6 research outputs found

    GHG emissions during the high-rate production of compost using standard and advanced aeration strategies

    Get PDF
    In this study, we have evaluated different strategies for the optimization of the aeration during the active thermophilic stage of the composting process of source-selected Organic Fraction of Municipal Solid Waste (or biowaste) using reactors at bench scale (50 L). These strategies include: typical cyclic aeration, oxygen feedback controller and a new self-developed controller based on the on-line maximization of the oxygen uptake rate (OUR) during the process. Results highlight differences found in the emission of most representative greenhouse gases (GHG) emitted from composting (methane and nitrous oxide) as well as in gases typically related to composting odor problems (ammonia as typical example). Specifically, the cyclic controller presents emissions that can double that of OUR controller, whereas oxygen feedback controller shows a better performance with respect to the cyclic controller. A new parameter, the respiration index efficiency, is presented to quantitatively evaluate the GHG emissions and, in consequence, the main negative environmental impact of the composting process. Other aspects such as the stability of the compost produced and the consumption of resources are also evaluated for each controller

    Atributos químicos e frações de fósforo em solos de áreas de compostagem no município de Florianópolis-SC

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Programa de Pós-Graduação em Agroecossistemas, Florianópolis, 2017.A necessidade de dar destino para os resíduos de alimentos nos centros urbanos é uma grande preocupação para o poder público. Os resíduos de alimentos sem destino adequado podem provocar contaminação do meio, através de mal cheiro, foco para vetores de , e a contaminação de solo e água. Uma técnica utilizada para concentrar os resíduos e reaproveita-los é a compostagem. Na compostagem ocorre a degradação do material orgânico dos resíduos de alimentos, estabilizando o material, e gerando um produto capaz de melhorar os atributos do solo, favorescendo o desenvolvimento de plantas. Porém, a utilização prolongada das mesmas áreas para a produção do composto pode vir a causar problemas de contaminação ambiental. O objetivo do trabalho é avaliar os efeitos provocados pelas leiras de compostagem, sem cobertura e sem a coleta do percolado, (a) nos atributos químicos e (b) nas frações de fósforo no solo em áreas de compostagem no município de Florianópolis, Santa Catarina (SC). Para isto, selecionaram-se quatro áreas onde a compostagem é realizada, três delas pertencentes a Universidade Federal de Santa Catarina (UFSC) e uma pertencente a Companhia Melhoramentos da Capital (Comcap). Foram coletadas amostras de solo nas profundidades 0-5, 5-10, 10-20, 20-30 e 30-40 cm, para caracterização química e fracionamento de P. No estudo 1, foram determinados os seguintes parâmetros: pH em água, P, K, Cu e Zn disponíveis, Ca e Mg trocáveis, soma de bases, CTCpH7,0, saturação por bases, saturação por Al, matéria orgânica do solo e teores totais de K, Ca, Mg, Cu, Zn, Cd, Cr, Ni e Pb. No estudo 2, realizou-se o fracionamento químico do P e foram obtidas as isotermas de adsorção e dessorção. A produção de composto orgânico diretamente sobre o solo, sem impermeabilização do mesmo e sem a proteção das leiras contra intempéries, acarreta em alterações em diversos atributos químicos do solo, com grandes alterações no pH do solo, nos teores de diversos cátions como o K, Ca, Mg, e nos teores de P extraídos por Mehlich-1. Entretanto, não foram observadas grandes alterações nos teores de Cu, Zn e metais pesados no solo, o que normalmente é observado em áreas agrícolas nas quais resíduos orgânicos são aplicados. Observou-se alterações nas frações químicas de P com a produção de composto sobre o solo. As maiores alterações ocorreram nas frações inorgânicas, extraídas por RTA e NaHCO3. Essas frações são consideradas lábeis e podem ser facilmente transferidas para mananciais hídricos por escoamento superficial e erosão do solo. Além disso, ficou evidenciado que áreas utilizadas para a realização de compostagem podem apresentar-se saturadas por P, o que demonstra o potencial poluente dessa atividade quando conduzida de maneira a não utilizar práticas como a impermeabilização da área e também a coleta do chorume, o que pode potencializar as transferências de P e outros elementos para mananciais hídricos superficiais e subsuperficiais.Abstract : The need to target food waste in urban centers is a major concern for public authorities. Food residues with no destination can lead to environment?s contamination , through bad smell, focus on vectors and contamination of soil and water. One technique used to concentrate waste and reuse them is composting. In composting, occurs degradation of the organic material of the food residues, stabilizing the material, and generating a product capable of improving the attributes of the soil, favors plants development. However, the prolonged use of the same areas for the production of the compound may cause environment contamination problems. The aim of this study was to evaluate the effects of composting, without cover and percolated collection, (a) on soil?s chemical attributes and (b) on soil phosphorus fractions in composting areas in the municipality of Florianópolis, Santa Catarina (SC). For this, four composting areas were selected, three belonging to the Federal University of Santa Catarina (UFSC) and one belonging to Capital Improvements Company (Comcap). Soil samples were collected at depths 0-5, 5-10, 10-20, 20-30 and 30-40 cm for chemical characterization and fractionation of P. In study 1, the following parameters were determined: pH in water, P, K, Cu and Zn available, exchangeable Ca and Mg, base sum, CTCpH7.0, base saturation, Al saturation, soil organic matter and total contents of K, Ca, Mg, Cu, Zn, Cr, Ni and Pb. In study 2, the chemical fractionation of P was carried out and adsorption and desorption isotherms were obtained. The production of organic compost directly on the soil, without waterproofing of the soil and protection of the weeds against weathering, causes changes in several soil chemical attributes, with great changes in soil pH, in the contents of several cations such as K, Ca, Mg, and in the contents of P extracted by Mehlich-1. However, no significant changes were observed in Cu, Zn and heavy metals in the soil, which is usually observed in agricultural areas where organic wastes are applied. It was observed changes in the chemical fractions of P with the production of compound on the soil. The major alterations occurred in the inorganic fractions, extracted by RTA and NaHCO3. These fractions are considered labile and can be easily transferred to water sources by runoff and soil erosion. In addition, it was evidenced that areas used for composting can be saturated by P, which demonstrates the pollutant potential of this activity when conducted in a way that does not use practices such as waterproofing of the area and also the collection of slurry, which can potentiate the transfer of P and other elements to surface and subsurface water sources

