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Résumé 

Cette thèse de doctorat vise à consolider, développer et appliquer nos connaissances sur 

la modélisation du compostage, dans le but de fournir des informations, des outils et des 

perspectives accessibles et utilisables pour les chercheurs et les décideurs. L'espoir est 

que les travaux développés tout au long de cette thèse puissent aider à optimiser les 

procédés de compostage, notamment en réduisant les émissions de gaz à effet de serre 

(GES) et en améliorant le recyclage des nutriments. A ce titre, la thèse est divisée en 

trois phases : (1) la phase 1 est une consolidation et un développement des notions 

fondamentales de la modélisation du compostage, (2) suivie de la phase 2, où la 

modélisation de la perte de nutriments et des émissions de GES est étudiée, (3) avec la 

phase 3 qui est axée sur la manière d’assurer que ce travail puisse être utilisé par les 

décideurs et acteurs dans le milieu de compostage. 

Dans la première phase, une revue complète et systématique de l'ensemble de la 

littérature sur la modélisation du compostage a été entreprise (chapitre 2), cherchant à 

fournir une meilleure compréhension du travail qui a été fait et sur la direction des 

travaux futurs. Ceci a été suivi d’une étudie détaillée des approches de modélisation 

cinétique actuelles, notamment par rapport aux facteurs de corrections cinétiques 

appliqués à travers le domaine (chapitre 3). La phase 2 s'est ensuite focalisée sur les 

notions spécifiques relatives aux émissions de GES et aux pertes de nutriments lors du 

compostage, et à la modélisation de ces phénomènes. Cette thèse présente les réacteurs 

expérimentaux et le plan conçu pour suivre et évaluer le processus de compostage 

(chapitre 4), ainsi que le modèle de compostage compréhensif développé pour prédire 

avec précision les émissions et la transformation des nutriments pendant le compostage 

(chapitre 5). Enfin, la phase 3 visait à rendre ces informations facilement et largement 

utilisables. Cela a commencé par une évaluation des meilleures pratiques pour 

développer des modèles et des systèmes d'aide à la décision pour la prise de décision 

environnementale (chapitre 6), suivi par le développement de nouvelles approches de 

modélisation cinétique simples (chapitre 7), culminant avec le développement, 

l'ajustement paramétrique et la validation d'un modèle de compostage parcimonieux 

(chapitre 8). 

Grâce à ce travail, une base consolidée de l'état actuel de la modélisation du compostage 

a été développée, suivie par l'exploration et le développement de connaissances et 

d'outils à la fois fondamentaux et applicables. 
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Abstract 

This PhD thesis aims consolidating, developing, and applying our knowledge on 

composting modelling, with the goal of providing accessible and usable information, 

tools, and perspectives for researchers and decision-makers alike. The hope is that the 

work developed throughout this dissertation can help in optimizing composting, notably 

by reducing greenhouse gas (GHG) emissions and improving nutrient recycling. As such, 

the thesis is divided into three phases: (1) phase 1 is a consolidation and development 

of the fundamentals of composting modelling, (2) followed by phase 2, where the 

modelling of nutrient loss and GHG emissions is investigated, (3) with phase 3 focusing 

on how to ensure that this work can be used by decision-makers. 

In the first phase, a comprehensive and systematic review of the entirety of the literature 

on composting modelling was undertaken (chapter 2), seeking to provide a better 

understanding on the work that has been done and guidance on where future work 

should focus and how it should be approached. This review then raised some interesting 

questions regarding modelling approaches, notably regarding modelling of composting 

kinetics, which was studied in detail through the evaluation of current modelling 

approaches (chapter 3). Phase 2 then focused on the specific notions relating to GHG 

emissions and nutrient loss during composting, and how to model these phenomena. 

This section starts with a presentation of the experimental reactors and plan designed 

to monitor and evaluate the composting process (chapter 4), followed by the 

comprehensive composting model developed to accurately predict emissions and 

nutrient transformation during composting (chapter 5). Finally, phase 3 aimed to make 

this information easily and widely usable, especially for decision-makers. This started 

with a review on the best practices to develop models and decision support systems for 

environmental decision-making (chapter 6), followed by the development of novel simple 

kinetic modelling approaches (chapter 7), culminating with the development, calibration, 

and validation of a parsimonious composting model (chapter 8). 

Through this work, a consolidated basis of the current state on composting modelling 

has been developed, followed-up by the exploration and development of both 

fundamental and applicable knowledge and tools. 
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YAOB Yield coefficient AOB g cell TOC formed/g 

N oxidized 
YCO2 CO2 yield coefficient kg CO2/kg O2 

yH2O Metabolic yield of water kg H2O produced/kg 

O2 consumed 
YHB Yield coefficient heterotrophic bacteria g cell TOC formed/g 

TOC oxidized 
YHF Yield coefficient heterotrophic fungi g cell TOC formed/g 

TOC oxidized 
YNOB Yield coefficient NOB g cell TOC formed/g 

N oxidized 
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Impact of the COVID-19 pandemic 

Halfway through this PhD project, in early 2020, the world was struck by a pandemic 

caused by SARS-CoV-2, leading to widespread lockdowns across the globe and forcing 

a complete reimagining of our daily lives. Aside from the large-scale losses and societal 

shifts due to the pandemic, its impact was felt on a much smaller and less significant 

scale: the scope and course of this PhD.  

The initial plan for this thesis was to develop a mathematical composting model that 

could accurately predict greenhouse gas emissions, nutrient transformation and loss, 

and pH during composting. As such, experimental composting reactors were designed 

and experiments using these reactors were planned to begin in May of 2020. However, 

the province of Quebec entered a full lockdown, with all non-essential businesses 

(including universities and research laboratories) closing on March 23rd, 2020. Access to 

our laboratories was only partially reinstated as of the end of May 2020, operating at a 

significantly reduced (25%) capacity for the rest of the year. In addition to this, 

administrative delays led to significant processing times for funding, orders, and 

shipping. Further restriction on the availability of materials and supply line delays meant 

that the experimental work planned for May of 2020 only commenced in July of 2021.  

This delay greatly impacted the course of the PhD, given that the model had already 

been created and programmed by the time of the lockdown, only requiring calibration 

and validation with experimental results. To continue working on the advancement of 

knowledge during this time, the author decided to delve deeper into the fundamentals 

on composting modelling, leading to three chapters that had not originally been planned. 

Ultimately, given the delays, the knowledge gained during this time, and the necessary 

time to undertake the desired experiments, the difficult decision was taken to base model 

calibration and validation on data sourced from the literature and to leave a new 

graduate student take over the prepared experimental work. Nevertheless, the author 

firmly believes that, in the end, this benefited the quality of the final models and thesis, 

forcing their calibration and validation over a much larger set of data than what had 

initially been planned.  

In addition to my prior acknowledgement, I want to take the opportunity to thank the 

essential workers, especially the medical personnel, who spent months working around 

the clock and fighting this virus, all the while physically and mentally exhausted. Your 

dedication and sacrifice are amazing.   



 

1 

Introduction 

Over the course of the past century, the human population has nearly quintupled from 

about 1.6 billion people in 1900 to nearly 7.6 billion in 2017 (United Nations, 2017). This 

explosion in world population has resulted in a drastically increased demand for food and 

has put the agricultural sector under heavy stress to provide the necessary sustenance. 

Though the rapid growth in population has likely plateaued, the population is still 

expected to surpass 11 billion by the end of the century (United Nations, 2017). Because 

of this continued expansion (predominantly from developing countries in Africa) and of 

the increase in affluence in developing nations, we will continue to demand more from 

our resource-limited planet. Current estimates predict an increase in agricultural 

production of about 1.5% per year, totalling in a growth of about 15% over the next ten 

years (OECD, 2018) and 50 to 100% by 2050 (Baulcombe et al., 2009; Tilman et al., 

2011). 

 

To confront this threat, the initiatives undertaken during the “Green Revolution” of the 

1950s and 1960s led to rapid developments in high-intensity agriculture. These 

innovative practices resulted in a threefold increase in cereal yields between 1950 and 

1990, with similar outcomes in parts of Asia from 1960 to 1985 (Fageria et al., 2008; 

Smith et al., 2014). One of the driving factors behind these incredible results was, and 

still is, the use of mineral fertilizers.  

 

Alongside these increasing crop yields, we also find an equally impressive 200-300% 

increase in fertilizer use between 1970 and 2010 (FAOSTAT, 2013; Smith et al., 2014), 

while China increased its nitrogen (N) fertilizer production by a factor of 39 between 

1963 and 2015 (Luo et al., 2018). It is believed that, during this ground-breaking period 

in agriculture, at least 30-50% of the crop yield was attributed to the use of fertilizers 

(Baligar et al., 2001; Stewart et al., 2005). Consequently, it has been estimated that 

nearly 50% of the world’s population is dependent on nitrogen fertilizers for their 

sustenance (Erisman et al., 2008; Smil, 2002). Furthermore, this propensity towards 

fertilizer use does not seem to be waning, as the International Fertilizer Association (IFA) 

reported a 46% increase in urea production between 2003 and 2013 (Heffer and 

Prud’homme, 2016) and the Food and Agriculture Organization of the United Nations 

(FAO) predicted an annual increase in fertilizer nutrient demand of 1.5%, 2.2% and 

2.4% for nitrogen, phosphorus (P) and potassium (K) between 2016 and 2020 

(FAOSTAT, 2017). 
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However, though fertilizers have allowed us to keep up with the growing demand for 

agricultural products, their historical overuse (Byrareddy et al., 2019; Kurdi et al., 2020; 

Lu and Tian, 2017; Sun et al., 2019b; Withers et al., 2015; Zulfiqar and Thapa, 2017) 

has introduced an environmental crisis in many parts of the world. Indeed, improper use 

of fertilizers can have a detrimental effect on terrestrial, marine, and freshwater 

ecosystems by causing soil nutrient depletion (through unbalanced fertilization), soil 

acidification, eutrophication, nutrient run-off, reduced biological diversity, and greatly 

increased greenhouse gas emissions from agricultural practices (Horrigan et al., 2002; 

Sutton et al., 2013; Vitousek et al., 1997; Walling and Vaneeckhaute, 2021a).  

 

Therefore, in the aim of maintaining our agricultural abilities while lessening the 

environmental and ecological impact of our current practices, a variety of alternative 

fertilization treatments have been explored. These, notably, include the growing use of 

waste-derived fertilizers and amendments that can present a solution to two of the major 

issues we face as a society. Indeed, concurrently to the environmental crisis of nutrient 

contamination, many areas around the world are also facing or dealing with a waste 

management crisis, particularly concerning organic waste. Organic waste represents 

about 50% of the total waste generated on the global scale and is composed of organic 

matter originating from sources such as food residue, human and animal waste, and 

garden and wood products (Hoornweg and Bhada-Tata, 2012). Currently, this organic 

matter is primarily dealt with by elimination through landfilling (Chen et al., 2020a). 

However, landfilling is an environmentally unsustainable method for waste treatment, 

resulting in a variety of undesirable and severe environmental impacts, coupled with a 

loss in potential recovery of valuable compounds. These consequences include 

contamination of the surrounding land and groundwater, large amounts of greenhouse 

gas emissions, and important spatial requirements (El-Fadel et al., 1997; Lou and Nair, 

2009).  

 

One of the leading tides to deal with this organic waste is by shifting the paradigm from 

disposal and elimination to recovery and reuse, especially given the valuable nutrients 

found in organic waste. Indeed, multiple biomass conversion technologies have been 

developed to address this issue (Walling et al., 2019), while many legislative frameworks 

have been and are being implemented to push for a transition towards these valorization 

processes (CCME, 2014; EU, 1999; Kjær, 2013). Many of these technologies, such as 

anaerobic digestion, composting, and pyrolysis, allow for the conversion of organic waste 
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into value-added products, notably organic fertilizers (digestates, compost and 

biochars).  

 

Of these various alternatives, composting has been amongst the most prominent over 

the past decades to divert organic waste from landfills and valorize the nutrients and 

organic matter within it (Chen et al., 2020a). Composting is the biological process 

through which organic matter is aerobically decomposed by bacteria, fungi, and 

macrofauna into compost. The process allows for the reduction of the weight and volume 

of the residual matter, while simultaneously killing off pathogens and organisms and 

leading to a value-added product (Hay and Kuchenrither, 1990). The resulting product, 

i.e., compost, is a humus-like substance that is rich in carbon and nutrients, thus 

promoting its use as an organic fertilizer or as a soil amendment. As such, compost has 

been demonstrated to increase the nutrient supply, increase crop yield, decrease soil 

erosion, and increase soil workability, all the while sequestering carbon and acting as a 

pesticide against certain insects (Lairon, 2010; Lazcano et al., 2014). There are also the 

added benefits derived from avoiding landfilling, such as reducing GHG emissions and 

decreasing soil and groundwater contamination. Furthermore, compost is a generally 

accepted product by the general population, in contrast to products of other biomass 

conversion processes, such as the digestate from anaerobic digestion and biochar from 

pyrolysis and gasification which, for the time being, require work to establish themselves 

in the eyes of the consumers (Al Seadi and Lukehurst, 2012; Dahlin et al., 2015; Dahlin 

et al., 2017; Riding et al., 2015; Torrijos, 2016).  

 

Though organic fertilizers such as compost cannot replace the use of mineral fertilizers 

due to their significantly lower nutrient content, they do offer an important tool for 

farmers to properly balance their soil needs. However, despite the benefits derived from 

the composting process, the process still grapples with some important issues, notably 

related to nutrient loss during the process. Indeed, nitrogen loss can be significant during 

composting, either through ammonia (NH3) volatilization, or denitrification into products 

such as nitrous oxide (N2O) and dinitrogen (N2). Indeed, some studies have reported N 

loss of up to 90% of initial nitrogen, with losses in the area of 20 to 70% being a common 

finding (Eghball et al., 1997; Li et al., 2017; Lim et al., 2017; Martins and Dewes, 1992; 

Ogunwande et al., 2008; Steiner et al., 2010; Witter and Lopez-Real, 1988). This not 

only represents an important loss in a valuable compound, but also an added 

environmental burden due to the significant greenhouse potential of N2O. Similarly, 
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phosphorus losses due to leaching of up to around 30% have also been reported in some 

works (Parkinson et al., 2004; Tiquia et al., 2002), presenting another economic and 

environmental burden. 

 

Though some researchers have sought to shed a light on the state of nutrients and their 

recovery during composting through a variety of interesting and innovative experimental 

methods, the inherent complexity and variability encountered in the composting process 

can limit the generalization of this information. Indeed, many factors influence the 

composting process and to experimentally account for this variability over a large range 

of conditions (waste types, bulking agents, aeration rates, temperature, and moisture 

ranges, etc.) would require a massive investment in time and resources. This is where 

mathematical process modelling can play an important role. Instead of having to pass 

through extensive and repetitive experimental work, we can instead design a 

mechanistic model, i.e., a mathematical model based on theory, to represent physical 

and biochemical behaviour in the system that can allow us to simulate and optimize the 

composting environment. Having the ability to optimize the composting process to favor 

nutrient, notably nitrogen and phosphorus, recycling, ensure adequate degradation, and 

limit greenhouse gas emissions, can be an all-around boon, favoring the environmental, 

ecological, and economic benefits of the process.     

 

Problem statement, objectives, and impact 

The overall objective and expected impact of this project is to support the transition 

towards more sustainable and circular economies, while reducing the environmental 

impact of waste management treatment trains, notably regarding composting. This is 

achieved by providing decision-makers and experts with the targeted tools necessary to 

plan and optimize waste valorization and nutrient recovery trains. By increasing nutrient 

recovery and decreasing GHG emissions from composting, the overall environmental 

footprint of the process can be greatly decreased, and economic benefits can be 

increased. Future research should also be stimulated due to the work undertaken in this 

dissertation, notably through our efforts to provide easy access to knowledge on the 

field of composting modelling and the development of fundamental knowledge, while the 

models can be used to explore various new alternatives for process optimization that 

can then be validated experimentally.  
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The specific objectives of this PhD are pursued through the following problem statements 

and research questions, divided into three phases: 

 

Phase 1: Consolidation and development of the fundamentals of composting 

modelling 

• Problem statement/Research question 1: Composting modelling has been around 

for nearly 40 years, with a plethora of diverse modelling approaches being 

applied. Despite this continued growth in the field, there is very little knowledge 

on the current state-of-the-art. The only review on mathematical composting 

modelling dates to 2006 and, as such, presents a very limited picture of the 

progress in this area. Therefore, the first research question for phase 1 can be 

expressed as follows: What is the current state of knowledge in the field of 

composting modelling?  

• Problem statement/Research question 2: Furthermore, despite decades of work 

on the subject, many areas in the field are still very contentious, such as the 

selection of kinetic expressions and the application of correction functions to best 

model the biodegradation process. Therefore, the second research question we 

address in phase 1 is: What correction functions (if any) are most appropriate to 

model composting kinetics? 

• Objective of phase 1: To create a consolidated base of information on the 

fundamentals of composting modelling through a systematic review of existing 

composting models and modelling assessments of some of the “basic” but 

understudied areas of composting modelling. The aim of this phase is to create a 

strong knowledge base for the subsequent work undertaken during this PhD, 

while also providing a state-of-the art compendium to guide future modelling 

work in this field.  

• Impact of phase 1: Through this consolidation and development of knowledge, it 

is expected that future modelling initiatives will have a clear guideline on how to 

approach composting modelling and easier access to information, hopefully 

favoring the development of high-quality models and guiding future research 

initiatives. Through this, practical and applicable model development should be 

promoted, leading to better outcomes for composting processes. 

• Originality of phase 1: The current state of knowledge on composting is very 

spread out and unconsolidated, presenting an important roadblock to model 

development by limiting access to the field and knowledge transfer between 
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developers. As stated, the most recent review on composting modelling dates to 

2006. Furthermore, certain knowledge, such as the use of correction functions 

which are fundamental to composting modelling (discussed in chapters 2 and 3), 

is greatly lacking, with limited and dated guidance provided to modellers. The 

work of phase 1 explores both these areas in great detail. 

 

Phase 2: Experimental and modelling investigation of nutrient loss and GHG 

emissions during composting 

• Problem statement/Research question 3: As highlighted during the introduction, 

despite the general advantages of the composting process, it still has many issues 

that could benefit from optimization. This is notably true for the loss of nutrients, 

thus decreasing compost quality, and the important emissions of potent GHGs. 

Given the great variability and impact of various operating parameters and 

variables on the process, undertaking this work experimentally would require 

extensive laboratory work that would likely suffer in generalizability and usability. 

Mathematical modelling provides a powerful tool to circumvent this issue by 

providing a generalizable framework to represent the composting system. 

However, current composting models do not consider the full breadth of GHG 

emission sources and nitrogen transformation pathways, presenting an important 

gap in knowledge. Therefore, the primary research question of phase 2 is: How 

can we mathematically model emissions of GHGs and nutrient loss during 

composting in a mechanistic fashion (and how do we apply such a model)? 

• Objective of phase 2: To develop a dynamic comprehensive mechanistic 

mathematical composting model to predict GHG emissions and nutrient loss 

during the composting process. The aim of this model is to facilitate process 

optimization, allowing users to investigate the impact of various operating 

conditions on organic matter degradation, composting time, nutrient loss, GHG 

emissions, etc.  

• Impact of phase 2: The development of a comprehensive model should allow for 

process evaluation and optimization, permitting users to reduce costs, decrease 

nutrient loss, and reduce environmental impacts from composting, particularly 

on a case-by case basis. Furthermore, such a model can be a valuable tool to 

research, validate, and understand the fundamentals of composting, allowing 

users to simulate and explore the various pathways for biodegradation, heat 

transfer, and nutrient transformation.    
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• Originality of phase 2: The originality of phase 2 stems from the development of 

the novel comprehensive model. Indeed, despite many experimental works 

following GHG emissions and a limited number following nutrient transformation 

and loss, modelling in these area remains nearly non-existent. The inclusion of 

the full nitrogen transformation pathway into a composting model has never been 

done. Furthermore, consideration of phosphorus and methane emissions is also 

a rarity. 

 

Phase 3: Facilitating the use of models for successful environmental decision 

support  

• Problem statement/Research question 4: Mathematical modelling is taking a 

more prominent place in environmental decision-making by providing decision-

makers with a key tool to plan and predict for various alternatives and outcomes. 

In the context of composting, this can involve, for example, optimizing substrate 

selection to favor degradation, optimizing process volume or duration, or favoring 

factors such as nutrient recovery and GHG emissions reduction. This is most 

notably achieved through the ever-expanding field of environmental decision 

support systems, where stakeholders, experts, modelling, and decision sciences 

come together to aid in facilitating the decision process. However, despite 

significant work and guidance in these individual fields, the integration of these 

concepts together during the development of decision support systems remains 

understudied. This therefore raises the following research question: What 

practices, notably regarding mathematical modelling, should be implemented to 

favor successful environmental decision-making and system design? 

• Problem statement/Research question 5: Based on the findings of research 

question 4, how can we develop a composting model that can best be suited for 

decision-making? One important notion for model usability by a wide range of 

users/stakeholders is that the model be simple enough to promote understanding 

and flexibility. Despite the existence of many simple composting models, the 

inherent complexity and dynamic nature of the process can still make these 

models relatively complex, depending either on data for many operating variables 

(temperature, moisture content, oxygen), all of which are highly variable, or 

using empirically derived expressions or parameters that are usually 

ungeneralizable, limiting the applicability. Therefore, the second research 
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question of phase 3 is: How can we model the composting process in both a 

simple and generalizable fashion?   

• Objective of phase 3: To develop our knowledge on the practical and successful 

use of mathematical models in a decision-making context, with a notable focus 

on their practical use in decision support systems. From here, we can then create 

a novel model or library of models that can be best suited for use in this kind of 

application, notably through parsimonious (i.e., a model capable of 

explaining/predicting with minimal parameters and/or variables) and 

generalizable mathematical models.  

• Impact of phase 3: Firstly, as in the case of phase 1, we hope that the 

consolidation of information on model use in decision-making can support the 

development of more usable and higher-quality models, favoring their use and 

implementation. Secondly, through the development of simple modelling 

approaches and a parsimonious model, the potential user-base of the work 

undertaken in this thesis will be greatly expanded, allowing for the benefits of 

phase 2 (economical, technical, and environmental optimization) to be at the 

hands of users other than experts, such as industries, municipalities, and 

operators. 

• Originality of phase 3: As is the case for phase 1, there exists no guideline for 

environmental model development. Though the work presented in this thesis 

(chapter 6) is not a full development guide, it presents an important and lacking 

steppingstone towards achieving this guideline. The second primary point of 

originality is in the development of the parsimonious model, which resulted in the 

development of new empirical equations relating various variables/operating 

conditions to composting outcomes (emissions and nutrient loss), as well as the 

model itself. 

 

The three phases of this project therefore address the above highlighted knowledge gaps  

by providing a consolidated base of knowledge about the state-of-the-art on composting 

modelling, developing our knowledge of composting kinetics modelling, creating a novel 

mechanistic mathematical composting model to predict GHG emissions and nutrient loss, 

exploring the integration of mathematical models into decision-making and how to best 

promote successful outcomes through decision support systems, and the development 

of a novel model library of simple composting models aimed at decision-makers.   
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Dissertation layout 

The plan of the dissertation is as follows, with a visual representation of the phases of 

the project and the layout provided in Figure 1: the first chapter begins with a general 

overview of the composting process, with a focus on the mechanisms of biodegradation 

and nutrient transformation, as well as a brief section on the impact of operating 

parameters on nutrient loss and GHG emissions. It aims to provide the information 

necessary to both understand and validate the choices made throughout the 

experimental and modelling work undertaken in this project. Chapter 2 then goes on to 

provide a systematic literature review of the past 40 years of mathematical composting 

modelling, identifying trends in modelling approaches, the fundamental kinetics, heat 

and mass balances used to model the process, as well as exploring areas requiring 

research, and thus providing further justification to the interest and originality of this 

dissertation. 

 

Following chapters 1 and 2, the dissertation transitions from a fundamental and 

theoretical framework to practical experiments and model development. Chapter 3 

presents an assessment of correction functions used in composting modelling based on 

experimental results to further guide model development. Chapter 4 presents the 

experimental planning and reactor design, which was undertaken to assess nutrient 

transformation and loss, as well as GHG emissions, during the composting process. 

Chapter 5 presents the culmination of the prior work into the development and validation 

of the mechanistic composting model to predict nutrient transformation and GHG 

emissions. Chapter 6 explores the role of mathematical models in environmental decision 

support, highlighting important design considerations to facilitate the use of these 

models by a wider audience. Based on the results and discussion presented in chapter 

6, chapter 7 presents novel simple modelling approaches are developed to simulate the 

composting process. Finally, chapter 8 contains the development, calibration, and 

validation of a parsimonious composting model, designed to follow nutrients and GHGs 

during composting, while being as simple to use as possible. This is followed by 

perspectives and concluding remarks in the final section of this thesis. 
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Figure 1. Dissertation layout. 
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Phase 1 

Consolidation and development of the 

fundamentals of composting modelling 
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Chapter 1: General principles of composting, 

nutrient loss and transformation 

The aim of this chapter is to provide general information on subjects at the core of this 

dissertation, particularly focusing on detailing what composting is, how the process 

operates on a fundamental level, and then exploring notions related to nutrient 

transformation and loss throughout the process, alongside gaseous emissions.   

 

As detailed in the introduction, composting is an aerobic biodegradation process of 

organic matter, undertaken by a variety of microorganisms. Many composting systems 

exist, notably: windrow composting, static pile composting, in-vessel composting, tunnel 

composting, rotating drum composting, and vermicomposting (Gajalakshmi and Abbasi, 

2008; Hay and Kuchenrither, 1990).  

 

In general, the composting process can be divided into four stages: mesophilic, 

thermophilic, cooling, and curing (Abbasi et al., 2009; Chen et al., 2011; Tortarolo et 

al., 2008; Tortosa et al., 2017). The process is also often separated into two phases, an 

active and a passive one. The active phase, during which degradation occurs, 

encompasses the first two stages and part of the cooling stage, while the passive phase 

represents cooling and curing.  

 

The process can be described as follows. During composting, mesophilic organisms, 

operating in the range of 25-45 °C, will start decomposing the substrate. This initial 

phase only lasts a few days during which short-chained organic compounds and easily 

biodegradable constituents are decomposed. As time progresses, the decomposition will 

lead the temperature to increase to around 50-60 °C, causing thermophilic organisms 

to take over the decomposition. During this phase, fungi, sporogenic bacteria, and 

actinomycetes decompose oils, proteins, and hemicellulose. The thermophilic phase is 

also responsible for the destruction of pathogens and seeds, which could hinder the on-

field application of compost. Proper aeration is needed to maintain this phase of the 

process to ensure that the organisms receive enough oxygen to maintain an aerobic 

environment. Consequently, in systems with discontinuous aeration, such as windrows, 

temperature waves can be observed: the substrate is initially rich in oxygen, thus 

increasing in temperature, which subsequently declines as the oxygen is consumed for 

microbial activity, this pattern repeating at every mixing event (Abbasi et al., 2009).  
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Progressively, the temperature will decrease as less nutrients and energy are available 

for the organisms, leading into the cooling phase; mesophilic organisms taking up the 

reins once-again. The temperature will then stabilize, and the process enters the curing 

phase, which can last several weeks/months and increases the quality of the compost. 

During the curing phase, humic substances are formed by secondary reactions 

(condensation and polymerization of organic chains) (Gao et al., 2019; Wu et al., 2017; 

Xie et al., 2019) and the compost is made more suitable for agricultural application 

(improved pH, decreased C/N ratio) by decreasing the phytotoxicity. This is known as 

maturation of the compost. Figure 1.1 presents the general temperature profile during 

the composting process. 

 

Figure 1.1 Temperature profile during the composting process. 

Depending on the technology used, composting can either be a batch, semi-batch, or 

continuous process. Tunnel composters, in-vessel composters, and rotating drum 

composters can be operated continuously, reflecting the operation of a continuous 

stirred-tank reactor (CSTR) or a plug flow reactor (PFR) and allowing for continuous 

composting in the thermophilic phase (Gajalakshmi and Abbasi, 2008; Schulze, 1962; 

Xiao et al., 2009; Zarkadas et al., 2018). Windrow and static pile composting are more 

often operated in a batch setting. Indeed, the addition of fresh substrate can lead to 

negative consequences on the process due to modification in substrate composition and 

a decrease in temperature, reducing the efficiency of the microorganisms (Nakasaki et 

al., 1998; Sundberg and Jönsson, 2005; Wang et al., 2017). However, recent work has 

investigated using this decrease in temperature beneficially for low-temperature 

composting, to counteract the self-heating of the pile (Sun et al., 2019a). 
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Another important method of composting is vermicomposting, which operates in a very 

different manner; operating usually between 12 °C and 25 °C with the help of worms 

(Ndegwa and Thompson, 2001). The process and products are somewhat modified due 

to the needs and by-products of the worms, resulting in some benefits, such as reducing 

nitrogen loss and a higher accessible nutrient content, as well as drawbacks relating to 

a potentially reduced pathogen destruction, though more studies are needed in this area 

(Hénault-Ethier et al., 2016; Lazcano et al., 2009; Lim et al., 2016; Ndegwa and 

Thompson, 2001; Nigussie et al., 2016; Quaik and Ibrahim, 2013). One point of interest 

with vermicomposting is that it can be operated in batch, semi-batch or continuous 

modes (Abbasi et al., 2009). Though a very interesting and promising approach, 

vermicomposting and its modelling will not be explored in this dissertation due to its 

unique nature compared to the other modes of operation. 

 

1.1 The biofilm: the seat of microbial activity and degradation and transformation during 

composting 

 

Looking at the composting system more closely, it is possible to describe it as a three-

phase system. There is a solid phase, made up of the organic matter, surrounded by an 

aqueous phase, in which the microorganisms are found, and a gaseous phase (air) 

passing throughout. The term biofilm is generally used to describe the layer of 

microorganisms that are in the aqueous phase and adsorbed onto the solid’s surface. It 

is these microorganisms that are responsible for the degradation of the organic matter. 

Figure 1.2 presents a schematic overview of this. 
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Figure 1.2 Conceptual model of organic matter in a composting heap and representation 

of the biofilm. On the left is a representation of the composting mound, while the right 

shows the interface between the gaseous, liquid, and solid phases (particle surface). 

The microorganisms will initially colonize the solid substrate and proceed to multiply, 

forming the biofilm. This proliferation is due in part to the presence of carbon (C) and 

nitrogen (N) in the organic matter. The carbon serves as the primary energy source for 

the microorganisms, as well as a building block for their cells. In order for the substrate 

to be degraded, carbon must be taken up by the organisms in the biofilm. This process 

varies depending on the form of the carbon. Some carbon is considered to be easily and 

readily degradable, most-often being in soluble form, such as sugars and organic acids 

(Wang and Witarsa, 2016). This contrasts with the carbon found in more complex forms, 

such as hemicellulose, cellulose, and lignin. In these cases, the carbon can only be 

accessed by the microorganisms following disintegration and/or enzymatic hydrolysis, 

both of which happen extracellularly (Batstone et al., 2002). 

 

Regardless of how it reaches the cells, the carbon uptake by the biofilm is then 

undertaken by aerobic organisms through microbial respiration. In this situation, oxygen 

(O2) is consumed as an electron receiver and the carbon is mineralized into carbon 

dioxide (CO2). The oxygen reaches the biofilm through dissolution in the aqueous phase. 

This highlights the necessity of proper moisture content and aeration. If one or both of 

these conditions fail, the aerobic microorganisms will be replaced by anaerobic ones, 

producing methane (CH4) instead of CO2. This is especially likely during the thermophilic 

phase of the process, given the proclivity of methanogens for higher temperatures 

(Megonigal et al., 2004), and greater oxygen consumption during this highly active 
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period. However, if a process is well operated, it is generally expected that the large 

majority of carbon emissions will be as CO2, with CH4 emissions representing 0 to 10% 

of total C loss and production of volatile organics being below 5% of total C loss (ADEME, 

2012; Walling and Vaneeckhaute, 2020b).  

 

Nitrogen is also implicated in microbial activity, serving as an energy source for nitrifying 

organisms and as a metabolite for amino acid production. Nitrogen can be transformed 

or emitted through a variety of pathways in the composting process. These include 

ammonification/mineralization, immobilization, nitrification, denitrification, and 

volatilization. Figure 1.3 presents a conceptual overview of N transformation and loss 

during the composting process. During ammonification, also known as mineralization, 

organic nitrogen (R-NH2) groups from the substrate are oxidized to ammonia (NH3) or 

ammonium (NH4
+), where ammonium can then be used for metabolic purposes, such as 

forming amino acids. When the microorganisms produce NH3/NH4
+ in higher quantities 

than needed, the surplus is excreted into the environment. The converse reaction is 

known as immobilization, where NH4
+ is taken up by the microorganisms from their 

environment to produce organic N for their metabolism (amino acids). Ammonium can 

also be used through nitrification, where it is converted to nitrite (NO2
-) and then nitrate 

(NO3
-) in aerobic zones, to produce energy once again. This nitrate can then be converted 

through multiple steps into nitrous oxide (N2O) followed by dinitrogen (N2) through the 

denitrification process that occurs when the microorganisms use nitrate as a source of 

oxygen for their respiration in anoxic conditions.  

 

The processes of mineralization and nitrification are important during composting, seeing 

how they produce NH4
+ and NO3

- that can easily be used by plants, whereas the other 

forms of nitrogen cannot be used directly. However, the main issue we encounter during 

composting is high volatilization of ammonia to the atmosphere. Indeed, as will be 

discussed in the following section, N-loss through volatilization can reach upwards of 

90% in some cases (Eghball et al., 1997). Ammonia and especially nitrate can also be 

lost through leaching, when they are captured in water that flows through and leaves 

the composting pile. Though, generally speaking, N-loss through leaching for composting 

is very minor, accounting for about 0.5% of total nitrogen loss, with many studies even 

finding little to no production of leachate (Eghball et al., 1997; Trémier, 2004). Nitrogen 

loss as N2O due to nitrification and denitrification generally tends to be low, usually below 

15%, and happens mostly during the cooling phase. Nonetheless, it is possible to have 
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very high N2O emissions, even above 50% of initial nitrogen, depending on the substrate 

and operating conditions (ADEME, 2012).  

 

 

Figure 1.3 Nitrogen transformation and loss pathways, based on Walling and 

Vaneeckhaute (2021a). 

The final nutrient that is of interest to us is phosphorus (P), given its importance as a 

macronutrient for plants and its role as one of the main limiting factors in fertilizer 

application legislation. Unlike carbon and nitrogen, phosphorus tends to be much more 

stable and is not subjected to volatilization or other complex transformations. The main 

pathway for P transformation and loss is through phosphate solubilizing microorganisms 

(Wei et al., 2018a). These organisms can transform nonbioavailable (insoluble) 

phosphorus into bioavailable (soluble) forms. It is this soluble form that is desirable from 

an agricultural perspective, given that nonbioavailable P cannot be used by plants. These 

microorganisms do not interact with the phosphorus directly, unlike what was described 

earlier for carbon and nitrogen. The main mechanism for P solubilization is through the 

release of compounds capable of chelating or reducing the pH of the environment to 
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release the phosphorus from its mineral forms (Alori et al., 2017). This includes 

compounds such as organic and inorganic acids, siderophores, protons, hydroxyl ions, 

CO2, and chelating substances. Though these bacteria are rarely reported on or 

investigated in the composting literature, there is an interesting and growing body of 

work looking into the inoculation of compost with phosphate solubilizing bacteria to 

increase the amount of plant-available phosphorus (Estrada-Bonilla et al., 2017; Kumar 

and Singh, 2001; Wei et al., 2018b). 

 

Phosphorus loss during composting is also rarely reported, and its form is most often 

assumed to be stable throughout the process, with limited to no leaching. Some 

experiments have indeed reported light phosphorus loss, lower than 2% (Eghball et al., 

1997), though others have found much more substantial loss through leaching, up to 

around 30% (Parkinson et al., 2004; Tiquia et al., 2002). Furthermore, despite the 

limited work on the speciation and characterization of phosphorus during composting, 

the assumption that it and its various fractions are stable appears questionable. For 

example, the research by Sharpley and Moyer (2000) and Lü et al. (2013) clearly 

highlight the mobility and the convertibility of P during composting. The prior examined 

the mobility of phosphorus in compost due to rainfall and found a removal of 59% to 

95% of water extractable P, following five rainfall events. The fraction of water 

extractable P varied from 16% to 22% of total P, depending on the substrate (Sharpley 

and Moyer, 2000). Despite being very different from the dynamics of P leaching in a 

controlled process, the study highlights the potential for P mobility. Regarding P 

fractions, Lü et al. (2013) demonstrated the significant increase in phosphorus 

concentration during composting, given the relative decrease in organic matter. Among 

their findings was a large decrease in labile (both organic and inorganic) P as composting 

progressed, decreasing from around 56% to 29% of total P (48% (inorganic)/64% 

(organic) decrease over 49 days), with the traditional increase in pH observed during 

the process being attributed as one of the primary causes for this transformation. These 

labile forms were mainly transformed into recalcitrant fractions, either bound with 

calcium (Ca) and magnesium (Mg), or aluminium (Al) and iron (Fe). By the end of their 

49-day composting trial, recalcitrant P had gone from 35% of total extracted P to 60%. 

This significant transformation from labile and easily extractable forms to recalcitrant 

forms can explain why P loss from composting is generally considered as being low, 

especially when compared to the significant organic matter loss during the process, but 

it remains of importance when considering the agronomic value of composts. Of note is 
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that the substrate in Lü et al.’s (2013) study was pig manure, which is rich in Fe, Al, Ca, 

and Mg ions, and such a conversion might not be observed with other substrates. Indeed, 

the substrate and operating conditions have a significant impact on P fractions during 

composting, as underlined by the study of Gagnon et al. (2012). Table 1.1 presents the 

proportion of phosphorus fractions by extractability obtained in their study, following a 

modified Hedley sequential-phosphorus fractionation method (Hedley et al., 1982). From 

this table, we can see how easily extractable P (extractable by resin) made up between 

22.5% and 74.2% of total P in final composts, depending on the substrate, while the 

most recalcitrant forms (extractable by HCl) also varied widely, from 5.5% to 46.3% 

(Gagnon et al., 2012). From all of the above, it is apparent that phosphorus is much 

more dynamic in composting, both in form and in mobility, than is widely assumed, and 

could therefore benefit from more research.  

 

Table 1.1 Phosphorus fractionation (rounded) for various composts used in the study of 

Gagnon et al. (2012).  

Extractable 

by 

Potato 

process 

residues 

Dairy 

manure 

Beef 

manure 

Swine 

manure 

Lobster 

waste 

Municipal 

biosolids 

Poultry 

biosolids 

Resin (%) 48.0 74.2 39.7 57.1 22.5 46.0 25.2 

NaHCO3 (%) 22.2 6.5 20.7 9.7 28.2 9.7 12.6 

NaOH (%) 26.1 9.0 15.5 8.0 3.0 19.0 9.9 

HCl (%) 5.5 10.3 29.0 27.7 46.3 25.4 52.3 
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1.2 Conclusion 

This brief first chapter has painted a portrait of composting that should allow readers to 

better understand the dynamics and research areas that will be explored throughout the 

rest of this thesis. Key takeaways include that: 

• Composting is a highly dynamic aerobic biodegradation process undertaken in a 

three-phase system (solid, liquid, air). 

• Biodegradation is generally separated into four major phases (in order: 

mesophilic, thermophilic, cooling, curing), occurring through a variety of 

microorganisms found in the biofilm. 

• Carbon and nitrogen are at the heart of this biodegradation, both being 

primordial for microorganism growth. 

• Many operating parameters and variables influence composting, including 

temperature, aeration rate, moisture content, C/N ratio, pH, and bulk density.  

• During optimal composting, the majority of mass loss should occur through the 

conversion of organic carbon to CO2, though a conversion to CH4 is possible in 

anaerobic pockets.  

• Nitrogen transformation pathways found in composting are vast, including 

ammonification/mineralization, immobilization, nitrification, denitrification, and 

volatilization.  

• Nitrogen loss during composting can vary significantly, generally being between 

20% and 70%, going upwards of 90% in certain cases, mostly through 

volatilization. 

• Phosphorus transformation and loss is an understudied area of the literature, 

though existing works point towards a progressive transition from labile to 

recalcitrant forms as the process progresses. 

• Total phosphorus loss during composting has been reported as ranging from 2% 

to 30%, primarily through leaching. 

