, An intelligent broker architecture for pervasive context-aware systems. PhD thesis,
University of Maryland, Baltimore County, 2004.

[110] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive computing environ-
ments,” The Knowledge Engineering Review, vol. 18, no. 03, pp. 197–207, 2003.

[111] D. Bottazzi, R. Montanari, and A. Toninelli, “Context-aware middleware for anytime, anywhere
social networks,” Intelligent Systems, IEEE, vol. 22, no. 5, pp. 23–32, 2007.

[112] B. Mrohs, M. Luther, R. Vaidya, M. Wagner, S. Steglich, W. Kellerer, and S. Arbanowski, “Owl-
sf–a distributed semantic service framework,” in Proc. of the Workshop on Context Awareness for
Proactive Systems (CAPS05), Helsinki, pp. 67–77, Citeseer, 2005.

[113] G. Meditskos and N. Bassiliades, “Dlejena: A practical forward-chaining owl 2 rl reasoner com-
bining jena and pellet,” Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 8, no. 1, pp. 89–94, 2010.

209

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TeamSubmission/n3
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/

BIBLIOGRAPHY

[114] G. Meditskos, S. Dasiopoulou, V. Efstathiou, and I. Kompatsiaris., “Ontology patterns for com-
plex activity modelling,” in 7th International Web Rule Symposium: Research Based and Industry
Focused (RuleML), vol. 8035 of LNCS, pp. 144–157, Springer, 2013.

[115] H. Knublauch, J. Hendler, and K. Idehen, “Spin - overview and motivation.” W3C member
submission, http://www.w3.org/Submission/spin-sparql/, 2011.

[116] L. Chen, C. Nugent, and H. Wang, “A knowledge-driven approach to activity recognition in smart
homes,” Knowledge and Data Engineering, IEEE Transactions on, no. 99, pp. 1–1, 2011.

[117] V. Foo Siang Fook, S. C. Tay, M. Jayachandran, J. Biswas, and D. Zhang, “An ontology-based
context model in monitoring and handling agitation behavior for persons with dementia,” in Perva-
sive Computing and Communications Workshops, 2006. PerCom Workshops 2006. Fourth Annual
IEEE International Conference on, pp. 5–pp, IEEE, 2006.

[118] A.-Y. Turhan, S. Bechhofer, A. Kaplunova, T. Liebig, M. Luther, R. Möller, O. Noppens, P. Patel-
Schneider, B. Suntisrivaraporn, and T. Weithöner, “Dig2. 0–towards a flexible interface for descrip-
tion logic reasoners,” in Proc. of the OWL Experiences and Directions Workshop at the ISWC,
vol. 6, 2006.

[119] T. Weithoner, T. Liebig, M. Luther, and S. Bohm, “Whats wrong with owl benchmarks?,” in
Second International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2006),
p. 101.

[120] M. Knorr, J. J. Alferes, and P. Hitzler, “Local closed world reasoning with description logics
under the well-founded semantics,” Artificial Intelligence, vol. 175, no. 9, pp. 1528–1554, 2011.

[121] C. Patel, J. Cimino, J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershenbaum, L. Ma, E. Schonberg,
and K. Srinivas, “Matching patient records to clinical trials using ontologies,” in The Semantic
Web, pp. 816–829, Springer, 2007.

[122] D. J. Plas, M. Verheijen, H. Zwaal, and M. Hutschemaekers, “Manipulating context information
with swrl,” tech. rep., Ericsson Telecommunicatie B.V., 2006.

[123] T. Berners-Lee, “Design issues: Linked data.” http://www.w3.org/DesignIssues/LinkedData.

html, 2006.

[124] A. Caragliu, C. Del Bo, and P. Nijkamp, Smart cities in Europe. Vrije Universiteit, Faculty of
Economics and Business Administration, 2009.

[125] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson, “Jena: imple-
menting the semantic web recommendations,” in Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, pp. 74–83, ACM, 2004.

[126] S. Singh and R. Karwayun, “A comparative study of inference engines,” in Information Tech-
nology: New Generations (ITNG), 2010 Seventh International Conference on, pp. 53–57, IEEE,
2010.

[127] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical owl-dl reasoner,”
Web Semantics: science, services and agents on the World Wide Web, vol. 5, no. 2, pp. 51–53,
2007.

[128] V. Haarslev and R. Möller, “Description of the racer system and its applications,” Description
Logics, vol. 49, 2001.