    Aplicación de la lógica difusa para evaluación de una estrategia de innovación en el negocio de los fertilizantes orgánicos

    Get PDF
    El presente estudio pretende evaluar por medio de lógica difusa, el impacto que tendría en el negocio de los fertilizantes desarrollar una estrategia innovadora, enfocada en el desarrollo de nuevos productos, además de la implementación de una nueva estructura comercial y conceptual del negocio que permita ofrecer al mercado un producto con características técnicas, precio y servicio, generando una ventaja competitiva con respecto a los competidores y sustitutos del mismo mercado. El trabajo inicia presentando una estrategia innovadora a nivel productivo y comercial, continuando con una validación de dicha estrategia por medio de los empresarios pertenecientes al sector y finalizando con la evaluación de los resultados por medio de conjuntos difusos del tipo integral Mamdani. Los estudios e investigaciones aplicadas a la industria de los fertilizantes orgánicos se han aplicado principalmente a la solución de un problema de manejo de sólidos y solo se ha estudiado la generación de valor desde el punto de vista técnico (compostaje, humus, enriquecimiento en composición, entre otros), sin enfocar los estudios a la estructura del negocio que es lo que se desea resolver en este trabajo./Abstract: The present study was to evaluate by means of fuzzy logic, the impact they have on the fertilizer business to develop an innovative strategy, focused on the development of new products, together with the implementation of a new business structure and business concept that allows to offer to market a product with technical features, price and service, creating a competitive advantage over competitors and substitutes the same market. The article begins by presenting an innovative approach to production and commercial level, continuing validation of this strategy through the entrepreneurs from the sector and ending with the evaluation of the results by means of fuzzy sets of integral type Mamdani. The studies and research applied to the organic fertilizer industry has been mainly applied to the solution of a solid management problem has been studied and only the generation of value from the technical point of view (compost, humus, enrichment in composition, among others), without focusing the studies on the structure of business is to be solved in this workMaestrí

    Composting modelling : towards a better understanding of the fundamentals, applications for enhanced nutrient recycling, greenhouse gas reduction, and improved decision-making