The following chapter will build on this information, exploring how this complex process 

can be modelled mathematically, while highlighting areas that have seen less research, 

particularly regarding nutrients.   
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Chapter 2: A review of mathematical models for 

composting 

2.1 Résumé  

Le compostage est une méthode très utile pour traiter et valoriser les déchets 

organiques. Cependant, le procédé est défini par sa nature dynamique et régi par une 

multitude de paramètres de fonctionnement. Ainsi, la modélisation mathématique du 

procédé de compostage offre un outil puissant pour simuler et prédire les résultats 

variables du processus, permettant son optimisation. Cela peut inclure l'amélioration de 

l'efficacité, la réduction des coûts et la réduction de l'impact environnemental. Pour aider 

au développement de futurs modèles, nous fournissons ici une revue et une évaluation 

à jour de l'état de l'art de la modélisation du compostage. En révisant 40 ans de 

littérature, cette revue dresse le portrait le plus complet du domaine à ce jour. Cela 

comprend une analyse des tendances de la modélisation du compostage: examinant le 

type de systèmes ciblés, l'objectif des modèles et les approches de la cinétique et du 

transfert de masse et de chaleur. Concernant les approches de modélisation, nous 

explorons le fractionnement à la fois des substrats et des micro-organismes, les 

processus de dégradation biologiques qui peuvent être inclus (désintégration, hydrolyse, 

absorption et mort) et leur cinétique (de premier ordre, de type Monod), les bilans 

énergétiques (génération biologique, convection, conduction) et les bilans de masse. 

Nous fournissons également une évaluation des résultats des analyses de sensibilité 

effectuées sur les modèles de compostage, constatant que les modèles sont les plus 

sensibles à la croissance microbienne et aux taux de mortalité, ainsi qu'aux taux de 

consommation et aux rendements des produits. Dans la dernière partie de la revue, nous 

identifions, explorons et fournissons des recommandations directrices pour les travaux 

sur les domaines émergents et les domaines à développer dans la modélisation du 

compostage (changement de volume, pH, maturation, intelligence artificielle, etc.). 

 

Mots-clés : biodégradation aérobique; modélisation; simulation; prédiction; 

intelligence artificielle; stochastique 

 

 

 

 

 



 

22 

2.2 Abstract 

Composting is a valuable method to treat and valorize organic waste. However, the 

process is defined by its dynamic nature and governed by a multitude of operating 

parameters. As such, mathematical modelling of the process offers a powerful tool to 

simulate and predict the variable outcomes of the process, allowing for its optimization. 

This can include improving efficiency, lowering costs and reducing environmental impact. 

To aid with the development of future models, we provide an up-to-date review and 

assessment on the state of the art of composting modelling. By reviewing 40 years of 

literature, this review paints the most complete picture of the field to date. This includes 

an analysis of trends in composting modelling: looking at the type of systems that are 

targeted, the aim of the models and the approaches to kinetics and mass and heat 

transfer. Regarding modelling approaches, we explore the fractionation of both 

substrates and microorganisms, the biological processes that can be included 

(disintegration, hydrolysis, uptake, and death) and their kinetics (first-order, Monod-

type), energy balances (biological generation, convection, conduction) and mass 

balances. We also provide a review of the results of sensitivity analyses performed on 

composting models, finding that models are most sensitive to microbial growth and 

death rates, as well as consumption rates and product yields. In the final portion of the 

review, we identify, explore, and provide guiding recommendations for work on 

emerging areas and areas requiring development in composting modelling (volume 

change, pH, maturation, artificial intelligence, etc.).  

 

Keywords: aerobic biodegradation; modelling; simulation; prediction; artificial 

intelligence; stochastic 
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2.3 Introduction  

To favor the development and implementation of composting processes, mathematical 

models have been developed over the past few decades. These models aim at furthering 

our understanding of the processes, consequently reducing the time and energy spent 

on their optimization and allowing for simulation and assessment of process 

modifications. To date, only three reviews have explored the modelling of composting: 

Hamelers (2004) reviewed the approaches for modelling composting kinetics, notably 

focusing on the differences between inductive and deductive models. This was followed 

by Mason (2006) who looked at the structure and kinetic foundations of composting 

models, paying attention to their simulation capabilities and performance. The more 

recent review by Li et al. (2013) examined the importance of certain factors and their 

impact on the composting of food waste, as well as looking at modelling approaches and 

how models deal with uncertainty. However, since these reviews, there has been 

significant work in the field of composting modelling, with over 1600 papers having been 

published on the subject since 2013, more than the amount (1450) published between 

1990 and 2010 (based on the Web of Science database).  

 

Given these recent developments and the increasing growth in the field, a new review 

on the current state of composting modelling would be very beneficial. Therefore, the 

aim of this chapter is to review and examine the state of the art while highlighting areas 

requiring further development. Section 2.4 presents the methodology used during the 

review process, as well as general trends identified from the composting literature. 

Section 2.5 investigates in detail the mathematical modelling of the composting process, 

providing a comprehensive overview of the work that has been done in this field by 

focusing on kinetics, heat and mass balances, and the significance of model parameters, 

gleaned from an assessment of sensitivity analyses. Section 2.6 identifies and discusses 

emerging areas and areas requiring development in the field of composting modelling, 

while section 2.7 provides some concluding remarks. 

 

2.4 Material and methods 

This review focuses on literature from the emergence of composting modelling to the 

present day. The choice to consider such a large span of literature instead of basing this 

work on the previous reviews and completing with more recent information was to 

provide a truly comprehensive interpretation of the state of composting literature. This 
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is most notably portrayed in section 2.5.1 that presents the trends in composting 

literature and throughout section 2.6 on emerging areas and areas requiring 

development, something that the prior reviews lack. Furthermore, this has allowed the 

work to provide a much stronger quantitative support for its claims and comments on 

all aspects of composting modelling. 

 

To undertake the review, the Web of Science database was queried using the “advanced 

search” function. The search term was as follows: TS=(compost* AND (model* OR 

simulat*)), yielding 3217 results at the time of writing this. The addition of search terms 

and Boolean operators was found to be counterproductive and so the author decided to 

use the original search and do a manual selection of the works that appeared to be of 

interest for our review. Of the 3217 papers resulting from the query, 209 were identified 

as being potentially pertinent for this work, based on their titles, abstracts, and 

keywords. These works, ranging from 1980 up to June 2019, were all published white 

literature and written in English. Figure 2.1 presents the distribution of these publications 

over time. 

 

Figure 2.1 Temporal distribution of papers on composting modelling between 1980 and 

2019 identified using the Web of Science database using the advanced search query: 

TS=(compost* AND (model* OR simulat*)). Of the papers published in 2019, 34% were 

assessed during the review process (published by June of 2019). 
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These papers then underwent a preliminary analysis to determine whether they were 

“pertinent”, “somewhat pertinent”, or “non pertinent” for this work. An article was 

considered pertinent if it presented a mechanistic, i.e., based on theory and a 

mathematical description of the process, or mixed mechanistic-empirical model on the 

composting process. These articles would then be fully investigated by the authors. 

Somewhat pertinent papers were those that provided either empirical or structural 

equation models and were considered when looking at general trends in the modelling 

literature, while non pertinent works were those that had little to no relation to 

mathematical modelling and were discarded. In all, 123 articles were found to be 

pertinent to this work, 54 were considered to be somewhat-pertinent, and 27 were 

deemed non-pertinent. Furthermore, 5 papers were inaccessible. The temporal 

distribution of these reviewed papers can be found in figure 2.2. 

 

 

Figure 2.2 Temporal distribution of reviewed composting papers, ranging up until June 

of 2019. 

2.5 Modelling the composting process 

Composting is a process marked by multiple dynamic changes due to diverse and deeply 

interrelated phenomena. These changes include a characteristic temperature profile, 

transitioning between mesophilic and thermophilic temperature ranges (also reflected in 

the change in microbial community), an initial decrease in pH followed by a slow increase 
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due to a release and then consumption of short-chained organic acids, a decrease in 

mass, free air space (space between particles) and generally moisture content, a 

constant change in composition, the emissions of various gases, and the production of 

leachate. These changes are due to three main phenomena: microbial biodegradation, 

heat transfer, and mass transfer. Microorganisms, including bacteria, fungi, and 

actinomycetes, degrade the organic matter, leading to the change in composition and a 

release of energy and water. This energy, combined with heat transfer through pathways 

such as convection, conduction, and evaporation, contributes to a net temperature 

change in the process. Furthermore, compounds such as volatile solids and soluble 

compounds can be lost during the process through volatilisation or by leaching. 

Therefore, when developing mathematical composting models, the aim is to capture this 

complex reality through kinetic modelling combined with mass and heat balances. 

 

A very general and conceptual way of representing the numerical pathway taken to 

model the composting process is presented in Figure 3. This iterative process can be 

described as follows: based on the substrate composition and temperature (and 

potentially moisture content and oxygen concentration), the mass of substrate degraded 

within a time interval dt can be calculated using degradation kinetics. This substrate 

consumption can then be linked (either empirically or theoretically using stoichiometry) 

to the consumption of oxygen, the metabolic production of water, and the amount of 

heat generated by the microorganisms during this time interval. Mass and energy 

balances can then be applied to determine the net change in these variables within the 

timeframe, providing a new set of values that can then pass through the same process 

for a subsequent time interval. All of these processes will be described throughout 

section 2.5. 
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Figure 2.3 A general pathway to the numerical solution of mechanistic composting 

models. The terms are defined as follows: S (substrate), T (temperature), MC (moisture 

content). 

The following section starts with a description of trends in composting modelling (section 

2.5.1), followed by a detailed overview of the three main pillars of composting, i.e. 

substrate degradation (section 2.5.2), heat and energy balances (section 2.5.3), and 

mass balances (section 2.5.4). We also review sensitivity analyses in section 2.5.5 to 

highlight some of the most important parameters and general considerations when 

developing composting models. 

 

2.5.1 Trends in composting modelling 

 

During the preliminary analysis, in the aim of getting a clearer grasp on the state of 

composting modelling, the way each paper approached the modelling situation was 

identified. This included categorizing them based on their purpose (control, impact 

evaluation, predictive), their structure (deterministic vs stochastic, mechanistic vs 

empirical, structural equations), the type of system they were based on (reactor/in-

vessel, pile, landfill, unspecified), the dimensions that were considered (heat and mass 

transfer and biological activity/degradation), and their “focus” (temperature, 

oxygen/aeration, kinetics, pathogen inactivation, odours, emissions, runoff/leaching, 

etc.). 
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From the overview of the literature, a few interesting trends have become apparent. 

Firstly, an overwhelming majority of papers (95%) focused on predictive modelling, 

while 3% were specifically aimed at process control and 2% at impact evaluation. The 

most common model types were deterministic and mechanistic in nature (70%), 

followed by empirical (regression-based) models (30%), though some studies combined 

both approaches (7%). Structural equation models were used in 3% of cases and models 

implementing fuzzy or stochastic methods were only used 10% of the time.  

 

In terms of the type of system that was studied or that the models were based on, 

reactors or in-vessel systems were by far the most popular, representing 63% of cases, 

followed by piles (windrows or static) at 28% and landfills at 2% (7% were unspecified). 

For mechanistic models, heat and/or mass transfer were considered, to varying degrees, 

in approximately 62% of cases, while growth and/or degradation kinetics were 

considered 89% of the time. Mass and energy balances were combined with kinetics in 

60% of cases, kinetics oftentimes being studied independently (28%), or balances being 

used without explicit kinetic modelling to consider temperature or aeration (12%). 

Regarding the modelling of microbial growth and substrate degradation, first-order 

kinetic equations were the most prominent, finding use in 52% of cases. This was 

followed by Monod/Michaelis-Menten kinetics in 30% of cases, with a variety of other 

models (Contois, Tessier, non-first-order, empirically derived) making up the remainder. 

First-order and Monod kinetics were combined in 15% of cases.  

 

Finally, with respect to model focus, degradation kinetics and compost “quality” were 

the most studied subjects, being considered in 75% of papers. This was followed by 

temperature (64%) and oxygen concentration (55%). These three main focuses make 

up the bulk of the reviewed literature on composting modelling and can be considered 

as the pillars of a general predictive model. Other areas of interest included emissions 

from composting (13%), notably as either NH3 or CO2, runoff water and leaching (7%), 

pathogen elimination (5%) and odour emissions (3%). 
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2.5.2 Substrate degradation 

 

To model substrate degradation, three important considerations must be addressed by 

modellers. The first is determining how the substrate will be fractionated, i.e. how will 

the substrate be represented and what will be input into the degradation model. The 

second is to determine the microbial fractionation, i.e., what will be degrading the 

substrate. The third is to determine what degradation processes will be considered in 

the model, i.e., how the substrate will be transformed. These can then be used to model 

the degradation through kinetics, as presented in section 2.5.2.1. Figure 2.4 presents a 

conceptual overview of how the biological components of composting models can greatly 

vary in scope and complexity, highlighting the wide range of choices we discuss in this 

sub-section. 

 

For substrate fractionation, the organic matter can be divided into multiple fractions, 

ranging in complexity. Basic fractionations can simply consider a degradable and a non-

degradable fraction. For example, Tremier et al. (2005b) used the same fractionation as 

the Activated Sludge Models (ASM) (Henze et al., 2000) for their composting model, 

dividing the substrate into a directly biodegradable, a hydrolysable, and an inert fraction. 

Significantly more complex fractionations have also been proposed, such as separating 

the substrate into carbohydrates, lipids, proteins, hemi-/cellulose, lignin, and sometimes 

going into specific chemical species, as well as using biochemical or chemical oxygen 

demands (BOD/COD) (Francou et al., 2008; Kaiser, 1996; Orrico Junior et al., 2018; 

Sole-Mauri et al., 2007; Woodford, 2009). 

 

The case is similar for microbial fractionation. Microbial diversity and succession are 

responsible for dynamic changes in the rate of substrate degradation. In reality, the 

microbial community is diverse and dependent on various process parameters (Chen et 

al., 2019; Ince et al., 2018; Ki et al., 2017; Ryckeboer et al., 2003; Steel et al., 2013; 

Vieira and Pecchia, 2018; Zhao et al., 2019), though this complexity often far outweighs 

the capabilities of composting models. Many composting models have generalized this 

microbial diversity through general reaction coefficients, representing the entire 

microbial community as one entity. Though mechanistically flawed, these models have 

proven to be accurate if sufficient data exists to properly fit the reaction rates. More 

mechanistically inclined models have, however, provided more detailed fractionations of 

the microbial community (Fontenelle et al., 2011; Kaiser, 1996; Sole-Mauri et al., 2007; 
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Wang and Witarsa, 2016). An early example of this comes from Kaiser (1996) who 

considered four types of microorganisms that were responsible for substrate 

degradation: bacteria, actinomycetes, brown-rot fungi and white-rot fungi. In this case, 

each organism had their own kinetics and was associated with different substrate 

fractions, as well as having an order of precedence between microorganisms acting on 

the same substrate fraction. Building off of this notion of microbial fractionation, Sole-

Mauri et al. (2007) also included a mesophilic and thermophilic fraction for 

actinomycetes, fungi, and bacteria (a total of six fractions), aiming to better represent 

the process.  

 

Finally, regarding degradation processes, multiple pathways exist for substrate 

degradation. These processes are mainly biological, though chemical pathways have also 

been used in the literature. Biological processes include disintegration, hydrolysis, both 

of which occur extracellularly (Batstone et al., 2002), cellular uptake (microbial growth), 

and cellular decay (endogenous respiration or lysis), as well as considerations for 

inhibition by overcrowding in the biofilm and energy requirements for cell maintenance. 

There has also been some efforts to model anaerobic degradation in aerated 

environments, though this has seen limited interest in composting literature (Rafiee et 

al., 2018), finding more prominence in a landfilling context (Obersky et al., 2018; Rafiee 

et al., 2017). Chemical pathways have also rarely been considered, though chemical 

oxidation (of cellulosic material) has seen particular interest in a small subset of the 

field, particularly for prediction of self-ignition of composting heaps (Aganetti et al., 

2016; Luangwilai et al., 2018; Moraga et al., 2009; Nelson et al., 2003; Sidhu et al., 

2006; Zambra et al., 2011; Zambra et al., 2012). 
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Figure 2.4 Schematic representation of the variability in biological modules of 

composting models: (a) demonstrates the conceptual pathway of a very simple model 

that divides the substrate into a degradable and non-degradable fraction, the degradable 

fraction being hydrolyzed by a general microbial mass to degrade the substrate and 

produce CO2. (b) shows a much more complex modelling pathway with multiple 

substrate fractionations, each associated to various microbial fractions and with various 

degradation processes. These biological modules can then be integrated with heat and 

mass balances as detailed in the following sections. 
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2.5.2.1 Kinetics 

 

Multiple kinetic models have been used to describe the composting process. The most 

basic composting models will often consider hydrolysis as the sole degradation process, 

seeing how it is generally the rate-limiting step (Batstone et al., 2002; Wang and 

Witarsa, 2016). Though it has rarely been expressed as hydrolysis, the rate-limiting step 

has most often been represented by a first-order kinetic expression (eq. 2.1). The second 

most common expression are the Monod-type equations (eq. 2.2). Beyond this, there 

are also a few works that have used the Contois expression to take into account 

overcrowding by microorganisms at the surface of the substrate (Bialobrzewski et al., 

2015; He et al., 2018; Qin et al., 2007; Seng et al., 2016; Sole-Mauri et al., 2007; 

Vidriales-Escobar et al., 2017; Wang and Witarsa, 2016). 

 

Rdegradation,   first−order = −
d[Si]

dt
= ki ∙ [Si] (2.1) 

Rdegradation,   Monod = −
d[Si]

dt
=  μi

Xi
YSi

=
μmax,i[Si]

Ks,i + [Si]

Xi
YSi
 (2.2) 

 

The variables and parameters of equations 2.1 and 2.2 are as follows (the index i is used 

here to represent a specific microorganism growing on a specific substrate): In equation 

2.1, ki is the (hydrolysis) rate constant (s-1). In both equations, [Si] is the concentration 

of the substrate (kg m-3) and t is the time (s). In equation 2.2, Xi is the biomass 

concentration (kg m-3); μi and μmax,i are the specific and maximum growth rate of the 

microorganisms (s-1), respectively; Ks,i is the half-velocity constant (kg m-3) (or KM,i in 

the Michaelis-Menten equation, representing the Michaelis constant) and YSi is the yield 

coefficient (kg kg-1), representing the mass of biomass produced over the mass of 

substrate consumed. Such yield factors are highly used throughout the field to link the 

consumption or production of various compounds to the reaction rates. The most 

commonly used ones are for oxygen consumption and water production, but they can 

be used for any reaction and are especially present in more complex models 

implementing successive reactions. For example, rates of biological oxygen consumption 

(equation 2.3) and water production (equation 2.4) can be simply linked to degradation 

rates as follows, using an oxygen consumption/water generation coefficient (YO2/YH2O): 

 

RO2 consumption = YO2Rdegradation (2.3) 
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RH2O production = YH2ORdegradation (2.4) 

 

Such coefficients have also been used to estimate a variety of other metabolic products, 

such as the emission of carbon dioxide (CO2) in a multitude of models, and methane 

(CH4) in Ge et al.’s (2016) model, the latter being directly related to the rate of 

hydrolysis. 

 

Furthermore, as highlighted by Wang and Witarsa (2016), disintegration and uptake are 

also involved in the degradation process and these researchers found disintegration to 

be rate-limiting for soluble substrate uptake. Disintegration has almost never been 

explicitly included in the reviewed composting models, with the exception of the model 

developed by Denes et al. (2015) (expressed as two subsequent hydrolysis steps) and 

Wang and Witarsa (2016). In the latter case, the authors expressed disintegration as a 

function of (hemi)cellulose and lignin hydrolysis instead of the commonly used (in other 

fields) first-order equation (Batstone et al., 2002). Cellular uptake of soluble compounds 

(microbial growth) has been considered in addition to hydrolysis in a few more cases 

(Denes et al., 2015; Lashermes et al., 2013; Lin et al., 2008; Sole-Mauri et al., 2007; 

Vasiliadou et al., 2015; Zhang et al., 2012) and is generally represented by a Monod 

kinetic. A Tessier expression to take into account the energy needed to maintain cell 

activity, thus lowering the maximum growth rate if the substrate is lacking or if there is 

competition between organisms, has also been considered by Wang and Witarsa (2016). 

 

Decay and release of cellular compounds has also been considered in many models. In 

this case, the cellular compounds are returned as substrate for other microorganisms. 

This has generally been represented using a negative growth rate (Herbert or Pirt 

model), though endogenous respiration (where cells oxidize their own cellular material 

instead of new organic matter from the environment) has also been used (Gujer et al., 

1999; Wang and Post, 2012). Decay is often simply represented in the following form 

(eq. 2.5) by a first-order equation, where bi is the microbial death rate (s-1): 

 

Rdecay = biXi (2.5) 
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2.5.2.2 Correction functions 

 

Given the important variation in operating parameters during the composting process, 

it is essential to capture this change on the reaction rate. Therefore, modellers 

implementing simple first-order or Monod-type models can use correction functions (also 

referred to as adjustment factors or growth-limiting functions) to consider the change in 

degradation rate as a function of various operating conditions. Corrections can be applied 

based on temperature, moisture content, free air space (porosity), pH, specific 

substrate, and oxygen limitation. The rate of degradation can thus be rewritten as: 

 

Rdegradation
′ = RdegradationfTfMCfO2fFASfpH (2.6) 

 

Despite the seemingly widespread use of correction functions noted by Mason (2006), 

only 46% of the reviewed models (n = 56) used one or more correction functions. The 

rate of implementation has been relatively consistent over time, with no significant 

increase or decrease in use over the past decade compared to the 1990’s and 2000’s. 

There were two main reasons for the omission of correction factors that were explicitly 

addressed in the literature. First is the case where a thorough mechanistic model was 

developed, making the correction unnecessary. This was the case, for example, for 

Fytanidis and Voudrias (2014) who incorporated a complex flow module into their model, 

therefore removing the need for a free air space correction. The second case is a more 

novel approach to kinetic model design highlighted by Ebrahimzadeh et al. (2017). In 

their work, Ebrahimzadeh et al. (2017) circumvented the use of correction functions by 

using elementary chemical equations (zero, first, second and n-th order equations) with 

experimental data on volatile solids change over time to produce an accurate kinetic 

model. 

 

Regarding the application of correction functions, there does not appear to be any 

significant difference between the use of correction functions alongside first-order vs 

Monod-type kinetics. Nevertheless, the number of models that did not implement any 

type of correction was high. There can be valid reasons to not implement correction 

functions, notably when aiming for a model with a minimal number of parameters and 

when operating at relatively optimal conditions; the benefit of many of these correction 

functions often being most impactful at the extremes in operating parameters (such as 

a cut-off at high and low temperatures and moisture content). However, correction 
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functions can be a powerful tool to solidify the model’s accuracy, especially to increase 

its range of applicability.  

 

The most common type of corrections are temperature corrections (n=54) (e.g. Baptista 

et al., 2010; Keener et al., 2005; Petric and Selimbašić, 2008; Sánchez Arias et al., 

2012; Seng et al., 2016; Vasiliadou et al., 2015; Vlyssides et al., 2009; Wang and 

Witarsa, 2016). Three main methods are predominant: cardinal temperature corrections 

(the Rosso model) are the most common, followed by corrections using the Arrhenius 

equation, and a variety of empirical corrections. Equations considering cardinal 

temperatures (Rosso et al., 1995; Rosso et al., 1993) tend to offer the best 

representation of the composting process seeing how they can better represent the 

behaviour of the composting pile at extreme temperatures (Mason, 2008; Richard and 

Walker, 2006). Newer temperature corrections have also been proposed (Bialobrzewski 

et al., 2015; Bonifacio et al., 2017a; Lin et al., 2008; Petric et al., 2015; Petric and 

Selimbašić, 2008; Zhou et al., 2014a), though it would be beneficial to have a 

comparative study of their performances, especially compared to the cardinal 

temperature method. Some models have also implemented different corrections for 

different processes (Fytanidis and Voudrias, 2014; He et al., 2018; Lin et al., 2008; Seng 

et al., 2016; Wang and Witarsa, 2016; Yu et al., 2009). As an example, Seng et al. 

(2016) corrected their growth expression with the Arrhenius equation, their decay rate 

with Ekinci’s (2003) correction, and their rate of hydrolysis with Haug’s (1996) 

correction. A full list of correction functions used throughout the reviewed literature is 

presented in the appendix of this paper.  

 

The second most common corrections are moisture content corrections (n=28) (e.g. 

Bonifacio et al., 2017a; Keener et al., 2005; Malamis et al., 2016; Mohee et al., 1998; 

Richard et al., 2002; Seng et al., 2016; Sole-Mauri et al., 2007; Vasiliadou et al., 2015), 

followed by oxygen limitations (n=24) (e.g. Ekinci et al., 2004b; Keener et al., 2005; 

Seng et al., 2016; Talib et al., 2014; Zhang et al., 2016). Moisture corrections have all 

been empirical in nature, with the most common being the logistic curve proposed by 

Haug (1993), with a variety of other empirical models being used, but none finding any 

significant traction (n>2). On the other hand, oxygen corrections have mainly been 

mechanistic, most-often through a Monod expression, with Baptista et al.’s (2010) 

modified Monod expression having found strong use during the past decade. These 
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expressions have been found to provide the best results, despite the existence of 

empirical corrections (Baptista et al., 2010; Richard et al., 1999).  

 

The last of the “major” corrections to find somewhat frequent use (n=14) is for free air 

space (e.g. Ekinci et al., 2006; Liang et al., 2004; Malamis et al., 2016; Ndegwa et al., 

2000). Haug’s (1993) model has been used in every case, except for one who used 

Ekinci’s (2001) function. A more recent empirical model has been developed by Yu et al. 

(2009) for passively aerated systems.  

 

Only two of the reviewed models implemented a pH correction (Liang et al., 2004; Petric 

et al., 2015). There has also been cases of corrections for consideration of inhibition by 

specific (phenolic) compounds (Vlyssides et al., 2009) and consideration of other 

substrates (such as ammonia nitrogen) limitation (Sole-Mauri et al., 2007) through 

Monod expressions. 

 

2.5.3 Heat balance 

 

Heat balances have also come in a variety of forms. A traditional and generalized heat 

balance that has been used often throughout the literature is presented in equation 2.7.  

 

d(mcT)

dt
= G(Hi − H0) − UA(T − Ta) + Qbio (2.7) 

 

In this balance, m is the mass of the substrate (kg), c is the heat capacity of the substrate 

(kJ kg-1 °C-1), T is the temperature (°C), G is the airflow through the system (kg s-1), 

Hi and H0 are the enthalpies of the gas at the inlet and outlet of the system (kJ/kg), U is 

a global heat transfer coefficient (kW m-2 °C-1), A is the area of the system (m2) and Ta 

is the ambient temperature (°C). 

 

This form has remained relatively unchanged for many of the mechanistic composting 

models, with just over 50% of the evaluated models implementing a similar heat 

balance. In this expression, the term on the left represents accumulation, while the first 

term on the right is for convection, the second term is conduction, and the last term is 

biological heat production. Most often, equation 2.7 is further simplified by assuming 

that the mass (m) and the heat capacity (c) are constant through time, allowing them 
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to be sent to the right side of the equation and leaving a simple differential equation that 

can be solved through traditional numerical approaches, e.g., through finite differences.  

 

There are, however, some novel areas that have seen more development recently. This 

notably includes the modelling of chemical oxidation (Aganetti et al., 2016; Luangwilai 

et al., 2018; Zambra et al., 2012) and multi-dimensional models, with various works 

looking at 1D systems (Bari and Koenig, 2012; Fytanidis and Voudrias, 2014; Henon et 

al., 2009; Luangwilai et al., 2010; Sidhu et al., 2006; Stombaugh and Nokes, 1996; 

Tremier et al., 2005a; Van Lier et al., 1994; VanderGheynst et al., 1997b), and very 

limited work on 2D (Das and Keener, 1997a; Kuwahara et al., 2009; Moraga et al., 

2009; Putranto and Chen, 2017; Sidhu et al., 2006; Sidhu et al., 2007; Zambra et al., 

2011) and 3D modelling (Zambra et al., 2012; Zambra et al., 2015). The multi-

dimensional (1 to 3D) balances tend to be significantly more complex than the more 

common 0D models in terms of numerical solution given that they are usually composed 

of systems of partial differential equations. The most common approaches used in the 

reviewed literature are the finite volume (e.g. Zambra et al., 2015) and the finite 

element (e.g. Putranto and Chen, 2017) methods. An example of a multi-dimensional 

energy balance whose form has been the most prevalent through the literature is 

presented in equation 2.8. This specific form is from Luangwilai et al.’s (2018) work on 

self-heating in the composting pile, integrating cellulosic oxidation: 

 

(𝜌C)eff
𝜕𝑇

𝜕𝑡
= 𝑘eff∇

2𝑇 − 𝜀𝜌airCair𝑈
𝜕𝑇

𝜕𝑥
+ 𝑄𝐶(1 − 𝜀)𝜌C𝐴CO2 exp (−

𝐸𝐶
𝑅𝑇
)

+𝑄𝑏(1 − 𝜀)𝜌𝑏 [
𝐴1 exp (−

𝐸1
𝑅𝑇)

1 + 𝐴2 exp (−
𝐸2
𝑅𝑇)

]

+𝐿𝑉 (𝜀𝑍𝑐𝑉 − (1 − 𝜀)𝑍𝑒𝑊𝑒𝑥𝑝 (−
𝐿𝑣
𝑅𝑇
))      (2.8)

 

 

Without going into much detail (interested readers are highly recommended to consult 

the works of Luangwilai (2010, 2013, 2018), Zambra (2011, 2012, 2015), Nelson (2007, 

2008), and Sidhu (2006, 2007), which have all implemented similar balances), the first 

term on the right represents conductivity, the second term depicts airflow through the 

system (convection), the third term portrays oxidation of cellulosic materials, the fourth 

term characterizes biological heat generation and the fifth term is associated with energy 

change from evaporation and condensation. 
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Heating and heat transfer, generally for temperature estimation, have also been the 

main focus for a variety of works. This includes general works such as those of 

VanderGheynst et al. (1997b), De Guardia et al. (2012), Luangwilai et al. (2013) and 

Wang et al. (2016), while certain modellers have expanded in more specific areas, such 

as considering or deepening notions related to radiation (Ahn et al., 2007), convection 

(Ge et al., 2016b), condensation (Luangwilai et al., 2018) and biological heat generation 

(self-heating) (Bialobrzewski et al., 2015; Fontenelle et al., 2011; Luangwilai et al., 

2013; Luangwilai et al., 2010; Luangwilai et al., 2018; Nelson et al., 2007; Nelson et 

al., 2003; Sidhu et al., 2006; Sidhu et al., 2007).  There has also been a recent “simple” 

model devised by Ro et al. (2018) that aimed at estimating ammonia emissions. This 

model simply considered heat loss by implementing a ratio between ammonia 

concentration and Henry’s law constant at different temperatures.  

 

Generally, heat generation (Qbio) is calculated from respiration kinetics, either from O2 

consumption or CO2 production rates (Kaiser, 1996; Nakasaki et al., 1987) or directly 

from substrate degradation rates (Haug, 2018; Higgins and Walker, 2001; Mason, 2006; 

Mason and Milke, 2005). Equation 2.9 can be used to represent this biological heat 

generation: 

Qbio = −ΔHS
dS

dt
  (2.9) 

 

Where ΔHS is the biological heat generation coefficient (kJ/kg substrate), representing 

the amount of energy generated by mass of substrate consumed. As mentioned, this 

equation can be rewritten with O2 consumption or CO2 production by using appropriate 

heat generation coefficients. 

 

Indeed, given equation 2.9, the value of the biological heat generation coefficient can 

be a very important part of estimating the temperature in the composting pile (De 

Guardia et al., 2012; Wang et al., 2014). Table 2.1 presents some of the estimates 

identified in the literature, while  the values that have been most frequently used in the 

reviewed literature are 16 000 kJ/kg of substrate (Haug, 1993), 18 090 kJ/kg of 

substrate (Ekinci, 2001) and 22 097 kJ/kg of substrate (Zhang et al., 2010). However, 

these values are unlikely to be constant. Indeed, Wang et al. (2014) obtained coefficients 

of 18 000 kJ/kg of degraded biodegradable volatile solids at the beginning of their 

experiments, dropping to 16 000 kJ/kg by the end, similarly to Ahn et al. (2007) who 

found a range of 16 830 – 19 700 kJ/kg for poultry manure with wood shavings. To deal 
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with this variability, Wang et al. (2014) have proposed an empirical equation to measure 

the biological heat generation coefficient through time. However, the alternative of using 

values based on oxygen consumption could present some advantages. Verification in the 

composting context is necessary, but based on general work in biochemistry, it would 

seem that these respiration rates should be relatively constant (Gnaiger, 1983). These 

values have ranged from 9 760 to 14 000 kJ/kg O2 (Mason, 2006), though the latter 

(from Finstein (1986)) seems to have been used more frequently in the reviewed 

literature and is in line with substrate specific coefficients reported in Gnaiger (1983). 

Therefore, when feasible, we recommend that modellers use a biological heat generation 

coefficient based on oxygen consumption data instead of substrate consumption.  

 

Table 2.1 Values of the biological heat generation coefficient (𝚫𝐇𝐒) used in the reviewed 

literature. 

References Biological heat generation 

coefficient (𝚫𝐇𝐒) 

Units 

Rongfei et al. (2017) 302 to 19 700 kJ/kg of substrate 

Wang et al. (2014) 16 000 to 18 000 kJ/kg of substrate 

Ahn et al. (2007) 16 830 to 19 700 kJ/kg of substrate 

Haug (1993) 16 000 kJ/kg of substrate 

Ekinci (2001) 18 090 kJ/kg of substrate 

Zhang et al. (2010) 22 097 kJ/kg of substrate 

Mason (2006) 9 760 to 14 000 kJ/kg O2 

 

2.5.4 Mass balance 

 

Mass transfer is one of the most variable areas in the literature, being dependent on the 

scope of the model. The most common mass balances are global balances (assuming 

the pile to be homogenous) applied for water and oxygen transfer. A general form of 

these equations (Higgins and Walker, 2001) is presented below. 

 

dH2Os
dt

=
G(Hs(Ta) − Hs(T)) − YH2O ∙

dS
dt⁄

ρDMV
  (2.10) 

dO2
dt

=
G(XO2,in − XO2,out) − YO2 ∙

dS
dt⁄

Vερa(T)
  (2.11) 
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Where H2Os represents the amount of water in the substrate (kg H2O/kg dry matter), O2 

is the oxygen content of the dry air (kg O2/kg dry air), G is the mass airflow (kg dry 

air/s), Hs is the saturated humidity of the air (kg H2O/kg dry air), T and Ta are the 

temperature of the system and the ambient temperature (°C), respectively, YH2O is the 

metabolic production of water (kg H2O/kg S) and YO2 the consumption of oxygen (kg 

O2/kg S), V is the volume of the system (m3), ρDM is the density of the dry matter (kg 

m-3), ρa is the density of the air (kg m-3) and ε is the porosity of the bed (-). 

 

Equations 2.10 and 2.11 offer a basic and simplified representation of the mass transfer, 

the first terms on the right of the equation being the mass that gets transferred in and 

out of the system through the airflow, with the second term being the amount 

produced/consumed by the system. However, they fail to take into account the 

heterogeneous nature of the composting pile. Despite this, other than for a few specific 

purposes such as pathogen elimination, mixing, or very accurate temperature profiles, 

homogenous (0D) models have generally offered satisfactory results for global 

temperature and moisture mass balances, as well as predictions for a variety of other 

variables. As is the case with the energy balance, these equations can generally be easily 

solved through a finite difference approach or a differential equation solver. 

 

Some studies have used more detailed and diverse transport models, including a variety 

of other compounds such as emissions (CO2, CH4, NH3, N2O) and nutrients (phosphorus 

and nitrogen) (see section 4 for more details), considerations of heterogeneity through 

a spatial description of the system, and other transfer processes such as diffusion and 

multiphase (between water and air) transport. These include some detailed one-

dimensional airflow and transportation models (Bongochgetsakul and Ishida, 2008; 

Fytanidis and Voudrias, 2014; He et al., 2018; Luangwilai et al., 2018; Tremier et al., 

2005a), as well as some of the 2 and 3D models mentioned previously (Kuwahara et al., 

2009; Moraga et al., 2009; Zambra et al., 2011; Zambra et al., 2012; Zambra et al., 

2015). 

 

There are also rare efforts that have focused on liquid transfer through the composting 

pile, something that is nearly never considered. These works include Seng et al. (2012) 

who developed a water flow model to predict moisture content (including diffusion and 

percolation of liquid) and Zambra et al.’s (2015) bioleaching model. 
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2.5.5 Parametrization and sensitivity of composting models 

 

Composting models vary widely in complexity. With the development of mechanistic 

models, the size of these models has tended to grow significantly, requiring more and 

more state variables and parameters. Indeed, it is common to see models with over 40 

parameters and state variables. Despite the presence of parameter-heavy models, 

model identifiability has seen very limited interest in the reviewed papers, while 

Hamelers (2004) has already provided a fantastic overview of this subject for composting 

kinetic modelling. 

 

Therefore, instead of focusing on identifiability, it can be beneficial to explore the 

parameters that have the most significant impact on a model’s output. This has been 

explored multiple times through sensitivity analyses, though they have been presented 

in only a surprisingly small portion of the reviewed literature (26%, n = 32). One major 

challenge with applying sensitivity analysis to composting is that, given the multiple 

interactions that exist within a composting model, it can often be difficult to gain 

meaningful understanding from the analysis (Kaiser, 1996; Petric and Mustafić, 2015; 

Sole-Mauri et al., 2007).  

 

Nevertheless, some relatively consistent results have been found. The most consistent 

finding is that the maximal growth rate and/or hydrolysis rate constant are amongst the 

most important parameters affecting the process (temperature variation, emissions, 

moisture variation) (Denes et al., 2015; Ge et al., 2015; Liang et al., 2004; Lin et al., 

2008; Ma et al., 2018; Petric and Mustafić, 2015; Sole-Mauri et al., 2007; Stombaugh 

and Nokes, 1996; Vasiliadou et al., 2015; Vidriales-Escobar et al., 2017; Zavala et al., 

2004; Zhang et al., 2012), as well as death rate constants (Denes et al., 2015; 

Lashermes et al., 2013; Liang et al., 2004; Lin et al., 2008; Vidriales-Escobar et al., 

2017; Zhang et al., 2012), while initial biomass concentration has a very limited effect 

(Bialobrzewski et al., 2015; Denes et al., 2015; Ge et al., 2015; Kaiser, 1996; Lashermes 

et al., 2013; Petric and Mustafić, 2015; Xi et al., 2005). Yields and consumption rates 

have also been noted multiple times as having a high impact, such as the O2 uptake rate 

(Higgins and Walker, 2001), activation energy of the biomass (Luangwilai et al., 2010), 

assimilation rate of substrate/product yield (He et al., 2018; Lashermes et al., 2013; 

Vasiliadou et al., 2015; Zhang et al., 2012), and biological heat generation coefficient 

(De Guardia et al., 2012; Wang et al., 2014). 
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Further studies have also focused their analyses on the impact of certain modifications 

that they brought to traditional composting models, highlighting the impact of design 

decisions. For example, Ge et al. (2016b) noted the high sensitivity of convection to the 

heat transfer coefficient and how this could seriously impact the heat balance. Further 

examples in this vein include those of Seng et al. (2012) and Bonifacio et al. (2017b) 

who found ambient weather (temperature, rain) to be amongst the main sources of 

variability within their models. There is also the works of Zavala et al. (2004) and 

Fontenelle et al. (2011) that provide some interesting results regarding the biological 

side of the process. Zavala et al. (2004) developed a model that used three processes 

(hydrolysis followed by uptake (growth) followed by endogenous respiration) and noticed 

that the parameters associated to hydrolysis were significant, while those associated to 

growth were not. This was due to hydrolysis being the rate limiting step. Fontenelle et 

al. (2011) instead implemented three different microbial populations (yeast, bacterial 

and fungal) and determined that bacterial population had the most sizable impact on the 

outputs, while the model was less sensitive to changes in fungal population. These 

results were expected given that the bacterial community had the most dominant role 

during their experimental study.  