[129] J. De Roo, “Euler proof mechanism – eye.” http://eulersharp.sourceforge.net/, 1999-2013.

210

http://www.w3.org/Submission/spin-sparql/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://eulersharp.sourceforge.net/

BIBLIOGRAPHY

[130] T. Osmun and J. De Roo, “Linear relationship benchmark.” Results available at
http://eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt and sources at http://

eulersharp.sourceforge.net/2009/12dtb/.

[131] C. Zins, “Conceptual approaches for defining data, information, and knowledge,” Journal of the
American Society for Information Science and Technology, vol. 58, no. 4, pp. 479–493, 2007.

[132] D. P. Wallace, Knowledge management: Historical and cross-disciplinary themes. Libraries un-
limited, 2007.

[133] G. W. Leibniz, La Monadologie. 1714.

[134] T. Berners-Lee, “Semantic web application platform - swap.” http://www.w3.org/2000/10/

swap/, 2000.

[135] W. K. Edwards and R. E. Grinter, “At home with ubiquitous computing: seven challenges,” in
Ubicomp 2001: Ubiquitous Computing, pp. 256–272, Springer, 2001.

[136] Y. Liu, X. Zhang, J. S. Dong, Y. Liu, J. Sun, J. Biswas, and M. Mokhtari, “Formal analysis
of pervasive computing systems,” in Engineering of Complex Computer Systems (ICECCS), 2012
17th International Conference on, pp. 169–178, IEEE, 2012.

[137] M. Arapinis, M. Calder, L. Dennis, M. Fisher, P. Gray, S. Konur, A. Miller, E. Ritter, M. Ryan,
S. Schewe, et al., “Towards the verification of pervasive systems,” Electronic Communications of
the EASST, vol. 22, 2010.

[138] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT press, 1999.

[139] K. Du, D. Zhang, X. Zhou, and M. Hariz, “Handling conflicts of context-aware reminding system
in sensorised home,” Cluster Computing, vol. 14, no. 1, pp. 81–89, 2011.

[140] M. M. Kokar, C. J. Matheus, and K. Baclawski, “Ontology-based situation awareness,” Informa-
tion fusion, vol. 10, no. 1, pp. 83–98, 2009.

[141] A. Singh, D. Juneja, and A. Sharma, “A fuzzy integrated ontology model to manage uncertainty
in semantic web: the fiom,” International Journal on Computer Science and Engineering (IJCSE),
vol. 3, no. 3, pp. 1057–1062, 2011.

[142] G. Stoilos, G. B. Stamou, V. Tzouvaras, J. Z. Pan, and I. Horrocks, “Fuzzy owl: Uncertainty and
the semantic web.,” in OWLED, 2005.

[143] J. Z. Pan, G. Stoilos, G. Stamou, V. Tzouvaras, and I. Horrocks, “f-swrl: A fuzzy extension of
swrl,” in Journal on Data Semantics VI, pp. 28–46, Springer, 2006.

[144] T. Gu, H. K. Pung, D. Q. Zhang, H. K. Pung, and D. Q. Zhang, “A bayesian approach for dealing
with uncertain contexts,” in Austrian Computer Society, Citeseer, 2004.

[145] R. N. Carvalho, R. Haberlin, P. C. G. Costa, K. B. Laskey, and K. Chang, “Modeling a probabilis-
tic ontology for maritime domain awareness,” in Information Fusion (FUSION), 2011 Proceedings
of the 14th International Conference on, pp. 1–8, IEEE, 2011.

[146] A. Bellenger and S. Gatepaille, “Uncertainty in ontologies: Dempster-shafer theory for data fusion
applications,” arXiv preprint arXiv:1106.3876, 2011.

[147] H. Aloulou, Framework for Ambient Assistive Living: Handling Dynamism and Uncertainty in
Real Time Semantic Services Provisioning. PhD thesis, Institut Mines-Télécom, EDITE, 2013.

211

http://eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt
http://eulersharp.sourceforge.net/2009/12dtb/
http://eulersharp.sourceforge.net/2009/12dtb/
http://www.w3.org/2000/10/swap/
http://www.w3.org/2000/10/swap/

BIBLIOGRAPHY

[148] J. F. Sequeda and O. Corcho, “Linked stream data: A position paper,” 2009.

[149] A. Rula, M. Palmonari, A. Harth, S. Stadtmüller, and A. Maurino, “On the diversity and availabil-
ity of temporal information in linked open data,” in The Semantic Web–ISWC 2012, pp. 492–507,
Springer, 2012.