    Get PDF
    Cette thèse de doctorat vise à consolider, développer et appliquer nos connaissances sur la modélisation du compostage, dans le but de fournir des informations, des outils et des perspectives accessibles et utilisables pour les chercheurs et les décideurs. L'espoir est que les travaux développés tout au long de cette thèse puissent aider à optimiser les procédés de compostage, notamment en réduisant les émissions de gaz à effet de serre (GES) et en améliorant le recyclage des nutriments. A ce titre, la thèse est divisée en trois phases : (1) la phase 1 est une consolidation et un développement des notions fondamentales de la modélisation du compostage, (2) suivie de la phase 2, où la modélisation de la perte de nutriments et des émissions de GES est étudiée, (3) avec la phase 3 qui est axée sur la manière d'assurer que ce travail puisse être utilisé par les décideurs et acteurs dans le milieu de compostage. Dans la première phase, une revue complète et systématique de l'ensemble de la littérature sur la modélisation du compostage a été entreprise (chapitre 2), cherchant à fournir une meilleure compréhension du travail qui a été fait et sur la direction des travaux futurs. Ceci a été suivi d'une étudie détaillée des approches de modélisation cinétique actuelles, notamment par rapport aux facteurs de corrections cinétiques appliqués à travers le domaine (chapitre 3). La phase 2 s'est ensuite focalisée sur les notions spécifiques relatives aux émissions de GES et aux pertes de nutriments lors du compostage, et à la modélisation de ces phénomènes. Cette thèse présente les réacteurs expérimentaux et le plan conçu pour suivre et évaluer le processus de compostage (chapitre 4), ainsi que le modèle de compostage compréhensif développé pour prédire avec précision les émissions et la transformation des nutriments pendant le compostage (chapitre 5). Enfin, la phase 3 visait à rendre ces informations facilement et largement utilisables. Cela a commencé par une évaluation des meilleures pratiques pour développer des modèles et des systèmes d'aide à la décision pour la prise de décision environnementale (chapitre 6), suivi par le développement de nouvelles approches de modélisation cinétique simples (chapitre 7), culminant avec le développement, l'ajustement paramétrique et la validation d'un modèle de compostage parcimonieux (chapitre 8). Grâce à ce travail, une base consolidée de l'état actuel de la modélisation du compostage a été développée, suivie par l'exploration et le développement de connaissances et d'outils à la fois fondamentaux et applicables.This PhD thesis aims consolidating, developing, and applying our knowledge on composting modelling, with the goal of providing accessible and usable information, tools, and perspectives for researchers and decision-makers alike. The hope is that the work developed throughout this dissertation can help in optimizing composting, notably by reducing greenhouse gas (GHG) emissions and improving nutrient recycling. As such, the thesis is divided into three phases: (1) phase 1 is a consolidation and development of the fundamentals of composting modelling, (2) followed by phase 2, where the modelling of nutrient loss and GHG emissions is investigated, (3) with phase 3 focusing on how to ensure that this work can be used by decision-makers. In the first phase, a comprehensive and systematic review of the entirety of the literature on composting modelling was undertaken (chapter 2), seeking to provide a better understanding on the work that has been done and guidance on where future work should focus and how it should be approached. This review then raised some interesting questions regarding modelling approaches, notably regarding modelling of composting kinetics, which was studied in detail through the evaluation of current modelling approaches (chapter 3). Phase 2 then focused on the specific notions relating to GHG emissions and nutrient loss during composting, and how to model these phenomena. This section starts with a presentation of the experimental reactors and plan designed to monitor and evaluate the composting process (chapter 4), followed by the comprehensive composting model developed to accurately predict emissions and nutrient transformation during composting (chapter 5). Finally, phase 3 aimed to make this information easily and widely usable, especially for decision-makers. This started with a review on the best practices to develop models and decision support systems for environmental decision-making (chapter 6), followed by the development of novel simple kinetic modelling approaches (chapter 7), culminating with the development, calibration, and validation of a parsimonious composting model (chapter 8). Through this work, a consolidated basis of the current state on composting modelling has been developed, followed-up by the exploration and development of both fundamental and applicable knowledge and tools

    Modélisation de la stabilisation de la matière organique et des émissions gazeuses au cours du compostage d'effluents d'élevage.