 

2.6 Emerging areas and areas requiring development 

Beyond the traditional composting models presented throughout the paper, often 

seeking to predict degradation, temperature and moisture content, other models have 

been designed for or have included more niche considerations. This includes prediction 

of self-ignition of composting piles (Aganetti et al., 2016; Luangwilai et al., 2018; Moraga 

et al., 2009; Nelson et al., 2003; Sidhu et al., 2006; Zambra et al., 2011; Zambra et 

al., 2012), pathogen or pollutant destruction/evolution (Gea et al., 2007; Lashermes et 

al., 2013; Pandey et al., 2016a; Pandey et al., 2016b; Sadef et al., 2014; Zhang et al., 

2014), odour emissions (Gutiérrez et al., 2014; Gutiérrez et al., 2017; Heinemann and 

Wahanik, 1998; Rincón et al., 2019), gaseous emissions (Asadi et al., 2017; 

Asadollahfardi et al., 2015; Ge et al., 2016a; Liang et al., 2004; Oudart et al., 2015; 

Rafiee et al., 2017; Ro et al., 2018; Wilshusen et al., 2004), leachate/runoff water 

modelling (Duncan et al., 2013; Seng et al., 2012; Tollner and Das, 2004; Zambra et 

al., 2015), and nutrient transformation and loss (Bonifacio et al., 2017a; Bonifacio et 

al., 2017b; Oudart et al., 2015; Vasiliadou et al., 2015; Vlyssides et al., 2009). 
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Furthermore, many areas still require significant development. These areas include 

modelling for different composting systems (windrows, piles, rotating drums), predicting 

variations in free air space and volume, end quality and maturity, physicochemistry and 

pH, and biodegradability. There are also different modelling approaches, notably using 

stochastic or artificial intelligence, that have seen some interest over the years. This 

section will provide a detailed overview of these areas of research. 

 

2.6.1 Consideration of the different composting processes 

 

In-vessel (reactor) composting is disproportionately studied in the literature (63% of 

reviewed papers) compared to practical implementation of the process which also 

involves an important amount of windrow and static pile systems (28% of reviewed 

papers). A reason for this is the obvious ease and control of studying the process in a 

closed system, but this has left certain systems woefully understudied. This is notably 

the case for rotating drum (Oliveira et al., 2018; Varma et al., 2017; Villaseñor et al., 

2012) and naturally aerated composting (Oudart et al., 2015). This is important seeing 

how composting models will generally only be applicable to the system they were 

designed around. This has to do with how aeration is undertaken in each system and 

with the important differences in the system boundaries, requiring significant redefinition 

of mass balances and potentially heat balances as well.  

 

2.6.2 Consideration of physical parameters impact and variation 

 

Another area that could see significant development is the modelling of free air space 

and volume change during the process. During composting, the mass of the pile will be 

reduced by about 10 to 50% (Breitenbeck and Schellinger, 2004; Tiquia et al., 2002; 

Van Lier et al., 1994), with a reduction in pile height of between 15 and 60% 

(Breitenbeck and Schellinger, 2004; Van Lier et al., 1994; Yue et al., 2008). This 

compacting will reduce the free air space and will lead to significant changes in many 

parameters, such as reducing effective airflow (oxygen diffusion and heat convection), 

increasing the heat conductivity of the pile and modifying mass transfer (notably gaseous 

exchange and water loss) (Das and Keener, 1996; El Kader et al., 2007). Beyond the 

work on compacting’s influence on aeration by Das and Keener (1997b) and Yu et al. 

(2008), the development of a correction factor for degradation by Yu et al. (2009) and 

the response regression model for initial free air space by Soares et al. (2013), of the 
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reviewed literature, only the work of Illa et al. (2012) sought to model the change in 

dimensions as a function of time and to link it to biological activity. Vasiliadou et al. 

(2015) also included a general volume change within their models based on the 

destruction of insoluble particulate matter, without looking at it from a dimensional 

perspective or the change in free air space. The capacity to predict and integrate free 

air space changes could be beneficial for process control and optimization, notably 

regarding mixing and moisture control (Das and Keener, 1996; El Kader et al., 2007). 

Further work in this area could be guided by the plethora of efforts to model compacting 

in soil sciences (e.g. Nawaz et al., 2013; Vereecken et al., 2016).   

 

2.6.3 Prediction of quality and nutrient composition of composts 

 

Prediction of the specific end quality of compost has also seen barely any work, despite 

the focus on modelling degradation. Modelling of the maturation (humification and 

biosynthesis) process is basically non-existent. Only one identified model sought to 

predict humic matter development, which was undertaken through structural equation 

modelling (Xie et al., 2019). The model of Kujawa et al. (2014) also managed to analyse 

compost maturity through neural analysis, though this does not provide much 

information on the actual quality of the final compost. Similarly, even though compost 

is used as a soil conditioner, modelling interest on the fate of nutrients during the process 

has been minimal. The two most advanced models with respect to nitrogen 

transformation and loss are currently those of Oudart et al. (2015) and Bonifacio et al. 

(2017a,b), considering ammonification, volatilization, nitrification, and denitrification to 

some degree, though with some significant and limiting assumptions. Phosphorus has 

seen even less interest, being considered only superficially through basic mass balances 

in two models (Vasiliadou et al., 2015; Vlyssides et al., 2009), whereas we have seen 

no mention of potassium or any of the micronutrients in the literature.    

 

This can also be generalized to a lack of physicochemical considerations, notably through 

the omission of pH. pH impacts many important processes by affecting the activity of 

microorganisms (Smårs et al., 2002; Sundberg et al., 2004; Sundberg et al., 2013), as 

well as playing a key role in certain transformation processes, such as volatilization and 

solubilization of various compounds. Therefore, pH exercises a strong influence on the 

rate of decay, odour emissions, and nutrient transformation and loss during the process, 

as well as being an important marker for agronomic quality. Only one model has included 
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pH other than through correction factors (Liang et al., 2004). Further work in this vein 

could also take inspiration from efforts in wastewater treatment and anaerobic digestion 

modelling that have already implemented pH (Batstone, 2009; Batstone et al., 2002; 

Rosen et al., 2006; Serralta et al., 2004; Yu et al., 2010), with notable work by Flores-

Alsina et al. (2015), Huber et al. (2017) and Vaneeckhaute et al. (2018a) to include 

chemical speciation, activity corrections and ion-pairing for robust speciation and pH 

prediction. Chemical speciation during the composting process could be especially 

beneficial for models seeking to describe the transformation, loss and availability of 

certain compounds, such as heavy metals and nutrients, as various experiments have 

demonstrated (Eghball et al., 1997; Fang et al., 1999; Sharpley and Moyer, 2000; Wu 

et al., 2017; Xuejiang et al., 2008). Furthermore, the ability to model the influence of 

pH on composting could lead to the development and implementation of novel process 

control and optimization methods by pH control. These methods could be addressed at 

decreasing odours, reducing emissions, and increasing process efficiency and product 

quality. Indeed, methods such as addition of alkaline (Fang et al., 1999; Lei and 

VanderGheynst, 2000; Nakasaki et al., 1993; Yu and Huang, 2009) or acidic (Chen et 

al., 2010; Fangueiro et al., 2015; Kithome et al., 1999) amendments have been studied, 

as well as the use of magnesium (struvite formation) and zeolites as control strategies 

(Chan et al., 2016; Jeong and Kim, 2001; Lim et al., 2017; Wang et al., 2013b; Witter 

and Lopez-Real, 1988), and inoculation of the system with acid-tolerant bacteria (Kuroda 

et al., 2015; Nakasaki et al., 2013; Nakasaki et al., 1996).  

 

2.6.4 Further needs of research in terms of modelling the substrates biodegradability  

 

The final knowledge gap to be highlighted is the prediction of biodegradability of 

substrates. As discussed in section 2.5, various fractionations have been used to 

represent composting substrates. The aim of these fractionations, whether simple or 

detailed, are often to produce the most generalizable representation of the substrate 

given the wide variability in composition of organic wastes and bulking agents. Without 

being able to generalize the process kinetics, many composting models are only 

applicable to the waste sources they were developed and calibrated for. This is a 

significant limitation that currently plagues the field. This limitation is due to the 

biodegradability of organic matter (i.e., only a certain portion will be degraded, 

regardless of how long the process lasts) that can hinder the biodegradation of the 

substrate. A variety of methods can be used to determine biodegradability, such as BOD, 
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COD, and respirometric methods (Tremier et al., 2005b), but they can be resource 

intensive and need to be repeated for different substrates. The ability to model 

biodegradability would be of considerable benefit to the field and could allow for models 

to be more generalizable to various waste sources. However, modelling efforts in the 

composting field have been non-existent. There have nonetheless been some efforts in 

the field of anaerobic digestion that could potentially serve as inspiration. For example, 

various studies have linked biochemical characterisation to biodegradability (Chandler et 

al., 1980; Denes et al., 2015; Liu et al., 2015; Mottet et al., 2010), while recent work 

by Bareha et al. (2019) also evaluated the prediction of organic nitrogen 

biodegradability. Bioaccessibility can also present another issue for composting, though 

this has generally been addressed through the use of Contois kinetics in a few 

composting models, with the model of Wang and Witarsa (2016) likely offering the best 

mechanistic framework due to the consideration of disintegration before hydrolysis as 

well. 

 

2.6.5 Choice of the modelling approach 

 

Regarding modelling approaches, despite the variability present throughout the 

composting process, stochastic approaches have been rare (Asadi et al., 2017; 

Fernández et al., 2016; Giusti and Marsili-Libelli, 2010; Neugebauer et al., 2018; Qin et 

al., 2007; Seki, 2000; Sun et al., 2011; Xi et al., 2008). These models have mostly been 

designed as a response to the inherent randomness of state variables in composting 

systems. Seki (2000) provided an early foray into this area of modelling. Seki’s model 

was based on a traditional deterministic and mechanistic model, following the 

fundamentals described earlier in the paper (Monod growth kinetic, first-order death, 

general heat balance). This model was then extended to a stochastic model by following 

a Marcovian process where the variable concentration terms used in the model were 

replaced to become probabilistic. The newly obtained balance equation of the probability 

distribution was then converted into the Fokker-Planck equation to facilitate their 

numerical solution. These added steps to render the deterministic model stochastic thus 

allowed the model to predict both the expected values and standard deviations of the 

state variables. 

 

Since Seki’s (2000) work, research into stochastic modelling of composting has been 

split in approach. Some modellers have followed with the approach of converting 
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deterministic and mechanistic models into stochastic ones, such as Qin et al.’s (2007) 

and Xi et al.’s (2008) integration of a fractional fuzzy vertex method to their models to 

characterize the effects of uncertainty. However, a variety of other approaches have 

appeared over time, especially in more recent work (after 2010). For example, Giusti 

and Marsili-Libelli (2010) used a Gustafson-Kessel clustering algorithm combined with 

linear autoregressive consequents to develop a dynamic model composed of three fuzzy 

rules that are associated to a linear autoregressive model based on temperature and 

pressure input data, following a more empirical than mechanistic approach. Sun et al. 

(2011) also implemented a cluster analysis, in this case applying a genetic algorithm to 

search for the optimal sets of state variables and parameters from the stepwise cluster 

analysis. Another stochastic modelling approach was undertaken by Fernández et al. 

(2016), seeking to expand on the ability of stochastic models to predict long-term 

behaviour during composting, something that prior models failed at achieving. This 

model combines Markov processes and Monte-Carlo simulations to deal with incomplete 

data based on previous observations for long term (> 200 days) composting, providing 

predictions for physical and biochemical characteristics (pH, electrical conductivity, total 

organic matter, carbon and nitrogen concentrations, and temperature). However, the 

two most recent works have gone back to focusing on more short-term predictions, with 

Asadi et al. (2016) comparing Lagrangian and Gaussian stochastic models to predict 

short range ammonia emissions from composting, and Neugebauer et al. (2018) 

exploring fuzzy modelling for heat recovery and aeration control during the process. The 

case of Neugebauer et al. (2018) also presents an interesting application of linguistic 

variables to the composting scenario in a novel way.  

 

When compared to deterministic models, stochastic models offer the benefit of producing 

a much greater depth of secondary knowledge about the process, such as the variance 

of the state variables. This, however, generally comes at the cost of a more complex 

model, which may be undesirable given complexity of existing composting models. 

Nevertheless, stochastic models can be beneficial in certain situations. One of the main 

draws of modelling with uncertainty is that these models can address systems with 

incomplete data and, when combined with inductive approaches, can be alluring for 

practical application. They can also provide valuable operating insight for composting by 

identifying whether observed performances fall within the system’s range of uncertainty, 

or whether there may be another (optimizable) factor at play (Qin et al., 2007). Though 

the ability to produce accurate long-term predictions has been lacking (Giusti and Marsili-
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Libelli, 2010), recent efforts seem to be making good progress in this area as well 

(Fernández et al., 2016). Despite these properties, the use of stochastic methods in 

many composting applications can be challenging. The variability of an input or an 

operating condition could be considered by the model, but this variability is often 

associated with many important changes that the model may not be able to deal with, 

notably relating to kinetics. For example, a variable substrate composition, such as a 

change in the C/N ratio, moisture level, or mixing, can lead to significant kinetic changes 

that may not be captured through a stochastic approach. However, artificial intelligence, 

an extension of stochastic processes, can offer many of the same advantages, while 

circumventing some of the drawbacks. 

 

Artificial intelligence as a modelling approach has also seen relatively limited 

development, though interest has been growing over the past decade (Alavi et al., 2019; 

Boniecki et al., 2013; Boniecki et al., 2012; Díaz et al., 2012; Faverial et al., 2016; 

Kujawa et al., 2014; Liang et al., 2003b; Tang et al., 2006; Varma et al., 2017; Yildiz 

and Degirmenci, 2015). These models have been aimed at a variety of aspects of 

composting modelling and have provided some innovative ways to follow the process. 

For example, the early models of Liang et al. (2003b) investigated various 

backpropagation networks (a form of artificial neural network) that could estimate the 

O2 uptake rate, and thus microbial activity, during biosolids composting, using only 

temperature, moisture content, and process duration as inputs. Díaz et al. (2012) used 

an adaptive neural fuzzy inference system to optimize pH, temperature, and CO2 

evolution based on aeration, moisture content, particle size and composting time as 

inputs, similarly to Varma et al. (2017) who used a radial basis functional neural network 

to optimize volatile solids, soluble biochemical oxygen demand and CO2 evolution during 

the process. Some studies have focused on more specific parameters, such as Boniecki 

et al.’s neural networks to predict ammonia emissions (Boniecki et al., 2012) and heat 

loss (Boniecki et al., 2013), and Yildiz and Degirmenci’s (2015) work on predicting 

oxygen exchange through regression analysis and artificial neural network modelling, 

the latter noting the benefits of the neural approach over the regression analysis. Other 

neural models have also aimed at predicting the end-quality of the compost. These 

include the models of Kujawa et al. (2014), Faverial et al. (2016), and Alavi et al. (2019). 

Of these works, Kujawa et al.’s (2014) model based on neural image analysis provides 

a great example of the benefits of these artificial intelligence methods and how they 

differentiate themselves from traditional mechanistic modelling.  
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In their work, Kujawa et al. (2014) combined computer image analysis with neural 

modelling to classify the stage of maturation of compost, an area that was identified as 

lacking in research in section 2.6.3. The models were developed by analysing the colour 

and texture of images of compost (sewage sludge and maize straw) at various stages of 

maturation. These analyses included greyscale, RGB (red-green-blue), contrast, and 

other visual variables that were found to be relatable to the stage of maturation. This 

information was then fed into a neural model (based on the multilayer perceptron 

typology) that was trained to identify which data sets reach the desired maturation 

stage. Of the 21 models generated by the researchers, the best model has a reported 

classification error rate of 1.56%, demonstrating the potential accuracy of these neural 

approaches.  

 

As highlighted by the above-mentioned papers, intelligence algorithms can present a 

very alluring approach to model many of the complex processes taking place during 

composting. Their ability to rely on measurable variables (such as temperature, pH, 

microbial population, carbon, nitrogen, or even images) without requiring the knowledge 

of parameters or even mechanisms is of clear practical advantage. Such systems that 

develop through inductive learning (training) could also be beneficial for the 

development of knowledge for later use in deductive models through the patterns that 

they identify. However, the development and application of an intelligence algorithm is 

not without issues, as will be discussed in chapter 6 (Walling and Vaneeckhaute, 2020a). 

These systems require a substantial amount of calibrated data to properly train them 

and to ensure their accuracy, significantly more than would be used to design a 

mechanistic model (for example, Alavi et al. (2019) used 567 experimental sets to train 

their artificial neural network, while Liang et al. (2003b) used 8760 data patterns for 

their network). This issue is compounded by the relative rigidity of intelligence systems, 

these systems potentially not being transferable to other (similar) cases due to data 

variations because of limitations to their training. This could be problematic given the 

huge variability at many steps of the composting operation (substrates, bulking agents, 

moisture content, temperature, pH, etc.). Furthermore, even when these systems are 

accurate, they can run the risk of being labeled as black boxes, possibly limiting their 

implementation. Nevertheless, artificial intelligence provides a very interesting (and 

different) path forward for composting modelling. Developers should not favor 

developing either mechanistic or artificial intelligence models, but instead use both in 

tandem to support development in the composting field. Intelligence systems can be 
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used to produce easy to use models and to identify patterns, while mechanistic models 

can be used to learn (validate and test theory) and to allow for robust control and 

optimization.  

 

Concerning empirical vs mechanistic modelling, Mason (2006) had noted that the most 

successful models at the time implemented either empirical kinetic expressions or first-

order models with empirical corrections, despite the limited evidence “for the 

applicability of a first-order model to substrate degradation”. This trend was not 

observed in a major portion of our reviewed literature, with a significant increase in 

accuracy of mechanistic models, especially those implementing Monod-type kinetics, as 

of the mid 2000’s. This is also supported by the work of Fytanidis and Voudrias (2014) 

who compared both first order and Monod kinetics and found Monod kinetics to be 

slightly more accurate. The author hypothesizes that the initial shortcomings of 

mechanistic models were due to a lack of proper understanding of how degradation in 

these systems occurred, alongside numerous (questionable or wrong) assumptions. As 

mechanistic models started to implement more representative microbial fractionations 

and faulty assumptions were reduced, their predictive capabilities significantly increased.  

 

2.7 Conclusions 

This review aimed at providing a comprehensive and consolidated view of the state of 

composting modelling, a field that has seen consistent development over the past 40 

years. Multiple aspects of composting modelling have been highlighted throughout this 

review: 

1.  A majority of composting models have sought to combine degradation kinetics with 

dynamic heat and mass balances in a deterministic fashion to predict temperature, 

moisture and substrate degradation through time. There has also been a growing 

body of work on multidimensional (1, 2 and 3D) systems in more recent years. 

2. Degradation kinetics have been represented through either first-order or Monod-type 

kinetics and have been a more contentious area than the well agreed upon heat and 

mass balances. Despite stronger theoretical support and some evidence that Monod-

type kinetics should offer the most realistic results, both approaches have shown 

good success. Multiple degradation processes have been considered, including 

disintegration and hydrolysis of particulate substrate, cellular uptake of soluble 

compounds, cellular death, and chemical oxidation, in both aerobic and anaerobic 

conditions.  
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3. The use of correction functions to adjust microbial kinetics is divided. Nearly half of 

the reviewed literature implemented some form of correction functions, while the 

other half completely neglected their use. A multitude of correction functions are 

available to take into account the impact of temperature, oxygen content, moisture 

content, free air space and pH, a list of which is presented in the appendix of this 

work. Further research should investigate and compare the use of these various 

correction functions to provide modellers with better guidance as to which functions 

to select. 

4. Sensitivity analyses have been undertaken in only a small portion of the reviewed 

papers, despite the value of these assessments in providing an understanding of the 

impact of certain parameters and of design choices. 

5. Areas of research that could benefit from more development include: modelling for 

different composting systems (windrows, piles, rotating drums), predicting variations 

in free air space and volume, end quality and maturity, physicochemistry and pH, 

and biodegradability. 

6. The growing interest in stochastic and artificial intelligence modelling approaches can 

provide powerful new tools to develop knowledge in the field. These approaches 

should be used in tandem with mechanistic modelling to provide the greatest level 

of learning and adaptability by using the advantages of each approach to counteract 

the drawbacks of the other. 
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Chapter 3: Modelling composting kinetics: An 

evaluation of temperature, moisture, and oxygen 

corrections 

3.1 Résumé 

Ce chapitre présente une évaluation des fonctions de correction utilisées dans la 

modélisation mathématique du compostage. Sur la base des données expérimentales de 

diverses expériences à l'échelle pilote, des modèles de dégradation de premier ordre 

corrigés ont été développés et évalués pour chaque combinaison de fonction de 

correction (96 par essai) et pour deux approches de modélisation distinctes (kmax fixe vs 

optimisé). Les résultats de ces modèles ont ensuite été évalués par une approche de 

l'erreur quadratique moyenne normalisée (Normalized Root Mean Squared Error) et une 

enquête plus approfondie sur l'ensemble optimal (10 premiers) pour chaque essai. Il a 

été constaté que le modèle de Haug (1993) et la correction de température cardinale 

(modèle de Rosso) pour la température ont de bonnes performances dans les deux cas, 

tandis que l'équation d'Arrhenius est parmi les plus performantes lorsque kmax est fixé. 

L'équation de Monod était la meilleure fonction de correction pour la limitation de 

l'oxygène dans tous les cas, tandis que les résultats pour les corrections d'humidité 

étaient plus variables. Des appariements préférentiels de corrections de température, 

d'humidité et d'oxygène sont fournis. 

Mots clés: biodégradation aérobique, état solide, modèle, facteur d’ajustement, 

simulation, limitation de croissance  
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3.2 Abstract 

This chapter presents an assessment of the correction functions used in mathematical 

composting modelling. Based on experimental data from various pilot scale experiments, 

corrected first-order degradation models were developed and evaluated for every 

combination of correction function (96 per trial) and for two separate modelling 

approaches (fixed vs optimized kmax). The results of these models were then assessed 

through a Normalized Root Mean Squared Error (NRMSE) approach and further 

investigation of the optimal set (top 10) for each trial. It was found that the Haug (1993) 

and the cardinal temperature correction (Rosso model) for temperature have strong 

performances in both cases, while the Arrhenius equation is amongst the most successful 

when kmax is fixed. The Monod equation was consistently the best correction function for 

oxygen limitation across all cases, while results for moisture corrections were more 

variable. Preferential pairings of temperature, moisture and oxygen corrections are 

provided. 

Keywords: aerobic biodegradation, solid state, model, adjustment factor, simulation, 

growth limiting  
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3.3 Introduction 

Chapter 2 has provided us with an extensive overview of composting modelling, yet 

many important questions were also highlighted. Beyond the interest in developing a 

generalizable composting model to predict GHG emissions and nutrient 

loss/transformation, an important amount of doubt seems to surround the validity of 

certain modelling approaches, notably related to the use of correction functions for 

factors such as temperature, moisture, and oxygen content. 

As detailed in chapter 2, the most commonly used model for degradation kinetics 

throughout the composting literature is a first order expression. Therefore, the prediction 

of substrate degradation over time can be expressed as detailed in Eq. 3.1:  

 

Rdegradation = −
d[Si]

dt
= ki ∙ [Si] (3.1) 

where [Si] is the concentration of biodegradable substrate, t is time and ki is the 

(degradation/hydrolysis) rate constant. 

However, the above expression represents an “ideal” degradation, unaffected by the 

many dynamic process variables that influence biodegradation, such as temperature, 

moisture, and oxygen content. Modellers have therefore taken to implementing 

correction functions to consider the influence of a variety of factors and to better 

represent reality, as was touched on in chapter 2. These correction functions are either 

mechanistic or empirical factors that vary between 0 and 1 and are used to constrain 

the degradation. Therefore, when implementing correction factors, the degradation rate 

can be rewritten as follows, with fi referring to correction functions for temperature, 

moisture content (MC), oxygen content, free air space (FAS) and pH:  

Rdegradation
′ = RdegradationfTfMCfO2fFASfpH (3.2) 

These correction functions ensure that the composting model does not assume that 

degradation always happens at a maximal rate, thus limiting degradation outside of 

optimal ranges. For example, composting is known to operate optimally at temperatures 

between 50 and 60 °C (Eklind et al., 2007; Miyatake and Iwabuchi, 2006; Nakasaki et 

al., 1985), moisture contents of 40 and 70% (Haug, 2018; Richard et al., 2002; Tiquia 

et al., 1998) and oxygen contents above 5-10% (Bertran et al., 2004; Haug, 2018), with 
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growth being significantly limited above and below these conditions. These functions 

propose to offer some method of representing these constraints. Despite the benefits of 

correction functions and their widespread implementation that had been previously 

noted by Mason (2006), the review of chapter 2 makes it clear that this area requires 

further research. Indeed, only 46% of the reviewed models implemented correction 

functions, while a plethora of functions were utilized (15 different functions for 

temperature, 10 for moisture content and 5 for oxygen content). Despite prior work by 

Richard et al. (1999; 2006) and Mason (2008) that sought to investigate the impact of 

temperature and oxygen on composting kinetics, there has not been any work seeking 

to assess the various correction functions used throughout the field in a concerted 

manner. These earlier works have led to increased support for the cardinal temperature 

correction (the Rosso model) (Rosso et al., 1995; Rosso et al., 1993) for temperature 

correction (Mason, 2008; Richard et al., 2006), while the Monod expression was 

determined by Richard et al. (1999) to be the most accurate for oxygen, with Baptista 

et al.’s (2010) modified Monod expression gaining prominence in recent years. 

Regarding moisture corrections, to the best of our knowledge, there has not been any 

work on assessing their use. However, given recent developments in composting 

modelling and the limited number of correction functions evaluated in these studies, an 

up to date and consolidated evaluation would be of great benefit to the field.  

This chapter therefore seeks to provide guidance on the use of correction functions in 

composting modelling, notably by assessing the use of 21 correction functions (11 for 

temperature, 7 for moisture and 3 for oxygen content) used in composting literature 

(some had to be omitted given a lack of information, detailed in section 2.2). We aim to 

provide insight as to the benefits and drawbacks of these functions, how they interact 

with one-another, and hope to provide guidance for future modellers in selecting the 

correction functions that can provide the most accurate results. The work undertaken in 

this chapter is based on the quantitative and qualitative assessment of the ability of a 

first-order kinetic model to accurately predict experimental results. Every combination 

of correction functions has been tested on data from the literature based on four 

experimental trials, the resulting models were then analyzed numerically using the 

normalized root mean square error (NRSME). Optimal solution sets (top 10 for each trial) 

were then identified to further validate the results of the NRSME assessment. As such, 

this chapter identifies the most accurate correction functions, both individually and 

jointly, as well as providing guidance for model developers in selecting these functions 

for their models. 
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This chapter is divided as follows: section 3.4 presents the materials and methods used 

to undertake this assessment, followed by a detailed presentation of our results and 

discussions around them in section 3.5, with concluding remarks being presented in 

section 3.6. 

3.4 Materials and methods 

The experimental data used for this study comes from the work of Malamis et al. (2016). 

This article was chosen following the review process of chapter 2 (Walling et al. (2020)) 

where it was identified as presenting the best data for this type of analysis, given 

Malamis et al.’s (2016) thorough follow through and clear presentation of temperature, 

moisture content, oxygen content, degradation rate and organic matter loss, all of which 

was replicated over four trials. Detailed information on their experimental work can be 

found in their paper, but it consisted in four 20 to 25-day trials of sewage sludge and 

agricultural waste composting in an in-vessel (reactor) system with a working volume of 

2.4 m3. Based on these experimental results, the following work was undertaken. 

3.4.1 Kinetic modelling  

A first-order equation was applied to model the process. First-order equations have been 

by far the most prominent in the field, likely due to hydrolysis being the rate-limiting 

step of the process (Walling et al., 2020). The first-order model presented in Eq. 3.1 

was therefore applied, using the form employed by Malamis et al. (2016): 

d[BOM]

dt
= −kd ∙ [BOM] (3.3) 

where BOM is the biodegradable organic matter (kg), kd is the first-order biodegradation 

rate (day-1), and t is time (day). 

kd is then adjusted with correction functions for temperature, moisture content and 

oxygen content, more details of which can be found in section 3.4. kd can therefore be 

expressed as follows, where kmax is the maximal biodegradation rate (day-1): 

kd = kmax fTfMCfO2  (3.4) 

Though implemented in a very limited amount of literature, free air space (FAS) and pH 

corrections can be applied. However, the only FAS correction function to find any traction 

is that of Haug (1993), while pH has only been corrected for twice (in Liang et al. (2004) 
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and Petric et al. (2015)). Due to their limited application and the lack of necessary data, 

these functions were omitted from this study. However, even if the necessary data was 

available to implement a FAS correction, prior studies have indicated that it may not be 

a significantly limiting factor (Baptista et al., 2010; Zhang et al., 2010). 

Though Malamis et al. (2016) state that they integrated Eq. 3 to obtain a traditional rate 

law, we doubt the validity of such an approach given the time dependency of kd, seeing 

how temperature, moisture and oxygen content all vary in time. We therefore proceeded 

to solve Eq. 3.3 by using the finites differences method by calculating d(BOM)/dt, fT, fMC 

and fO2 for every time step of 1 day.  

Two separate modelling approaches were used regarding kmax: (1) in the first approach, 

kmax was given a fixed value across all model combinations within a same trial based on 

the experimentally observed degradation rate. In this case, kmax was set at 15% higher 

than the highest observed degradation rate, observed around 60 °C in every case, which 

coincides with the optimal temperature range for composting (Eklind et al., 2007; 

Miyatake and Iwabuchi, 2006; Nakasaki et al., 1985). The advantage of this approach 

is that it is easily generalizable if values of kd  or kmax are known, allowing for application 

in a variety of contexts (different wastes or system configurations). (2) In the second 

approach, values of kmax were optimized for each combination using the Excel Solver 

add-in by minimizing the Normalized Root Mean Squared Error (NRMSE) (discussed in 

section 2.3) by varying kmax. The benefit of the second approach is that it produces more 

accurate predictions and, for our assessment, allows us to identify which model 

combinations provide the optimal shape relationship. However, the values of kmax can 

vary widely, which can limit the generalizability of such models given that these values 

might have little bearing on the actual maximum degradation rate (the model is based 

around a very specific case).  

3.4.2 Correction functions  

The correction functions used in Eq. 3.4 were selected based on the list of correction 

functions applied in composting literature identified in chapter 2. Of these identified 

functions, a few were not included in this study given the lack of information necessary 

to use them. These include the temperature corrections by Petric et al. (2015) due to 

unclear values for the coefficients used in the equation and Yu et al. (2009) due to a 

microbial fractionation that we could not simulate with this data; and moisture 

corrections by Shishido (1999) and Kaneko and Fujita (1986) due to a lack of information 
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on the ranges of applicability of these functions. The list of functions tested for 

temperature, moisture and oxygen content can be found in tables 3.1 through 3.3. In 

total, 21 correction functions were assessed. 

In the equations presented in table 3.1, T is the temperature in °C. For the cardinal 

temperature correction (Rosso model), Tmax is set to 71.6 °C, Tmin is 5 °C and Topt is 58.6 

°C, as these are the most commonly used values in the literature following the work of 

Richard and Walker (2006). The reference temperatures (TR1 and TR2) in the Haug (1993) 

model are given values of 50 and 60 °C, respectively. Though TR1 is usually given a value 

of 20 °C (e.g. Petric and Selimbašić, 2008; Wang et al., 2016; Zhou et al., 2014a), given 

that we used kmax instead of the traditional degradation rate at 20 °C (k20), the value of 

50 °C was found to be more appropriate. In the Stombaugh and Nokes (1996) correction, 

the proposed values of T1 = 0 °C, T2 = 30 °C and T3 = 55 °C were used (Stombaugh and 

Nokes, 1996). An important note regarding the application of the Arrhenius equation: 

whereas all of the correction functions in table 3.1 can simply be applied using the 

temperature at a specific time, the Arrhenius equation requires the knowledge of A (pre-

exponential factor) and -Ea/R (activation energy). These values can be simply 

determined with experimental data if the rate of degradation is measured, where the 

equation can be rewritten as follows: 

ln(kd) = ln(A) −
Ea
R
(

1

T + 273
) (3.5) 

Given the form of Eq. 3.5, by plotting ln(kd) as a function of 1 (T + 273)⁄ , we can obtain a 

relatively linear plot whose y-intercept is equal to ln(A) and slope is −Ea R⁄ . The Arrhenius 

equation can then be applied using these values, with the important note that, in this 

case, the Arrhenius equation replaces kmax fT in Eq. 3.4, seeing how it offers an estimate 

of kd, though it is uncorrected for moisture or oxygen content.  
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Table 3.1 Temperature correction functions used in this study from most to least used. 

T is expressed in degrees Celsius. 

Temperature correction function References 

fT =
(T − Tmax)(T − Tmin)

2

(Topt − Tmin)[(Topt − Tmin)(T − Topt) − (Topt − Tmax)(Topt + Tmin − 2T)]
 

(Rosso et al., 

1995; Rosso 

et al., 1993) 

kd = Ae
−Ea

R(T+273) 

 

Arrhenius 

equation  

fT = C1
T−TR1 − C2

T−TR2 ; often, C1 = 1.066 and C2 = 1.21.  (Haug, 1993) 

fT = 0.0182T (Haug, 1996) 
fT = −3.11 × 10

−4T2 + 3.48 × 10−2T + 0.0265 (Lin et al., 

2008) 
fT = 2.142 × 10

−4T2 − 2.356 × 10−2T + 1.348 (Ekinci, 

2001) 

fTfMC = 0.089 exp (−0.5 [(
MC − 44.22

19.87
)
2

+ (
T − 58.31

16.72
)
2

])  
(Ekinci et al., 

2004b) 

fT = −8 × 10
−6T3 + 0.008T2 − 0.0238T − 0.2643  (Mohee et al., 

1998) 
fT,bacteria = T(80 − T) 1600⁄  T < 80           

fT,actinomycetes and fungi = T(60 − T) 20(80 − T)⁄  T < 80 
(Kaiser, 

1996) 

fT = {
T (T2 − T1)⁄

1.0
3.75 − T (T2 − 10)⁄

T1 < T ≤ T2
T2 < T ≤ T3
T3 < T

 
(Stombaugh 

and Nokes, 

1996) 
fT = exp (− (T − 57)

2 254))⁄   (Smith and 

Eilers, 1980) 

 

In the correction functions of table 3.2, MC refers to the moisture content of the 

composting system. It is either expressed as a value between 0 and 1, or a percentage 

between 0 and 100%. All functions except those of Haug (1980), Ekinci et al. (2004b) 

and Mora-Naranjo et al. (2004) use an MC ranging between 0 and 1. For the Stombaugh 

and Nokes (1996) correction, the proposed values of m1 = 0, m2 = 0.2 and T3 = 0.4 

were used (Stombaugh and Nokes, 1996).  
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Table 3.2 Moisture correction functions used in the reviewed literature from most to 

least used. 

Moisture content correction function References 

fMC =
1

exp(−17.684MC + 7.0622) + 1
 

(Haug, 1993) 

fMC = {
0 

m m2 ⁄ − 1.0
1.0

 

m1 < m ≤ m2

m2 < m ≤ m3

m3 < m
 

(Stombaugh and 

Nokes, 1996) 

fMC = {
1 − 17.3(1 − m 100⁄ )6.94

20.6614(m 100⁄ )4.06
 
m ≥ 40
m < 40

 
(Haug, 1980) 

fTfMC = 0.089 exp (−0.5 [(
MC − 44.22

19.87
)
2

+ (
T − 58.31

16.72
)
2

])  
(Ekinci et al., 

2004b) 

fMC = 0.012m − 0.18 (Mora-Naranjo et 

al., 2004) 
fMC = −56.97 + 57.98 exp[(−0.5(m − 0.56) 1.52⁄ )2] (Mohee et al., 

1998) 
fMC = exp(−10.973(FS − 0.3)

2) (Smith and Eilers, 

1980) 

 

Finally, in table 3.3, three oxygen corrections are presented. In these equations, O2 

represents the oxygen content of the environment, expressed as a % v/v. Two of these 

expressions are mechanistically derived: the traditional Monod expression had found the 

most use in the literature until the advent of Baptista et al.’s (2010) modified Monod, 

which has seen strong use over the past decade (Walling et al., 2020). In the Monod 

expression, the most common value for kO2, the oxygen half-saturation coefficient, is 

2% v/v, following the works of Haug (1993) and Richard et al. (2006). In the Higgins 

and Walker (2001) correction, temperature and moisture also intervene, though this 

function is not a temperature correction (Higgins and Walker used the cardinal 

temperature function to correct for temperature). In this case, moisture content is 

represented as a percentage.  

Table 3.3 Oxygen content correction functions used in the reviewed literature in order 

of use. 

Oxygen content correction function References 

fO2 =
O2

O2 + kO2
 

Monod expressions 

fO2 =
O2

(
20.95

0.83 + 20.95
) (0.83 + O2)

 
(Baptista et al., 2010) 

fO2 =
O2

0.79 − 0.041T + 0.040MC + O2
 

(Higgins and Walker, 2001) 
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3.4.3 Modelling assessment 

Using the experimental data provided in Malamis et al. (2016), reaction kinetics for each 

of the four trials were modelled using the numerical process detailed in section 3.4.1 

and implementing every combination of the correction functions presented in section 

3.4.2. However, an early assessment of the correction functions was undertaken to 

validate their individual use. This assessment consisted in implementing the correction 

functions individually with the experimental data. In the case of temperature corrections, 

it was found that the models of Ekinci (2001), Mohee et al. (1998) and Smith and Eilers 

(1980) provided non-sensical corrections, Ekinci’s (2001) function constantly tending 

towards 0 and Mohee et al.’s (1998) and Smith and Eilers’ (1980) functions always 

providing results above (and significantly greater than) 1. In the case of Kaiser (1996), 

which provides two functions based on microbial fractionation, we took the average of 

the bacterial and fungal corrections. For moisture corrections, the functions by Smith 

and Eilers (1980) and Mohee et al. (1998) once again had to be dismissed given that 

the prior stayed constant at 0 and the latter was constantly above 1. No issues were 

found with the oxygen corrections. 

Following this initial assessment, simulations were ran for every kinetic model based on 

the daily temperature, moisture, and oxygen content data provided in Malamis et al. 

(2016). In total, 768 simulations were undertaken (96 per trial (8 temperature x 4 

moisture x 3 oxygen) x 4 trials x 2 kmax). The results of these simulations predicting 

biodegradation over time were then compared to the experimental results. Quality of fit 

was determined quantitatively using the normalized root mean square error (NRMSE), 

using equations 3.6 and 3.7: 

RMSE = √∑ (BOMloss,model,i − BOMloss,exp,i)
2n

i=1

n
 (3.6) 

NRMSE =
RMSE

BOM0

× 100 (3.7) 

Where BOMloss refers to the cumulative amount of biodegradable organic matter loss at 

a time i (%), BOM0 represents the initial biodegradable organic matter content (%), and 

n is the amount of data points. 

Using the NRMSEs obtained for every simulation, average NRSMEs were determined for 

each correction function, both by trial and averaged over the four trials. Furthermore, in 
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the aim of shedding some light on what combinations of correction functions provided 

the most accurate results, the top ten models (based on NRMSE) were identified for each 

trial, forming what will be referred to as “optimal sets”.  

3.5 Results and discussion 

3.5.1 Correction function profiles 

Figure 3.1 through 3.3 present the profiles of each correction function with respect to 

their correction variable (in plots (a)), and the result of the correction functions, as 

expressed through a correction factor, for trial 1. Trial 1 was selected simply for 

visualization purposes. 

Starting with temperature corrections, presented in Figure 3.1, both plots highlight the 

impact that the functions have on the degradation rate. From the top plot, (a), we can 

observe three general behaviours, i.e., functions that are: (1) slightly restrictive, such 

as those of Stombaugh and Nokes (1996) and Kaiser (1996), which are barely inhibitor 

in normal operating ranges (> 25 °C), though the latter becomes inhibitory at a much 

lower “high” temperatures than the other functions; (2) moderately restrictive, such as 

those of Haug (1996) and Lin et al. (2008); and (3) highly restrictive, such as those of 

Haug (1993) and the cardinal temperature correction, with the prior being the most 

restrictive of the functions assessed. Based on Figure 3.1 (b), we can see that the 

Arrhenius equation also fits into the category of “highly restrictive”. 

When looking at how this impacts the estimated degradation, Figure 3.1 (b) shows how 

the outputs of these functions translate to a real case, during a full composting trial. At 

day 0, given the low temperature, the highly restrictive functions limit the reaction rate 

down to about 20% of kmax, (cardinal temperature, Haug (1993), Arrhenius), while the 

moderately restrictive ones limit it to 50% to 70% (Haug (1996) and Lin et al. (2008)), 

and the slightly restrictive functions reduce it to 80% to 90% (Stombaugh and Nokes 

(1996) and Kaiser (1996)). During the thermophilic phase, the main impacting factor is 

what the functions consider to be the “maximum” temperature of composting, which 

appears as a sharp drop-off in most of the curves of plot (a). The most high-temperature 

restrictive function is that of Kaiser (1996), which starts to decrease degradation at 40 

°C, with the Haug (1996) model being at the opposite end of the spectrum, never 

decreasing. Though, for the Haug (1996) equation, given that it does predict a rate 

above kmax, it would be pertinent to limit the correction factor to 1 above a certain 
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temperature. When looking at Figure 3.1 (b), the curve of Kaiser’s (1996) function 

clearly highlights the impact that a “maximum” temperature can have, significantly 

inhibiting the rate of degradation, while most other models considered a near maximal 

degradation rate. Finally, for the passive phase of the composting process (when the 

temperature starts to decrease back down), we can see that the functions mirror the 

earlier stage, though at a more subdued rate, given the much slower decrease in 

temperature than increase. This allows us to see the different behaviour of the correction 

functions very clearly in plot (b), especially the three that were highly limiting early on 

(Arrhenius, Rosso, Haug (1993)). Indeed, though more limiting, the correction function 

produced by the Arrhenius equation decreases more slowly than that of the Haug (1993) 

model, while the cardinal temperature correction remains the least limiting of these 

three. 