[150] N. Noy, A. Rector, P. Hayes, and C. Welty, “Defining n-ary relations on the semantic web.” W3C
Working Group Note, http://www.w3.org/TR/swbp-n-aryRelations/, 2006.

[151] G. Yang and M. Kifer, “Reasoning about anonymous resources and meta statements on the
semantic web,” in Journal on Data Semantics I, pp. 69–97, Springer, 2003.

[152] C. J. Matheus, “Position paper: Using ontology-based rules for situation awareness and informa-
tion fusion.,” in Rule Languages for Interoperability, 2005.

[153] S. Freud, “The ego and the id. standard edition, 19: 12-66,” 1961.

[154] D. Westen, “The scientific status of unconscious processes: is freud really dead?,” Journal of the
American Psychoanalytic Association, vol. 47, no. 4, pp. 1061–1106, 1999.

[155] H. Aloulou, M. Mokhtari, T. Tiberghien, J. Biswas, and P. Yap, “Real world deployment of assis-
tive living technologies for cognitively impaired people in singapore: Demonstration guidelines,”
in IEEE Journal of Biomedical and Health Informatics (J-BHI), IEEE, 2013.

[156] T. Erl, “Introducing soa design patterns,” SOA World Magazine, vol. 8, no. 6, pp. 2–7, 2008.

[157] O. Alliance, Osgi service platform, release 3. IOS Press, Inc., 2003.

[158] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A. Mamelli, and U. Scholz,
“Music: Middleware support for self-adaptation in ubiquitous and service-oriented environments,”
in Software engineering for self-adaptive systems, pp. 164–182, Springer, 2009.

[159] D.-M. Han and J.-H. Lim, “Design and implementation of smart home energy management sys-
tems based on zigbee,” Consumer Electronics, IEEE Transactions on, vol. 56, no. 3, pp. 1417–1425,
2010.

[160] Z. Etzioni, J. Keeney, R. Brennan, and D. Lewis, “Supporting composite smart home services
with semantic fault management,” in Future Information Technology (FutureTech), 2010 5th In-
ternational Conference on, pp. 1–8, IEEE, 2010.

[161] T. Perumal, A. R. Ramli, C. Y. Leong, S. Mansor, and K. Samsudin, “Interoperability among
heterogeneous systems in smart home environment,” in Signal Image Technology and Internet
Based Systems, 2008. SITIS’08. IEEE International Conference on, pp. 177–186, IEEE, 2008.

[162] R. T. Fielding, Architectural styles and the design of network-based software architectures. PhD
thesis, University of California, 2000.

[163] xmpp.org, “Xmpp standards foundation.” http://xmpp.org.

[164] P. Saint-Andre, “Streaming XML with Jabber/XMPP,” IEEE Internet Computing, pp. 82–89,
2005.

[165] igniterealtime.org, “Openfire project under ignite realtime community.” http://www.

igniterealtime.org/projects/openfire/.

[166] R. Verborgh, “Node-n3: Lightning fast, asynchronous, streaming of turtle/n3/rdf.” GitHub
https://github.com/RubenVerborgh/node-n3, 2012.

212

http://www.w3.org/TR/swbp-n-aryRelations/
http://xmpp.org
http://www.igniterealtime.org/projects/openfire/
http://www.igniterealtime.org/projects/openfire/
https://github.com/RubenVerborgh/node-n3

BIBLIOGRAPHY

[167] H. Aloulou, M. Mokhtari, T. Tiberghien, J. Biswas, and J. H. K. Lin, “A semantic plug&play
based framework for ambient assisted living,” in Impact Analysis of solutions for chronic disease
Prevention and Management, Lecture Notes in Computer Science, Springer, 2012.

[168] jena.sourceforge.net, “Jena - a semantic web framework for java.” http://jena.sourceforge.

net/inference/.

[169] S. Solaimani, H. Bouwman, and N. Baken, “The smart home landscape: A qualitative meta-
analysis,” in Toward Useful Services for Elderly and People with Disabilities (B. Abdulrazak,
S. Giroux, B. Bouchard, H. Pigot, and M. Mokhtari, eds.), vol. 6719 of Lecture Notes in Computer
Science, pp. 192–199, Springer, 2011.

[170] H. Bouwman, E. Faber, T. Haaker, B. Kijl, and M. De Reuver, “Conceptualizing the stof model,”
in Mobile service innovation and business models, pp. 31–70, Springer, 2008.