    Get PDF
    La variété des pratiques de compostage et les différences de nature des substrats modifient la vitesse de dégradation de la matière organique (MO), la qualité finale du compost produit et la part d'émissions sous forme de polluants gazeux. L'optimisation du procédé nécessite la prédiction de ces transformations ou la réalisation d'essais empiriques. Cette thèse analyse les interactions entre les processus biologiques, biochimiques, physico-chimiques et thermodynamiques majeurs à l'origine de la stabilisation de la MO et des émissions gazeuses de CO2, H2O, NH3, N2O. Elle se focalise sur le compostage par aération passive en andain d'effluents d'élevage. La méthode s'appuie sur la modélisation dynamique et des expérimentations. L'impact des interactions entre la biodégradabilité du carbone, la disponibilité de l'azote, l'humidité et la porosité, sur la cinétique et la stœchiométrie des émissions gazeuses est analysé à partir d observations en conditions contrôlées et sur une plateforme de compostage. Les écarts de répétabilité faibles en conditions contrôlées deviennent élevés en conditions de reproductibilité sur le terrain. Un modèle dynamique de compostage a été développé simulant la stabilisation de la MO et les émissions de CO2, H2O, NH3, N2O. Il est composé de quatre modules simulant les cinétiques d'oxydation de la MO par une population microbienne, les échanges thermiques et l'aération passive, le transfert d'oxygène, les transformations de l'azote. Lors de la phase thermophile, le facteur limitant le plus rapidement l'organisation de la MO est la disponibilité de l'azote. L'abaissement de la porosité entraîne une diminution des pertes gazeuses par l'augmentation de l'organisation de la MO. Le fractionnement initial de la MO ainsi que la teneur initiale en biomasse microbienne sont les facteurs clés pour prédire les cinétiques d'organisation de la MO. La calibration des paramètres d initialisation du modèle reste à améliorerThe variety of the practices and the differences in nature of the substrates modify the kinetics of degradation of organic matter (OM), the final quality of the produced compost and the fraction emitted as gaseous pollutants. To optimize the composting process, it is required to predict these transformations or to do some empirical test. This thesis analyzes the interactions between the main biological, biochemical, physicochemical and thermodynamic processes which explain the OM stabilization and the gaseous emissions of CO2, H2O, NH3, N2O. Focus is done on windrow composting with passive aeration. The method is based on dynamic semi-empirical modeling of the process and experimentations. The impact of the interactions between bioavailability of carbon and nitrogen, moisture and porosity, on the kinetics and the stoechiometry of the gaseous emissions is analyzed with data gathered in controlled conditions and on a commercial composting plant. The repeatability differences are small in controlled conditions but higher in field conditions. A dynamic model of composting was developed simulating the stabilization of OM as well as the emissions of CO2, H2O, NH3, N2O. This model is composed of four coupled modules which simulate the kinetics of oxidation of OM by a heterotrophic microbial population, the heat transfers leading to the passive aeration, the transfer of oxygen, the transformations of nitrogen. During the thermopilic phase, the first factor limiting the organization of OM is the availability of nitrogen. The decrease in porosity induces a reduction in the gas losses through the increase in the organization of OM. The initial OM fractionation and the initial microbial biomass are the key factors to predict the kinetics of organization of OM. The calibration of the specific parameters used for model initialization needs a further implementationTOULOUSE-INSA-Bib. electronique (315559905) / SudocSudocFranceF