 

For moisture corrections, these functions tend to be less variable and more restrained 

than those for temperature, emphasising the much greater impact of temperature 

correction functions (and thus the importance of selecting an accurate model). Figure 

3.2 (a) shows the profiles obtained by the four assessed moisture corrections over the 

entire possible range of moisture. We once again note the same three behaviours: (1) 

slightly restrictive functions, such as the Stombaugh and Nokes (1996) equation; (2) 

moderately restrictive functions, such as those of Haug (1980 and 1993), both giving 

nearly the same results; and (3) highly restrictive functions, such as that of Mora-

Naranjo et al. (2004), which sets the optimal moisture content at 100%. Note that, in a 

composting setting, this makes no sense, as will be treated later in this chapter. 

However, given that this function has been used in the literature, it was assessed 

alongside the others. Regarding the results of these corrections as applied on a real case, 

shown in Figure 3.2 (b), moisture content in the experiments never decreased below 

50%, so growth was not significantly limited in most cases. The Stombaugh and Nokes 

(1996) model maintains the correction factor at 1 throughout the experiments, given 

that its cut-off for low moisture is at 40%, while the Mora-Naranjo et al. (2004) 

correction was drastically more restrictive throughout the entirety of the experimental 

run than the other three functions.  
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Figure 3.1 (a) Profiles of the assessed temperature correction functions. (b) Results 

when applied to trial 1, alongside experimental tempertaure. To plot the values for the 

Arrhenius equation, the values of kd have been divided by kmax. 
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Figure 3.2 (a) Profiles of the assessed moisture correction functions. (b) Results when 

applied to trial 1, alongside experimental moisture content. 

Finally, regarding oxygen corrections, Figure 3.3 (a) highlights how similar the three 

equations behave, with the Monod equation being more restrictive than the model of 

Baptista et al. (2010). However, plot (a) does not account for the impact of temperature 

and moisture on the Higgins and Walker (2001) correction, having been plotted for a 

constant T = 55 °C and MC = 60% (noninhibitive for both). Indeed, Figure 3.3 (b) shows 
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how this inclusion of temperature and moisture modifies the model, giving it a unique 

profile compared to the other two, which share a shape (Monod being more pronounced), 

and making it more inhibitive than the Baptista et al. (2010) equation. It could loosely 

be considered as a middle ground between the Monod equation and Baptista et al.’s 

(2010), as will be further discussed in section 3.5. 

 

Figure 3.3 (a) Profiles of the assessed oxygen correction functions. (b) Results when 

applied to trial 1, alongside experimental oxygen content. 
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3.5.2 NRMSE assessment  

Moving on to the quantitative analysis of the correction functions, Table 3.4 presents the 

averaged NRMSEs for a correction factor applied in combination with two other correction 

factors (one for temperature, moisture, and oxygen) across all trials. Firstly, it is 

important to note that the averaged % error presented in these tables is not 

representative of the actual error to be expected from these functions, given the 

interaction between so many “suboptimal” correction functions. Indeed, the optimal 

solutions produced significantly lower NRMSEs in every case, with full details on these 

combinations and their errors being provided in Appendix B. 

Table 3.4 highlights the important difference in the general accuracy of the two modelling 

approaches taken (fixed vs optimized kmax), though this is expected. In both cases 

however, similar results are obtained regarding the relative performance of the 

correction functions. Most moisture corrections seem to provide similar results, with the 

exception of Mora-Naranjo et al.’s (2004) correction. As highlighted in Figure 3.2, this 

function is much too aggressive, likely due to the expression apparently not originally 

being intended for composting, though it has been applied in the composting context 

before (Ma et al., 2018). Oxygen corrections all offer very similar errors as well. 

Regarding temperature corrections, it would appear that the cardinal temperature 

correction, the Haug (1993 and 1996) models, and, in the case of a fixed kmax, the 

Arrhenius equation, all provide more accurate results than the other three corrections 

(Lin et al. (2008), Stombaugh and Nokes (1996) and Kaiser (1996)). 

Table 3.4 Average NRMSE for each correction function across all the trials. 

  Average NRMSE (% error) 

 Correction function Fixed kmax Optimized kmax 

Temperature 

functions 

Cardinal temperature correction  18.11 4.86 

Haug (1993) 18.12 4.80 

Haug (1996) 19.79 5.72 

Arrhenius equation 19.91 19.91 

Lin et al. (2008) 22.17 8.15 

Stombaugh and Nokes (1996) 23.68 10.80 

Kaiser (1996) 24.32 14.75 

Moisture 

functions 

Haug (1980) 16.43 7.91 

Haug (1993) 16.45 7.83 

Stombaugh and Nokes (1996) 16.89 7.74 

Mora-Naranjo et al. (2004) 36.85 13.66 

Oxygen 

functions 

Monod 18.27 9.21 

Higgins and Walker (2001) 19.00 8.89 

Baptista et al. (2010) 20.66 9.03 
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Given the close range of many of the NRMSEs and the potential for experimental and 

data processing error, a deeper assessment is called for. Therefore, in order to provide 

a clearer analysis and get a better picture of the most accurate models, as well as 

combinations, the 10 model combinations providing the best results based on NRMSE 

for each trial were identified, forming what we will call the “optimal set”. These models 

were, in general, much more accurate than the averages reported in Table 3.4 and 

presented some very interesting findings. Indeed, despite the relatively high NRMSEs 

shown in Table 3.4, the range for the top 10 models was generally much lower, a list of 

these combinations and their NRSMEs being presented in the Appendix B.  The list of the 

frequency of each correction function in the optimal set can be found in Table 3.5. 

Table 3.5 Frequency of individual correction functions in the optimal set (top 10 of each 

trial). 

  Fixed kmax Optimized kmax 

 Correction function Total % of 

total 

Total % of 

total 

Temperature 

functions 

Arrhenius equation 14 35 1 2.5 

Haug (1993) 14 35 14 35 

Cardinal temperature 

correction  

12 30 16 40 

Kaiser (1996) 0 0 0 0 

Lin et al. (2008) 0 0 0 0 

Stombaugh and Nokes 

(1996) 

0 0 0 0 

Haug (1996) 0 0 9 22.5 

Moisture 

functions 

Haug (1980, 1993) 22 55 14 35 

Stombaugh and Nokes 

(1996) 

18 45 18 45 

Mora-Naranjo et al. 

(2004) 

0 0 8 20 

Oxygen 

functions 

Monod 19 47.5 14 35 

Higgins and Walker 

(2001) 

11 27.5 12 30 

Baptista et al. (2010) 10 25 14 35 

 

From Table 3.5, we can note that, for a fixed kmax, the Arrhenuis equation, the Haug 

(1993) and the cardinal temperature correction were all present at approximately the 

same rate in the optimal set. Oxygen and moisture corrections remain relatively divided, 

though Haug’s (1980, 1993) corrections and the Monod equation were the most 

prevalent. 
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In the cases with optimized values of kmax, the Haug (1993) and cardinal temperature 

corrections provided the most accurate models, demonstrating their ability to more 

accurately predict the degradation profile and supporting the findings of Richard and 

Walker (2006) and Mason (2008). Indeed, we can note a significant decrease in the 

presence of the Arrhenius equation, given that it does not rely on kmax and therefore 

cannot be optimized in the same manner.  

In both cases, oxygen and moisture corrections were present at similar rates, mirroring 

the results of Table 3.4. One interesting finding here, which simultaneously highlights 

the strength and issue with the approach of optimizing kmax, is how the Mora-Naranjo et 

al. (2004) moisture correction managed to make up nearly 20% of the optimal sets. In 

these cases, the optimized kmax was often double that of the ones determined using the 

other equations. Though this may seem like a one-off, it might underline one of the 

reasons why laboratory-scale composting experiments throughout the literature have 

provided an incredibly large range of kmax’s, varying upwards of 3900% for similar 

substrates and conditions in certain situations, as determined by the review of Baptista 

et al. (2012). Indeed, given a lack of standardization in modelling and reporting of 

composting kinetics, we recommend against trying to obtain usable or transferable 

degradation rates from these works.   

Returning to the optimal sets, though Haug’s 1980 and 1993 corrections often provided 

near identical results, the 1980 function generally outperformed the 1993 correction in 

the case of a fixed kmax, while the 1993 function provided more optimal results for an 

optimized kmax, as highlighted in table 3.4, though the difference in performance was 

mostly negligible.  

3.5.3 Determining which correction functions to use together 

From the results provided above, some general recommendations can be formulated as 

to the selection of correction functions to model composting using first-order kinetics. It 

is important to note, however, that the results were still very variable and that these 

recommendations are general guidelines aimed at consistently ensuring accurate results, 

though more optimal combinations may exist. Table 3.6 provides the combinations most 

likely to provide consistently accurate and higher ranked results, based on our 

assessment. The table can be used in tandem with Figures 3.1-3.3 to aid in selecting 

correction functions. If ever a model is overly aggressive or lenient, then a simple fix 

could be to switch out the moisture or oxygen corrections. For example, a Monod 
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equation could be replaced with the equation of Higgins and Walker (2001) if the model 

is too restrictive (underpredicting degradation), or the Haug (1980, 1993) moisture 

corrections can be used if a model implementing the Stombaugh and Nokes (1996) 

correction overpredicts the biodegradation rate.  

In the case where a modeller seeks to follow the first approach of using a fixed kmax, 

then the recommendations are rather clear. For temperature corrections, the Arrhenius 

equation should be prioritized, though Haug’s (1993) correction or the cardinal 

temperature correction can also be used with success. For moisture corrections, all the 

assessed models except for the Mora-Naranjo et al. (2004) correction provided similar 

results. Based on the optimal sets, the Arrhenius equation should be used in tandem 

with Stombaugh and Nokes’ (1996) moisture correction and the Monod equation. For 

the Haug (1993) and cardinal temperature corrections, the Haug (1980, 1993) models 

should be favored alongside a Monod oxygen correction, though the Stombaugh and 

Nokes (1996) correction managed to perform decently as well in the case of the Haug 

(1993) temperature correction. The clearest takeaway in the case of a fixed kmax 

approach is the dominance of the Monod equation as an oxygen limitation. It managed 

to provide the best two solutions in every trial, while also making up more than 50% of 

the optimal sets and generally outperforming the other similar combinations 

(temperature + moisture) with different oxygen corrections. 

In the case where kmax is optimized, the recommendations are a bit less strict. The 

cardinal temperature and Haug (1993) models both performed very well, though, based 

on our results, the Haug (1993) model led to more optimal solutions, higher ranked 

solutions, and a lower average NRMSE. The Haug (1996) correction also provided 8 of 

the 10 optimal solutions for trial 2, though it never made it into the optimal sets for any 

of the other trials. Despite this result and given its higher average NRSME, its lack of 

representation in the other trials, and the close performance of the cardinal temperature 

model in trial 2, we would not recommend favoring the Haug (1996) over the other two. 

Therefore, when kmax is optimized, we recommend the use of the Haug (1993) or cardinal 

temperature (Rosso) models. Regarding moisture and oxygen corrections, the Haug 

(1993) model worked best alongside the Stombaugh and Nokes (1996) moisture 

correction, while the cardinal temperature function performed better with the Haug 

(1993) moisture correction. Indeed, in every trial, the combinations of the Haug (1993) 

temperature correction and the Stombaugh and Nokes (1996) moisture correction, 

regardless of oxygen correction, outperformed every other moisture correction function. 
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The cardinal temperature correction did not behave in such a clear fashion. It performed 

well in some trials alongside the Mora-Naranjo et al. (2004) moisture correction but, as 

mentioned earlier, this correction likely leads to a significant overestimation of kmax 

(which may or may not be an issue for certain modellers). None of the moisture 

corrections consistently outperformed all the others. Once again, the Monod equation 

for oxygen limitation was found to nearly always outperform the Baptista et al. (2010) 

and the Higgins and Walker (2001) corrections.   

Table 3.6 Recommended combinations of correction functions. 

Modelling 

Approach 

Temperature Moisture Oxygen 

Fixed kmax 
 

 

Arrhenius Stombaugh and Nokes 

(1996) 

Monod 

Haug (1993) Haug (1993)/ 

Stombaugh and Nokes 

(1996) 

Monod 

Cardinal temperature Haug (1980) Monod 

Optimized kmax 
 

 

Haug (1993) Stombaugh and Nokes 

(1996) 

Monod 

Cardinal temperature Haug (1993)/ 

Stombaugh and Nokes 

(1996) 

Monod 

  

We also assessed the individual use of the most accurate temperature corrections, to 

see whether they benefited from the addition of the other (moisture and oxygen) 

corrections. In the cases of both fixed and optimized kmax, none of the individual models 

managed to outperform combinations with moisture and oxygen corrections. The one 

exception to this that was consistently observed, based on the optimal sets, was that 

the individual application of the Haug (1993) temperature correction outperformed its 

application alongside the Haug (1993) moisture correction and Baptista et al.’s (2010) 

oxygen correction. 

Finally, the aspect of practicality is also worth mentioning. Though the Arrhenius 

equation might offer better results for modelling with a fixed kmax, it is also the only one 

of these functions that requires empirical data to use. Though not necessarily difficult to 

obtain, this can pose an unwanted challenge for modellers and might reduce the 

generalizability of the model compared to the Haug (1993) and cardinal temperature 

correction models, who only require the value of the temperature. It is important to note 

however that the coefficients (C1 and C2) of the Haug (1993) model can also be 

determined empirically through a regression analysis (Wang et al., 2014; Wang and 
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Witarsa, 2016), though the values used in this study have been the most prevalent in 

the literature. Furthermore, all of the models assessed in this paper, with the possible 

exception of the Arrhenius equation, are extremely easy to apply and implement into 

composting models, if temperature, moisture, and oxygen data are present (either 

predicted or determined in-field). Given that these equations simply multiply the 

degradation rate, modellers could evaluate their implementation for a given case, 

without having to go through the same process undertaken in this study, as highlighted 

in Table 3.6 and by switching some of the correction functions if necessary. 

3.5.4 Limitations and further research 

Further research would be needed to expand this work and investigate into the kinetic 

foundations of composting as well. A variety of kinetic expressions can be used to 

represent the composting environment (first-order, Monod, Contois, Tessier, etc.), as 

detailed in chapter 2, and it is unlikely that these models will respond to correction 

functions in the same way as the first-order model assessed here. We also highlight that, 

despite having a variable and representative range of temperatures in our trials, these 

models were not evaluated for extreme conditions during the process (other than initial 

and final low temperature). It is possible that some of the functions might not provide 

responses that are as accurate for processes that can see sharp changes in some of 

these operating variables, presenting a potential limitation of our work. Examples could 

include semi-batch composting that can lead to sharp temperature decreases, naturally 

aerated systems or windrows that can see more significant oxygen and moisture 

depletion, as well as more novel approaches to composting such as hyperthermophilic 

composting.  
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3.6 Conclusion 

Despite significant growth and development in the field of composting modelling, the 

use of correction functions to modulate degradation rate based on certain operating 

variables such as temperature, moisture content and oxygen content has been a woefully 

understudied area of the literature. This chapter aimed at providing guidance on the use 

of these correction functions by assessing the application of different correction functions 

(12 for temperature, 8 for moisture, and 3 for oxygen) applied together with a first-

order kinetic expression to predict degradation based on experimental composting 

results. 

As highlighted in our results and discussion, throughout the four trials, there was some 

variability in results. Therefore, general recommendations for selecting correction 

functions were proposed, instead of being able to pinpoint a unique and optimal 

combination of correction functions. These recommendations include favoring the 

Arrhenius equation, the Haug (1993), or the cardinal temperature corrections for 

temperature, when modelling with a fixed kmax. In the case of numerically optimized 

kmax’s, the Haug (1993) model provided the best performance, followed by the cardinal 

temperature correction. In all cases, the Monod equation was found to be the best 

oxygen limitation function, nearly always outperforming the other oxygen corrections. 

Regarding moisture corrections, some preferential pairings were proposed with the 

above-mentioned temperature corrections, though emphasis was placed on the potential 

benefit of testing multiple moisture corrections.  

In spite of the variability in results, we believe that the results highlighted in this chapter 

are likely to hold true for many composting models implementing first-order degradation 

kinetics (the majority of models). This is since, other than maximal reaction rates (kmax), 

the evaluated models had no input that was substrate specific or particular 

considerations for mechanisms that would or would not be involved in certain scenarios. 
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Phase 2 

Experimental and modelling 

investigation of nutrient loss and GHG 

emissions during composting 
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Chapter 4: Proposition for experimental work to 

investigate nutrient loss, transformation and GHG 

emissions from composting aiming at model 

calibration and validation 

4.1 Introduction 

Following the work undertaken in the previous chapters, we can move into the second 

phase of this PhD, which aims at applying the knowledge gained in phase 1 to develop 

the composting models which are at the heart of this thesis. The first step of this second 

phase was set to be an experimental investigation of nutrients and emissions throughout 

composting, which would then be used to calibrate and/or validate the composting 

models. However, as mentioned in the statement on the impacts of the COVID-19 

pandemic, the planned experiments were delayed by over a year, meaning that they 

would not be completable within the timeframe of this PhD. Despite this, significant work 

had gone into planning the experiments, designing the reactors, and putting everything 

in place. Therefore, the author believes that presenting this information can be of 

benefit, if only to further consolidate knowledge on composting research. More 

specifically, the hope is that this chapter can be of particular interest and benefit to 

people still developing their knowledge in the field (such as graduate students), given 

that the only reviews on the design of composting experiments are those of Petiot and 

De Guardia (2004), Mason and Milke (2005) and Li et al. (2013). The prior references 

focus only on reactor operation, while the latter mainly focuses on composting recipes, 

without discussing methodology. This chapter seeks to bridge the gap, serving as a 

“mini-review” of sorts and an experimental methodology, and is the distillation of months 

worth of research and planning on an optimal approach to designing composting 

experiments. Furthermore, for those unfamiliar with composting research, it can provide 

additional context to understand how the data used throughout the following chapters, 

especially chapters 5, 7, and 8, are generated.  

This chapter will go over the primary design, planning, operating choices, and 

recommendations for laboratory and pilot-scale composting systems aimed at following 

nutrients and greenhouse gas emissions during the composting process, seeking to 

provide guidance for future composting modellers and researchers. We will start by 

exploring the necessary considerations for composting experiments design in section 
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4.2, followed by the designed and implemented experimental setup and plan in section 

4.3.  

4.2 Considerations for designing composting experiments 

4.2.1 The type of composting system 

The first question to be asked when designing composting experiments is: what type of 

system are we seeking to simulate? As mentioned in chapter 1, this can range from in-

vessel composting, static pile and windrow composting, rotating drums, 

vermicomposting, aerated sacs, etc. 

In chapter 2, we highlighted that the most studied composting environment is the 

reactor/in-vessel system, given the ease of implementing it at laboratory scale. A 

schematic representation of the general layout of laboratory and pilot-scale composting 

reactors is presented in Figure 4.1 (a), most often used to study in-vessel and static pile 

composting. However, even at smaller scales, alternate systems have been envisioned. 

Of the various types of composting systems, the ones that have received the least 

attention at bench scale are systems based on piles, such as windrows and naturally or 

passively aerated piles, given that they have key geometric features and boundary 

conditions not seen in most of the other, more controlled, environments. For example, 

unlike in-vessel systems or aerated sacs, which tend to be packed with organic matter 

and held within the confines of their systems, piles must be able to stand on their own, 

imposing some geometric restrictions, as well as influencing boundary conditions (heat 

and mass transfer with ambient and uncontrolled conditions, unlike reactors). This has, 

however, not stopped researchers from designing systems capable of representing 

windrows and piles at small scales. Indeed, Figure 4.1 (b) presents the setup that has 

most often been applied to study windrows in laboratory or small-pilot scale processes, 

as applied by Hogan et al. (1989) and Magalhaes et al. (1993). This second orientation 

provides the advantage of allowing for symmetry to be assumed, especially if placed in 

a rectangular reactor, and, if sufficient similitude is achieved (section 4.2.3), it can be 

used to assess profiles (temperature, degradation, etc.) and process operation at a small 

scale. However, the first orientation presented in Figure 4.1 (a) is by far the most used, 

with the assumption that mixing will homogenize the environment enough as to minimize 

large gradients in the environment. 
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Figure 4.1 Schematic of laboratory composting reactor configurations. (a) is the most 

common setup and is mainly used to evaluate in-vessel composting and static pile 

composting; while (b) has seen some implementation to model piles, such as windrows. 

4.2.2 Process size 

Following determination of the type of system, process sizing is the next major step. 

Sizing of composting systems for research can be extremely variable, and each offer 

unique advantages and disadvantages. A very loose categorization of composting system 

sizes, as defined by the author and based on the ranges used throughout literature and 

the results they allow to obtain, is presented in Table 4.1, alongside an overview of the 

advantages, disadvantages, and recommended uses of these sizes:  

Table 4.1 Loose categorization of composting system sizes and their respective 

advantages, disadvantages, and recommended use-cases.  

Scale Size (m3) Advantages Disadvantages Recommended use 

Laboratory 0 – 0.2 Easy and 

thorough control 

and monitoring 

 

 

Significant 

differences from 

full-scale 

processes, 

which lead to 

important 

variability 

across different 

experimental 

Development of 

fundamental 

knowledge: e.g., 

evaluation of how 

factors influence 

process variables, 

such as 

temperature, 

moisture, and 
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setups and 

when compared 

to real-world 

applications. 

Limited to no 

information on 

techno-

economic 

considerations.  

oxygen content on 

degradation rates, 

GHG emissions, 

nutrient 

transformation, etc. 

Not to be 

extrapolated to 

full-scale systems. 

Pilot 0.2 – 5.0 Good physical 

representation 

of the 

composting 

environment 

(adequate 

heterogeneity, 

insulation). Can 

provide valuable 

information for 

techno-

economic 

assessments 

(energy use, 

mixing, aeration 

strategies). 

Retains a good 

level of control 

and ease of 

sampling. 

Significantly 

increased costs 

and logistics 

(particularly 

regarding 

substrate 

management) 

when compared 

to laboratory-

scale. 

A great middle 

ground between the 

laboratory- and full-

scale systems. Can 

provide information 

on the physical, 

chemical, and 

biological behaviour 

of the composting 

environment, though 

differences will 

remain compared to 

full-scale. Can be 

extrapolated to full-

scale systems, 

though differences 

must be accounted 

for (e.g., dead zones 

which might be more 

likely at full-scale). 

Full > 5.0 Truest 

representation 

of real 

composting 

processes 

Challenging to 

determine 

specific 

information, 

complex 

sampling, 

elevated costs.  

Best method to 

follow large-scale 

phenomena, such as 

heat and mass 

transfer, real 

degradation rates 

and profiles, final 

compost quality, 

pathogen 

elimination, etc. Can 

be difficult when 

seeking to develop 

fundamental theory 

given that balances 

(mass and energy) 

are likely to be 

difficult to close.  

 

Beginning with the laboratory-scale, these systems are perfectly suited to study and 

monitor the composting process in great detail and with great precision in measurements 

and control. However, their small size and this ease in control also make these systems 

very different from full-scale applications, leading to deviations from the latter. These 
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differences can happen in a few key areas, and it is important to be aware of them and 

to work to counteract them. These areas mostly pertain to the physical restrictions of 

the setup and how this can affect the process. This can notably be felt in the heat 

exchange of these systems. Indeed, at small scale, such as 0.05 m3, a reactor would 

only have about 25 kg of substrate, making it very unlikely for the system to generate 

and retain enough heat to ensure a normal composting temperature profile. Indeed, at 

smaller scales, the surface area to volume (SA:V) ratio will most likely be significantly 

larger than those of full-scale processes (Mason and Milke, 2005), while self-insulation 

is nearly non-existent (Petiot and De Guardia, 2004). Other issues with the laboratory 

scale are that it is very difficult to replicate the heterogeneity of a real composting 

system in this restricted environment. This, in turn, can impact mass and heat transfer, 

making these systems less suited to assess temperature or local degradation profiles. 

Furthermore, the responsive control applied at this scale is often much more effective 

than what could be achieved at larger scales, resulting in much more reactive systems. 

Indeed, laboratory composting setups should be prioritized to study aspects of 

composting that are not hindered by assuming a homogeneous and tightly controlled 

environment. However, this scale should be avoided for any variable that is affected by 

the heterogeneity of the environment, notably air/heat flow and temperature 

characterizations. Care should also be taken when assessing factors that are linked to 

such aspects, such as drawing conclusions on pathogen elimination for a whole system 

when temperature profiles play an intrinsic role in this (Hénon, 2008). Laboratory-scale 

systems are perfect to understand how operating conditions or changes to the 

environment or substrates can impact other factors in the process, such as determining 

how temperature impacts moisture or kinetics or how moisture content can promote or 

inhibit certain transformation pathways, such as the production and release of methane 

or (de)nitrification, for example. However, this represents a development of fundamental 

knowledge. Hence, great care should be taken when seeking to extrapolate results of 

laboratory systems to larger scales. Indeed, in their analysis of laboratory and full-scale 

composting kinetics, Baptista et al. (2012) found that variations in degradation rates 

reported at laboratory-scale were extremely large, at a factor of 39, while the rates 

reported at full-scale processes only varied 3-fold. Furthermore, they also noted that 

degradation rates obtained at laboratory-scales were, on average, significantly faster 

than those reported for full-scale systems, being 5.7 times faster for similar substrates 

(or 1.9 times faster for municipal solid wastes). This was noted as being due to the 
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better management of the composting conditions through strict control, being about 

50% more efficient at laboratory than at full-scale.  

At the other end of the scale, full-scale experiments are obviously the best 

representation of real composting processes. However, the size of these processes can 

make it difficult to ascertain specifics, especially given the generally “open’” nature of 

composting operations, leading to many potential sources of interference on 

measurements. Furthermore, their size can lead to significant costs, even if only for 

sampling. Indeed, sampling can be one of the most challenging aspects of full-scale 

systems, given their significant size and heterogeneity. Full-scale processes are best 

suited to follow general characteristics of composting, or large-scale phenomena, such 

as heat and mass transfer, degradation rates and profiles, and general characterizations, 

such as C/N ratio, organic matter (OM) content, and such. Where full-scale experiments 

are less useful is in working out specific mechanisms and exploring theory in depth, 

though they can be a great source of validation for laboratory and pilot-scale work in 

this area. For example, and pertinent to this dissertation, exploring pathways for nutrient 

transformation during composting is much easier and more precisely measured at 

laboratory and pilot scales than it would be at full-scale. However, studies on pathogen 

elimination, “real” degradation, and temperature distributions will benefit from being 

undertaken at full-scale. 

Finally, the middle ground between laboratory and full-scale experiments, the pilot-

scale manages to compromise between the advantages and disadvantages of both 

laboratory and full-scale systems. Being larger in size than laboratory-scale setups, in 

the case of composting, pilots tend to offer a much better physical representation of the 

composting environment. Indeed, with the increased mass of substrate used in these 

systems, they are generally capable of self-heating to the same extent as a full-size 

process, without requiring additional temperature control, as well as having surface area 

to volume ratios more similar to those of full-scale applications (Mason and Milke, 2005). 

From pilot scale systems, it is also possible to ascertain information related to energy 

use, mixing, aeration strategies, etc., that can be used in technical and economic 

evaluations; information that would not be available from the laboratory scale and that 

are important before transitioning to full-scale implementation. The main disadvantage 

of pilot-scale composting systems, when compared to laboratory-scale, is the generally 

significant increase in costs and experiment duration, as well as the added logistics 
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associated with getting and storing enough waste to operate the system, though these 

are necessary to gather the full-breath of information allowed through these systems.   

4.2.3 Ensuring similarity 

Regardless of the scale chosen, ensuring similarity between the experimental setup and 

the evaluated environment is necessary. For composting, this is most often ensured 

through insulation, in cases where the system is not capable of maintaining its heat, and 

grinding and sieving of substrates and bulking agents to meet a specific size distribution. 

Indeed, throwing fully intact banana peels into a 10 L reactor alongside wood chips would 

not allow for a representative assessment of the composting of this mixture, given that 

conduction, convection and diffusion of heat, moisture, and oxygen would all be grossly 

misrepresented compared to a full-scale process. 

The first aspect to consider is the geometry of the designed systems. The most common 

reactor shape is cylindrical (vertical for reactors, horizontal for rotating drums), given 

that they minimize surface area to volume (SA:V) ratio, decreasing heat loss. However, 

apart from heat loss, this design consideration is rather unimportant at laboratory scales, 

other than if aiming to study key geometric features that require a 

rectangular/trapezoidal pile, as shown in Figure 4.1 (b). Nevertheless, for larger 

systems, the added heat loss can be important, making the difference between a system 

that can operate solely on self-heating and -insulation or one requiring added 

temperature control. Indeed, in a comparison of cylindrical and rectangular composting 

vessels (60 L), Qasim et al. (2019) obtained a heat loss of about 17% higher in the 

rectangular reactor than the cylindrical reactor, at optimal aeration. In this case, the 

SA:V was about 10% higher for the rectangular system than the cylindrical one, leading 

to quicker temperature decreases and less time spent in the thermophilic phase.    

For insulation and temperature control, a variety of alternatives are possible, 

especially for reactor/in-vessel systems. The aim of these is to maintain desired 

boundary conditions regarding temperature. For pilot systems, the vessels can often be 

insulated with traditional insulants and left to self heating. However, insulation on its 

own is unlikely to be enough for smaller, laboratory-scale, systems. Indeed, at this size, 

biological heat generation is rarely enough to overcome the heat-loss of the system. For 

this reason, three reactor formats, in addition to self heating systems, have become 

widely used throughout the field (Mason and Milke, 2005): (1) fixed temperature 

reactors, (2) controlled temperature difference (CTD) reactors, and (3) controlled heat 
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flux reactors. These designs are a way of controlling and ensuring desired boundary 

conditions, and will be explored more in detail in section 4.2.5.  

Regarding particle size, full-scale composting operations generally operate with 

particles ranging from 3 or 4 mm up to 75 mm (Alberta Environment and Parks, 2018). 

For smaller scale systems, experiments can generally be designed following one of two 

approaches: (1) maintaining a similar particle distribution as a full-scale process and 

assuming that the experiment represents a certain cross-section of a larger process; or 

(2) maintaining an equivalently scaled-down particle distribution, as well as aeration 

rate, in the aim of emulating the full process at a smaller scale. In the first case, 

experiments can still seek to determine optimal process conditions for a variety of 

scenarios or evaluate specific behaviour, such as heat transfer. However, it is important 

to be aware of the boundary conditions of these systems and how they differ from the 

case of full-scale processes, given that profiles (degradation, temperature, moisture, 

oxygen) will be greatly impacted by these conditions. In the second case, boundary 

conditions and process geometry seek to emulate that of a full-scale system, allowing 

for more realistic profiles throughout the system, though this approach has been very 

rare in the literature. Indeed, oftentimes, many researchers use the first approach of 

maintaining a similar particle size distribution while attempting to emulate a full-scale 

process at significantly reduced size. This was exemplified by Lashermes et al. (2012) 

who sought to assess the reproducibility and compare the results of six small-scale (4 

L) composting reactors with full-scale systems. The experimental reactors demonstrated 

strong reproducibility, but the system limitations did cause them to differ from full-scale 

processes. Indeed, such limitations included a shorter thermophilic phase and a decrease 

in the degradation of lignin, with the authors also pointing to the lack of colonization by 

macrofauna as being another potential source of deviation (Lashermes et al., 2012). As 

highlighted by both Lashermes et al. (2012) and Baptista et al. (2012), laboratory-scale 

results simply cannot be generalized to full-scale systems, especially when process 

similarity is not ensured.    

4.2.4 Operating conditions  

Operating conditions are the most studied aspect of composting, given that they regulate 

how the process unfolds. The main operating conditions and control variables include 

temperature, moisture content, aeration rate, bulk density, C/N ratio, and pH. Generally, 

optimal ranges for these conditions have been reported as being: between 50 and 60°C 

for temperature (Eklind et al., 2007; MacGregor et al., 1981; Miyatake and Iwabuchi, 
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2006; Nakasaki et al., 1985; Strom, 1985), between 40 and 70% for moisture (Guo et 

al., 2012; Jiang et al., 2011; Kim et al., 2016; Kumar et al., 2010; Liang et al., 2003a; 

Tiquia et al., 1998), oxygen contents above 12% (Alberta Environment and Parks, 2018; 

Haug, 2018), which generally seem to be achieved by aeration rates around 0.2 and 1 

Lair min-1 kg organic matter-1 (Chen et al., 2015; De Guardia et al., 2008; Gao et al., 

2010; Guo et al., 2012; Petric and Mustafić, 2015; Rasapoor et al., 2009; Yamada and 

Kawase, 2006), bulk density between 300 and 700 kg m-3 (Alberta Environment and 

Parks, 2018), initial C/N ratio of 20 to 35 (Guo et al., 2012; Huang et al., 2004; Kumar 

et al., 2010; Onursal and Ekinci, 2017; Yan et al., 2015; Zhu, 2007), and pH around 

basic or mildly acidic environments. For pH, the optimal range is based on the preference 

of the microorganisms in the environment, with bacteria tending to prefer neutral pH, 

while fungi have a better activity in mildly acidic environments (de Bertoldi et al., 1983). 

Some work has also gone into modifying the microbial ecology to operate optimal in 

specific conditions, such as through inoculation with acid-tolerant bacteria (Kuroda et 

al., 2015; Nakasaki et al., 2013; Nakasaki et al., 1996).   

4.2.5 Process control  

Of the operating conditions highlighted in the previous section, temperature, moisture 

content, and aeration tend to be actively controlled throughout the process, while bulk 

density, C/N ratio, and pH tend to be modified prior to the process. Regarding the latter, 

initial property modification is mostly undertaken through the addition of bulking 

agents, to modify both bulk density and C/N ratio, while pH is sometimes modified by 

addition of alkaline substances, such as fly ash, NaOH and lime (Fang et al., 1999; Lei 

and VanderGheynst, 2000; Nakasaki et al., 1993; Yu and Huang, 2009), or acidic 

amendments (Chen et al., 2010; Fangueiro et al., 2015; Kithome et al., 1999). Table 

4.2 provides an example of substrate and bulking agents N contents, C/N ratios, 

moisture contents, and bulk densities, provided by the Northeast Regional Agricultural 

Engineering Service (NRAES) (Rynk et al., 1992). Regardless of real-world or laboratory 

evaluation and application, this modification remains the same. 
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Table 4.2 Common substrate and bulking agent properties, adapted from Rynk et al. 

(1992). 

Substrate/Bulking 

agent 

%N dry 

weight 

C/N ratioa Moisture 

content 

(%) 

Bulk density 

(kg/m3) 

Mixed slaughterhouse 

waste 

7-10 2-4 - - 

Fish wastes 6.5-14.2 2.6-5 50-81 - 

Poultry carcasses 2.4 5 65 - 

Activated sludge 5.6 6 - - 

Sewage sludge 2-6.9 5-16 72-84 638-1040 

Digested sewage sludge 1.9 16 - - 

Food waste 1.9-2.9 14-16 69 - 

Tree trimmings 3.1 16 70 769 

Swine manure 1.9-4.3 9-19 65-91 - 

Grass clippings 2.0-6.0 9-25 - 178-297 

Cattle manure 1.5-4.2 11-30 67-87 785-993 

Paunch manure 1.8 20-30 80-85 866 

Fruit waste 0.9-2.6 20-49 62-88 - 

Horse manure 1.4-2.3 22-50 59-79 721-961 

Shrub trimmings 1.0 53 15 254 

Paper mill sludge 0.56 54 81 - 

Leaves 0.5-1.3 40-80 (54) - 59-178 

Corn stalks 0.6-0.8 60-73 12 32 

Corn cobs 0.4-0.8 56-123 (98) 9-18 330 

Straw 0.3-1.1 48-150 (80) 4-27 34.5-224 

Sawdust 0.06-0.8 200-750 

(442) 

19-65 207-267 

Corrugated cardboard – 

uncompacted 

0.1 563 8 30-90 

Corrugated cardboard – 

compacted 

0.1 563 8 180-300 

Rice hulls 0-0.4 113-1120 

(121) 

7-12 185-219 

Bark – hardwoods 0.1-0.4 116-436 

(223) 

- - 

Bark – softwoods 0.04-0.39 131-1285 

(496) 

- - 

wood chips/shavings - 

hardwoods 

0.06-0.11 451-819 

(560) 

- - 

wood chips/shavings - 

softwoods 

0.04-0.23 212-1313 

(641) 

- - 

aValues in parentheses are average values. 

For active control, however, there are many options that lend themselves to 

researchers, all of which can have an important impact on the outcome of the composting 

process. Regarding temperature control, the two main pathways for process operation 

are either (1) self-heating or (2) controlled temperature. In the case of self-heating 

systems, the systems are left to generate their own heat through biodegradation, while 
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insulation may be added to mitigate heat loss. This insulation is especially pertinent at 

smaller scales, where the surface area to volume ratio may be higher than that of a full-

scale system. The second alternative, that of controlling the systems temperature 

directly, is especially common at laboratory and small pilot-scales. This is not to say that 

full-scale composting processes do not implement temperature control, most often 

achieved through a regulation of aeration and moisture, but the control applied at 

laboratory and pilot scales can be, and is often, far more rigorous than that of full-scale 

processes (reminder of the 50% higher control efficiency at laboratory-scale noted by 

Baptista et al. (2012)). Of the temperature control schemes applied for composting 

reactors, three major alternatives have been most prevalent throughout the literature, 

as detailed by Mason and Milke (2005): (1) fixed temperature systems, (2) controlled 

temperature difference (CTD) systems, and (3) controlled heat flux systems. Fixed 

temperature systems, as the name implies, operate at an imposed temperature, 

maintained by heating or cooling of the system. Though uncommon in practice, some 

composting processes can operate at a fixed temperature, something that is seeing 

particular interest in the field of high-temperature (hyperthermophilic) composting (Cui 

et al., 2019; Liao et al., 2018; Yu et al., 2018). Controlled temperature difference 

reactors are designed to limit heat loss and achieve and maintain self heating at smaller 

scales, acting as a form of controlled insulation. In these systems, a temperature 

difference between or throughout the system is set and maintained by providing heat to 

compensate for heat losses. As such, even with small amounts of substrates, the heat 

generated by biodegradation is mostly kept in the system, allowing for it to heat up and 

to replicate self-heating and self-insulation that would only be achievable and 

maintainable at much larger process sizes. Finally, the controlled heat flux approach is 

a deviation on the controlled temperature difference, with a constant and pre-

determined heat-flux being maintained through the reactor’s walls instead. As noted, 

temperature can also be controlled through aeration and inlet air temperature, 

influencing both convection through the environment and evaporation, though this 

control may not limit heat losses enough to allow for self heating, and is therefore mostly 

implemented at larger scales.  

For laboratory and pilot-scale work, controlled temperature difference (CTD) reactors 

are recommended to best emulate large-scale composting processes (Mason and Milke, 

2005), while fixed temperature systems are very useful to determine parameters, such 

as degradation rates at fixed temperatures, microbial diversity, the impact of process 

additives, etc. 
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For moisture control during the process (it is often modified before the process as 

well), water is generally added to the environment in one of two ways: (1) spraying of 

water onto the composting matrix, or (2) humidification (saturation) of inlet air. The first 

method is more reactionary than the second, but in any case, automated moisture 

control of composting is a rarity, given that moisture measurements are most often done 

by periodically extracting and drying a compost sample for 24 hours.    

Finally, for oxygen control, this is mainly achieved through aeration strategies. Once 

again, smaller systems and research-oriented applications tend to have a much greater 

ability and access to oxygen measurement methods. Many laboratory and pilot-scale 

processes use oxygen sensors to measure oxygen levels of the exhaust gas, but such 

measurements are very rarely done in the field. Therefore, oxygen control is dependent 

on good aeration strategies. Multiple strategies exist, being generally classed as 

active/forced, passive or natural methods (Alberta Environment and Parks, 2018; 

Fernandes and Sartaj, 1997). Active aeration strategies are the most common for large 

scale operations and can take various forms. The most common of these strategies are 

either through frequent mixing and turning, as used during windrow composting, where 

the oxygen is replenished in the environment through this action, or through blowing or 

drawing air through the system, most often applied with static pile or in-vessel systems. 