[171] “Cookstop: The leader in kitchen fire prevention.” http://www.cookstop.com/.

[172] T. Fujinami, M. Miura, R. Takatsuka, and T. Sugihara, “A study of long term tendencies in
residents’ activities of daily living at a group home for people with dementia using rfid slippers,”
in Toward Useful Services for Elderly and People with Disabilities (B. Abdulrazak, S. Giroux,
B. Bouchard, H. Pigot, and M. Mokhtari, eds.), vol. 6719 of Lecture Notes in Computer Science,
pp. 303–307, Springer, 2011.

[173] C. Bothorel, C. Lohr, A. Thépaut, F. Bonnaud, and G. Cabasse, “From individual communication
to social networks: Evolution of a technical platform for the elderly,” in Toward Useful Services
for Elderly and People with Disabilities (B. Abdulrazak, S. Giroux, B. Bouchard, H. Pigot, and
M. Mokhtari, eds.), vol. 6719 of Lecture Notes in Computer Science, pp. 145–152, Springer, 2011.

[174] K. De Voegt, M. Feki, L. Claeys, J. Criel, P. Zontrop, M. Godon, M. Roelands, M. Geerts, and
L. Trappeniers, “Augmented photoframe for interactive smart space,” Aging Friendly Technology
for Health and Independence, pp. 60–66, 2010.

[175] “Karotz: Your smart rabbit.” http://www.karotz.com/.

[176] M. Alwan, “Eldercare technology transfer,” in ICOST 2011 Summer School Talks, 2011.

[177] R. Mendonca and R. Smith, “Effects of providing medical product accessibility information to
individuals with disabilities,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 10,
pp. e36–e37, 2010.

[178] C. Gervasoni and W. Benzarti, “Create, un campus innovant pour l’excellence en recherche et les
entreprises technologiques.” http://www.ambafrance-sg.org, 2011.

213

http://jena.sourceforge.net/inference/
http://jena.sourceforge.net/inference/
http://www.cookstop.com/
http://www.karotz.com/
http://www.ambafrance-sg.org

214

List of Figures

1.1 World Population by Age Groups and Sex (Ratio Over Total Population) [3] 4
1.2 Living Arrangements of Japanese Elderly: 1960 to 1995 [5] 4
1.3 Decomposition of Average Life Course: 1960 to 1995 [5] 5
1.4 Preservation and Decline in the Normal Ageing Memory [6] 6
1.5 Percent of People Needing Assistance with Daily Activities by Age Groups [11] 7
1.6 Pathological Ageing: Mild Cognitive Impairment and Dementia [6] 7
1.7 Worldwide Projections of Alzheimer’s Prevalence for the Years 2006–2050 9

2.1 Proportion of People on Earth vs “Things”on the Web (Source: Cisco) 13

3.1 The Callaghan-Clarke-Chin (3C) Model . 21
3.2 Structural Summary of this Doctoral Work . 25

4.1 Semantic Model (TBox) for the Service Delivery to an Elder in a Smart Space 33
4.2 Legend for the Graphical Representation of Semantic Model (TBox) in this Thesis . . . 33
4.3 Semantic Model (TBox) for a Stripped-Down Activity Inference 36

5.1 State Machine Describing Residents Behaviour . 60
5.2 State Machine Describing the Bed Pressure Sensor Behaviour 60

6.1 Unsupervised Segmentation and Hierarchical Clustering of Activities 65
6.2 Uncertainty Representation in N3 . 67

7.1 “La Pensée”: UbiSMART’s Hybrid Reasoning Cognitive Inspiration 72
7.2 Functional Integration of EYE Through NTriplestore, a Purpose-Build N3 Triplestore

for Live Events Processing . 74
7.3 Inference Mechanism: Ontological States Transitions . 75
7.4 Bird’s Eye View on the Inputs and Outputs to the Triplestore 76
7.5 Integration of the Cognitively Inspired Reasoning Architecture Into a Fully Featured

Service Framework . 78

8.4 Service Architecture of UbiSMART (first version) . 86
8.6 OSGi Bundling of the Jena Engine . 90
8.7 Relative Frequency of the System’s Malfunctions in Peacehaven 93
8.8 RESTful Architecture of UbiSMART (Second Version) 96
8.10 Triplestore Simplified Class Diagram . 100
8.12 Discovery, Registration and Communication Protocols for the Plug & Play 103
8.13 Detailed Semantic Process Supporting the Plug & Play Mechanism 104
8.14 Detailed Class Diagram of the Reasoning Modules in UbiSMART v2 106
8.15 Ontology Evolution Example: Initial Ontology . 107
8.16 Ontology Evolution Example: New Event Update . 107
8.17 Ontology Evolution Example: Motion Estimation by Cerebration 109
8.18 Ontology Evolution Example: Cogitation Inference . 110
8.19 Reasoning Load Test up to 250 Houses (40K+ Triples) 111
8.20 Average Frequency of Events for Each 1-Hour Period . 112