    Modélisation du procédé de compostage - Impact du phénomène de séchage

    Get PDF
    Le compostage constitue un phénomène simple qui nécessite cependant un savoir-faire important puisque la réaction biologique est orientée par le contrôle de certains paramètres (température, oxygène, humidité) faisant intervenir de nombreux phénomènes couplés. Face à la complexité des mécanismes à étudier et dans le but d'optimiser le procédé industriel, l'utilisation d'un modèle de compostage semble donc pertinente afin de mieux comprendre les mécanismes mis en jeu, d'identifier les effets des couplages entre les mécanismes et mettre en avant certains facteurs clés ou encore comparer différents scénarios. L'état de l'art des modèles de compostage montre qu'aujourd'hui, malgré le nombre important de modèles de compostage, il n'en existe aucun capable de prédire, avec une formulation en temps et en espace, la température, la concentration des gaz (oxygène, dioxyde de carbone, diazote, …), la teneur en eau, les transferts entre phase, la dégradation du substrat, et prenant en compte les modifications d'aération. Le développement d'un nouveau modèle a donc été nécessaire pour pouvoir prédire l'évolution de ces variables et étudier leur couplage dans le procédé. Pour cela, la technique de moyenne volumique, appliquée aux équations à l'échelle du pore, a été utilisée et a permis d'obtenir un modèle de compostage à l'échelle de Darcy. Ce modèle prend en compte une phase gazeuse, une phase liquide et une phase solide. La phase gazeuse comprend quatre espèces : oxygène, dioxyde de carbone, azote, et vapeur d'eau. Dans la phase liquide, seule l'eau est considérée. Le séchage est intégré au modèle sous la forme d'un terme d'échange entre les phases gazeuse et liquide. Enfin, un modèle biologique, inclus dans le modèle de compostage, permet de prendre en compte la dégradation du substrat. Celui-ci est divisé en trois fractions : rapidement biodégradable, lentement biodégradable et inerte. Les deux premières fractions sont solubilisées, fournissant une fraction rapidement hydrolysable. Cette fraction est supposée directement consommée par les bactéries. En compostage, procédé aérobie, la dégradation de la matière organique est associée à une consommation d'oxygène et production de dioxyde de carbone, d'eau et de chaleur. L'hypothèse d'équilibre local thermique et chimique a été supposée ici. Cependant, pour l'eau, les 2 approches (Equilibre Local (EL) et Non-Equilibre Local (NEL)) ont été testées numériquement. Les résultats ont montré que lorsque σ, le coefficient d'échange de masse entre la phase gaz et la phase liquide pour l'eau, est compris dans l'intervalle [1, 4], les approches EL et NEL sont équivalentes, avec des temps de calcul moindres pour le cas NEL. Ainsi, pour toutes les simulations, une écriture NEL a été adoptée avec une valeur de σ de 2.5. Des tests ont ensuite permis de montrer la consistance du modèle. Au vu du nombre important de paramètres, une analyse de sensibilité a ensuite été réalisée afin de déterminer quels sont les paramètres qui ont l'impact le plus important sur le procédé. Ainsi, l'analyse a mis en évidence qu'il faut être prudent quant aux valeurs utilisées pour la capacité calorifique, un coefficient de l'isotherme de sorption, de nombreux paramètres du modèles biologiques (ksH, krH, µmax, Xa,0, Tmax, Topt, Xi,0, Xrb,0) et la porosité. Enfin, les résultats fournis par le modèle ont été comparés aux résultats expérimentaux obtenus à l'échelle pilote 1/1000 en usant des conditions opératoires identiques. Les essais de compostage réels ont été réalisés par Veolia Environnement Recherches et Innovation sur un mélange de biodéchets des ménages et de déchets verts. Les résultats à l'échelle 1/1000 ont montré que le modèle parvient à bien capter l'évolution moyenne de la température et des concentrations au cours du procédé. La température au point central, notamment, est très bien reproduite par le modèle. Il en va de même pour le bilan de dégradation de la matière organique. Des simulations à l'échelle industrielle 1/1 ont également été réalisées, fournissant des résultats prometteurs. ABSTRACT : Composting may look like a simple process. However, it requires an important expertise, as the biological response is governed by the control parameters (temperature, oxygen, moisture content), involving many coupled phenomena. Given the complexity of the studied mechanisms and in order to optimize the process, using a composting model seems relevant to understand the mechanisms involved, identify the effects of coupling between these mechanisms, highlight some key factors or compare different scenarios, in order to optimize the industrial process. The state of the art of composting models in the literature shows that today, despite the large number of composting models, there is none that can predict, with a formulation in time and space, temperature, concentration of gases (oxygen, carbon dioxide, nitrogen, ...), moisture content, transfers between phases, degradation of the substrate, and take into account the changes in aeration. The development of a new model was therefore necessary to predict the evolution of these variables and study their coupling in the process. The technique of volume averaging applied to the pore scale equations has led to a composting model at the Darcy-scale. This model takes into account a gas phase, a liquid phase and a solid phase. The gas phase includes four species: oxygen, carbon dioxide, nitrogen and water vapor. In the liquid phase, only water is considered. Drying is integrated into the model as an exchange term between gas and liquid phases. Finally, the biological model, included in the composting model, allows to take into account the degradation of the substrate. It is divided into three fractions: readily hydrolysable, slowly hydrolysable and inert. The first two fractions are hydrolized, providing a readily assimilable soluble fraction. It is this fraction that is directly consumed by bacteria. In a composting process, degradation of organic matter is associated with oxygen consumption and production of carbon dioxyde, water and heat. The assumption of thermal and chemical local equilibrium was assumed in this work. However, for water, the two approaches (Local Equilibrium (LE) and Local Non-Equilibrium (LNE)) have been numerically tested. The results showed that when , the water mass exchange coefficient between gas and liquid phases, ranges from 1 to 4 s-1, the LE and LNE approaches are equivalent, with less computing time for the LNE case. Thus, for all future simulations, it was decided to adopt a LNE approach with a value of equal to 2.5 s-1. Tests were then carried out to show the consistency of the model. Given the large number of parameters, a sensitivity analysis was performed to determine the parameters that have the greatest impact on the process. This analysis showed that one must be cautious about the values used for the heat capacity, a coefficient of the sorption isotherm, many parameters from the biological model (ksH, krH, μmax, Xa,0, Tmax, Topt, Xi,0, Xrb,0) and porosity, because these are the parameters that affect mainly the process. Finally, the results provided by the model were compared with experimental results obtained at a pilot scale of 1/1000 using identical operating conditions. The composting experiments were carried out by Veolia Environment Research and Innovation with a mixture of household biowaste and green waste. The results on the 1/1000 scale pilot showed that the model is good at capturing the average change in temperature and concentration during the process. The temperature at the central point in particular is very well reproduced by the model. The same applies to the assessment of organic matter degradation. Simulations at industrial scale (1/1) have also been carried out. They have given promising results
    corecore