In these systems, air is blown (positive aeration) or drawn (negative aeration) through 

pipes placed throughout the system. Though both positive and negative forced aeration 

are often used, positive aeration offers the benefit of being able to preheat and humidify 

the air entering the system, allowing for better control of the system, though additional 

heating may be necessary near the pipes to ensure pathogen destruction (Hénon, 2008). 

Note that there is no consensus on whether turning/mixing a pile, such as windrows, is 

an active or passive strategy and can often be found classified in both categories. Given 

the “active” nature of the management of the composting involved in these strategies, 

the author prefers to classify it alongside the active approaches, similarly to Larney et 

al. (2000), Amlinger et al. (2008), and Varma et al. (2018). Indeed, passive aeration 

approaches tend to use a temperature gradient between the composting environment 

and perforated pipes placed throughout the system, drawing air through the 

environment by convection. Finally, naturally aerated systems have no means to 

facilitate aeration and are totally dependent on diffusion within the system, operating in 

a similar manner to passively aerated systems, but without means to facilitate heat and 

mass transfer through the piles. 
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For systems using forced aeration, a few important design questions must be considered 

(Ekinci et al., 2004a): (1) is airflow provided continuously or discontinuously 

(intermittent)? (2) is the air recirculated? (3) is the direction of the airflow ever 

reversed? Each of these choices can lead to significant changes in process operation, as 

studied by Ekinci et al. (2004a). From the literature reviewed throughout the course of 

this dissertation, laboratory-scale experiments seemed to implement continuous and 

discontinuous aeration at similar rates, as well as recirculation, though a more 

systematic review of literature on composting experiments would be warranted at this 

point. Regarding the first of these choices, intermittent aeration can be useful to achieve 

a more uniform temperature profile throughout the environment, notably near air inlets 

that remain at lower temperature, which can decrease pathogen elimination. Further 

benefits include less convection through the system, decreasing overall moisture loss 

and ammonia loss (Ekinci et al., 2004a), which are both direct functions of airflow rate. 

For recirculation, this strategy aims at decreasing temperature and moisture gradients 

throughout the system, the pile heating the air as it passes through it, which would then 

heat the new incoming air. The most important aspect when using recirculation is to 

make sure that adequate oxygen is provided to the system, given that it is possible to 

accumulate heat and moisture in the system, while depleting oxygen. Finally, regarding 

reversed-direction airflow, this is the least common of the above considerations, and 

with good reason. Indeed, this operating strategy, which periodically reverses the 

direction of airflow, is intended to achieve a more uniform moisture distribution and 

decrease moisture lost, by alternating the direction of mass transfer and uniformizing 

the movement of water through the system. However, during their assessment of this 

approach, Ekinci et al. (2004a) found that reversed directional airflow, with or without 

recirculation, lead to significant oxygen limitation and moisture retention, though they 

note that this may be due to the chosen operating conditions. Though some of the 

alternatives discussed above can be interesting for process control or optimization of 

certain factors, such as emissions reductions and energy optimization, the simplest and 

most straightforward option of continuous, unidirectional, and non-recirculated air flow 

seems to be the most certain alternative for efficient composting (Ekinci et al., 2004a). 

Indeed, the other configurations showed promise, but in every case other than this 

standard configuration, significant oxygen limitations were encountered, pointing to the 

greater need of optimization when considering such alternatives.  
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4.2.6 Sampling and analysis 

The final consideration when designing composting experiments is determining the 

desired analyses and the sampling necessary to achieve these readings.  

For analyses, the composting process generates three primary phases that can be 

pertinent to analyse: the compost (solid), the leachate (liquid), and emissions (gas). The 

quality of compost is the most analysed aspect in composting literature, with basic 

assessments of organic matter, total carbon, nutrient (N and P) content, moisture 

content, pH and electrical conductivity (EC) being extremely common. Further analyses 

also include heavy metals, organic toxins, microbial ecology, and the presence of humic 

and fulvic substances. When evaluated, leachates generally tend to go through the same 

tests as the compost.  

For process emissions, which is the second most analysed aspect of composting, the 

main chemical species of interest include: CO2, CH4, NH3, N2O, and O2, given their role 

as markers of aerobic degradation and nitrogen loss, as well as dimethyl sulfide and H2S 

for odour quantification. The main sampling tools for gases used throughout composting 

literature include dedicated gas analyzers, chemical traps, such as NaOH for CO2 and 

boric or sulfuric acid for NH3, gas chromatography, and multi gas analysis (photoacoustic 

or FTIR spectroscopy). 

Regarding sampling, the number of sampling locations and the frequency of sampling 

can vary significantly and is dependent on the size, operation, and objective of the 

experiments. For example, for temperature sampling, Smårs et al. (2001) sampled the 

temperature at 17 locations throughout their 200 L composting reactor, compared to the 

100 L reactor and single sampling location of Chen et al. (2020b). Indeed, works focusing 

on spatial and temporal distributions of composting variables require significant 

sampling, given the dynamic and heterogeneous nature of the composting environment. 
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4.3 The proposed system design and experimental plan 

4.3.1 Objective of the experimental plan 

The purpose of the proposed system design and plan was to the provide the necessary 

information to validate the pathways for nitrogen transformation and loss from the 

composting environment, as well as greenhouse gas emissions. The intent was to then 

be able to use this information in the calibration and validation of the composting models 

developed later in this dissertation. To achieve this, focus was placed on being capable 

of quantifying emission profiles, as well as solid and liquid compositions. This information 

could then serve to determine the composting kinetics, as well as ammonification, 

de/nitrification rates, and microbial growth rates, with the aim of being capable to 

determine the individual contribution of the various transformation pathways to the 

global balance.   

4.3.2 Laboratory-scale reactor 

For this project, given the focus on evaluating pathways for nutrient transformation and 

greenhouse gas emissions, the laboratory-scale was prioritized, though ensuring as 

much similarity with larger processes was desired. Having two reactors that could serve 

as duplicates was also preferred over one larger reactor, given the inherent variability 

in composting experiments and the desire to achieve replicability, as highlighted earlier 

through the works of Lashermes et al. (2012) and Baptista et al. (2012). In this case, 

two 15 L vessels with a working volume of approximately 10 L were chosen. Therefore, 

a controlled temperature difference (CTD) setup was chosen, given that Mason and Milke 

(2005) identified it as being the most effective at mirroring full-scale operation and that 

the designed reactors had a SA:V ratio of 20, which is approximately three times higher 

than full-scale processes (Mason and Milke, 2005). In this case, insulation of the reactors 

is assured by submerging the reactors in a water bath. The temperature near the center 

of the reactors and inside the bath is measured using K-type thermocouples, and a 

constant temperature difference of 1 °C is maintained between the water bath and the 

reactor with the lowest temperature. This would ensure that the system would 

experience a slight cooling, but without losing too much heat due to its size and higher 

SA:V ratio. Figure 4.2 presents the 3D rendering of the reactors, while Figure 4.3 shows 

a front view of the installed system in the laboratory. 
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Figure 4.2 3D rendering of the experimental composting system. 

 

Figure 4.3 Composting setup in the laboratory. 
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Inside the reactors, the substrate is seated on a metallic, perforated, plate, slightly 

elevated from the bottom of the reactor, as shown in Figure 4.1 (a). This plate serves 

both as a diffusor for aeration, which is pushed through the bottom of the reactor, and 

a barrier to collect leachate in the bottom of the reactors; the leachate then being 

siphoned out through a syringe.  

Regarding aeration, a continuous air flow of 0.5 L min-1 kg OM-1 was chosen, given the 

range presented in section 4.2.4. Before entering the reactors, the air is passed through 

a CO2 trap, using a 4% NaOH solution, followed by a humidifier (bubbled in water) held 

within the water bath. The removal of CO2 is to ensure that the CO2 measurements at 

the exit of the system are representative of the CO2 produced by biodegradation, i.e., 

without including CO2 in the air feed, while the humidification aims to guarantee a more 

stable moisture content, given that the laboratory air supply is dry. 

Mixing is undertaken in a periodic manner, with frequencies being dependent on the 

experiments. The mixing is done manually by removing the contents of the reactor into 

another bucket, mixing inside this bucket, and then putting the matter back into the 

reactor. Given the CTD reactors, other than momentary heat loss during the mixing, 

heat loss overall is limited, given that the water bath can be maintained at the same 

temperature as before the mixing and heats the contents rapidly.  

4.3.3 Storage and preparation of substrates 

Aside from selecting the desired substrates, which is purely dependent on the objective 

of the experiments, storage and preparation of composting substrates is extremely 

important. Synthetic substrates can be made in the laboratory, with “synthetic” options 

ranging from dog food (Chang et al., 2005; Nakasaki and Ohtaki, 2002; Schloss et al., 

2000; VanderGheynst et al., 1997a) to mixes of any wide variety of substances to ensure 

any variety of compositions or characteristics. To ensure comparability between 

composting trials, freezing of a large amount of initial substrate is recommended; 

preferably by freezing into smaller lots that can be unthawed when needed. Multiple 

freeze-thaw cycles are to be avoided, given that it can alter the state of the substrates, 

reducing comparability and reproducibility. However, Trémier (2004) demonstrated that 

the freezing of organic matter had a small effect on moisture content, organic matter, 

chemical oxygen demand, total carbon and Total Kjeldahl Nitrogen (TKN), generally 

inferior to 5% over periods of more than one year. When thawing organic matter, it is 
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recommended to thaw it at 4 °C for 48 hours, followed by bringing the substrate/bulking 

agent to ambient temperature over a few hours (< 6h) before launching experiments.   

Following selection and storage, preparation is of utmost importance, especially when 

working at smaller scales, notably at laboratory-scale. Maintaining physical similarities 

is necessary and can be challenging when working with organic waste and bulking agents 

that will naturally be oversized in a system with an operating volume of 10 L, as noted 

in section 4.2.3. In this case, the substrate would be ground and sieved to obtain a range 

of approximately 2 to 4 mm, with bulking agents being ground to about 4 mm in size.  

4.3.4 Sampling and analysis 

The proposed goal of the experiments was to provide a complete and comprehensive 

following of nutrients and gaseous emissions during composting. Therefore, having 

frequent sampling of solids and liquids (leachate), alongside continuous emissions 

monitoring, was primordial. For a 30-day experimental trial, the solid and liquid sampling 

would be undertaken on days 0, 2, 4, 6, 8, 10, 12, 16, 20, 25, and 30. The following 

would be measured for every sampling point: 

4.3.4.1 Solid samples (compost) 

For solid samples, moisture content would be measured by drying a 10 g sample at 

110 °C for 24 hours. The difference in weight between the fresh and dried samples would 

represent the amount of water within them, following eq. 4.1: 

MC =
Wet weight − Dry weight

Wet weight
× 100 (4.1) 

To ensure accurate measurements, a larger sampling mass would be preferable. 

However, given the frequency of sampling and the limited amount of matter in the 

reactors (about 7 kg each), sampling more than 10 g for moisture would lead to too 

significant mass loss.  

Following this drying, multiple tests would be undertaken on the residual dry fraction. 5 

g of the dried sample would be ground at 0.5 mm and a two-step loss-on-ignition (LOI) 

approach would be applied (Wang et al., 2012). In the first step, the sample would be 

calcinated in a muffle furnace at 375 °C for 17 hours to determine organic matter 

content, as described in eq. 4.2. This would then be followed by a subsequent 
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combustion at 800 °C for 12 hours to estimate total inorganic carbon (TIC) through 

equation 4.3. 

OM (%) =
Dry weight −Weight375 °C 

Dry weight
× 100 (4.2) 

TIC (%) = (
Weight375 °C −Weight800 °C

Weight105 °C
) × 0.273 × 100 (4.3) 

Where the 0.273 in eq. 4.3 is a conversion constant applied to convert mass of CO2 to 

mass of carbon (Wang et al., 2012). 

Total organic carbon (TOC), which is the sum of carbon from organic species 

(proteins, lignins, lipids, carbohydrates, organic acids, etc.) would also be measured. 

Organic carbon provided through compost amendment is of great agricultural and 

environmental value as a way of replenishing soil organic carbon (SOC) contents in 

topsoils, which is primordial to ensuring a strong soil food web and soil health (Habteweld 

et al., 2020). Total organic carbon would be measured through the Walkley-Black 

chromic acid wet oxidation method, the most commonly used method throughout the 

field. The protocol for this method (FAO, 2019; Schumacher, 2002) calls for the addition 

of 10 mL 1 N (0.163 M) potassium dichromate (K2Cr2O2) and 20 mL concentrated (≥ 

96%) H2SO4 to between 0.5 and 1g of substrate/compost. If significant amounts of Cl- 

are expected in the sample, then Cl- can be removed by adding Ag2SO4 to the digestion 

acid to precipitate the chloride. The solution is then swirled while being heated to 135 

°C (important to not go above 150 °C because the acid dichromate solution decomposes) 

for approximatively half a minute, though heating is often deemed unnecessary, with 

the heat generated from the exothermic reaction being sufficient. The solution is then 

cooled before adding 200 mL of deionized water to halt the reaction. Two blanks (without 

any compost sample) must be run to standardize the 0.4 N FeSO4 solution, or H3PO4 can 

be added to the solution after cooling to help eliminate interferences from ferric (Fe3+) 

iron. The digested solution is then titrated with Ferroin (ortho-phenanthroline ferrous 

complex) indicator (3 or 4 drops) and 0.4 N FeSO4. The Ferroin solution is made by 

dissolving 1.485 g O-phenanthroline monohydrate and 0.695 g of ferrous sulphate in 

approximately 80 mL of deionised water, which is then diluted to 100 mL and stored 

away from light. As the titrated solution approaches the end point, the solution will 

become greenish and transition to a dark green. The addition of FeSO4 will then transition 

the solution sharply from blue-green to reddish-brown-grey. If the endpoint is exceeded, 
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0.5 or 1 mL of potassium dichromate can be added, and the titration can be tried again. 

If over 8 mL of the initial 10 mL of K2Cr2O2 have been consumed, a smaller compost 

sample must be used. The chemical reaction undertaken by this process is presented in 

eq. 4.4, while equation 4.5 presents the determination of organic carbon, considering 

that 1 mL of 1N dichromate is equivalent to 3 mg of carbon. 

2 Cr2O7
2− + 3C + 16H+ → 4Cr3+ + 8H2O+ 3CO2 (4.4) 

Total organic carbon (%) =
3(1 − VFeSO4,titration VFeSO4,blank⁄ )

dry sample weight
 (4.5) 

Where VFeSO4,titration is the volume of FeSO4 used during the sample titration (mL), 

VFeSO4,blank is the volume used in the blank titration (mL), and dry sample weight is in g. 

Total Kjeldahl nitrogen (TKN), which represent the sum of organic nitrogen, 

ammonia-nitrogen, and ammonium-nitrogen, is one of the most commonly used 

regulatory markers for waste management and organic fertilizer/soil amendment 

application. Pertaining to the model development for this thesis, having these nitrogen 

fractions is necessary to follow the complete nitrogen balance, as has been partially 

undertaken in the activated sludge models (ASMs) (Henze et al., 2000) and in a few 

composting models (Oudart et al., 2015; Sole-Mauri et al., 2007; Trémier, 2004), as will 

be discussed in detail in chapter 5. 

TKN would be measured through Hach test kits, following the traditional EPA (US 

Environmental Protection Agency) digestion methodology (EPA method 351.2, revision 

2.0). This method consists in a digestion of the sample in concentrated sulfuric acid, 

starting at 160 °C for one hour, followed by a digestion at 380 °C for half an hour. The 

TKN reading would then be done using a Hach TKN test kit (TNT880) following a filtration 

to remove residual solid particles. 

Given the focus on having a complete understanding of the state of nitrogen throughout 

the process, ammonia, ammonium, nitrate, and nitrite would also be measured, 

using Hach kits (TNT832 for ammonium, TNT835 for nitrate, and TNT840 for nitrite) 

following the above digestion. Therefore, with these measurements and those of TKN, 

we could calculate the total nitrogen (TN) and organic nitrogen: 

Organic nitrogen = TKN − (NH4,nitrogen + NH3,nitrogen) (4.6) 
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Total nitrogen = TKN + NO3,nitrogen + NO2,nitrogen  (4.7) 

The pH and electrical conductivity (EC), which are measures of acidity/alkalinity and 

salinity, respectively, would be measured using a 1:10 soil/distilled water (w/V) extract 

and would be stirred for 1h and then centrifuged at 10 000 g for 5 minutes. A pH and 

EC meter (in this case, a Fisher accumet Basic (AB200) benchtop meter) would then be 

used to determine the pH and EC of the supernatant. The value of these measurements 

is twofold: firstly, both measurements are important to evaluate the quality of compost, 

given that plants and soils can be sensitive to both these factors, and maintaining a 

balance is very important to avoid environmental harm, such as soil acidification and 

erosion (Walling and Vaneeckhaute, 2021a). Secondly, pH can be a good indicator of 

decomposition, given the production and consumption of various organic acids, which 

leads to a characteristic pH profile, as described in chapter 1. Therefore, from a modelling 

standpoint, being able to follow these factors, especially pH, can be of interest. 

The germination index (GI), a measurement commonly used throughout the 

composting field and which is an estimate of the amount of time it takes for seed 

germination to occur, alongside the root length, would also be measured. In the 

composting context, the germination index can be particularly interesting given that it 

can help quantify and qualify maturation, given the wide variety of changes during this 

step that may not be easily observed otherwise. Experimental measurements would be 

undertaken using Brassica napus (Rapeseed) seeds, following their use in prior works 

(Luo et al., 2013; Shen et al., 2011). The seeds would be distributed over filter paper in 

petri dishes, about 1 cm apart, and moistened with 8 mL of compost extract. The 

samples would be incubated at 25 °C for three days. Following this incubation, the 

number of germinating seeds and their root length would be measured, using distilled 

water as a control. The GI would then be calculated as follows (eq. 4.6): 

GI(%) =
Seed germination (%) × Root length of treatment

Seed germination of control (%) × Root length of control
× 100 (4.8) 

The final solid analysis would be to determine humic substances, mainly made up of 

humic and fulvic acids, which are indicators of maturation during composting. Indeed, 

humic substances are the principal components of soil organic matter and play a major 

role in the agricultural and environmental benefits of compost application (Klučáková, 

2018). Humic acid is a macromolecular substance made of up series of polymer 

polycondensates with different molecular weights, while fulvic acid contains compounds 
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with smaller molecular weights and high oxidation levels (Zhou et al., 2014b). Indeed, 

humic acid contains approximately 40-60% carbon, 30-50% oxygen, 4-5% hydrogen, 

1-4% nitrogen, 1-2% sulfur, and 0-0.3% phosphorus, whereas fulvic acid contains lower 

mass fractions of everything except oxygen (Gaffney et al., 1996). Generally, as 

composting progresses and maturity increases, compost shifts from a high fulvic acid 

and low humic acid content to one with a significantly higher humic acid content (Zhou 

et al., 2014b). Given the importance of humic substances in soil organic matter, making 

up over 60% of the latter (Canellas et al., 2015), and their various functional groups, 

including phenols, carboxylic acids, quinones, enolics, and ethers (Amir et al., 2010; 

Zhou et al., 2014b), humic substances are attributed a wide variety of benefits. These 

benefits include agronomic benefits, such as enhanced plant growth, water and nutrient 

retention, disease suppression, as well as environmental benefits such as decreasing the 

risks of eutrophication (Guo et al., 2019). 

Though unlikely to be of use for the model development undertaken in this thesis, such 

information could be of great use for future modelling endeavours, given that, as noted 

in chapter 2, modelling of composting maturation is greatly lacking.  

The most commonly referenced protocol in the reviewed literature is the one presented 

in Huang et al. (2006) and adapted by Zhou et al. (2014a), and is based on the fact that 

humic acids are soluble in alkaline solutions and insoluble in acidic solutions, while fulvic 

acids are soluble at any pH (Simpson et al., 2002). The protocol calls for a 1:10 dry 

solid/solution (m/V) extract using a proportional mix of 0.1 M Na4P2O7*10H2O and 0.1 

M NaOH to be shaken at room temperature for 24 hours and centrifuged at 25 931 g for 

20 minutes, repeating this step three times in total. Following the centrifugation, the 

supernatant contains the humic substances. The supernatant is then left to stand 

overnight with a pH adjusted to 1.0, after which another centrifugation at 25 931 g for 

20 minutes is undertaken. The precipitates of this centrifugation contain the humic acids, 

while the supernatant contains the fulvic acids. Humic acids are then washed with 0.05 

M HCl several times and the pH is adjusted to 7.0. The fractions are then lyophilized to 

obtain the solid mass, which are then used to analyse the TOC through the Walkley-

Black method presented earlier.   
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4.3.4.2 Liquid samples (leachate) 

Any leachate obtained (if any) would be extracted during every sampling and would go 

through the same evaluation as the solid samples, without the drying for moisture 

content or the need for extractions and digestions. Given the solubility of NH4
+, NO3

-, 

and PO4
3-, assessing the amount produced during composting and lost through leaching 

is necessary to have a complete nitrogen and phosphorus balance.   

4.3.4.3 Gaseous samples (emissions) 

Quantification of emissions is very important for this thesis, given the role of nitrogenous 

emissions in the transformation and loss of nitrogen during composting, as well as the 

important environmental impact of NH3 and N2O. The initial design and experimental 

plan used a micro-GC (Agilent 990 Micro GC system) to undertake this analysis, 

providing quantification for CO2, CH4, NH3, N2O, and O2 of the outlet with automated 

sampling every 20 minutes. However, due to the impacts of the COVID-19 pandemic, 

the micro-GC was received following 8 months of delays, while the gases needed for 

calibration were unavailable into the fall of 2021. This in turn forced the validation of the 

comprehensive model to be undertaken based on a dataset from the literature, as 

discussed in the following chapter.  

4.4 Conclusion 

Throughout this chapter, the basics of composting experimentation have been explored, 

going over various types of composting systems, the different experimental scales, 

methods used to ensure similarity between experimental and real processes, the 

multitude of operating conditions to consider, how process control can be applied on 

these systems, and commonly used sampling and analysis methods. This was followed 

by the presentation of the groundwork that was laid during this thesis to allow for a 

thorough assessment of greenhouse gas emissions and nutrient transformation and loss 

during the composting process. This foundation includes the design and construction of 

two composting reactors, a storage and preparation strategy for substrate, and the 

planned sampling and analysis of solid, liquid, and gas fractions.  



 

98 

Chapter 5: A comprehensive model to predict 

nutrient transformation and GHG emissions during 

composting  

5.1 Introduction 

As noted in the first chapters of this thesis, despite the many potential benefits of 

composting, the process often suffers from significant nutrient loss. Indeed, nitrogen 

losses can be upwards of 90% of initial nitrogen (N) (Eghball et al., 1997), with common 

N losses being between 20 and 70% (Eghball et al., 1997; Li et al., 2017; Lim et al., 

2017; Martins and Dewes, 1992; Ogunwande et al., 2008; Steiner et al., 2010; Witter 

and Lopez-Real, 1988), generally through the emission of ammonia (NH3), nitrous oxide 

(N2O), and nitrogen gas (N2). Similarly, phosphorous (P) losses through leaching can be 

considerable, with some studies finding losses of around 30% (Tiquia et al., 2002). This 

loss can considerably hamper and even counteract the benefits of resource recycling 

through composting, leading to a decreased agronomic value and contributing to an 

undesirable environmental impact. The environmental impact can be of great detriment 

to the process, given that composting is often viewed as one of the most environmentally 

sound ways of treating and valorizing organic wastes. Indeed, through the emission of 

powerful greenhouse gases and the release of nutrients to soils and waters, sub-optimal 

composting can contribute to global warming, eutrophication, soil acidification and 

erosion, and loss of biodiversity (Walling and Vaneeckhaute, 2020b; Walling and 

Vaneeckhaute, 2021a).  

The complexity of nutrient loss during composting stems from the multiple factors that 

contribute to it. As noted in previous chapters, these factors include temperature, 

aeration, moisture content, and pH. For example, process temperature has been 

identified as the most important factor contributing to ammonia (NH3) emissions, with 

NH3 emissions being twice as high at 67 °C as compared to 55 °C (Eklind et al., 2007; 

Pagans et al., 2006), while also being a primary contributor to emission of other GHGs, 

such as CO2, CH4, and N2O (Beck-Friis et al., 2001; Cui et al., 2019; Czepiel et al., 1996; 

Ermolaev et al., 2015; Hellmann et al., 1997; Sánchez-Monedero et al., 2010; Sommer 

and Møller, 2000). For moisture, its contribution to the development of anaerobic zones 

in the environment makes it the most important factor determining CH4 emissions 

(Ermolaev et al., 2019; Xu et al., 2020), while it has also been found to be among the 

main factors influencing N2O emissions through the regulation of denitrification 
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(Ermolaev et al., 2019; Wang et al., 2013a; Xu et al., 2020; Yang et al., 2019). Aeration 

regulates the mass transfer through the process, providing both oxygen to the 

environment, which decreases both CH4 and N2O emissions, while also increasing 

ammonia volatilization (Oliveira et al., 2018; Shen et al., 2011). Finally, as described in 

chapter 1, pH also plays a key role in ammonia loss by driving volatilization, especially 

when the pH exceeds 7 (DeLaune et al., 2004; Ekinci et al., 2000).  

The issue, as detailed in chapters 1 and 2, is that all these factors are interrelated during 

the composting process. Therefore, efficient optimization of composting to produce a 

valuable and attractive compost while limiting nutrient loss and greenhouse gas 

emissions can be best achieved through mathematical modelling, considering all of these 

interdependencies. Chapter 2 detailed how, despite considerable work on composting 

modelling, only very few have, mostly superficially, explored nutrient loss and 

transformation during composting (Bonifacio et al., 2017a; Bonifacio et al., 2017b; 

Oudart et al., 2015; Vasiliadou et al., 2015; Vlyssides et al., 2009). Without considering 

the full picture of nutrient transformation and loss, an important aspect of emissions and 

environmental impact assessment of composting is lacking.  

Therefore, given the lack of mechanistic and comprehensive GHG and nutrient modelling 

for composting, this chapter explores the development of a novel composting model 

capable of predicting GHG emissions and nutrient transformation and loss during the 

process. Section 5.2 presents the materials and methods used to develop the model, 

while section 5.3 presents the results of this development and calibration. 

5.2 Materials and methods 

5.2.1 Model description 

The model was created in MATLAB from the foundation of the Activated Sludge Models 

(ASMs) (Henze et al., 2000), similarly to Trémier’s (2004) composting model, and is 

designed to represent an in-vessel composting system (reactor). However, to accurately 

represent the composting context, significant modifications needed to be made to this 

foundation.  

Biological processes considered by the model include hydrolysis of entrapped organics, 

aerobic and anoxic growth of microbial fractions on the substrates, assimilative nitrate 

reduction to ammonia, decay of microorganisms, ammonification, immobilization, 

volatilization, the full nitrification and denitrification pathways, and phosphorus 
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solubilization. Regarding microbial fractionation, despite the complex fractionations used 

by some authors and discussed in chapter 2, such as those of Kaiser (1996) and Sole-

Mauri et al. (2007), because of the similarity in kinetic parameters between thermophiles 

and mesophiles, and actinomycetes and fungi presented in Sole-Mauri et al. (2007), the 

choice has been made to include only bacterial and fungal fractions. Figures 5.1 and 5.2 

provide an overview of the biological processes included in the model. 

 

Figure 5.1 Schematic representation of the aerobic growth processes of the model. 

Symbols detailed in Table 5.1. 
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Figure 5.2 Schematic representation of the anoxic growth processes of the model. 

Symbols detailed in Table 5.1. 

5.2.2 Model development 

Table 5.1 presents the various substrate fractions used in the model. 

Table 5.1 Substrate and product fractionations used in the model. All terms in the table 

are concentrations, with TOC standing for Total Organic Carbon. 

Symbol Description Units 

SI Soluble inert organic matter g TOC/m3 

SS Soluble biodegradable substrate g TOC/m3 

XI Particulate inert organic matter g TOC/m3 

XS Particulate biodegradable substrate g TOC/m3 

XHB Active heterotrophic bacteria biomass g TOC/m3 

XHF Active heterotrophic fungi biomass g TOC/m3 

XAOB Autotrophic ammonia oxidizing biomass g TOC/m3 

XNOB Autotrophic nitric oxidizing biomass g TOC/m3 

XDP Particulate decay products g TOC/m3 

SO Oxygen (O2) g O2/m3 

SNO3 Nitrate-nitrogen g N/m3 

SNO2 Nitrite-nitrogen g N/m3 

SNO Nitric oxide-nitrogen g N/m3 

SN2O Nitrous oxide-nitrogen g N/m3 

SN2 Dinitrogen-nitrogen g N/m3 

SNH Ammonia-nitrogen g N/m3 
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SND Soluble biodegradable organic nitrogen g N/m3 

XND Particulate biodegradable organic nitrogen g N/m3 

Salk Alkalinity g HCO3
-/m3 

 

A plethora of further detailed information on the model is provided in the appendices of 

this dissertation: Appendix C presents the full Petersen matrix, which describes the 

system of biochemical reactions used by the model; Appendix E is a list of base 

parameters used before model validation and calibration, mainly stemming from the 

literature; and Appendix F presents the continuity check for the model, both on a COD 

and TOC basis.  

5.2.2.1 Microbial growth and substrate degradation 

The model considers three main biological processes: hydrolysis of particulate 

compounds, microbial uptake, and microbial decay. Four microbial fractions are 

included: heterotrophic bacteria (XHB) and fungi (XHF), autotrophic ammonia (XAOB) and 

nitric (XNOB) oxidizing bacteria. The mechanisms for the growth of XAOB and XNOB will be 

detailed in the section on nitrogen (5.2.2.3).  

For hydrolysis of particulate substrate, which has generally been identified as the rate-

limiting step of composting (Jolanun et al., 2005; Sole-Mauri et al., 2007; Wang and 

Witarsa, 2016), with further confirmation provided in chapters 3 and 7 of this thesis, the 

process rate is described by a Michaelis-Menten kinetic equation undertaken by the 

heterotrophs (eq. 5.1 for bacteria and 5.2 for fungi). In these equations, the terms 

between brackets allow for consideration of hydrolysis fueled by both aerobic and anoxic 

growth. 

Rh,HB = kh,HB(T,MC)
XS XHB⁄

KX,HB + (XS XHB⁄ )
[(

SO
KO + SO

) + ηg (
KO

KO + SO
)(

∑SNOX
KNO3 + ∑SNOX

)]XHB (5.1) 

 

Rh,HF = kh,HF(T,MC)
XS XHF⁄

KX,HF + (XS XHF⁄ )
[(

SO
KO + SO

) + ηg (
KO

KO + SO
)(

∑SNOX
KNO3 +∑SNOX

)]XHF (5.2) 

 

Where RH,i is the overall rate of hydrolysis (kg TOC/m3.day), kh,i(T,MC) is the temperature 

and moisture corrected rate of hydrolysis (kg TOC/kg.day), as described in eq. 5.3. The 

temperature correction is undertaken using the cardinal temperature (Rosso) model 

(Rosso et al., 1995; Rosso et al., 1993), and the moisture correction is that of Haug 
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(1993), chosen based on the work undertaken in chapter 3. Ki,j is the half-saturation 

coefficient (kg slowly degradable TOC/kg cell TOC), with KO being given a value of 2%, 

based on the works of Haug (1993) and Richard et al. (2006), and ηg is the anoxic 

hydrolysis discount (-). 

kh(T,MC) = kh,max ∗
(T − Tmax)(T − Tmin)

2

(Topt − Tmin)[(Topt − Tmin)(T − Topt) − (Topt − Tmax)(Topt + Tmin − 2T)]

∗
1

exp(−17.684MC + 7.0622) + 1
 (5.3)

 

Where kh,max is a degradation rate measured at optimal conditions (kg/kg.day), T is the 

temperature (°C), Tmax is set to 71.6 °C, Tmin is set to 5 °C, and Topt is set to 58.6 °C, 

following the work of Richard and Walker (2006). MC is the moisture content, expressed 

as a fraction between 0 and 1. 

Soluble organic matter is then used for microbial growth through uptake which can be 

effectively represented by Monod kinetics, with supplemental considerations for oxygen, 

ammonium, and alkalinity/pH limitations, as shown in eqs. 5.4 and 5.5. These processes 

occur in aerobic conditions, while anoxic growth (through denitrification) is also possible 

and detailed further in section 5.2.2.3. 

RU,HB = μH,BH (
SS

KS + SS
) (

SO
+SO

) (
SNH

KNH + SNH
)(

Salk
Kalk + Salk

)XHB (5.4) 

 

RU,HF = μH,HF (
SS

KS + SS
) (

SO
KO + SO

)(
SNH

KNH + SNH
) (

Salk
Kalk + Salk

)XHF (5.5) 

 

Where RU,i is the overall growth rate of bacteria/fungi (kg cell TOC/m3.d) and μH,i are the 

uninhibited growth rates of bacteria/fungi (day-1). 

Finally, decay, which decreases biomass and releases soluble and particulate matter 

back into the environment, is represented using a first-order (Herbert (1958)) model, 

as expressed in eq. 5.6. 

RX,i = biXi (5.6) 
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Where RX,i is the rate of biomass decay (kg cell biomass/m3.day) and bi is the microbial 

death rate (day-1). 

5.2.2.2 Carbon emissions 

CO2 emissions are modelled using commonly implemented conversion factors based on 

oxygen consumption, while CH4 emissions are determined based on moisture content. 

During composting, the majority of carbon emissions are expected to be in the form of 

CO2, though poorly aerated or mixed systems can form anaerobic pockets leading to 

important CH4
 emissions (Walling and Vaneeckhaute, 2020b). Some amount of methane 

production is normal, though it is often assumed that these emissions get oxidized in 

aerobic layers further out in the system.  

CO2 emissions are determined based on the oxygen consumption by using a 

stoichiometric yield (eq. 5.8): 

RCO2 = YCO2SO,consumed (5.8) 

Where RCO2 is the rate of CO2 emissions (kg CO2/m3.day), YCO2 is the stoichiometric yield 

of O2 to CO2, which has a value of 1.375 kg CO2/kg O2 (2 moles of O2 consumed (32 g) 

per mole of CO2 produced (44 g)). 

For CH4 emissions, the amount of CH4 emitted is determined based on a ratio between 

CH4 and CO2 emissions, based on moisture content. The expression for this ratio of 

carbon emissions is shown in eq. 5.9 and was obtained empirically, with the work 

presented in detail in chapter 7. CH4 emissions are then determined following eq. 5.10. 

%CH4 = {
exp(−16.6771 + 0.274338 ∗ 𝑀𝐶)    for MC ≤ 70
20 for MC > 70                                                              

 (5.9) 

RCH4 =
RCO2

100 −%CH4
%CH4 (5.10) 

Where %CH4 is the percentage of carbon emissions as CH4 (%) and RCH4 is the rate of 

CH4 emissions (kg CH4/m3.day). 

Regarding the impact of anaerobic degradation on the growth of bacterial fraction, the 

model does not consider a separate pathway to the one mentioned in section 5.4.2.1 for 

microbial growth. The impact of anaerobic zones is already taken into consideration 

through the oxygen and moisture limitations applied through eq. 5.3. However, 
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regarding the mass balance on substrates, it is important to consider the removal of 

carbon through CH4 from the soluble fraction. Simply put, the model considers soluble 

carbon removal through anaerobic biodegradation, but this biodegradation is not directly 

linked to microbial growth, given the influence of moisture and oxygen correction. 

5.2.2.3 Nitrogen transformation and transfer 

Composting literature has seen limited work on nitrogen transformation, the main works 

being those of Oudart et al. (2015) and Bonifacio et al. (2017a; 2017b). However, these 

models lack the full pathway for nitrogen transformation and loss, presenting an 

important limitation. Nevertheless, there are some models for activated sludge 

treatment that have focused on similar problems. Two of these prominent models are 

those of Hiatt and Grady (2008) and Ni et al. (2011), both of which are extensions to 

the ASMs and therefore present a good opportunity for integration in this composting 

model.  

As mentioned, the aim of this model is to represent the full nitrogen transformation 

pathway, which is achieved through modelling of ammonification and mineralization, 

volatilization, assimilative reduction, nitrification, and denitrification. 

Ammonification and mineralization are represented by net ammonification, which is the 

sum of both. Net ammonification is denoted by a first-order equation in which 

biodegradable organic nitrogen is converted to soluble ammonia by heterotrophs (eq. 

5.11). 

RNH = ka,HBSNDXHB + ka,HFSNDXHF (5.11) 

Where RNH is the rate of ammonification (kg NH4
+/m3.day) and ka,i is the ammonification 

rate coefficient (m3/kg TOC.day). 

Ammonium is also used by autotrophic ammonia oxidizing (XAOB) and nitric oxidizing 

bacteria (XNOB), converting it to nitrite and then nitrate, respectively. These processes 

are expressed through eqs. 5.12 and 5.13. 

RAOB = μAOB(
SFA

KFA + SFA +
SFA
2

KI8FA

)(
SO

KO,A + SO
)(

KIFNA
KIFNA + SFNA

)(
Salk

Kalk + Salk
)XAOB (5.12) 
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RNOB = μNOB(
SFNA

KFNA + SFNA +
SFNA
2

KI9FNA

)(
SO

KO,A + SO
)(

KI8FNA
KI8FNA + SFNA

)(
Salk

Kalk + Salk
)XNOB (5.13) 

Where RAOB/NOB are the overall growth rates of ammonia/nitric oxidizing bacteria (kg cell 

TOC/m3.day), μAOB/NOB are the uninhibited growth rates of ammonia/nitric oxidizing 

bacteria (day1), SFA is the concentration of free ammonia (kg N/m3), KFA is the half 

saturation coefficient for free ammonia (kg N/m3), and KI8FA is the inhibition coefficient 

for free ammonia (kg N/m3). In eq. 5.13, SFNA is the concentration of free nitrous acid 

(kg N/m3), KFNA  is the half saturation coefficient for free nitrous acid (kg N/m3), and 

KI9FNA and KI8FNA are inhibition coefficients for free nitrous acid (kg N/m3). 

The aerobic growth of ammonia and nitric oxidizing bacteria are restricted by the amount 

of free ammonia (AOB) and free nitrous acid (NOB), following the Andrews (1968) 

equation (first term between parentheses in eqs. 5.12 and 5.13). High levels of free 

nitrous acid also inhibit both reactions. Indeed, to better represent these processes, 

Hiatt and Grady (2008) proposed using free ammonia (FA) and free nitrous acid (FNA) 

as substrates, both being dependent on the temperature and pH, these equations being 

based on the work of Anthonisen et al. (1976) (note that there is a transcription error in 

the work of Hiatt and Grady). The equations used to describe the concentration of these 

species in the environment are given in eqs. 5.14 and 5.15. 

SFA = SNH
10pH

exp (
6.344
273 + T

) + 10pH
 (5.14) 

SFNA = SNO2
1

exp (
−2.300
273 + T) + 10

pH
 (5.15) 

The nitrate and nitrite produced by the autotrophic bacteria can then be used by the 

heterotrophic organisms for nitrification and denitrification, implemented through the 

following pathways, starting with a simplification to reduce the size of the following 

equations (eq. 5.16): 

A = [μH,HBηiXHB + μH,HFηiXHF] (5.16) 

Where ηi is the growth factor of heterotrophs on the specific substrate compared to 

aerobic conditions (-).  
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• Growth on NO3 (NO3
- reduction to NO2

-) 

RNO2 = A(
SS

KS + SS
) (

KO
KO + SO

) (
SNO3

KNO3 + SNO3
) (

SNH
KNH + SNH

) (
Salk

Kalk + Salk
) (5.17) 

• Growth on NO2 (NO2
- reduction to NO) 

RNO = A(
SS

KS + SS
) (

KO
KO + SO

) (
SNO2

KNO2 + SNO2
) (

KI3NO
KI3NO + SNO

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

) (5.18) 

• Growth on NO (NO reduction to N2O) 

RN2O = A(
SS

KS5 + SS
) (

KO
KO + SO

) (
SNO

KNO + SNO + SNO
2 KI4NO⁄

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

) (5.19) 

• Growth on N2O (N2O reduction to N) 

RN2 = A(
SS

KS5 + SS
) (

KO
KO + SO

) (
SN2O

KN2O + SN2O
) (

KI5NO
KI5NO + SNO

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

) (5.20) 

Where RNO2, RNO, RN2O, and RN2 are the rates of production of nitrite, nitric oxide, nitrous 

oxide, and dinitrogen (kg N/m3.day). KNO3, KNO2, KNO, and KN2O, are all expressed in kg 

N/m3. KI3NO, KI4NO, and KI5NO are nitric oxide inhibition coefficients, given values of 5E-4 

kg/m3, 3E-4 kg/m3, and 7.5E-5 kg/m3, respectively, based on Hiatt and Grady (2008). 