9.4 Partial Floor Plan of the Deployment in Peacehaven . 121
9.5 Photos of the Sensors Deployed in the Nursing Home . 122
9.6 Photos of the Devices Deployed in the Nursing Home . 123

215

LIST OF FIGURES

9.7 Recognition Rate of Atomic Events in Phase 2 & 3 of the Deployment 124
9.8 Early Detection of the Deterioration of a Resident’s Condition 125
9.9 QoL Map . 126
9.10 Calendar Dashboard: Location Data Visualisation . 128
9.11 Chronological Visualisation of the Result of the Activity Inference 129
9.12 Statistical Visualisation of the Result of the Activity Inference 129

A.1 Coarse-Grain Overview of AAL Research Activities . 141
A.2 Fine-Grain Overview of AAL Research Bottlenecks . 142

F.1 Example Products for Diverse Applications . 196
F.2 Products to Control or Personify the System . 197
F.3 Welcome to the SmartStore . 197
F.4 Pictures of the Store’s Model . 198

G.1 Singapore’s Research Organisation & Budget for 2006-2010 200

216

List of Tables

1.1 Projections of Alzheimer’s Disease Prevalence in 2006 and 2050 8

5.1 A Comparative Table of Semantic Reasoners . 52
5.2 Scope of Activities to be Detected by the System . 54
5.3 Results of the Model Checking Verification of the System 61

8.1 Performance Comparison: N3 File Parsing vs. NTriplestore 101

9.1 Timeline for the Development and Deployment of our Solution in the Nursing Home (14
Months Trial) . 119

9.2 Profile of the Residents Involved in the Peacehave Trial 120
9.3 Partial Datasets Used from our Deployment in France 126
9.4 Extract of the Dataset Used for the Validation . 127
9.5 Sensor Location for the Dataset Used for the Validation 127

B.1 The Global Deterioration Scale for Assessment of Primary Degenerative Dementia (1) . 143
B.2 The Global Deterioration Scale for Assessment of Primary Degenerative Dementia (2) . 144

217

218

Acronyms

3C Callaghan-Clarke-Chin. 21

A*STAR Agency for Science, Technology and Research. 199

AAL Ambient Assisted Living. i, ii, 9, 10, 15–20, 23, 25, 47–51, 66, 76, 81, 102, 122, 127, 130, 135,
136, 193, 198

ABox Assertional Box. 31, 32, 34–36, 105

AcRF Academic Research Fund. 199

ADL Activities of Daily Living. 5–7, 9, 16, 19, 30, 42, 119, 126

AGIM Age, Imagerie, Modélisation. 125

AmI Ambient Intelligence. 14, 15, 29, 32, 42, 46, 47, 55, 61, 84

AMUPADH Activity Monitoring and UI Plasticity for supporting Ageing with mild Dementia at
Home. 115, 118

API Application Programming Interface. 50, 83, 84, 89, 90, 95, 105

C-SPARQL Continuous SPARQL. 38

CAST LeadingAge Center for Aging Services Technologies. 10

CoBrA Context Broker Architecture. 46

CQELS Continuous Query Evaluation over Linked Streams. 38

CRC Cyclic Redundancy Check. 94

CRF Conditional Random Fields. 23

CRUD Create Read Update Delete. 95

CWA Closed World Assumption. 48, 49

cwm closed-world machine. 45, 52

DBN Dynamic Bayesian Network. 16, 85

DIG DL Implementation Group. 47, 51

DIKW “Data-Information-Knowledge-Wisdom”. 53, 56, 95

DL Description Logic. 43, 46–48, 51–53, 55, 94

DPWS Devices Profile for Web Services. 102, 104

DSL Domain Specific Languages. 23, 42, 46, 47

EDB Economic Development Board. 199

EP-SPARQL Event Processing SPARQL. 38

219

Acronyms

EYE Euler YAP Engine. 45, 49, 51, 52, 57, 58, 71, 73, 74, 76, 94, 95, 98, 100, 101, 105, 110–112, 135,
136

FAM Fuzzy Activation Map. 64

FAME Fuzzy Activation Map Engine. 64, 136

FOAF friend-of-a-friend. 46

GDP Gross Domestic Product. 201

GDS Global Deterioration Scale. 8, 119, 143

GUI Graphical User Interface. 14

HCI Human Computer Interaction. 14, 15

HLM Higher Level Modelling. 29

HMM Hidden Markov Models. 23, 24, 66

HTTP Hypertext Transfer Protocol. 97, 102

I/O inputs/outputs. 75, 76, 108

I2R Institute for Infocomm Research. 115, 116, 195

iAAL independent Ambient Assisted Living. 193, 195–198

ICT Information & Communications Technology. 9, 10, 13, 125, 126, 193

iFAM instant Fuzzy Activation Map. 64, 136

IM Instant Messaging. 88

IoT Internet of Things. 13, 14

IPAL Image & Pervasive Access Laboratory. 115, 125

IRI Internationalized Resource Identifier. 151

IT Information Technology. 13

JSON JavaScript Object Notation. 85

KB Knowledge Base. 48, 49, 59, 71–75, 81, 84, 85, 87–90, 95, 98, 101, 103, 104, 112

KTPH Khoo Teck Puat Hospital. 118

LLM Lower Level Modelling. 29

LTL Linear Temporal Logic. 59

M2M Machine to Machine Communication. 13

MINDEF Ministry of Defence. 199

220

Acronyms

MOE Ministry of Education. 199

MOH Ministry of Health. 199

MTI Ministry of Trade & Industry. 199

MUC Multi-User Chat. 88, 89, 102

N3 Notation3. 31–33, 35, 44, 45, 51, 52, 55, 57, 58, 67, 68, 73, 74, 76, 95, 98, 100, 101, 104, 135, 149

N3Logic Notation3 Logic. 45

NAF Negation As Failure. 48

NMRC National Medical Research Council. 199

NRF National Research Foundation. 199

NUS National University of Singapore. 115, 118

OECD Organisation for Economic Co-Operation and Development. 4

OSGi Open Service Gateway initiative. 73, 74, 82–84, 87–89, 97, 100, 102, 103, 105, 108, 110

OWA Open World Assumption. 48, 49

OWL Web Ontology Language. 32, 43–47, 51, 52, 89, 94, 151

POJI Plain Old Java Interfaces. 83

POJO Plain Old Java Objects. 83

QoI Quality of Information. 22, 24, 26, 63, 66–69

QoL Quality of Life. 16, 125, 136

QoS Quality of Service. 82

R&D Research & Development. 200, 201

RBC Rule-Based Clustering. 64

RBCS Rule-Based Confidence Score. 57, 58

RDF Resource Description Framework. 31, 32, 38, 43–47, 49, 51, 67, 87, 89, 98, 100, 149

RDF-S RDF Schema. 32, 43

REST Representational State Transfer. 84, 85, 95, 97, 194

RFID Radio-Frequency Identification. 117, 121

RIEC Research, Innovation and Enterprise Council. 199, 201

RuleML Rule Markup Language. 46

S2C Smart Space Composer. 77, 94

221

Acronyms

SERC Science & Engineering Research Council. 115, 116

SNAF Scoped Negation As Failure. 49, 51

SOA Service Oriented Architecture. 81, 82, 84, 85, 89, 102

SOAP Simple Object Access Protocol. 104

SPARQL SPARQL Protocol And RDF Query Language. 38, 47, 49, 50, 89

SQL Structured Query Language. 42, 43

STOF Service, Technology, Organisation, Finance. 193

SVM Support Vector Machines. 23, 112

SWAP Semantic Web Application Platform. 58

SWRL Semantic Web Rule Language. 46, 49, 51

TBox Terminological Box. 31, 32, 35, 36, 67, 76, 104

TCP/IP Transmission Control Protocol - Internet Protocol. 85

UbiSMART Ubiquitous Service MAnagement & Reasoning archiTecture. 73, 74, 76, 77, 81, 85, 89,
93–95, 98, 101, 102, 105, 112, 115, 116, 120, 127, 135, 136, 155