Ammonia oxidizing bacteria have also been demonstrated as being important 

contributors to N2O production (Fu et al., 2020; Jiang and Bakken, 1999), a previously 

neglected aspect that was amended in Ni et al.’s (2011) activated sludge model. 

Autotrophic denitrification is represented with the following equations (eqs. 5.21 and 

5.22), where AOBs reduce NO2 to NO and finally N2O: 

RAOB,NO = μAOBηAOB (
SNO2

KNO2 + SNO2
) (

KO
KO + SO

) XAOB (5.21) 

RAOB,N2O = μAOBηAOB (
SNO

KNO + SNO
) (

KO
KO + SO

) XAOB (5.22) 

Where RAOB,NO and RAOB,N2O are the rate of nitric oxide and nitrous oxide production from 

AOBs (kg N/m3.day). 

Ammonium can also be lost as ammonia through volatilization, especially at higher pHs. 

The equilibrium between ammonium and ammonia is given by eq. 5.23, with Henry’s 
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law (eq. 5.24) being used to calculate the amount of NH3 in the gaseous state based on 

the concentration of NH4
+ in the environment. 

NH3 + H2O⟷ NH4
+ + OH− (5.23) 

NH3(g) = SFA ∙
KH
pc

RT
 (5.24) 

Where KH
pc

 is Henry’s constant, R is the gas constant, and T is the temperature. Two 

choices are available regarding the temperature to use in eq. 5.24: (1) using the 

temperature of the pile/reactor or (2) the ambient temperature. Conceptually, 

pile/reactor temperature would make the most sense. However, Oudart et al. (2015) 

obtained better results using ambient temperature than pile temperature, hypothesizing 

that this method considers condensation at the pile surface. Though, it is important to 

note that they were studying a windrow system. 

Gaseous NH3 is then carried away from the system through convection, driven by 

aeration. The volatilization process can therefore be described following eq. 5.25. 

dNH3
dt

=
G ∙ NH3(g)

Vερa(T)
 (5.25) 

Where G is the mass air flow (kg dry air/s), V is the volume of compost (m3), ε is the 

porosity of the pile, and ρa(T) is the density of air (kg/m3), the expression of which can 

be found in eq. 5.31. 

Finally, assimilative nitrate reduction to ammonia completes the nitrogen transformation 

pathways considered in this model. In situations where microorganisms are lacking 

ammonia, they can convert nitrate (eq. 5.26) and nitrite (eq. 5.27) into NH4
+ through 

the following pathways: 

RANRN = 1.2 ∙ iXB (
SNO3

K6NO3 + SNO3
)(

KINH
KINH + SNH

)(
KI6NO2

KI6NO2 + SNO2
)

(∑Ri

13

i=1

− R21 − R22) (5.26)

 

 

RANRA = 1.2 ∙ iXB (
SNO2

K7NO2 + SNO2
)(

KINH
KINH + SNH

)(∑Ri

13

i=1

− R21 − R22) (5.27) 
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Where RANRN and RANRA are the production rates of nitrate and ammonium, respectively, 

from assimilative reduction (kg N/m3.day), iXB is the nitrogen content of active biomass 

(kg N/kg cell TOC). The reaction rates (Ri) refer to the reactions listed in the Petersen 

matrix. 

5.2.2.4 Phosphorus transformation and transfer 

In biological systems such as composting, phosphorus is mainly transformed through 

either phosphate solubilizing microorganisms (PSMs) or polyphosphate accumulating 

organisms (PAOs). Regarding PSMs, these organisms release compounds capable of 

causing the transformation of labile P to soluble P by decreasing the pH of the 

environment, most often through the release of metabolic products (acids, ions, etc.) 

(Estrada-Bonilla et al., 2017; Kumar and Singh, 2001; Wei et al., 2017; Wei et al., 

2018a; Wei et al., 2018b). Therefore, the characteristic pH curve associated to many 

composting operations, with a decrease in pH early on during the process due to the 

release of short-chained organic acids, as discussed in chapter 1, is the main pathway 

responsible for P transformation during composting. For PAOs, which are organisms 

capable of accumulating large amounts of P and are commonly used for enhanced 

biological phosphorus removal during wastewater treatment, their presence in the 

composting environment has yet to be demonstrated. For this reason, consideration of 

PAOs is not included in the present model. However, some research has investigated the 

potential of inoculating compost with PAOs to enhance P transformation and long-term 

availability (Wei et al., 2017). Though not included in this model, the addition of a PAO 

fraction to the model will be necessary if such a step is undertaken and can base itself 

on the work of the ASM2(d) (Henze et al., 2000), which both seek to improve P-

modelling capability of the base ASM.  

To the best of our knowledge, only the models of Vlyssides et al. (2009) and Vasiliadou 

et al. (2015), which was built upon the prior, have considered phosphorus during 

composting. These models are based on the assumption that P is released in soluble 

form by hydrolysis of particulate P, which is then consumed by the general biomass. 

Though not considering the pH of the environment, which plays an important role in P 

solubilization, the lack of pH modelling capabilities in the composting field has made this 

the most straightforward pathway to modelling phosphorus and has demonstrated 

strong results in both works. Therefore, the pathway to model P transformation in this 

model follows the same basis, as presented in eq. 5.28, based on the work of Vlyssides 

et al. (2009). 
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dPL
dt

= kh(T)XSPXS − (μH,HBXBH + μH,HFXHF)PXH + (bHBXH,HB + bHFXH,HF)PXH  (5.28)   

Where PXS is the phosphorus content of particulate matter and PXH is the phosphorus 

content of biomass. The first term on the left of eq. 5.28 describes the production of 

soluble phosphorus through the hydrolysis of the particulate matter. The second term 

represents the consumption of soluble phosphorus by the biomass during growth, while 

the third term describes the release of soluble phosphorus during biomass decay. 

5.2.2.5 Mass transfer 

Mass transfer in the model is accounted for by global mass balances on many of the 

compounds, assuming the system to be a homogenous environment. Despite the 

complex and heterogenous nature of composting in reality, this assumption has 

managed to provide accurate results without requiring complex mathematics and 

computation, as detailed in chapter 2. The balances for water and oxygen are presented 

in eqs. 5.29 and 5.30 below (Higgins and Walker, 2001): 

dH2O

dt
=
G(Hs(Ta) − Hs(T)) − yH2O ∙

dS
dt⁄ − ṁleaching

ρDMV
(5.29) 

dSO
dt

=
G(XO2,in − XO2,in) − yO2 ∙

dS
dt⁄

Vερa(T)
  (5.30) 

Where H2O is the concentration of water in the substrate (kg H2O/kg dry matter), G is 

the mass airflow (kg dry air/s), Hs is the saturated humidity of the air (kg H2O/kg dry 

air), T and Ta are the temperature of the system and the ambient temperature (°C), 

respectively,  yH2O is the metabolic production of water (kg H2O/kg TOC consumed), ρDM 

is the density of dry matter (kg/m3), and V is the volume (m3). In eq. 5.30, XO2,in is the 

oxygen contents of dry air entering the system (kg O2/kg dry air), ε is the porosity of 

the bed (-), and  ρa(T) is the density of the air (kg/m3) at the temperature of the 

composting environment, estimated using eq. 5.31. The latter equation is determined 

by regressing air density as a function of temperature between the ranges of 0 and 100 

°C. 

ρa(T) = 1.2832exp(−0.003T) (5.31) 

Similar balances are used for the other gaseous compounds followed by the model, such 

as CO2, CH4, NH3
 and N2O.  
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Leaching is also another pathway for mass loss during the process, though the literature 

has shown very variable results for leaching. Indeed, the review by Roy et al. (2018) 

identified ranges of leachate production varying between 4 and 400 m3 at industrial 

composting sites treating between 1000 and 1500 tons of waste per day. Furthermore, 

nutrient content of leachate is highly variable, ranging upwards of three orders of 

magnitude (Krogmann and Woyczechowski, 2000). Therefore, to accurately estimate 

losses from leaching, a complex leaching module would have to be integrated, which 

exceeds the scope of this work. However, to consider leaching in the model and its 

impact on mass balances, leaching and nutrient and carbon concentrations of leachate 

have been included as user inputs in the model. 

5.2.2.5 Heat transfer 

Heat transfer throughout the system is represented by the following energy balance (eq. 

5.32), following the general balance presented in chapter 2: 

dT

dt
=
G(Hi − H0) − UA(T − Ta) − G∆(Hs(T) − Hs(Ta)) − ∆HS

dO2
dt
⁄

mc
 (5.32) 

Equation 5.32 considers the main pathways for heat transfer. The first term on the right 

is for convection (sensible heat), the second is for conduction through the reactor wall, 

the third is for evaporation (latent heat), and the final is biological heat generation. This 

model assumes radiation to be negligible and does not consider the spatial variability of 

temperature and heat transfer throughout the system. The parameters and variables of 

equation 5.32 are as follows: m is the mass of the substrate (kg), c is the heat capacity 

of the substrate (kJ kg-1 °C-1), T is the temperature (°C), G is the airflow through the 

system (kg s-1), Hi and H0 are the enthalpies of the gas at the inlet and outlet of the 

system (kJ/kg), U is a global heat transfer coefficient (kW m-2 °C-1), A is the area of the 

system (m2), Ta is the ambient temperature (°C), and ∆HS is the biological heat 

generation coefficient (kJ/kg O2 consumed). 

5.2.3 Numerical solution 

The model was programmed in MATLAB. Currently, two versions of the model exist, (1) 

one using a finite differences resolution approach, and another (2) using MATLAB’s ODE 

(ordinary differential equation) solver (ode15s). The reason for having both versions is 

that the model using finite differences is much easier to approach and to understand for 

a user, with every relationship, definition, equation, and process being explicit, easily 
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identifiable, and contained within the same file. However, unlike an ODE solver, this 

method is not flexible, meaning that processing times can be long, increasing 

significantly as the timestep decreases or the process duration increases. For general 

use, seeking to model a few alternatives, this was not a problem. However, an important 

part of the calibration of this model was to be undertaken through a Monte Carlo 

assessment, requiring tens of thousands of iterations, as will be discussed in section 

5.2.4. Furthermore, such assessments would be pertinent to evaluate model sensitivity 

whenever evaluating or recalibrating the model. Therefore, the resolution time for the 

model had to be decreased from a few minutes to a few seconds per run. 

This was achieved using an ODE solver, which can apply a variety of methods to solve 

systems of ordinary differential equations based on their initial conditions. In the case 

of the solver used for this model, ode15s, the method is a variable-step and variable-

order solver. The main advantage over the finite difference approach, focusing on 

processing time, is the variable-step nature of the solver, which allows the solver to 

adjust the time step throughout the process. This means that, when variables are 

varying rapidly, the solver can use smaller time steps to capture this variation, while 

using larger time steps when variables are unchanging. In a composting context, this 

relates to very small-time steps during the early stages of the process, when organic 

matter is being consumed, microorganisms are growing, and nitrogen is being 

transformed, followed by much larger time steps during cooling and curing. Transitioning 

to this approach managed to decrease the resolution time to what was desired for 

iterative solving, lowering it from about four minutes per run to two seconds per run, for 

a 50-day process duration. However, this was accompanied by a decrease in the 

approachability of the model, transitioning from a singular .m file to five separate files, 

each calling on one-another. As such, the ODE model is much less accessible and 

understandable for users, particularly those who are not familiar with MATLAB’s 

nomenclature. Issues facing usability will be discussed 5.3.4 and throughout chapter 6. 

5.2.4 Model calibration and validation 

With a model of this size and complexity, with 24 variables and 75 parameters, 

calibration is crucial, while also being the primary challenge to its use. This challenge is 

especially important given the great variability witnessed during composting, with many 

of the parameters associated to biological aspects, such as degradation rates, yield 

factors, etc., being highly variable based on the context. Indeed, as was noted in chapter 

4, the review of Baptista et al. (2012) found that kinetic parameters reported at the 
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laboratory-scale ranged upwards of 3900%, compared to the variation of 300% 

observed at full-scale operations. However, as was broached in chapter 2 (section 2.5.5), 

prior sensitivity analyses have provided some consistent support for the importance of 

maximum growth and hydrolysis rates (μis and kis throughout this model), death rate 

constants (bis in the model), yields and consumption rates (Yis in the model), and the 

biological heat generation coefficient (∆HS in the model), which can serve as an initial 

and restrained scope for calibration. 

Therefore, when approaching the calibration of this model, priority was given to these 

parameters, while seeking to set as many parameters as possible based on literature 

and prior work. Where possible, theoretical factors have been used, such as 

stoichiometric yields, in the aim of facilitating the calibration of the most important 

parameters, while also seeking to limit the dependence of the model on parameters that 

would require recalibration for different uses. Appendix E provides the values of 

parameters taken from prior works and the literature, as well as certain that can be 

determined theoretically.  

A schematic representation of the calibration and validation process used for the 

development of this model is presented in Figures 5.3 through 5.5. The first step, shown 

in Figure 5.3, consisted in identifying which parameters were the most important to 

achieve consistently low errors on outputs. To do this, it was firstly necessary to have a 

calibration dataset. Once again, this was one of the primary purposes of the planned 

experiments, which had to be delayed due to COVID-19. As such, the literature was 

searched for a relevant dataset. This proved to be difficult to find, given a lack in data 

reporting and/or balances that were either incomplete or erroneous, as well as the 

specific needs of this composting model, focusing on nitrogen, alongside all the other, 

traditional, process variables. In the end, the experimental dataset that was chosen for 

the model was that of Guo et al. (2016), given that it presented the most thorough 

follow-up of nitrogen, tracking NH4
+-N, NO2

—N, NO3
—N, and TKN throughout the entirety 

of their 50 day composting trials. Though this does not track the full extent of nitrogen 

that this model was designed for, notably missing out on gaseous emissions, it is the 

best dataset that could be found. From here, the process of setting as many of the 

parameters as possible before initiating a more focused calibration began. This was done 

by varying all model parameters through a large Monte Carlo simulation, aiming at 

covering a wide range of parameter combinations. The Monte Carlo run consisted of 

100,000 model iterations, with all parameters randomized within a set range, which is 
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presented in Appendix D. Following the full Monte Carlo run, the error between model 

outputs and calibration dataset was determined, calculating both the Root Mean Squared 

Error (RMSE) and the Normalized RMSE (NRMSE), following eqs. 5.33 and 5.34. 

RMSE = √
∑ (y model,i − yexp,i)

2n
i=1

n
 (5.33) 

NRMSE =
RMSE

ymax − ymin
× 100 (5.34) 

Based on the information available in the calibration dataset, errors were calculated for 

temperature, moisture content, NH4-N, NO3-N, TKN, dry matter, and biodegradable 

organic matter loss (BOMloss). The goal here was not to identify specific parameter 

values, but to instead determine if certain parameter ranges led to consistently accurate 

results, as well as to see if the model appeared to be unsensitive to certain parameters. 

From the RMSEs and NRMSEs obtained for each of the assessed variables and for every 

iteration, the sets of parameters which led to an error below 10%, or the lowest error 

plus 10% (in case the lowest was higher or lower than 10%) were compiled. This was 

then followed by a basic but informative analysis of some statistics of this low error 

dataset, such as the mean, the standard deviation, the variance, as well as minimum 

and maximum values. Through these statistics, we could see which parameters should 

be targeted for a more focused calibration in step 2, though evaluation of statistic 

significance will only come later, once the model is properly calibrated and validated. For 

example, considering that all parameters are positive, if the mean and standard 

deviation were equivalent and at the midpoint of the parameter range used for the Monte 

Carlo, we could infer that the parameter was likely to be less significant to the evaluated 

variable. Conversely, if a parameter was given a large range in the Monte Carlo, but if a 

parameter in the low error sets only contained small standard deviation and variance, it 

would stand to reason that this parameter has an impact on model outputs. For example, 

during the Monte Carlo, the biological heat generation coefficient (∆HS) could range 

between 0 and 20,000 kJ/kg O2 consumed, while the half-saturation coefficient for 

autotrophs (KOA) was varied between 0 and 1 g O2/m3. When looking at the parameters 

within the low error dataset for temperature, ∆HS had a mean of 17852 kJ/kg O2 and a 

standard deviation of 1784 kJ/kg O2, with a minimum value of 15180 kJ/kg O2. This was 

viewed as being indicative that the calibrated value of ∆HS was likely to be within this 

range, a range which would serve as for the more targeted Monte Carlo that would follow 

in step 2. Conversely, KOA had a mean of 0.45, a standard deviation of 0.41, a minimum 
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of 0.008, and a maximum of 0.98, emphasizing that its value had little impact on 

temperature in the model. This process was done for every assessed output, as well as 

for the outputs together, seeking to identify which parameters the second step should 

focus on, as well as setting certain parameters. 

 

Figure 5.3 Pathway used for the first step of the model calibration and validation, 

seeking to evaluate the impact of all parameters on select model outputs based on a 

large Monte Carlo simulation. 

This first step was then followed by a more concerted calibration, the pathway for which 

is shown in Figure 5.4, aiming to produce a calibrated model. In this step, Monte Carlo 

simulations were used once again, this time with 10,000 simulations by attempt. A 

similar pathway to step 1 was taken, calculating (N)RMSEs, identifying a low error 

dataset, and calculating parameter statistics. Two situations would then present 
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themselves: (1) either an iteration in the low error dataset would provide a model that 

would meet our target (general error < 10%); or (2) none of the solutions would provide 

a calibration with an acceptable error. In the latter case, the parameter range of the 

Monte Carlo would be modified, restarting the process. If a model provided acceptable 

error, it could still be evaluated for further optimization.  

 
Figure 5.4 Pathway used for the second step of the model calibration and validation, 

seeking to calibrate the model based on a Monte Carlo simulation. Given the reduced 

number of parameters varied at this stage, the number of iterations can be greatly 

decreased. 

The final step of this process, schematized in Figure 5.5, is the validation of the model, 

where the results of the calibrated model are compared with those of a validation 

dataset. This comparison includes both quantitative and qualitative assessments, 

including the RMSE and NRMSE, as presented earlier, as well as a visual quality of fit 

(shape of profiles, presence or absence of key features). This can result in either a 

calibrated model validated for one or more situations, depending on the validation set, 

or a calibration that does not adequately meet the requirements of the validation set, 
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therefore not being valid for the evaluated situation(s). In the case where the calibration 

does not meet the validation criteria, the culprit is likely to be either at the model/process 

level, where the pathways and/or assumptions used by the model are incapable of 

representing reality, or due to a calibration that might not capture the full extent of the 

situation.  

 

Figure 5.5 Pathway used for the final step: model validation. This step uses the 

calibrated parameters determined in step 2 and compares the outputs with a validation 

dataset.  

Once again, given the issues faced due to COVID-19 on the experimental front, the 

choice was made to undertake calibration and validation with the same dataset (that of 

Guo et al. (2016)). Though this is not ideal, given the risk of overfitting the model by 

designing it for a singular dataset, it sets the way for the model to be fully calibrated 

and validated with novel experiments once the reactors are operational and high-quality 

and extensive data can be obtained. Furthermore, the author stresses that the purpose 

of this whole process is to validate that the developed model is capable of representing 

the composting process and nitrogen transformation from a fundamental perspective. If 

the model manages to represent the experimental data of Guo et al. (2016), then it will 

be interpreted as an indication that the pathways used to model composting and 

presented throughout section 5.2.2 are indeed capable of providing predictive insight 

into the process, though nothing should be inferred as to a “general” calibration or a 
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validation of the model for any other case based on this specific case. Nevertheless, due 

to the efforts made in undertaking this calibration and validation, the tools are now 

available to quickly and easily calibrate and validate the model with any future, more 

robust, dataset. 

5.3 Results 

5.3.1 Step 1: Identification of key parameters  

Following the first Monte Carlo simulation, with 100,000 runs of the model with 40 

randomized parameters, the ranges of which are presented in Appendix D, the following 

information on parameters were identified, with key parameters for each evaluated 

output being presented in Table 5.2. 

Table 5.2 Parameters identified as main influencers on particular outputs through the 

Monte Carlo simulation of step 1. 

Outputs Key parameters minimum NRMSE 

Temperature ∆Hs, μAOB, KS, KNO3 , KFNA, KI14FNA, ηNO, bHB 10.9% 

Moisture ∆Hs, μHB, KS, KI6NO2 , KN2O, ηH, bHB 20.5% 

NH4-N μHB, KS5, KNH, KX, KI14FNA, ηH, bHB, bNOB 13.1% 

NO3-N KOH, bAOB, KI6NO2 , KI4FA , bHB, KI14FNA, ηY 17.1% 

TKN μHB, μNOB , KS5, KOH, KN2O, KX, ηY, ηNO2 , bHB, ka,HB 10.2% 

BOMloss μHB, Ks, KS5, KOH, KNO, KN2O, KX, ηNO2 , bHB,  9.2% 

 

Considering the information presented in Table 5.2, we see a good concordance with 

what was reported in past composting model sensitivity assessments, as detailed in 

chapter 2. Notably, the importance and predominance of growth rates (μHB, μAOB, μNOB), 

decay rates (bHB, bAOB , bNOB), the biological heat generation coefficient (∆Hs), certain half-

saturation and inhibition coefficients, particularly for substrate (KS, KS5), (free) ammonia 

(KNH, KFA, KI4FA), nitrous acid (KFNA , KI15FNA), oxygen (KOH), and anoxic growth adjustments 

(ηH, ηNO2 , ηNO, ηY). 

From here, of the 40 parameters that were varied, 30 (the parameters that did not 

appear particularly significant or that had a very constrained range) were fixed, while 

the remaining 10 were the initial focus of the following step. These 10 parameters 

included: μHB, KS, KS5, KOH, kH,HB, ka,HB, ∆Hs, bHB, bAOB, bNOB. Another factor of note from step 

1 was that, based on the minimum error (NRMSE) achieved for each output, presented 

in Table 5.2, there appeared to be a potential decoupling with moisture, when compared 

to the other outputs. Indeed, with an NRMSE of approximately 10% for minimum 
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temperature and BOMloss, one would expect moisture to be near the same error range, 

given that both these factors are the two main contributors to moisture in the system, 

though this was not the case. This will be explored in more detail in the following 

sections. 

5.3.2 Step 2: Model calibration  

From the results of section 5.3.1, step 2 was initiated with Monte Carlo simulations of 

10,000 runs using the new parameter ranges. At this point, issues with the model 

calibration became evident, mainly due to the non-identifiability of the model. Indeed, 

for a model to be identifiable, the true values of the parameters can be obtained following 

significant observations, meaning that a specific parametrization will lead to a unique 

outcome. Conversely, in the case of a non-identifiable model, multiple parametrizations 

can produce equivalent outcomes, meaning that it is not possible to determine the true 

value of the parameters. A model not being identifiable is not inherently bad, but the 

extent to which the developed model is non-identifiable greatly exceeded the author’s 

expectations.  

For example, Table 5.3 provides the range of certain of the key parameters that led to 

nearly equivalent model outputs, highlighting this gross unidentifiability. 

Table 5.3 Parameter ranges producing equivalent model outputs, highlighting the non-

identifiability of the developed model. 

Parameter Range 
𝛍𝐇𝐁 7.7-26.0 
𝛍𝐀𝐎𝐁 3.4-28.2 
𝛍𝐍𝐎𝐁 9.4-27.4 
𝐊𝐒 15.6-97.0 
𝐛𝐀𝐎𝐁 0.006-0.277 
𝐛𝐍𝐎𝐁 0.02-0.49 
𝐤𝐇,𝐇𝐁 1.6-4.4 
𝐤𝐚,𝐇𝐁 0.018-0.07 
∆𝐇𝐬 5967.0-16247.3 

  

Beyond the issue of identifiability, which made it difficult to identify an effective 

calibration, it appeared that, as stated in section 5.3.1, certain parts of the model might 

be decoupled from one-another. Indeed, following strenuous attempts to calibrate the 

model through the Monte Carlo simulations, it became clear that certain outputs could 

not be optimized together. A notable rift became apparent between the carbon/organic 

matter outputs, such as BOMloss and dry matter, as well as temperature, with the 
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nitrogen outputs (TKN, NH4-N, NO3-N). When optimizing the prior, it was impossible to 

get the latter within an acceptable range of error. 

Given the significant time spent on the calibration, which did not lead to a conclusive 

result that would allow to move to the 3rd step (validation), the author decided to focus 

on the evaluation of individual components within the model to try and pinpoint what 

areas might be causing issues. This evaluation process had two aims: (1) verifying that 

the model components (heat balance, mass balances, biological module) were capable 

of providing the desired profiles, and (2) investigate how the parametrization of these 

different calibrations compared to try and identify what areas of the model were not 

working. The results of this process are presented in the following subsection (5.3.3). 

5.3.3 Model component validation and identification of problem areas 

Many of the model outputs managed to match up with the experimental results, as 

presented in Figure 5.6. Individually, a NRMSE of 8.1% was obtained for BOMloss, 6.4% 

for dry matter, 12.0% for temperature, 9.1% for moisture, 17.3% for NO3-N, and 17.9% 

for NH4-N. For temperature, despite many experimental points being above the 

modelling curve, it is important to note that the consistent three-point patterns 

(highlighted on the figure) are due to mixing events, which this model did not seek to 

simulate. Therefore, following the lower end of the experimental profile, as is shown in 

Figure 5.6, is what would be expected without turning, which is what the model 

represents. From the various profiles, we can note a generally good capacity to 

accurately represent these aspects of the composting experiments. There are some 

deviations, such as the model underpredicting the maximum BOM loss, but it is very 

difficult to know what is the fault of the model versus what might be an error from data 

uncertainty, especially given that some assumptions had to be made regarding starting 

fractionations. Overall, the profiles are largely agreeable, with what may appear to be 

large errors being due to the scaling of the plots, such as the estimate for moisture at t 

= 3 days, which seems to be a significant overestimation, but is only about 3% higher 

than the real value. However, purely from a visual standpoint, there is one behaviour 

that is not desired. For NH4-N, the model predicts a much higher production of 

ammonium than the experimental data, despite being spot on for the rest of the profile, 

which also explains why it has the highest NRMSE of the evaluated outputs.  

From here, given that the individual processes could be mostly adequately represented, 

it became pertinent to look at the value of the parameters that produced each of these 
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outputs, which should highlight areas of “conflict” in the model. Table 5.4 presents an 

overview of the main differences, highlighting only the situations that were different 

from the “norm”. Surprisingly, there were many similarities throughout, something 

which was unexpected given the difficulty in obtaining an overall accurate simulation. 

Looking through the table, we can see that many areas are similar between outputs, 

particularly for temperature (T), moisture content (MC), and dry matter (DM), which will 

be what the others shall be compared to when we say if they are lower or higher for 

certain parameters. From this information, we can paint a picture of what is happening 

within the current model structure.  

Starting with TKN: it is the most obvious area of issue in the model, though whether this 

is due to the model itself or an issue with the experimental dataset or data reporting is 

unclear. Indeed, from Table 5.4, we can see that, for TKN to be accurate, it requires a 

low growth rate (μHB), a high half-saturation coefficient for soluble substrate (KS), a low 

hydrolysis rate (kH,HB), and a low heat generation coefficient (∆Hs), basically meaning 

that it requires nearly no biodegradation. Indeed, the low growth rate, hydrolysis rate, 

and heat generation, coupled with the high half-saturation coefficient, is a recipe for 

nothing, from a composting perspective. Given this behaviour, and prior investigations 

not finding anything wrong, more time will be spent trying to understand this source of 

error.  

When looking at the other outputs, the situations are much more understandable. 

BOMloss favored a low decay rate for NOBs, which makes sense given that a low death 

rate results in more degradation through a longer lifespan of organisms. However, the 

reason that this targeted NOBs specifically, and not the other two microbial fractions 

(they were lower, but not out of the range of the others), is not completely clear. It is 

potentially because of the role NOBs play in producing NO3-N in the system, which is the 

gateway for all of the subsequent anoxic processes, which make up a non-negligible part 

of the degradation.  

For NO3-N to achieve a comparable modelling result to the experimental ones, a low 

growth rate of NOBs was needed, alongside high half-saturation coefficients for 

ammonium and oxygen (KNH and KOH), a low anoxic yield factor (ηg), and low decay 

coefficients for both AOBs and NOBs. This can be interpreted as indicating that the anoxic 

pathways implemented in the model are too aggressive at consuming the nitrate 

fraction, which would be limited by having a low ηg and a high KNH and KOH. Furthermore, 

a decrease in the rate of decay of both AOBs and NOBs would also lead to higher NO3-N 
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concentrations; AOBs producing the NO2 which the NOBs require for NO3 production. The 

only area of uncertainty on this aspect is the low NOB growth rate (μ
NOB

), though the 

author speculates that this is to ensure that the growth in NOB fraction happens after 

the primary consumption of NH4, when more nitrogen substrate is available, as is 

traditionally observed during composting.  

Regarding the other nitrogen fraction that was assessed, NH4-N is also expressing a 

similar issue as NO3-N, being consumed too rapidly. Indeed, in this case, this is 

highlighted by a need for high half-saturation coefficients on substrate, ammonium-

nitrogen, and oxygen, all of which will decrease the rate of degradation, while favoring 

a low half-saturation coefficient for oxygen in the AOB process, which is a primary 

generator of NO2 in the system, which can then be reduced to ammonia through the 

assimilative reduction pathway. This is also further highlighted by the significantly higher 

(600%) assimilative nitrate reduction coefficient than in the other calibrations. However, 

there is the particularity of the timeliness of this all, as the need for a high ∆Hs  indicates 

that this calibration also favors maintaining high temperatures to allow for volatilization, 

once NH4-N concentrations have peaked. 

Based on the information discussed above and identified in Table 5.4, it will be pertinent 

to modify the model to try and account for this. A summary of the current interpretation 

of the situation and the changes that should be brought accordingly is provided below: 

• TKN is aberrantly wrong and requires a full assessment. The only way the model 

can currently meet the experimental dataset is by assuming barely any 

composting happens. 

• Both NO3-N and NH4-N are being consumed too aggressively in the calibrations 

that accurately predict temperature, BOMloss, dry matter, and moisture. This 

explains why we seem to either get accurate carbon/organic matter outputs or 

nitrogen outputs, but not both together.   

• However, the issue is that decreasing degradation to favor NO3-N and NH4-N 

would also decrease BOMloss, temperature, and dry matter, while also impacting 

moisture content.  

• It is possible that decreasing the anoxic pathways will allow for continued aerobic 

degradation, while putting less stress on the nitrogen fractions. However, until a 

comprehensive dataset that follows all forms of nitrogen is available, it will not 

be possible to validate this.  
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• Conversely, what may appear as a penchant towards decreasing consumption of 

these fractions (NO3 and NH4) might also indicate that the processes producing 

them are not aggressive enough, and therefore tend to lag the consumption of 

carbon substrate.  

This will all be assessed in the near future to try and assuage these issues. 

Table 5.4 Key differences in calibrations that allowed to obtain an accurate prediction 

for each output.  

 BOMloss T MC TKN DM NO3-N NH4-N 

Growth rates - - - low μHB - low μ
NOB

 - 

Half-saturation 

coeffs. 

- - - high KS - high 
KNH, KOH 

high 
KS, KNH, KOH 

low KOA 

Inhibition 

coeffs. 

- - - - - - - 

Anoxic 

adjustment 

factors 

- - - - - low ηy low ηy 

Decay 

coefficients 

low 
 bNOB 

- - - - low 
bAOB, bNOB 

- 

Hydrolysis  - - - low 
kH,HB 

- - - 

Ammonification - - - - - - high ka,HB 

Biological heat - - - low  
∆Hs  

- - high ∆Hs   

Assimilative 

nitrate 

reduction 

- - - - - - high AR 
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Figure 5.6 Comparison of model outputs and experimental results for calibrations 

seeking to optimize each output individually.  
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5.3.4 Limitations and perspectives  

The model in its current form obviously suffers from significant issues limiting its use, 

as well as serious doubt as to its validity, given the lack of necessary high-quality data 

that the author had planned on having to calibrate and validate the model. However, the 

development process of this model provided many valuable lessons about how 

composting modelling should be approached, how the continued development of this 

model will be undertaken moving forward, as well as being an invaluable source of 

knowledge, while also identifying limitations of this model: 

• Though the model is based on the widely used activated sludge models (ASMs), 

as was the prior composting model of Trémier (2004), the author highly cautions 

against using this basis for composting models in the future. The main issue with 

the ASMs is that the fractionations are not particularly intuitive to work with and 

understand, especially in the case of a composting model, which focuses on 

carbon/organic matter. Indeed, the ASMs are built on a chemical oxygen demand 

(COD) basis, which works fine when dealing with wastewaters, but adds 

unnecessary complexity in the case of solid waste such as compost. Though the 

development of this composting model was done on both a COD and TOC basis, 

certain nonsensicalities come through, such as the loss of carbon as CO2 

technically being accounted for in the SO (oxygen) consumption (see Petersen 

matrix in Appendix C for details). Developing the model from the ground-up and 

integrating aspects of the ASMs would likely have provided a smoother 

experience for the author, as well as a more approachable model. To address 

some of these issues, works such as that of Takács and Vanrolleghem (2006) can 

serve as inspiration to represent the elemental balance, notably on carbon, in a 

much clearer fashion than what is currently implemented.  

• In a similar vein, the fractionation used by the model, though simpler than many 

that have been used in the past and similar to that of the ASMs, remains very 

impractical in a composting setting. Knowledge most commonly available on a 

composting site generally include moisture content, organic matter, and C/N ratio 

(Alberta Environment and Parks, 2018). Therefore, attempting to split the 

substrate into soluble and particulate biodegradable and inert fractions, among 

multiple microbial fractions, will not be normally available or meaningful to most 

users.  
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• The main contributors to the size of the model and the large number of 

parameters are the half-saturation and inhibition coefficients, which play a role 

in every biological rate included in the model. These are also the main reason 

that the model is non-identifiable. Transitioning away from these limitation terms 

should greatly improve the usability and identifiability of the model. Some will 

obviously be necessary, but it is likely that, at the moment, many serve a limited 

purpose and mainly bloat the model. 

• On a positive note, the heat balance appears to work very well, consistently being 

among the most accurate model subsets. No change would be recommended on 

this front.     

• The water balance also appears to produce desirable profiles, though it tends to 

be either over or under reactive (i.e., good shape, but not over the desired 

range). Once the proper data is available, it should not be difficult to verify and 

adjust.  

• Despite the comments on the complexity of the model and its multiple 

fractionations, it does provide a great tool to follow carbon and nitrogen during 

the process. Obviously, value will only come from this when the model is 

adequately calibrated and validated, but it has the potential to offer a great 

instrument to understand the dynamics taking place during the process, such as 

being able to identify rate-limiting steps, quantify the transformation between 

fractions dynamically, and explore a variety of process and operating 

modifications. This being said, extensive understanding of composting, 

modelling, and this particular model structure will be necessary to achieve this.  

These lessons shall be applied in the following phase of this Ph.D., which focuses on the 

development of usable, accessible, and accurate composting models. 
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5.4 Conclusion 

Throughout this chapter, a novel comprehensive deterministic and mechanistic 

composting model focusing on nutrient (particularly nitrogen) transformation and loss, 

and greenhouse gas emissions was developed. The model is based on a sound theoretical 

foundation through a robust representation of microbial biodegradation pathways, heat 

transfer, and mass transfer. Following an extensive attempt at calibrating and validating 

the model through Monte Carlo methods, greatly hampered by the lack of expected 

experimental data due to COVID-19, the developed model remains in need of a proper 

calibration and validation on a strong dataset. However, significant effort was put to 

ensure that this process will move smoothly in the future, with the appropriate 

methodology and tools in place to undertake such an evaluation rapidly. Nevertheless, 

the evaluation of the model highlighted certain flaws that the author will seek to address 

in the future, notably relating to model identifiability, as well as an overly complex 

structure which greatly limits its potential user-base. Despite these issues and this 

chapter not concluding in the way the author had envisioned when starting this process 

(i.e., with a functional, calibrated, and validated model), the development of this model 

and the work undertaken throughout this chapter presents an incredible development of 

knowledge and learning, both for the author and for the field of composting modelling. 

Continuity on this project will be ensured by the experimental work developed in chapter 

4, which should provide an answer to most of the questions raised throughout this 

chapter, while clear paths for model evaluation and improvement have been highlighted 

in sections 5.3.3 and 5.3.4. This development process highlighted many questions that 

the author felt were important to address, particularly regarding the development of 

usable and approachable composting models. Therefore, following the work undertaken 

up to this point, the third phase of this Ph.D. was envisioned, which aimed at answering 

two questions: (1) What modelling practices should be implemented to favor successful 

environmental decision-making and system design? And (2) How can we model the 

composting process in both a simple and generalizable fashion? 
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Phase 3 

Facilitating the use of models for 

successful environmental decision 

support 
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Chapter 6: Developing successful environmental 

decision support systems: challenges and best 

practices  

6.1 Résumé 

Les outils d'aide à la décision sont appliqués depuis plus de 40 ans dans le domaine de 

l’environnement. Cependant, la majorité de ces outils ne trouvent pas d'utilisation ou 

tombent hors d'usage rapidement. Dans le but d'aider à la conception et au 

développement de systèmes d'aide à la décision pratiques et efficaces, cette revue 

examine la littérature existante, à la fois centrée sur les outils d’aide à la décision 

environnementale et dans des domaines plus larges liés à la prise de décision, pour 

mettre en évidence certains des défis les plus importants qui influencent le succès et la 

convivialité de ces systèmes. Au total, 13 défis majeurs auxquels est confronté le 

développement de ces outils ont été identifiés et plus de 60 recommandations et 

meilleures pratiques ont été fournies pour relever ces défis. Bien que ce chapitre se 

concentre principalement sur les systèmes d'aide à la décision environnementale, la 

majorité des informations et des conclusions mises en évidence sont applicables au 

développement de systèmes d'aide à la décision dans n'importe quel domaine. 

Mots clés : Système d’aide à la décision environnementale ; prise de décision ; 

évaluation ; défis ; parties prenantes ; meilleures pratiques 
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3.2 Abstract 

Environmental decision support systems (EDSSs), or DSS applied in the environmental 

field, have been developed for over 40 years now. However, most of these tools fail to 

find use or fall out of use quickly. In the aim of aiding in the conception and development 

of practical and successful decision support systems, i.e., systems that can lead to 

positive outcomes, this review looks over the existing literature, both EDSS-centric and 

from broader decision-related fields, to highlight some of the most important challenges 

influencing the success and usability of these systems. In all, 13 major challenges facing 

EDSS development were identified and over 60 recommendations and best practices 

were provided to address these challenges. Though this chapter is mainly focused on 

environmental decision support systems, most of the highlighted information and 

conclusions are applicable to the development of decision support systems in any field.  

Keywords: Environmental decision support system; decision-making; evaluation; 

development challenges; stakeholders; best practices 
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6.3 Introduction 

In the previous two phases of this thesis, focus has been placed on consolidating, 

developing, and applying fundamental knowledge on composting modelling to produce 

a highly comprehensive composting model. Though the model detailed in chapter 5 

presents a potentially interesting tool to evaluate and understand what can be happening 

during the composting process, as noted, it suffers from its complexity. Indeed, to be 

able to use it to its fullest extent and to understand its results and their meaning in the 

clearest of manners, extensive knowledge on the fundamentals of composting, including 

biological degradation, heat transfer, and mass transfer, and how this is modelled, is 

necessary, without even considering the issue of identifiability. As such, other than for 

research or in the hands of well-trained experts in the field, it seems unlikely that the 

work that has gone into developing this knowledge would be usable to a wider audience. 

Making the tool accessible to as many actors in the composting and environmental fields 

as possible is therefore of great importance and value. Indeed, if this knowledge could 

be placed in the hands of decision-makers, industrials, researchers, and composting 

operators, the benefits of the work undertaken thus far could be felt on a much greater 

scale and the impact of this PhD project would be greatly increased. As such, this third 

and final phase of this dissertation will aim at facilitating the use of the knowledge 

developed thus far, seeking to make it usable to a large group of actors. 

The first step in this process is to determine how to actually achieve this goal. Indeed, 

there is significant work on modelling, particularly environmental modelling, and how to 

approach model design, uncertainty, etc., but guidance on making these models usable, 

particularly to decision-makers, is surprisingly lacking. Indeed, decision-making 

scenarios are far more complex than simple optimization cases, and are becoming ever 

more common in waste management and environmental fields. In these particular cases, 

the current context of ever tightening environmental regulations, increasing focus on 

sustainable development, and the pressure to transition towards circular economies, has 

placed decision-makers in situations where they must make choices that will have a long 

and lasting impact on their communities. Such decisions often require a compromise 

around social, economic, technical, and environmental issues, with numerous 

alternatives and various sources of uncertainty to be considered (French and 

Geldermann, 2005; Liu et al., 2008; Matthies et al., 2007; Reichert et al., 2015). This 

renders the decision-making process highly complex, and, as such, simply applying 

mathematical models is not enough to address these situations. Indeed, such situations 
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call for the use of specialized tools, known as decision support systems (DSSs), to help 

address them.  

DSSs are developed to assist decision-makers in dealing with situations where there are 

multiple potential solutions to a problem and none is objectively better than the others; 

the selection of an alternative being based on the p  of the decision-makers (subjective) 

(Buchanan et al., 1998; Saaty, 2008). These systems are not simply models, 

assessments or decision trees, for example, but are instead systems having the capacity 

to aid in structuring and resolving contested problems, while also increasing the 

transparency of decision-making, providing users with a better understanding of the 

problem situation and promoting learning (McIntosh et al., 2011). Therefore, DSSs deal 

with unique challenges related to the decision-making process that are not experienced 

in traditional model or system design.   

In environmental fields, EDSSs have been present since the 1980’s (e.g. Johnson, 1986; 

Maeda, 1984; Rossman, 1980). Examples include systems aiding in assessing 

environmental management and site selection (Carrick and Ostendorf, 2007; Massei et 

al., 2014; Negahban et al., 1995; Rahman et al., 2012), waste collection routes (Rada 

et al., 2013), water quality management alternatives (Assaf and Saadeh, 2008), water 

and waste treatment alternatives (Bertanza et al., 2016; Castillo et al., 2017; Comas et 

al., 2004; Latawiec et al., 2017; San Martin et al., 2017), resource management (Dong 

et al., 2013; Naz et al., 2017), environmental impact of agriculture (Horn et al., 2003; 

Nicholson et al., 2013; Oliver et al., 2012; Passuello et al., 2012), and energy planning 

(Hobbs and Meier, 2012; Kumar et al., 2017; Sánchez-Lozano et al., 2013; Trivyza et 

al., 2018). However, even nearing 40 years of development and growth in this field, a 

majority of EDSSs have failed to reach the market or to provide their expected outcomes 

(French and Geldermann, 2005; Hamouda et al., 2009; Mysiak et al., 2005; Newman et 

al., 2017; Poch et al., 2017; Reiter et al., 2018; Uran and Janssen, 2003; Zasada et al., 

2017). Indeed, the works of Uran and Janssen (2003), Hamouda et al. (2009) and Poch 

et al. (2017) have all arrived to the similar conclusions that “although there have been 

many [E]DSSs developed over the past years, few appear on the market as useful 

products” (Hamouda et al., 2009), or, as Poch et al. (2017) state: “wide and generalized 

use of deployed EDSSs has not been observed”. These remarks have been further 

supported by the recent reviews of Zasada et al. (2017) and Reiter et al. (2018), finding 

“limited evidence […] on the success of [E]DSSs in practice” (Zasada et al., 2017). 

Regarding outcomes, Mysiak et al. (2005) also noted that, in many cases, EDSSs have 
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stopped being used once decision-makers understood the decision process or that 

decision-makers arrived to different conclusions than the system, representing a 

significant waste in resources to develop these tools.  

Where this becomes important for this thesis is that the integration of composting 

models within EDSSs could provide a unique pathway to valorize and use these models, 

as will be further discussed in the perspectives and conclusion section of the dissertation. 

However, to achieve this integration, it is important to know and understand if these 

models should have specific design considerations, given that it is very unlikely a model 

such as the one developed in chapter 5 could be integrated and used in such a system. 

Currently, there exists no widespread guide or standard for the production of EDSSs and 

the development of these systems is plagued with challenges and potential pitfalls. 

McIntosh et al. (2011) identified four main challenge areas for EDSSs through a 

workshop with 24 EDSS development professionals and provided some best practices 

with the aim of improving EDSS development practices. These challenge areas include: 

(1) engagement challenges, (2) adoption challenges, (3) business, cost, and technology 

challenges, and (4) evaluation challenges. Following in this vein, a study by Merritt et 

al. (2017) identified 33 factors influencing the success of modelling projects based on 

an analysis of 15 water resource modelling projects. These included factors related to 

project management, project actors, stakeholder engagement, model/system 

development, model evaluation, contextual factors, and model use. Following a survey 

of the model developers, the authors concluded that good relations between the 

development team and end users, strong model validation and having developers with 

the proper skills and understanding were the factors most associated with a successful 

outcome.  

Other than these few studies, there has been little interest in identifying success factors 

for EDSS developers and providing them with the guidance necessary to produce 

successful systems. Despite the work undertaken by McIntosh et al. (2011) and Merritt 

et al. (2017), an extensive review of the literature is lacking, although of high interest 

to provide guidance towards the development of robust and successful EDSSs.  

Given that a majority of EDSSs fail to find use and the lack of general guides for their 

development, a review of the literature was undertaken to identify the challenges facing 

EDSS development and to determine the key factors that promote the success of these 

systems, in the aim of assisting developers to produce higher quality systems. This 
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review aims at answering two research questions: 1) what challenges lead to the failed 

long-term and practical use of EDSSs? and 2) what practices can we implement to 

address these challenges and promote system success? Though a deviation from the 

composting specific nature of the previous chapters, the intention of chapter 6 is twofold. 

Firstly, as mentioned, understanding how models interact with decision-makers, notably 

through these decision support systems, and what designers should be aware of is of 

great importance to achieve the objective of the third phase of this PhD. Secondly, while 

undertaking this work, it became evident that the field of environmental modelling and 

decision-making could greatly benefit from a more thorough, comprehensive, and 

consolidated guide, similarly to what was observed and done in chapter 2.  

This chapter is divided as follows: section 6.4 presents the review’s methodology, which 

is followed by the identified challenges in section 6.5. Section 6.6 provides an analysis 

and discussion of these challenges, the impacts they can have on the quality of an EDSS, 

the practices that can be used to mitigate these issues, followed by the recommendations 

that have been identified for EDSS development. In section 6.7, we discuss the 

importance of EDSS evaluation during the development process and provide a list of 

evaluation criteria based on our review of evaluation-specific literature. Finally, section 

6.8 provides a summary of our work and some concluding remarks.  

6.4 Review methodology  

To carry out this review, the Web of Science database was used as the primary tool to 

identify relevant publications, while Google Scholar was used to complete the search for 

potential non-inventoried works (pre 1990’s). White papers were the primary source of 

information, though grey literature (reports and books) had to be considered for some 

of the seminal works on decision support (only 7-8% of reviewed works, i.e., 32 of the 

total reviewed works, 16 of which are referenced in this paper). Only published works 

were considered, with all but two being in the English language. Publications ranging 

from 1960 to 2019 have been investigated, though a majority (97%) of the works used 

in the review range from 1980 to 2018.  

This was undertaken in multiple steps. Firstly, an initial identification and review of 

EDSSs was done using various combinations of the search terms: “environmental”, 

“waste”, “water”, “land management”, “environmental management”, “decision support 

system”, “multi-criteria”, “rule-base” and “expert system”. Though this was the starting 

point for this work, the information gleaned from papers that detailed the development 
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and use of EDSSs was generally less informative than we would have hoped. Therefore, 

this was followed by a review of development guides and success factors for EDSSs, 

using the keywords: “environmental decision support”, “develop*”, “guide”, 

“challenges”, “failure” and “success”. These searches were then complemented with 

general searches for more case-specific information, looking to gather information from 

other fields that might be pertinent and transferable for EDSS development. These 

searches usually involved dropping the environment specific search terms and resulted 

in literature form a variety of fields, such as requirements engineering, social sciences 

and operational research.  

In total, the general search on EDSSs resulted in 20,421 articles on Web of Science, 

while the search for development guides and success factors led to 1,260 results. Given 

the massive number of results for the first search, this one was limited to highly cited 

papers (180). The second search provided more pertinent results and was more 

manageable, so it remained unaltered. These results were then screened using their 

titles, abstracts, and keywords to determine their relevance, with 316 articles being 

retained for further review. Articles were deemed relevant when they pertained to the 

development or evaluation of a decision support system applied to environmental 

applications and not simply the application of a decision support method or assessment, 

the latter making up a majority of the identified literature. Google Scholar was then used 

to identify or retrieve 87 seminal or highly pertinent articles that were not identified 

during the initial retrieval but during the review, notably for works prior to 1990. Overall, 

405 papers were consulted, 231 of which are referenced in this chapter.  

6.5 Identification of challenges facing EDSS development and use 

During the review process, any information on potential factors that influenced the 

success of EDSSs and models was noted. These were then aggregated into three major 

categories: stakeholder-oriented, model-oriented, and system-oriented challenges. The 

breakdown of these categories can be found in Table 6.1. In all, a list of 13 challenges 

that can influence the quality and success of an EDSS was compiled. The first category, 

stakeholder-oriented challenges, refers to the factors that are either directly related to 

stakeholder participation, such as identification and prioritization, or to understanding 

their needs and expected outcomes. Model-oriented challenges refer to considerations 

that pertain to the selection and implementation of the models within the system (with 

noted focus on decision methods/models), whereas system-oriented challenges relate 
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to system design considerations, usually pertaining to how the system meets the needs 

of the stakeholders. 

Table 6.1 Challenges and considerations influencing the end-quality and success of 

EDSSs identified from the literature. 

Challenge 

type 

Description 

Stakeholder-

oriented 

 

 1. Identifying stakeholders (Arnott and Pervan, 2005; Lautenbach 

et al., 2009; McIntosh et al., 2011; Zasada et al., 2017) 

 2. Prioritizing stakeholder influence and participation (Abelein and 

Paech, 2015; Bano and Zowghi, 2015; Basco-Carrera et al., 

2017; Black et al., 2014; Horne et al., 2016; Jakeman et al., 

2006; Krueger et al., 2012; McIntosh et al., 2011; Voinov and 

Bousquet, 2010; Voinov et al., 2016) 

 3. Establishing a strong relationship between developers and 

stakeholders (McIntosh et al., 2011; Merritt et al., 2017; Oliver 

et al., 2012; Uran and Janssen, 2003; van Delden et al., 2011) 

 4. Eliciting the problem situation (McIntosh et al., 2005; Merritt et 

al., 2017; Sojda et al., 2012) 

Model-

oriented 

 

 1. Understanding the type of decision to be supported (Sojda et al., 

2012) 

 2. Selecting a decision support method (Arroyo and Molinos-

Senante, 2018; Bertanza et al., 2016; Huang et al., 2011; Massei 

et al., 2014; McIntosh et al., 2005; Pick and Weatherholt, 2013; 

Ren et al., 2017; Vitorino de Souza Melare et al., 2017) 

 3. Determining the simplicity of the models (Hajkowicz, 2008; 

Janssen, 2001; Olson et al., 1995) 

 4. Dealing with uncertainty (Ascough et al., 2008; Aulinas et al., 

2011; De Kort and Booij, 2007; Hepting, 2007; Jakeman and 

Letcher, 2003; Kryszkiewicz, 1998; Matott et al., 2009; Pesonen 

et al., 1998; Reichert and Borsuk, 2005; Uusitalo et al., 2015; 

Yan et al., 2003) 

 5. Dealing with variable results (Belton and Gear, 1985; Bertanza 

et al., 2016; Olson et al., 1995; Ren et al., 2017) 

System-

oriented 

 

 1. Providing pertinent queries and results (Liu et al., 2008; Merritt 

et al., 2017; Uran and Janssen, 2003) 

 2. Communicating/understanding how the results have been 

achieved and their limitations (Bertanza et al., 2016; Licitra et 

al., 2017; Liu et al., 2008; Rudin, 2018) 

 3. Producing a user-friendly system (Hamouda et al., 2009; Van 

Meensel et al., 2012) 

 4. Determining appropriate system restrictiveness (Bertanza et al., 

2016; Chaudhry et al., 1996; McIntosh et al., 2005; Parikh et al., 

2001; Rhee and Rao, 2008; Van Meensel et al., 2012) 
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6.6 Analysis and discussion of factors influencing success and 

best practices 

Section 6.6 will provide a description of the challenges presented in Table 6.1, as well 

as the methods that can be used to limit their impact and to promote project success.  

6.6.1 Stakeholder-oriented challenges 

The first major type of challenge explored is stakeholder-oriented challenges. These 

challenges are primarily centered around acquiring a full understanding of why the 

system is being developed (for whom and for what purpose?) and ensuring that the tool, 

from a conceptual standpoint, meets the requirements of the users.  

6.6.1.1 Identifying stakeholders 

The first challenge is the identification of stakeholders, i.e., people or organisations that 

have an impact on the development or use of the tool. Indeed, some researchers have 

shown some very concerning trends in this respect. For example, a review of DSSs by 

Arnott and Pervan (2005) noted that, out of over 1000 articles reviewed between 1990 

and 2003, 58.6% were unclear as to the primary user of their tool. This trend remaining 

high in the following decade (2004-2010), with 52.3% being unclear on the primary user 

(Arnott and Pervan, 2014). More recently, Zasada et al. (2017) reviewed the use of 

EDSSs for landscape and environmental management and found that, of the 29 projects 

they reviewed, more than 10% failed to involve the stakeholders in any way, while the 

review of DSS for natural hazards risk reduction by Newman et al. (2017) found that 

22% of reviewed projects did not explicitly outline the end users.  

This trend of poor user involvement is distressing seeing how the beneficial influence of 

stakeholders on system’s success has been widely reported throughout the literature 

(Abelein and Paech, 2015; Bano and Zowghi, 2015; Black et al., 2014; Díez and 

McIntosh, 2009; Hajkowicz, 2008; Horne et al., 2016; Merritt et al., 2017; Pacheco and 

Tovar, 2007; Tsouvalis and Waterton, 2012; van der Most et al., 2018; Voinov and 

Bousquet, 2010; Voinov and Gaddis, 2008). Indeed, user participation was identified as 

the best predictor of success for the pre-implementation phase of information system 

development by Díez and McIntosh (2009) and stakeholder engagement was found to 

be amongst the highest rated success factors by Merritt et al. (2017), second only to 

proper problem elicitation (see section 6.6.1.4). This is in large part due to stakeholders 

having the knowledge and experience necessary to guide the development of a DSS, 



 

138 

while also providing feedback that, when implemented, tends to increase their adoption 

of the tool (Jakeman et al., 2006; Tsouvalis and Waterton, 2012; Voinov and Bousquet, 

2010). 

Therefore, stakeholder identification is a necessary and primordial step for EDSS design, 

though its implementation remains tedious and consistent results are uncertain (Jepsen 

and Eskerod, 2009; Pacheco and Garcia, 2012; Pacheco and Tovar, 2007). Many of the 

proposed methods revolve around inventorying stakeholders into predetermined 

taxonomies through either interviews or workshops (e.g. Alexander, 2005; Kotir et al., 

2017; Krupa, 2016; Leventon et al., 2016; Pacheco and Garcia, 2012; Sharp et al., 

1999), while determining the number and span of stakeholders can still remain a major 

challenge (the balance between “breadth” and “depth” of engagement, as stated by 

Gregory et al. (2012)). Typologies pertaining to stakeholder analyses have been 

provided by Reed et al. (2009) and Black et al. (2014), while the latter present various 

methods for stakeholder identification and analysis. These include using methods such 

as focus groups, snow-ball sampling, semi-structured interviews, and expert opinion to 

identify stakeholders. They note however that these methods do have their limits, 

particularly being subject to the development team’s bias during selection and requiring 

that the stakeholders and developers be aware of a wide-range of potential stakeholders. 

Alexander (2005) also explored the use of stakeholder taxonomies, i.e. classifications 

based on their role and relation to the project, that can be used to identify gaps in the 

coverage provided by stakeholders.  

6.6.1.2 Prioritizing stakeholder influence and participation 

Multiple researchers have recommended that stakeholders should be directly engaged 

and have a hand in developing the entirety of the system, from initial scoping to final 

evaluation (van Delden et al., 2011; Voinov and Gaddis, 2008; Voinov et al., 2016; Wu 

et al., 2016). Wu et al. (2016) also noted that stakeholders will become more 

knowledgeable about the situation and the system over time, improving the quality of 

feedback as the project progresses. Regarding the degree of involvement, it has been 

recommended that stakeholders be allowed to challenge the development of every 

aspect of the system (including the models) and that their feedback be integrated into 

the design, leading them to develop a “sense of ownership” that makes them more likely 

to accept the suggested results (van Delden et al., 2011; Voinov and Bousquet, 2010; 

Voinov and Gaddis, 2008). There is however a noted dilemma between being inclusive 

and selecting only a limited number of stakeholders who will likely have an influence on 
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the system development (Reed et al., 2009), potentially marginalizing certain groups 

(Chambers, 1997), as well as mitigating potential problems arising from their 

involvement, such as a resistance to change, unrealistic expectations, 

miscommunications and disagreements as to the end goal, and disagreements as to the 

level of influence the stakeholders should have (Bano and Zowghi, 2015). 

Given the importance of stakeholder involvement, it is paramount to properly define the 

roles and responsibilities of stakeholders within the project. To start this process, 

developers should aim at categorizing their stakeholders. The classification of 

stakeholders can generally be undertaken in one of two manners, either through 

analytical or reconstructive categorization (Bryson, 2004; Reed et al., 2009). Analytical 

categorizations are top-down methods which usually use matrices (such as the interest-

influence matrices) and Venn diagrams to classify stakeholders. These methods can be 

useful to identify which stakeholders should be solicited based on their influence and 

interest in the project (those with the highest combined interest and influence should be 

targeted). However, these methods can let developer bias seep through, as well as 

leading to the marginalization of non-influential stakeholders. On the other hand, 

reconstructive methods are bottom-up approaches in which stakeholders can either 

categorize themselves or be categorized based on how their discourse fits with that of 

the others. This limits the influence that the developers have on the categorization, which 

can allow for a wider-ranging discussion and can reduce the impact of the developers’ 

biases, but it can also lead to conflicting or incomplete categorization. Recent methods 

aiming to promote stakeholder identification and participatory development have also 

been proposed by Krupa (2016) and Basco-Carrera et al. (2017) respectively.  

Following identification and categorization, it can be pertinent to identify the 

relationships between stakeholders. The group dynamics that arise between 

stakeholders can be complex, ranging from cooperative to conflicting, and must be 

managed to ensure efficiency. Conflict between stakeholders can be useful to bring to 

light certain contentious areas surrounding the development of the tool, however, when 

these conflicts overshadow the development process, it is necessary to work towards 

mitigating or resolving them. In this case, traditional conflict resolution methods such 

as providing a neutral ground for discussion and “negotiation” can be used, while 

professional facilitation might be necessary if the conflict becomes unmanageable 

(Grimble and Wellard, 1997; Voinov and Bousquet, 2010). Reed et al. (2009) also 

provide an overview of methods for investigating the relationship between stakeholders. 
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These methods include actor-linkage matrices, social network analysis and knowledge 

mapping, though we will not explore these in this paper and highly recommend that 

readers consult Reed et al.’s (2009) work.  

6.6.1.3 Establishing a strong relationship between developers and stakeholders 

Once stakeholders have been identified and their role in the project has been 

determined, it is necessary that developers establish and cultivate a strong relationship 

with them (Merritt et al., 2017). The quality of this relationship is often defined by the 

trust between participants and is usually brought about through transparency and 

credibility (Voinov et al., 2016).  

Credibility is often cited as one of the main factors necessary for system uptake 

(Aumann, 2011; van Delden et al., 2011; Voinov et al., 2016). It is important to note 

that, in this context, credibility does not refer to the validity of the system or its models, 

but refers instead to the believability that the system can provide the expected outcome 

(Saunders-Newton and Scott, 2001). Credibility can stem from a few areas, including 

stakeholder involvement, and model and data credibility. For credibility that arises from 

stakeholder involvement, the main recommendation is to ensure that a diverse and 

representative range of stakeholders take part in the project development as early as 

possible, notably for problem elicitation, and all the way through the selection of models 

and approaches. Whereas stakeholder involvement is necessary for general system 

credibility, a more specific credibility is required for the models used by the system. For 

credibility to be achieved, transparency is necessary. To favor transparency, Liu et al. 

(2008) and McIntosh et al. (2011) recommend that developers be open and honest 

about the limitations of their system and note that they should highlight weaknesses 

and areas requiring improvement. Transparency is also achieved through developing a 

system whose logic can be followed. It is therefore of utmost importance that the 

stakeholders are clear on how the system operates, that is, how the models operate, 

where the data comes from and how the recommendations are provided.  

A practical example of this in the environmental modelling field is the work of Wieland 

and Gutzler (2014) who used a “white box” approach to develop simple models that 

aimed at maximizing user understanding and transparency. The method they propose is 

stakeholder driven and allows for interactive simulation and development by 

stakeholders. They found that their simple interactive model developed through this 

method still had good accuracy and could then be used as a starting point for 
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optimization and uncertainty analysis, all the while gaining more credibility from 

stakeholders. 

Overshadowing both the issues of transparency and credibility is the need for proper 

communication, seeing how, without it, the prior issues cannot be properly addressed. 

Both van Delden et al. (2011) and McIntosh et al. (2011) stress the importance of having 

people onboard the project that can work towards promoting good communication 

between developers and stakeholders. In McIntosh et al.’s (2011) case, they focus 

primarily on having a champion or representative within the “targeted organisations” to 

maximise responsiveness and adoption of the system. Though these “champions” are 

rarely mentioned in EDSS literature, a recent paper by Reiter et al. (2018) noted a 

significant beneficial impact on user/participant satisfaction when champions were 

involved when comparing two case studies, one with and one without champions. In 

terms of communication, van Delden et al. (2011) instead bring up the vitality of having 

a project architect(s) onboard. The role of the architect(s) is to ensure integration, 

communication and management of the stakeholders, the experts and the system 

designers. This role is extremely important given the disparity that can arise when 

participants of various fields come together for a project, while bringing their own 

unique, and often conflicting, jargon. Robertson and Robertson (2000) also explored a 

few ways to engage stakeholders and mitigate bad experiences, mostly focusing on 

ensuring good communication and minimizing conflict. They highlight the importance of 

providing stakeholders with feedback and recommend using a “fit criterion” for each 

requirement, that is, a quantifiable measure of the requirement. They believe this would 

bridge the communication gap that often plagues multidisciplinary teams and would 

demonstrate to the stakeholders that they are being listened to and that the project is 

advancing in the desired direction. It is also important that communication between 

developers and stakeholders go in both directions, all parties must be receptive to 

learning from one-another (Röckmann et al., 2012).  

6.6.1.4 Eliciting the problem situation 

The final stakeholder-oriented challenge that we present pertains to problem elicitation, 

the literature having shown a worrying gap in this regard (Merritt et al., 2017; Sojda et 

al., 2012). Sojda et al. (2012), in their review of 100 environmental decision modelling 

papers, determined that 40% of these papers did not directly identify the decision to be 

addressed, while Merritt et al. (2017) also noted some gaps in problem elicitation for the 

15 EDSS projects they reviewed.  
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The first step of problem elicitation seeks to get an understanding of the problem 

statement and the objective of the project. This step focuses on understanding the 

current situation, identifying the driving forces affecting the situation and determining 

the objectives of the stakeholders, as well as any uncertainties they might have 

regarding these objectives (Dong et al., 2013). Dong et al. (2013) propose that 

developers use a “storyline” approach to scope out the boundaries of their project. These 

storylines focus on linking the driving forces to the objectives, with any gaps in the 

storyline representing gaps in knowledge or data that need to be filled in until a complete 

and coherent story is achieved (understanding of the problem domain). In writing out 

these storylines, developers and stakeholders are simultaneously contributing to the 

development of the baseline conceptual models for the system, which can then be 

supplemented with more precise details as the development advances. Similarly, 

Gregory et al. (2012) propose decision sketching, where multiple attempts at solving 

the problem are undertaken to clarify and structure the problem. A recent review on the 

implementation of problem structuring methods for decision-making was published by 

Marttunen et al. (2017). As highlighted by Black et al. (2014), the development of the 

conceptual models should happen in tandem with the determination of system 

requirements. It is also pertinent to view this step as a learning experience for both the 

developers and the stakeholders. Indeed, the developers will oftentimes not have a full 

understanding of the problem situation, whereas stakeholders will not be aware of the 

potential functionality of the models or tools (Voinov and Bousquet, 2010). Voinov and 

Bousquet (2010) also recommend that, if developers dispose of a previously created 

model that can be applied in the current situation, they can provide it to stakeholders. 

This allows the latter to get a better understanding of the model so that they can start 

proposing modifications and highlight potential issues early in the process.  

The second step focuses more specifically on identifying the factors that stakeholders 

consider necessary for decision-making and it is oftentimes pertinent to supplement this 

list with the opinion of experts. The more challenging part is to determine how these 

decision criteria are represented, i.e., what information are they based on (qualitative 

vs quantitative, type of data, etc.).  

Regarding elicitation of expert knowledge and opinion, a review by Krueger et al. (2012) 

explored the challenges faced by developers when integrating expert opinion in 

environmental modelling. Note here that experts refer to “anyone with relevant and 

extensive or in-depth experience in relation to a topic of interest” (Krueger et al., 2012), 
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differentiating them from stakeholders who are parties or organisations that have an 

influence on the development, without necessarily being an expert. These considerations 

include determining the type of information (qualitative, quantitative, or conceptual) that 

is sought and selecting the method (direct vs indirect) and setting (individual vs group) 

of elicitation. They note that the setting can present particular challenges due to the 

dynamics that can arise in either scenario, both of which can lead to unwanted biases. 

Indeed, individual elicitation can be biased by the preconceived notions or opinions of 

the interviewer (Ayyub, 2001), whereas group elicitation can be dominated by 

individuals and can lead to over-emphasis on consensus (Knol et al., 2010) or even 

groupthink (Janis, 1972). Krueger et al. (2012) discuss various elicitation methods, such 

as interviews and questionnaires and how to deal with uncertainty, thus we highly 

recommend readers consult their work.  

6.6.2 Model-oriented challenges 

Moving on to the second category of challenges, we have model-oriented factors. As 

presented in Table 1, these challenges pertain to the considerations developers should 

have regarding the development and implementation of the system’s models.  

In the environmental modelling field, literature on the development of various types of 

models (e.g. data models, qualitative models, quantitative models and mathematical 

models) (Parker et al., 2002) is abundant. Seminal research on environmental modelling 

has provided well-known overviews and frameworks for integrated modelling and EDSS 

development (Argent, 2004; Argent et al., 2009; Jakeman and Letcher, 2003; Jakeman 

et al., 2006; Kelly et al., 2013; Laniak et al., 2013; Schmolke et al., 2010; van Delden 

et al., 2011), understanding of the inherent uncertainty and methods to mitigate the 

associated risks (Bastin et al., 2013; Kloprogge et al., 2011; Matott et al., 2009; 

Warmink et al., 2010), prioritization of stakeholder involvement in the modelling process 

(Voinov and Bousquet, 2010; Voinov and Gaddis, 2008; Voinov et al., 2016) and 

validation and evaluation of models (Augusiak et al., 2014; Bennett et al., 2013; 

Matthews et al., 2011). However, investigations of the challenges that decision-making 

models deal with are notably lacking, even in the previous EDSS-centric work undertaken 

by McIntosh et al. (2011) and Merritt et al. (2017). As such, we will seek to address this 

research gap by focusing section 4.2 on decision modelling. Notable focus will be placed 

on multi-criteria decision-making due to its importance for decision support, as will be 

described in sections 4.2.2 and 4.2.5.  
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6.6.2.1 Understanding the type of decision to be supported  

Once the problem is properly elicited, it is important for developers to understand what 

type of decision the problem situation requires. The type of decision will have major 

repercussions on the design of the system and proper understanding of this early-on can 

help developers determine the needs of their project. For example, decision type can 

impact the level of control the user should have, the type and structure of the models 

to be implemented, and it can help to determine the system requirements (McIntosh et 

al., 2005).  

Decisions are often classified into one of three categories: structured (puzzles), semi-

structured (problems) and unstructured (messes) decisions (Gorry and Scott Morton, 

1971; Pidd, 1997).  

o Structured decisions (puzzles) are made on a regular basis with all 

necessary data being known or acquirable. The decision formulation and 

the decision solution are both “agreeable”, meaning that the decision 

process has a well-defined structure surrounding it and there exists a 

specific solution. Structured decisions usually follow established guidelines 

(e.g.: technical, organisational, regulatory) and can be integrated into any 

variety of technological media to either automate them or aid in the 

decision process. For these reasons, structured decisions are said to be 

programmable. Such “decisions” do not require the assistance of a 

decision support system. 

o Unstructured decisions (messes) refer to novel decisions for complex 

situations, which are of higher consequence than structured decisions. 

Both the decision formulation and solution are considered “arguable”, 

meaning that there is a multitude of ways to frame the decision and each 

way of framing the situation has a variety of possible solutions. Therefore, 

unstructured decisions are considered as non-programmable.  

o Semi-structured decisions (problems) fall in the middle of structured and 

unstructured decisions. The decision formulation is “agreeable”, but the 

decision solution is “arguable”. Consequently, there are a variety of 

potential solutions to the clearly defined problem.  
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Furthermore, the aim of decision support can be to aid in choosing a unique solution, to 

rank several alternatives or to develop a systemic way of making a repetitive decision 

(Gregory et al., 2012), as will be discussed in the following sub-sections. Therefore, 

properly understanding the type of decision can have important repercussions on system 

design. Semi-structured decisions are more complex, though the focus of the system 

should mostly be on solution generation and analysis, whereas unstructured decisions 

will also require assisting users with problem formulation. Further considerations are 

presented by Hamouda et al. (2009) who note that EDSSs should be developed for 

complex situations where on-hand expertise is not available, but warn against producing 

systems that are applied to overly specific situations, noting that, in these cases, the 

investment is rarely warranted.  

6.6.2.2 Selecting a decision support method  

Once the developers understand the situation at hand, attention should be given to 

selecting the proper decision support method. Of the EDSSs and environmental decision 

support literature that we reviewed, four main “decision support” methods were 

identified. These include: 1) knowledge-based (artificial intelligence) systems (e.g. 

Aulinas et al., 2011; Ceccaroni, 2001; Comas et al., 2004; Dutta et al., 2014; Dym, 

1985; Finlay et al., 1988; Lukasheh et al., 2001), though these have become much less 

numerous since the early 2000’s, 2) life cycle assessments (LCAs) (e.g. Balkema et al., 

2001; den Boer et al., 2007; Kalbar et al., 2016; Latawiec et al., 2017; Pasqualino et 

al., 2009; Turner et al., 2016; Wielgosiński et al., 2017), 3) cost benefit analyses (CBAs) 

(e.g. Barbier et al., 1990; Molinos-Senante et al., 2012; Molinos-Senante et al., 2010; 

Pearce, 1988) and 4) multi-criteria decision-making (MCDM) methods (e.g. Balkema et 

al., 2001; Bertanza et al., 2016; Garrido-Baserba et al., 2016; Hamouda et al., 2012; 

Kalbar et al., 2016; Lohri et al., 2013; Makropoulos et al., 2008; Mendes, 1994; Rahman 

et al., 2012; San Martin et al., 2017), echoing the results of the review of Karmperis et 

al. (2013) for EDSSs applied to solid waste management.  

With respect to the knowledge-based approaches, these systems provide decision 

support, unlike LCAs and CBAs, but face major issues with their implementation. Expert-

systems or rule-based systems are intended to emulate the human decision-making 

process, either through the use of a ruleset (conditional rules) or machine learning 

processes. As such, the time and effort required to develop these systems is very high 

and they tend to be limited in application due to their rigidity (Pick and Weatherholt, 

2013). Furthermore, even when their implementation proves successful, they will likely 
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end-up being labeled as “black boxes” (Licitra et al., 2017), which can limit the appeal 

and use of these systems, as will be discussed later in section 4.3.2. However, it would 

appear that we should be seeing a resurgence in knowledge-based approach due to 

machine learning methods, based on their advent for decision support in various fields 

(e.g. Dutta et al., 2014; Horng et al., 2017; Sharma and Virmani, 2017). It is also 

possible to complement a knowledge-base with MCDM methods, as was done by Castillo 

et al. (2017) in their EDSS for wastewater treatment selection. 

Regarding life cycle assessments and cost-benefit analyses, their inadequacies stem 

from the fact that they are not actual decision support methods but are instead 

evaluation methods. LCAs and CBAs offer an evaluation of the costs or environmental 

impact of a scenario and can be very useful tools for project/problem assessment. 

However, these methods are reductionist and do not consider the complexity of decision-

making, simply distilling the problem down to an environmental or economic evaluation. 

These assessments can be useful when coupled with actual decision support methods 

(e.g. Angelo et al., 2017), but they are not intrinsic decision support methods.  

During the past decade, MCDM methods have become increasingly popular as models 

for decision support for EDSSs, and with good reason. Multi-criteria decision-making 

seeks to address the subjective nature of decision-making by attributing a certain 

importance (i.e., weight) to each influencing decision criterion. It can therefore be used 

to rank a set of alternatives based on the preferences of the decision-makers. This is of 

obvious interest, and some could say necessity, for environmental decisions, seeing how 

they often require balancing complex considerations from multidisciplinary fields. It is 

for this reason that we recommend MCDM methods for actual decision support, whereas 

the other alternatives mentioned above have major shortcomings in this regard.  

Given the important use of MCDM methods in environmental decision support and the 

need to properly implement these methods, we felt it best to highlight issues surrounding 

their use, seeing how they are hardly ever mentioned in environmental literature. There 

are two main categories of MCDM methods: multi-attribute decision-making (MADM) and 

multi-objective decision-making (MODM), also known as multi-objective optimization or 

vector optimization (Deb, 2014; Kumar et al., 2017). MADM methods consist in ranking 

a set of predetermined alternatives (scenarios), whereas MODM methods focus on 

determining an optimal solution, or a set of solutions, from a large or infinite set of 

alternatives using objective functions. Therefore, MADM methods are discrete in nature, 

comparatively to MODM methods which are continuous (Zavadskas et al., 2014). These 
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methods can also be modified to take into consideration certain types of scenarios, such 

as group decision-making (e.g. Zendehdel et al., 2009) or uncertain (fuzzy) situations 

(e.g. An et al., 2018; Dursun, 2016; Haastrup et al., 1998; Jia et al., 2016; Karimi et 

al., 2011; Ruiz-Padillo et al., 2016; Zhang et al., 2011). 

This is where the complexity starts to arise. Developers are presented with a wide variety 

of MCDM methods to choose from. For MADM methods, in environmental applications, 

AHP (Saaty, 1977, 1980, 2008) is by far the most popular of these methods, often 

followed interchangeably by MAUT (Fishburn, 1970; Huber, 1974; Raiffa and Keeney, 

1975), PROMETHEE (Brans and Mareschal, 2005; Brans, 1982; Mareschal et al., 1984), 

ELECTRE (Benayoun et al., 1966) and TOPSIS (Hwang and Yoon, 1981) as has been 

consistently demonstrated by multiple literature reviews (Achillas et al., 2013; Cegan et 

al., 2017; Goulart Coelho et al., 2017; Herva and Roca, 2013; Huang et al., 2011; Kabir 

et al., 2014; Kumar et al., 2017; Mardani et al., 2015). Though all MADM methods, there 

are significant differences between how each method operates and can be categorized 

(pairwise, multi-attribute utility or value functions, outranking processes, distance to 

ideal point methods, etc.). For a full and in-depth look at the various MADM methods, 

extensive reviews have been undertaken by Vaidya and Kumar (2006) for AHP, Wallenius 

et al. (2008) for MAUT, Behzadian et al. (2010) for PROMETHEE, Behzadian et al. (2012) 

for TOPSIS and Govindan and Jepsen (2016) for ELECTRE. The same abundance of 

choice is applicable for MODM methods, such as choosing between weighed summations, 

the e-constraint approach, the genetic algorithm, or a variety of other methods (Cui et 

al., 2017; Gunantara, 2018). 

Where the choice of MCDM can become problematic is the impact this choice can 

potentially have on the results provided by the system. As demonstrated in the reviews 

by Huang et al. (2011) and Vitorino de Souza Melare et al. (2017) and by Arroyo and 

Molinos-Senante (2018), there is little consensus as to which method of decision-support 

is appropriate for any given case. The issue here is that the use of different methods can 

lead to different results. For example, Ren et al. (2017) used three MCDM to evaluate a 

problem (best worst method, TOPSIS and sum weighted method), some of which 

provided conflicting rankings with one-another. The authors noted that “the ranking 

difference among the different MCDM methods often puzzles the decision-makers, and 

it is usually difficult for them to make decisions due to the inconsistency among these 

results.” Furthermore, the inconsistency between the different MCDM methods becomes 
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ever more pronounced as the number of alternatives to be ranked increases, as well as 

the amount of attributes to be considered (Olson et al., 1995). 

Some studies have looked into how to counteract these problems and select MCDM 

methods (De Montis et al., 2000, 2004; Guarini et al., 2018; Myšiak, 2006; 

Triantaphyllou and Mann, 1989; Yeh, 2002; Zanakis et al., 1998). However, many have 

concluded that these differences between MCDM methods can be beneficial to the 

decision-makers, forcing them to look at the problem through various lenses and giving 

them a better understanding of the situation and thus the reason for choosing an 

alternative. For these reasons, a frequent recommendation is the implementation of 

multiple MCDM methods to solve a decision-making problem (Ananda and Herath, 2009; 

Buchholz et al., 2009; Guitouni and Martel, 1998; Hobbs and Meier, 2012; Kangas and 

Kangas, 2005; Løken, 2007; Mysiak et al., 2005; Wang et al., 2009). Realistically, 

however, the implementation of some of these methods, especially the pairwise MADM 

methods such as AHP, which requires comparing every alternative in sets of pairs, can 

be time intensive. Furthermore, requiring the user go through a few of them would not 

be a viable recommendation for certain EDSSs. However, systems that center on aiding 

with longer and more complex decision scenarios could potentially benefit from the 

implementation of multiple MCDM methods.  

6.6.2.3 Determining the simplicity of the models 

Though the recommendations of the previous section might not be as clear-cut as many 

of the others highlighted throughout this paper, there is one factor that can potentially 

help with the selection of a decision method, i.e., determining model simplicity, though 

this is not without its own challenges. Simplify the models too much and you run the 

risk of losing touch with reality, whereas complex models are generally more resource 

intensive to develop and implement, while also being harder for users to understand, 

decreasing transparency.  

When it comes to MCDM methods, there are two major factors that contrast with one-

another: efficiency versus quality. It has been noted that simple methods are often 

sufficient to provide adequate decision support and that using more complex models can 

decrease the efficiency of decision-makers (Hajkowicz, 2008; Janssen, 2001). In both 

cases, Janssen (2001) and Hajkowicz (2008) noted that proper problem framing and 

selection of the decision criteria were more important to the success of the process than 

the complexity or type of method chosen. Bojórquez-Tapia et al. (2005) also found that 
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more complex methods were problematic with users, the latter stating that the pairwise 

method (AHP) was a black box and thus losing trust in the system and its results. 

However, the researchers also found that, for those who were receptive to it, the more 

complex method led to a better understanding of the decision process and thus an 

improvement in the quality of decision-making. This can be of great value seeing how 

providing users with a better understanding of their problem situation and transferring 

knowledge has been highlighted as one of the important reasons to use EDSSs (McIntosh 

et al., 2011). Therefore, the main focus of developers should be on developing and 

implementing the least complex methods and models that provide quality results, 

leading to an increase in transparency and user efficiency (Hajkowicz, 2008).  

6.6.2.4 Dealing with uncertainty 

The environmental situations we seek to address with EDSSs are often highly complex 

and dependent on knowledge from various fields. However, this knowledge tends to be 

incomplete and can present a high degree of uncertainty. This is an issue faced by all 

types of models, and the impact of uncertainty is further compounded by the complexity 

(integration of various models) often associated to EDSSs (Jakeman and Letcher, 2003).  

Multiple types of uncertainties exist, Ascough et al. (2008) having categorized them into 

knowledge, variability, linguistic and decision-making uncertainties. These uncertainties 

can arise at various steps in the development process and can stem from variations 

(stochastic uncertainty) or a lack of knowledge (epistemic uncertainty) in the external 

factors (outside of the system boundaries), the data, the models, the parameters and 

the system (Refsgaard et al., 2007; Walker et al., 2003; Warmink et al., 2010). 

There are multiple ways to deal with uncertainty in modelling and decision support, many 

of which are reviewed in the works of Morgan et al. (1992), Reichert and Borsuk (2005), 

Refsgaard et al. (2007), Matott et al. (2009), Uusitalo et al. (2015) and Voinov et al. 