UI User Interface. 87, 89, 98

UIP User Interface Plasticity. 87

URI Uniform Resource Identifier. 32, 89, 93, 105, 108, 149, 151

W3C World Wide Web Consortium. 38, 43–45, 52, 58, 151

Web World Wide Web. 13, 48

wFAM windowed Fuzzy Activation Map. 64, 136

WS Web Services. 104

WSDL Web Services Description Language. 104

WSN Wireless Sensor Network. 77, 93, 126

XML Extensible Markup Language. 31, 44, 46, 149

XMPP Extensible Messaging and Presence Protocol. 85, 88, 89, 97, 102, 117, 121

YAP Yet Another Prolog. 45, 52

222

Index

3C model, 21

Ageing, 5
Alzheimer’s disease, 7
Ambient Assisted Living, 9
Ambient Intelligence, 14
Assertional Box, 31

Bind, 82
bottom-up approach, 19

Cerebration, 72
class, 32
Closed World Assumption (OWA), 48
Cogitation, 72
Comprehension, 22
Conditional Random Fields, 23
conscious and unconscious mind, 71
context, 15
context comprehension, 21
context-awareness, 15
Cortex, 73

DAML+OIL, 46
datatype properties, 32
Declarative memory, 6
declarative programming, 42
deductive logic, 45
Dementia, 7
demographic transition, 3
deviance, 34
DIKW Hierarchy, 53

episodic memory, 6
Euler, 45, 51
Euler YAP Engine (EYE), 45
Event Calculus, 23

Find (or Discover), 82
formulae, 45
Fuzzy Activation Map (FAM), 64

Gerontechnology, 8

HashSet, 101
Hidden Markov Models, 23
Higher Level Modelling, 29

Imperative programming, 42
individuals, 32
inductive logic, 45

inference engine, 45
infinite analysis, 55
Internet of Things, 13

Jena, 50

knowledge base, 32

Linked Data, 38
Linked Stream Data, 38, 67
literal, 32
Long term memory, 5
Lower Level Modelling, 29

Machine to Machine Communication (M2M), 13
mechanical plug & play , 103
Mild cognitive impairment, 7
multi-modality, 14

N-ary relationship, 67
namespace, 32
Negation As Failure (NAF), 48
Notation3 (N3), 31, 44
Notation3 Logic (N3Logic), 45
notifications, 33
NTriplestore, 100

Object properties, 32
Open Service Gateway initiative (OSGi), 82
Open World Assumption (OWA), 48
openfire, 88

Pathological ageing, 7
Pattern matching techniques, 23
Pellet, 51
pervasive computing, 13
Polymorphism, 14
populated, 34
population ageing, 3
predicate, 32
prevalence, 8
procedural memory, 6
Properties, 32
Publish, 82
publish and subscribe, 88

RacerPro, 51
RDF Schema (RDF-S), 32
reasoning engines, 45
Reisberg Scale, 143
reminders, 33

223

INDEX

Representational State Transfer (REST), 84
resource, 32
Resource Description Framework (RDF), 31, 43
Rule Markup Language (RuleML), 46
Rule-Based Clustering (RBC), 64
Rule-Based Confidence Score (RBCS), 57
Rule-based methods, 23
rules of fact, 55
rules of reasoning, 55

Scoped Negation As Failure (SNAF), 49
semantic plug & play , 103
Semantic memory, 6
semantic sea (semsea), 75
Semantic Web Rule Language (SWRL), 46
Sensory memory, 5
Service Oriented Architecture (SOA), 81
service provider, 81
service registry, 82
service requester, 82
Short term memory, 5
SPARQL Protocol And RDF Query Language, 38
Stimulistener, 72
Support Vector Machines, 23

Terminological Box, 31
things, 13
ThoughInterpretor, 76
top-down approach, 19
triples, 31
truths of fact, 55
truths of reasoning, 55

ubiquitous computing, 13
UbiSMART, 81
user interface plasticity, 14

Web Ontology Language, 32, 43

XMPP/Jabber, 88

224

	Abstract
	Author's Publications
	Acknowledgement
	I Introduction
	Towards Sustainable Ageing
	Ageing in Place
	Challenging Demographic Changes
	Normal Ageing
	Pathological Ageing

	Gerontechnology
	Ambient Assisted Living

	Assistive Living Spaces
	Whispering Things
	Pervasive Interaction
	Ambient Intelligence (AmI)
	An AAL Round-up

	Positioning of this Doctoral Work
	Easing AAL Technology Transfer into Society
	A Need for Deployments in Real Settings
	Two Complementary Approaches

	Specific Research Focus: Context Comprehension
	Definition of the Research Challenge
	Related Work in Context Comprehension
	Presentation of the Method

	II Semantic Reasoning for Context Comprehension
	Modelling of Contextual Knowledge
	Motivation and Challenges
	Related Work in Context Modelling
	Functional Approach to Context Representation
	Rapid Introduction to the Semantic Web
	Functional Model for Service Delivery
	Functional Model for Activity Recognition
	No Memory: a Strategic Choice

	Naive Mechanism for Data Projection
	Perspective Work: a More Parametric Context Model

	Designing a Semantic Context Comprehension Engine
	Introduction
	A Taxonomy for Context Comprehension
	Explicit Reasoning
	Heterogeneous Needs for the Context Granularity

	Related Work in Rule-based Reasoning Techniques
	Imperative and Declarative Paradigms
	Semantic Technologies
	Usage in the AmI and AAL Communities
	Conclusion

	Which Inference Engine for AAL?
	Requirements Gathering
	Comparison on Inference Engines

	Rule Design for Context Comprehension
	General Concepts of The Rule Design
	Activity Inference: Balancing Rationalism and Empiricism
	Rules Verification Using Formal Methods

	Incorporating Data Driven Techniques and Quality of Information
	Limitations of a Purely Rule-Based Approach
	Data Driven Analysis of Ontological Knowledge
	Traditional Machine Learning Techniques on Ontologies
	Rule-Based Clustering
	Combining Different Techniques

	Introducing Memory in the Reasoning
	Quality of Semantic Information
	Representing Uncertainty in N3
	Reasoning under Uncertainty in N3

	A Cognitively Inspired Reasoning Architecture
	Conscious and Unconscious Minds
	Live Event Processing Using EYE Through the NTriplestore
	Complex Ontological Manipulation in the Inference Mechanism
	Ontological States
	Semantic I/O

	Integration Into a Context-Aware Service Framework

	III UbiSMART Framework: Ubiquitous Service MAnagement and Reasoning archiTecture
	Detailed Description of UbiSMART Framework
	Enabling Technologies
	Service Oriented Architecture (SOA)
	Open Service Gateway initiative (OSGi)
	Representational State Transfer (REST)

	Fully Distributed Reasoning Architecture: UbiSMART v1
	UbiSMART's Service Architecture
	Communication
	Sequence Diagram
	Detailed Implementation Using Jena Inference Engine
	Performance Validation and Discussion

	Hybrid Reasoning Architecture: UbiSMART v2
	UbiSMART's RESTful Architecture
	Sequence Diagram
	Extra: N3 Triplestore
	Communication
	Extra: Semantic Plug'n'Play

	Detailed Implementation of the Hybrid Architecture
	Stimulistener
	Cortex
	Cerebration and MotionEstimator
	Cogitation and EyeReasoner
	Performance Validation

	Discussion: Arbitration Between Reasoning Techniques

	IV Validation
	Deployments and Validation
	Validation Approach
	Technical Validation: STARhome Showcase
	Context of the Deployment
	System Description
	Results

	Top-Down Approach: Nursing Home in Singapore
	Context of the Deployment
	Description of the Use-Case
	System Description
	Results

	Bottom-Up Approach: Individual Private Homes in France
	Context of the Deployment
	System and Data Description
	Results

	Lessons Learned
	Get Out of the Lab
	The Suitable Sensing Granularity

	V Conclusion
	Conclusions and Perspectives
	Conclusions
	Perspective Work

	VI Appendix
	Overview of AAL Research Bottlenecks
	Global Deterioration Scale (GDS)
	Grammars for the Semantic Web
	Jena Rule Grammar
	N3 Grammar
	OWL 2 RL Grammar

	UbiSMART v2 Source Code Extracts
	Stimulistener
	Cortex
	Cogitation
	EyeReasoner
	Cerebration
	MotionEstimator

	Ontological Models and Rules
	Ontology for the Service Delivery Aspect
	Ontology for the Activity Recognition Aspect

	Discussion: Business Models for iAAL
	Smart Home in a Box
	A Box as Gateway in Each Home
	Web Browser as the Main Interface
	Server-Side Processing and Applications
	Sensors and Actuators

	The SmartStore Project
	Motivation
	Concept Development
	Self-Review for the Summer School

	Research & Development in Singapore
	Introduction
	Singapore's Research Organisation
	Hierarchy of Singapore's Research Institutions
	The National Research Foundation (NRF)

	Orientation of Singapore's Research
	A Research Strategy Defined in Five-Year Plans
	Research Priorities at the 2015 Horizon

	Bibliography
	List of Figures
	List of Tables
	Acronyms
	Index