(2016). These include error propagation equations, expert elicitation, Monte Carlo 

analysis, multiple model simulation, scenario analysis and sensitivity analysis, just to 

name a few. Given their prevalence in environmental modelling, we will refrain from 

discussing these methods further in this paper and recommend that readers consult 

these works. No matter the method that is elected, it is important to (1) identify and 

describe the uncertainties (type and source), (2) propagate (and generate) them 

through the models and (3) determine the output uncertainty (Guillaume et al., 2012; 

Jakeman et al., 2006; Voinov et al., 2016).  
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For long-forecast decisions or situations that have outcomes that are hard to estimate, 

Liu et al. (2008), Maier et al. (2016) and Hamilton et al. (2019) recommend the use of 

scenario analysis, in which a spectrum of likely scenarios is constructed and evaluated, 

providing a representative range of plausible alternatives. It has also been recommended 

to include stakeholders in the discussion about uncertainty, getting them to both 

comment on the outputs most important to them (and their associated uncertainty), all 

the while allowing them to learn about how uncertainty is dealt with in the system (Liu 

et al., 2008; Voinov and Gaddis, 2008).  

Similar analyses can also be applied to MCDM methods. Mustajoki and Marttunen (2017), 

in their comparison of various software used for MCDM in environmental process 

planning, highlight how methods such as sensitivity analyses can be applied to the 

weighing of decision criteria to demonstrate how sensitive the rankings can be to 

variation, noting however that this adds an extra dimension to the analysis and thus 

complexifies the situation for decision-makers. A similar issue had been noted previously 

by Mahmoud et al. (2009) who highlighted that, in certain cases, uncertainty 

assessments could be overwhelming and distracting to decision-makers, especially the 

probabilistic approaches that can lead to more uncertainty on their part. 

However, despite the fervent and growing interest in dealing with uncertainty, especially 

given the complexity of integrated modelling and decision support, McIntosh et al. 

(2011) noted that decision-makers were potentially not interested in uncertainty per se, 

but more so in the robustness of the various alternatives. As such, they refer to the case 

of Amann et al. (2011) who decided to approach this concept by assessing alternatives 

by using the worst (most conservative) conditions instead of using a range of conditions. 

In a way, these works seem to mirror the earlier recommendations of implementing 

scenario analysis instead of sensitivity analysis for decision-making.  

6.6.2.5 Dealing with variable results 

Another important consideration that is lacking in EDSS literature is the potential for 

variable results within a single MCDM method. This issue is at the heart of proper 

decision-making, seeing how, as mentioned earlier, decisions are subjective in nature 

and thus there is no objectively right answer. Therefore, it stands to reason that 

presenting the decision situation in various manners could lead to differing results.  

Indeed, most MCDM methods are affected by a phenomenon known as rank-reversal 

(Belton and Gear, 1983). This phenomenon consists in a change of ordering obtained by 
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MCDM methods when non-optimal alternatives are either added to or removed from the 

ranking process. This is due to the impact that a new alternative can have on the 

normalization process that is employed by a majority of MCDM methods, and is thus 

believed to affect most of them (Wang and Triantaphyllou, 2008; Wang and Luo, 2009).  

Furthermore, there are other factors that can directly impact the result obtained by 

MCDM methods. These include factors such as the splitting and asymmetry bias, where 

the division of a decision criterion into multiple criteria can either increase the weight of 

this decision factor in the former or decrease it in the latter (either more or less weight 

is given to multiple sub-factors than the “original” factor), therefore unbalancing the 

intended weighing (Hämäläinen and Alaja, 2008). The number of alternatives and the 

number of objectives considered by the model can also cause issues (Olson et al., 1995; 

Salo and Hämäläinen, 1997). By increasing these factors (independently or together), 

the normalisation procedure can be influenced, thus leading to variable rankings. Some 

of the hierarchical methods (such as AHP) are also subject to varying rankings based on 

where the criteria fall within the multi-level structure of the hierarchy, a criterion being 

attributed more weight if it is placed at a higher level in the hierarchy (Jacobi and Hobbs, 

2007). All of these factors can lead to variable results based on how the decision method 

is applied, and though different decision-makers can arrive at different results, it is 

undesirable for the same method to produce different results for the same decision-

maker.  

Though the issues so far have been methodological in nature, there are also human 

factors that can be problematic for decision support. Researchers have demonstrated 

that environmental and social criteria tend to be weighed more importantly than 

economic or technical objectives (Gregory et al., 2012; Keeney, 2002; Marttunen et al., 

2018). There are a few potential reasons behind this phenomenon; the first being that 

giving higher weight to social and environmental criteria is considered as being more 

socially (morally) acceptable than favoring economic benefits, while a second proposed 

reason is that the labeling of higher-level criteria might be too abstract when compared 

to well-defined criteria (Hämäläinen and Alaja, 2008; Stillwell et al., 1987). Another 

issue to deal with is the equalizing bias, which is the tendency for decision-makers to 

allocate weights equally (Jacobi and Hobbs, 2007; Montibeller and Von Winterfeldt, 

2015). 

Though these issues have mostly been relegated from EDSS literature, most likely due 

to a lack of awareness, a recent analysis by Marttunen et al. (2018) sought to shed some 
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light on the presence of these biases on real-world environmental and energy related 

decision analysis. Their meta-analysis concluded that these issues are indeed present in 

environmental applications, noting the presence of the asymmetry bias and an 

understatement of economic criteria, but they did not find any support for the equalizing 

bias in these fields. To aid in overcoming these issues, a few recommendations were 

provided by Marttunen et al. (2018). These include building concise and symmetric 

hierarchies, using interactive and iterative weight elicitation procedures and training and 

educating participants to avoid biases. 

Given the possibility of these various phenomena leading to variable results, the main 

recommendation that we can make is to properly evaluate and validate the system and 

the decision support method to ensure that it provides reliable results (see section 5). 

However, it is important to ensure that this validation is not an unwitting calibration of 

the system to reflect the preferences of the developers (Sojda, 2007). The main issue 

with these challenges is that the environmental literature on these subjects is grossly 

lacking. As such, knowledge on how prevalent these issues are in environmental decision 

support and recommendations on how to deal with them are missing.  

6.6.3 System-oriented challenges 

Finally, we have system-oriented challenges. These challenges will stem from design 

considerations that are important to ensure that the users can interact and get the most 

from the system, representing the nexus between stakeholder and model-oriented 

considerations.  

6.6.3.1 Providing pertinent queries and results 

The first system-oriented challenge we will explore is the importance of supporting 

decision-makers by providing them with pertinent queries and results. This challenge 

stems from the human nature of the decision-makers and their cognitive limitations. 

Factors that can influence decision-makers include decision fatigue, an overwhelming 

amount of information and preference for visual aids (Baumeister et al., 2018; Speier, 

2006; Uran and Janssen, 2003). 

These issues are especially prevalent in cases of multi-objective optimization and spatial 

decision support where numerous alternatives can be provided. A prime example of this 

was noted by Uran and Janssen (2003) who addressed the fact that, during the late 

1990’s and early 2000’s, spatial DSSs (using GIS software) were not frequently used. 
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One of the major limiting factors that they identified was that the many solutions 

generated by these systems only served to confuse the decision-makers and thus 

reduced the functionality of the tools. This can play into the phenomenon of decision 

fatigue, where a decline in decision quality occurs following extensive decision-making 

(Baumeister et al., 2018). Therefore, DSSs should be designed, based on the feedback 

of decision-makers, to avoid unnecessary and superfluous decisions. This can involve a 

restriction in the amount of decision criteria, the number of alternatives presented and 

avoiding redundancies in information. 

Presenting non-relevant information or information that is not directly available to be 

applied to the problem at hand will also have a noted effect on the efficiency and quality 

of the decision support. This has to do with the cognitive fit theory of Vessey (1991) that 

states that if the format in which the information is presented does not match with the 

task, added effort must be exerted by the decision-maker to convert the information 

into a form that is suitable for problem solving, thus decreasing the efficiency and 

potential quality of the decision process. This impact on system-aided decision-making 

was investigated by Speier and Morris (2003) and Speier (2006), both finding that the 

format in which information is presented to decision-makers had a noticeable impact on 

system use. Indeed, Speier (2006) noted that decision-makers were more confident 

when using tables instead of graphs when completing certain tasks, but despite this, 

graphs yielded more accurate and faster results. Pertinent work on visualization methods 

and tools for environmental modelling and decision support have been presented by 

Matthies et al. (2007), Lieske (2015) and Reichert et al. (2013), while a short ten step 

guideline for data visualization in scientific publications was proposed by Kelleher and 

Wagener (2011). Though the latter focuses more on interpretability and not on decision-

making, many of the concepts presented in this work are still relevant to EDSS 

presentation. 

6.6.3.2 Communicating/understanding how the results have been achieved and their 

limitations  

Whereas we previously emphasized the need for transparency with stakeholders, this 

section is an extension of how the system itself should also reflect this transparency. If 

developers can provide access to the models, have them be easily interpretable and 

provide the conceptual paths the system uses to reach its recommendations, then they 

reduce the risk of having the system labeled as a black box. 
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For example, Bertanza et al. (2016) found that experts desire to have a complete 

understanding of how the system operates and arrives at its recommendations, labeling 

the system as a “black box” at the slightest lack of transparency. This label can have 

major repercussions on the willingness of users to use the system. A system or model 

will usually be a black box in two general cases: either the user does not have access to 

the model-base (i.e., the system is restrictive (see section 4.3.4)) or the system is 

dependent on a knowledgebase (machine learning).  

No matter the case, Rudin (2018) argues that it is imperative to avoid black boxes, 

especially for high-stakes decision-making. She highlights the importance of having a 

system be interpretable instead of explainable, and this regardless of the validity of the 

models or system, noting that explanations often leave out a lot of information and are 

of limited help to users. Such an issue was recently brought up by Reiter et al. (2018) 

who found that, despite the validity of the EDSSs they evaluated, the projects faced the 

hurdle of having a clear causal link between the recommendations provided by the 

systems and the data used to inform these recommendations.  

As with any model or system, EDSSs will be subject to certain limitations. Given the 

need for transparency highlighted earlier, it is imperative that the system can 

communicate its limitations. This can simply be achieved by providing users with the 

range of applicability of the models and data and making clear what assumptions have 

been made. This, as well as how many of the factors discussed throughout this paper 

were addressed, can be presented through a user guide.  

6.6.3.3 Producing a user-friendly system 

User-friendliness is at the heart of any system. Frequent recommendations for system 

and model-design include having tooltips to guide the user through the system, being 

efficient and easy to navigate, allowing for simple installation and updating. However, 

there are some issues that are EDSS-centric that may not be apparent to developers. 

For example, Hamouda et al. (2009) noted that requiring users to alternate between 

modules (different model-bases or functionalities) had a harmful impact on system 

usability. They also recommend that EDSSs intended for wide ranges of users be highly 

interactive, allowing the users to add or remove certain constraints or to monitor the 

decision process. 

Accessibility of the end-product is also highly dependent on the use of an enticing graphic 

user interface. Indeed, Worm et al. (2010) highlight that, when models are applied in a 
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DSS, the distance between the models and the end-user increases. Therefore, the users 

will increasingly judge the system the more complex it is and base their appreciation on 

the quality of the user interface. It is therefore highly recommended to get graphic 

designers to contribute to this stage of the project, as well as respecting industry norms 

and standards of design, while involving the stakeholders.  

A list of design concepts and functionalities for user interfaces for integrated modelling 

and assessment was compiled by Harrison et al. (2013) based on the findings of previous 

researchers. These recommendations include having a minimal model set-up and 

runtimes, allowing the users to undertake various analyses while constraining them to 

“realistic” ranges, offering multiple methods of result visualization, and allowing 

exporting of model outputs for subsequent use. Furthermore, we would also like to 

highlight that, since EDSSs are often used by policymakers and officials, having a system 

that can provide the users with reports of the recommendations and information could 

be very helpful.  

6.6.3.4 Determining appropriate system restrictiveness  

The last challenge that we will explore is determining the appropriate level of system 

restrictiveness; that is, the amount of control/access users should be given to interact 

with and modify the various components of the system. This can be especially complex 

when systems are aimed at users of varying knowledge levels and plays a key role in 

having a transparent system, which can then greatly influence the willingness of 

participants to use it.  

Indeed, system restrictiveness, or perceived restrictiveness, has been demonstrated as 

having an important impact on the usability of DSSs. This can translate into either 

diminished user satisfaction or decreased efficiency. The consensus seems to be that 

decision-makers benefit from being allowed to experiment with the model-base, 

providing them with a better understanding of the factors influencing the decisions and 

of the system’s functionality (Chaudhry et al., 1996; McIntosh et al., 2011; Parikh et al., 

2001; Pfeiffer et al., 2014; Rhee and Rao, 2008; Voinov et al., 2016), Pfeiffer et al. 

(2014) even finding that users preferred a minimally restrictive but more complex and 

hard to use system compared to a more restrictive counterpart. However, from a design 

perspective, this can be problematic. Beyond the added resources (costs and training) 

necessary to make a system more open (Rhee and Rao, 2008), there is a disparity 

between the actual (absolute) and perceived restrictiveness of the system. Oftentimes, 
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perceived restrictiveness is higher than the actual restrictiveness. This has been noted 

as leading to a decrease in the efficiency with which the system is used (Parikh et al., 

2001; Pfeiffer et al., 2014; Wang and Benbasat, 2009). Nevertheless, work on 

restrictiveness in both general DSS and particularly EDSS literature is greatly lacking 

and deserves more research. 

6.6.4. Recommendations for EDSS development  

Based on our review, we have compiled a list of recommendations from the literature, 

as well as added our own recommendations based on some of the issues we highlighted, 

to address the challenges identified in section 3. These results are presented in Figures 

1, 2 and 3. 

 

 

Figure 6.1 Recommendations to address stakeholder-oriented challenges. 
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Figure 6.2 Recommendations to address model-oriented challenges. 

 

Figure 6.3 Recommendations to address system-oriented challenges. 
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6.7 Evaluation of EDSS  

In the previous sections, we explored various challenges faced by EDSS developers and 

provided recommendations to address them. However, the impact of these challenges 

and the consequences of these recommendations can be hard to ascertain during the 

development process. As such, EDSS evaluation is an important step during the 

development process to promote project success and afterwards to gain valuable insight 

that can be applied to future endeavours. Yet, despite its importance, EDSS evaluation 

is rarely mentioned in the EDSS literature, with only a few studies on the subject (Inman 

et al., 2011; Sojda, 2004; Sojda, 2007) and being virtually absent in EDSSs that we 

examined (Ceccaroni, 2001; Chamberlain et al., 2014; Horn et al., 2003).  

Multiple frameworks for DSS evaluation have been proposed over the years (Adelman, 

1992; Boukhayma and ElManouar, 2015; Goeller, 1988; Hamilton et al., 2019; Inman 

et al., 2011; Jakeman et al., 2006; Khazanchi, 1991; Rhee and Rao, 2008), while 

empirical evaluation of EDSSs has also seen some interest (Sojda, 2004; Sojda, 2007). 

Despite these works, proper EDSS evaluation remains rare and, though these evaluation 

methodologies can be pertinent, the lack of clearly defined evaluation criteria appears 

to limit their application in a reliable manner. Certain evaluation criteria have been 

presented by Mysiak et al. (2005), Jakeman et al. (2006), McIntosh et al. (2011) and 

van Delden et al. (2011). These sources, as well as information gleaned from the 

previous sections, have been used to produce Figure 4.  
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Figure 6.4 Evaluation criteria for EDSSs. 

The stakeholder-oriented evaluation seeks to assess how the EDSS achieves the goals 

set out by the developers and the stakeholders early-on and validated throughout the 

design process. The most basic goal of the system is obviously to provide support for 

decision-makers. Other frequent goals for EDSSs, as for DSSs in general, are to increase 

organisational efficiency and raise awareness/understanding among decision-makers. 

Therefore, evaluation of the extent to which the EDSS has achieved its objectives should 

involve the users and stakeholders of the system. For the model-oriented evaluation, 

both the driving models (mathematical/knowledgebase) and the decision models used 

by the system are examined. This evaluation seeks to determine how valid these models 

are and how this can impact on the overall quality of the recommendations. The final 

category that we consider is the system-oriented evaluation, focusing primarily on the 

construction of the system and how its different components interact between each-

other and with the user.  

In all three categories, user-satisfaction is considered as an evaluation criterion, though 

it can be fickle. For example, in cases where the system provides users with a result that 

does not match their expectations, users will look unfavorably on the system (Potts et 

al., 2001), whereas the opposite can be true, regardless of the quality of the system 

(Rhee and Rao, 2008).  
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6.8 Conclusion 

Following a review of the literature, a list of challenges faced by environmental decision 

support system developers was compiled. These challenges were categorized into 

stakeholder-oriented, model-oriented, and system-oriented challenges and 

recommendations on how to address them were presented. The aim of this paper was 

to supplement the work undertaken previously in this field by delving into areas that 

have seen little to no interest in EDSS literature, notably regarding proper decision 

modelling and decision theory, while updating and expanding existing knowledge on 

topics such as stakeholder engagement and system design. In all, 13 major challenges 

were identified and over 60 recommendations and best practices were provided to 

address these challenges.  

Though environmentally focused decision support literature is rich in knowledge on 

modelling and system design, the limited interest (and seemingly awareness) of 

challenges facing decision-making are concerning. EDSSs are not simply environmental 

models, they have requirements that are unique to them and that deserve more 

attention within EDSS literature, as clearly highlighted throughout this review. Also, we 

cannot emphasize enough the importance of implementing a formal evaluation into the 

EDSS design process, both for its impact on the quality of the system and for the 

potential to gain invaluable knowledge for future projects.  

Lastly, though we hope that this work can help provide guidance alongside the efforts of 

our predecessors, we believe that the production of high-quality EDSSs would greatly 

benefit from the creation of a detailed and formal framework to help developers with the 

challenges they face. Though our work has covered significant ground, it still barely 

scratches the surface of what the field needs. It stands to reason that this framework 

would far outreach the scope of a paper and should be in the form of a book or a report 

with the contribution of a variety of specialists from industry and academia.  
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Chapter 7: Novel simple approaches to modelling 

composting kinetics 

7.1 Résumé 

Durant les 40 dernières années, des modèles mathématiques ont été développés pour 

décrire le compostage, cherchant à faciliter sa mise en œuvre, son contrôle et son 

optimisation. En raison de la complexité du procédé, la capacité de simuler les cinétiques 

du compostage de manière simple et généralisable s’avère problématique. Ceci agit 

comme une limitation significative pour la prise de décision environnementale assistée 

par des modèles. Les modèles simples actuels ne sont pas généralisables, tandis que les 

modèles généralisables manquent de simplicité, nécessitant des informations sur de 

nombreuses variables, telles que la température, la teneur en humidité et la teneur en 

oxygène. Le but de ce travail est donc d’explorer l’utilisation de nouvelles approches de 

modélisation pour produire des modèles de compostage généralisables et simples qui ne 

nécessitent aucune de ces données, tout en fournissant une représentation plus précise 

de la biodégradation que les modèles simples actuels. Quatre méthodes de modélisation 

sont évaluées dans cette étude, toute basées sur une expression cinétique de premier 

ordre. Ces nouvelles approches de modélisation divisent la dégradation en trois phases 

distinctes et ne nécessitent que deux paramètres : une vitesse de dégradation et une 

estimation du rapport entre la durée des phases mésophiles et thermophile. Les modèles 

ont été évalués par leur erreur quadratique moyenne normalisée et validés sur trois 

ensembles de données indépendantes provenant de la littérature, couvrant un large 

éventail de types et de caractéristiques de déchets. Les nouvelles méthodes ont produit 

des erreurs variantes entre 1.13% et 6.32% et ont surpassé un modèle traditionnel de 

premier ordre dans tous les cas, ainsi que des modèles plus complexes dans certains 

cas. Les analyses de scénarios ont également démontré la résilience des approches 

proposées face à l’incertitude.  

 

Mots clés : biodégradation aérobie; déchets organiques; boues d'épuration; déchets 

agricoles; déchets alimentaires; simulation 
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7.2 Abstract 

Mathematical models have been developed over the past 40 years to describe the 

composting process, seeking to ease its implementation, control, and optimization. Due 

to the complex nature of composting, the ability to simulate the processes kinetics in a 

simple and generalizable manner has proven to be elusive, acting as a significant 

limitation to effective environmental, model-assisted, decision-making. Current simple 

models are ungeneralizable, while generalizable models lack simplicity, requiring 

information on many operating variables, such as temperature, moisture content, and 

oxygen content. The aim of this work is therefore to explore the use of novel modelling 

approaches to produce generalizable and simple composting models that do not require 

any of this data, while providing a more accurate representation of degradation than 

current simple models. Four modelling methods are assessed in this study, all based on 

a first-order kinetic expression. These novel modelling approaches split the degradation 

into three separate phases and only require two parameters: a degradation rate and an 

estimation of the ratio between the duration of the mesophilic and thermophilic phases. 

The models were assessed through their normalized root mean square error and 

validated over three independent datasets sourced from the literature, covering a wide 

range of waste types and characteristics. The novel methods achieved errors varying 

between 1.13% and 6.32% and outperformed a traditional first-order model in every 

case, as well as more complex models in certain cases. Scenario analyses also 

demonstrated the resilience of the proposed approaches to uncertainty. 

 

Keywords: aerobic biodegradation; organic waste; sewage sludge; agricultural waste; 

food waste; simulation 
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7.3 Introduction 

Given the transition towards sustainability and the expansion of circular economies, the 

ability to predict and optimize the outcomes of waste valorization processes, such as 

composting, is of primordial importance. These outcomes can include process duration, 

organic matter degradation, energy use, costs, environmental impact, among many 

others. Current composting models can indeed achieve many of these objectives, but 

they tend to be highly complex, requiring many interconnected equations and a large 

variety of parameters (Walling et al., 2020). This complexity may not be a problem for 

experts and highly technical work, but it can lend itself poorly to use by decision-makers, 

where the complex nature of these models can detract from efficient decision-making. 

Indeed, a recent critical review on the development of successful environmental decision 

support systems highlighted that model simplicity and flexibility are paramount to 

provide high quality decision aid (Walling and Vaneeckhaute, 2020a). This is notably due 

to simpler models favoring user understanding and transparency, two notions 

fundamental to decision-making (Hajkowicz, 2008; McIntosh et al., 2011; Wieland and 

Gutzler, 2014).  

 

Regarding existing composting models, a plethora of mathematical models have been 

developed over the prior decades to help with the control and optimization of the 

composting process (Li et al., 2013; Mason, 2006; Walling et al., 2020). These models 

are often built around a kinetic biodegradation model, coupled with heat and mass 

balances to properly represent the composting environment (Walling et al., 2020). 

Indeed, heat and mass balances are generally required, unless experimental or in-field 

data are available for temperature, moisture content and oxygen content, given the 

impact of these variables on biodegradation (Li et al., 2013; Mason, 2006; Walling et 

al., 2020).  

 

The simplest modelling approach used for composting thus far usually involves the use 

of a first-order kinetic expression with correction functions to adjust for the impact of 

different process limiting variables, as demonstrated in eq. 7.1 (Walling et al., 2020): 

 

Rdegradation = −
d[Si]

dt
= kdfTfMCfO2[Si] (7.1) 
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Where Rdegradation is the rate of degradation (mass or concentration over time), [Si] is the 

mass or concentration of biodegradable substrate, t is time, kd is the 

(degradation/hydrolysis) rate constant (usually either at 20 °C or around 60 °C), and fT, 

fMC and fO2 are correction functions for temperature, moisture content and oxygen 

content (dimensionless), respectively (corrections can also be applied for pH, free 

airspace, and any other inhibiting variables).  

 

The challenge with composting modelling is that the correction functions all vary as 

functions of time, given the change in these variables throughout the process. For 

example, common expressions used for these corrections include the cardinal 

temperature equation (eq. 7.2) (Rosso et al., 1995; Rosso et al., 1993), the Haug (1993) 

equation for moisture (eq. 7.3), and the Monod equation for oxygen (eq. 7.4): 

 

fT =
(T − Tmax)(T − Tmin)

2

(Topt − Tmin)[(Topt − Tmin)(T − Topt) − (Topt − Tmax)(Topt + Tmin − 2T)]
 (7.2) 

 

fMC =
1

exp(−17.684MC + 7.0622) + 1
 (7.3) 

 

fO2 =
O2

O2 + kO2
 (7.4) 

 

where  T is the temperature, Tmax is set to 71.6 °C, Tmin is 5 °C, and Topt is 58.6 °C 

(Richard and Walker, 2006), MC is the moisture content, ranging between 0 and 1, O2 is 

the oxygen content, expressed as a % v/v, and kO2is the oxygen half-saturation 

coefficient, given a value of 2% v/v following the works of Haug (1993) and Richard et 

al. (2006). 

 

It is not rare to see correction functions being omitted if kd is fit to the experimental 

data. Indeed, of the 209 models reviewed in chapter 2, 52% used first-order kinetics 

and 54% of the models did not implement correction functions. In many of these cases, 

eq. 7.1 can be integrated into a simple (inverse) exponential equation (Hamoda et al., 

1998; Jolanun et al., 2005; Komilis, 2006; Nakasaki and Ohtaki, 2002; Qian et al., 

2014). However, this can seriously limit the generalizability of such models, an aspect 

that can be very important when in a decision-making context. Ensuring the use of 
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correction functions and general kinetic data, such as degradation rates at reference 

temperatures, allows for composting models to be as generalizable as possible, but also 

contributes to their complexity. Indeed, when correction functions are applied, eq. 7.1 

must be solved by accounting for the time dependent nature of these functions, which 

limits its resolution to traditional numerical processes such as the finite differences 

approach, while requiring the necessary data for these correction functions. 

 

Therefore, developing easily usable and generalizable composting models could provide 

a powerful tool for decision-makers, while addressing an important gap in composting 

modelling research, as identified in the most recent systematic review on the subject 

(Walling et al., 2020). This work therefore seeks to address this gap by focusing on two 

primary research questions: (1) how can the biodegradation of organic matter through 

composting be modelled without relying on correction functions, and (2) how do these 

approaches compare to the simplest existing composting models? It is therefore in this 

aim that novel simple modelling approaches to simulate the biodegradation of organic 

matter during composting are proposed and evaluated. The modelling approaches 

developed in this work are all based around the basic first-order equation (eq. 7.1) and 

seek to model the degradation process by circumventing the use of correction functions 

and temperature, moisture, and oxygen data, relying solely on degradation rates and 

process durations. In total, four methods are evaluated, with some methods having one 

or two different resolution approaches, resulting in the assessment of six different 

modelling approaches. These models were evaluated using three independent datasets 

taken from the literature and encompassing a wide range of feedstocks and operating 

conditions. The resulting outputs were then analyzed numerically using the normalized 

root mean square error (NRSME), as well as through scenario analyses to identify how 

the models react to various situations. Through this investigation, this work highlights 

the potential of novel simple mathematical modelling approaches for composting kinetics 

modelling.   

 

This chapter is divided as follows: following the context, section 7.4 presents the 

materials and methods used to undertake this assessment, followed by a detailed 

presentation of the results and discussions around them in section 7.5, with concluding 

remarks being presented in section 7.6. 
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7.4 Methods 

7.4.1 General assumptions 

 

As detailed in the introduction, correction functions are a necessity to provide 

generalizable composting models that take into consideration the impact of the dynamic 

composting environment on the rate of biodegradation. One of the primary goals of this 

work is to develop and evaluate a modelling approach that could provide the benefits of 

correction functions, without requiring the modelling or data necessary to obtain these 

temperature, moisture, and oxygen corrections. 

 

To achieve this, and considering the context for which these models are addressed, the 

following assumptions have been made: (1) it is assumed that the process is well 

operated, meaning that oxygen content is maintained above 10% and moisture content 

is maintained between 50 and 65% (Bertran et al., 2004; Haug, 2018; Richard et al., 

2002; Tiquia et al., 1998). In well operated processes, oxygen and moisture content 

limitations are not very inhibitive, limiting growth (with respect to maximum 

degradation) by about 0 to 10% for each factor, within these ranges. As such, if it is 

assumed that the process operates within these ranges, constant correction coefficients 

for moisture and oxygen cannot be set. Based on the Haug (1993) moisture correction 

and the Monod oxygen correction, which have found strong support in the literature 

(Richard et al., 1999; Walling et al., 2020), these coefficients have been set at 0.9 for 

oxygen (cO2) and 0.95 for moisture content (cMC). In cases where it is known that the 

process will operate outside these ranges, the correction coefficients can simply be 

changed accordingly, as dictated by the pertinent equations.  

 

Regarding temperature, even well operated composting systems will see great variations 

in the temperature of the environment. This can lead to correction functions ranging in 

value from 0.2 (20% of maximum degradation) at 25 °C to 1 (100%) at 60 °C, as 

determined by the two most popular temperature correction functions, the cardinal 

temperature (Rosso et al., 1995; Rosso et al., 1993) and the Haug (1993) functions 

(Mason, 2008; Richard and Walker, 2006). In the continued aim of favoring simplicity, 

the authors therefore propose to consider these temperature corrections as step 

functions instead. Composting generally has a temperature profile with a consistent 

shape, heating up during the first few days of composting, reaching a thermophilic phase 

for a while and then cooling down during the passive phase of composting, as presented 
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in Figure 1 (Abbasi et al., 2009; Tortarolo et al., 2008; Tortosa et al., 2017; Walling et 

al., 2019). Therefore, regarding temperature, the process can be split into three major 

phases: initial increase from mesophilic to thermophilic ranges, thermophilic 

composting, and the decrease back to mesophilic temperatures (as was seen in chapter 

1) (Abbasi et al., 2009; Tortarolo et al., 2008; Tortosa et al., 2017; Walling et al., 2019). 

Consequently, the temperature correction could be expressed as a step function, with 

each step being a constant correction coefficient (cTi) representing an averaged 

temperature correction over these ranges, expressed as in eq. 7.5. 

 

fT {

cT1     if 0 ≤ t < t1 

cT2    if t1 ≤ t < t2
cT3    if t2 ≤ t         

(7.5) 

 

 

Figure 7.1 General composting temperature profile. Phase 1 represents the initial 

mesophilic phase of composting, while phase 2 represents the highly active thermophilic 

phase of the process. Phase 3 represents the passive phase of composting, where 

biodegradation slows down and returns to mesophilic ranges. 

Therefore, using these assumptions and simplifications, the need for temperature, 

oxygen and moisture data can be removed, as will be described in section 7.4.2. 
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7.4.2 Modelling methods 

 

An overview of the various proposed modelling approaches is presented in Table 7.1 and 

described below. 

 

Table 7.1 Modelling approaches evaluated in this study. 

Modelling method Description Kinetic approaches  Require

d 

parame

ters 

Method 1a First-order inverse 

exponential equation 

average experimental kd kd 

Method 1b optimized kd 

Method 2a First-order 

differential equation 

solved using finite 

differences  

single averaged cT kd 

Method 2b three phases (cT,1, cT,2, cT,3) kd, t1, t2 

Method 3 Successive first-

order inverse 

exponential 

equations fit to one-

another 

three phases (cT,1, cT,2, cT,3) kd, t1, t2 

Method 4 Integrated first-

order model with 

time dependent kd 

three phases (cT,1, cT,2, cT,3) kd, t1, t2 

 

7.4.2.1 Method 1: Integrated first-order equation without time dependent kd 

 

Four different modelling methods were assessed in this study. Method 1 implements a 

traditional integrated form of the first-order equation (eq. 7.1) assuming a constant kd: 

 

S = S0 exp(−kdt) (7.6) 

 

where  S is the amount/concentration of biodegradable substrate at time t, S0 is the initial 

amount/concentration of biodegradable substrate, t is the time, and kd is the rate 

constant. 

 

Two approaches were assessed for method 1: in one approach (method 1a), the average 

kd of the entire process was determined based on experimental data, while in the other 

approach (method 1b), kd was optimized to achieve the lowest error (discussed in section 

7.4.3). The aim of both these approaches was to highlight potential differences in the 

accuracy of the first-order model, with the optimized kd representing the best-case 
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scenario, while the averaged kd represents a more generalizable case. The approach with 

the optimized kd also represents the error of the most accurate simple models that 

currently exist and will serve as an important comparison for the other methods.  

 

7.4.2.2 Method 2: Finite differences 

 

Method 2 applies the finite differences approach to a first-order equation implementing 

the correction coefficients. As in method 1, two approaches were also assessed for 

method 2. In the first approach (method 2a), a single averaged correction coefficient 

was used over the entire range. In the second approach (method 2b), the process was 

divided into three phases based on the temperature data, with each phase having a 

different, constant, temperature correction coefficient (cT,i), as described previously. 

Though these methods are aimed at providing modelling solutions without the need for 

correction functions and their associated data, the authors chose to base the timing of 

each phase on experimental data to explore the potential accuracy of these methods, 

especially in comparison to an optimized first-order model (method 1). Results for 

applications of the models without basing the phase duration on experiments are 

presented in section 7.5.4.  

 

7.4.2.3 Method 3: Successive first-order models 

 

Method 3 takes the three-phase approach explored in method 2 and applies it with the 

integrated first-order equation for constant degradation rates (eq. 7.6). This method 

proposes to fit consecutive first-order models in series to maintain the simplicity of the 

first-order equation, while allowing for different kinetics over the various phases due to 

the different values of the temperature correction coefficient (cT) for each phase. The 

resolution process is as follows: 

 

The first phase of biodegradation is calculated by using eq. 7.7 with the correction 

coefficients for that phase (up to t1). Then, a second exponential equation of the same 

form is used, with different values of correction coefficients. Given that during a 

subsequent phase only the degradation during this phase is of interest, this second 

equation must be fitted to have a starting time that provides the same degradation as 

the end of the previous phase, as described in eq. 7.8. Therefore, eq. 7.9 is solved for 

time and the degradation during the subsequent phase is calculated using eq. 7.10: 
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S = S0 exp(−kdcTcMCcO2t) (7.7) 

exp(−kdcT,icMC,icO2,iti)  = exp(−kdcT,i+1cMC,i+1cO2,i+1ti,i+1) (7.8) 

ti,i+1 =
cT,icMC,icO2,iti

cT,i+1cMC,i+1cO2,i+1
 (7.9) 

S = S0 exp (−kdcT,i+1cMC,i+1cO2,i+1(t + ti,i+1)) (7.10) 

 

where  S is the amount/concentration of substrate at time t, S0 is the initial 

amount/concentration of substrate, kd is the rate constant, and cT,i, cMC,i, and cO2,i are 

correction coefficients for the phase i (dimensionless). 

 

This pathway is then repeated for every subsequent step of the process. Note that, in 

this specific case, t refers to the duration within a phase, and therefore resets to 0 at 

the beginning of each phase. The total composting time would therefore be a summation 

of the t of each phase, or t1, t2 and the t in phase 3. 

 

7.4.2.4 Method 4: Integrated first-order model with time dependent kd 

 

The final method, method 4, uses the integrated form of eq. 7.1 by assuming that kd is 

a step function over the different phases, each with their own constant correction 

coefficient (ci), as expressed in eq. 7.11. 

 

kd {

kdc1    if 0 ≤ t < t1 
kdc2   if t1 ≤ t < t2
kdc3   if t2 ≤ t          

(7.11) 

 

Assuming three phases, the integrated form of eq. 7.1 can be expressed as follows for 

the three different phases: 

Phase 1: S = S0 exp(kd(c1t1)) (7.10) 

Phase 2: S = S0 exp(kd(c1t1 − c2t2 + c2t1)) (7.11) 

Phase 3: S = S0 exp(kd(c1t1 − c2t2 + c2t1 − c3t3 + c3t2)) (7.12) 

 

where  S is the amount/concentration of substrate at time t, S0 is the initial 

amount/concentration of substrate, kd is the rate constant, and ci are correction 

coefficients for the phase i (dimensionless), representing the production of corrections 

for temperature, moisture, and oxygen content. 
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7.4.3 Modelling assessment 

 

The data used to undertake this modelling assessment was sourced from the works of 

Petric et al. (2012), Kulcu (2016), and Malamis et al. (2016). These works studied a 

wide range of feedstock types and operating conditions, providing a strong and 

independent dataset to verify the modelling approaches. Indeed, these works cover a 

range of size of 35 L to 4 m3, with substrates including municipal solid waste, poultry 

manure, cattle manure, sheep manure, sewage sludge (primary and secondary), 

agricultural waste, sawdust, wheat straw, zeolite, and perlite. Of further pertinence to 

this study, temperature ranges between and within experimental sets were also highly 

variable, with ranges between 25 °C and 75 °C, with the lowest trial occurring between 

25 °C and 55 °C, while the highest occurred between 45 °C and 75 °C. Initial substrate 

properties were also highly variable, contributing to the value of using these three 

datasets. Initial moisture content varied between 39 and 72%, initial organic matter 

varied between 62 and 87%, while initial C/N ratios were between 25 and 40. In total, 

77 (11 trials x 7 models per trial) different simulations were undertaken for the initial 

assessment, with an added 91 simulations for the scenario analysis and 108 for the 

sensitivity analysis. 

 

The quality of fit of the outputs of the models were compared quantitatively to the 

experimental results using a Normalized Root Mean Square Error (NRMSE) using eqs. 

7.13 and 7.14: 

 

RMSE = √
∑ (Smodel,i − Sexp,i)

2n
i=1

n
 (7.13) 

NRMSE =
RMSE

S0
× 100 (7.14) 

where n is the amount of data points, Smodel,i is the amount of substrate predicted by the 

model at time i, Sexp,i is the experimental value for substrate amount/concentration at 

time i, and S0 is the initial quantity of substrate.  
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7.5 Results and discussion 

7.5.1 Modelling results 

 

7.5.1.1 Averaged NRMSEs over all the trials 

 

The averaged NRMSEs for each method are presented in Table 7.2, with the results for 

each data set presented in Table 7.3. When looking at the averaged NRMSEs over all the 

trials in Table 7.2, one can start by noting that all the modelling approaches provide, on 

average, a low error, delivering accurate predictions for organic matter degradation over 

time. Indeed, the average NRMSE of the approaches assessed in this work varied from 

1.86% to 4.98%, with the lowest and highest errors of individual trials being 1.13% and 

11.98%, respectively.  

 

Firstly, these results present a strong confirmation for the validity of first-order kinetic 

models to accurately represent biodegradation during the composting process. This has 

been a somewhat contentious area in the literature, with an important divide between 

modellers implementing first-order models (Das and Keener, 1997a; Ge et al., 2018; 

Zhang et al., 2010) vs Monod-type (Monod, Contois, Tessier) models (Kaiser, 1996; 

Sole-Mauri et al., 2007; Vidriales-Escobar et al., 2017). The main processes involved in 

microbial growth during composting are hydrolysis, cellular uptake, and cell death (Wang 

and Witarsa, 2016; Walling et al., 2020). For microorganisms to be able to absorb soluble 

substrates, these compounds must be made available for them. Though certain 

substrates (e.g., simple sugars) can be degraded easily, many of the substrates used in 

composting are complex and hard to degrade, such as (hemi)cellulose and lignin. 

Consequently, hydrolysis of these hard to degrade compounds has been believed to be 

the rate limiting step of the process, allowing for the accurate modelling of composting 

through first-order (hydrolysis) kinetics (Walling et al., 2020). Therefore, the results of 

this assessment seem to provide further confirmation that hydrolysis is the rate limiting 

process in the degradation of organic waste through composting (Jolanun et al., 2005; 

Sole-Mauri et al., 2007; Wang and Witarsa, 2016; Woodford, 2009). 

 

Secondly, there are some interesting results regarding the relative performance of the 

models compared to one-another. One important comparison is method 1b, given that 

this represents the optimal case for simple models using a traditional first-order 

equation. Therefore, one of the main questions that this work sought to answer was 



 

173 

whether the proposed alternative modelling approaches could outperform this commonly 

used method. From Table 7.2, it can be seen that the three novel modelling approaches 

managed to provide a lower average NRMSE than method 1b, though the NRMSE range 

of method 2b was comparable to method 1b, while that of methods 3 and 4 was notably 

lower. The only two methods that had a higher averaged percent error were the 

traditional first-order model using the averaged experimental kd (method 1a; 4.15%) 

and the finite difference approach with an averaged correction coefficient (method 2a; 

5.02%). These errors are likely more indicative of the errors to be expected if the models 

were generalized, given that they were based off general experimental degradation rates 

and not fit to case-specific data, which would be more likely of this kind of model 

application.  

 

Of the novel modelling approaches, method 3, using the multiple first-order expression 

fitted to one-another in series, provided the lowest results (1.86%), though given 

experimental and data processing uncertainty, it appears to be on par with method 4 

(integrated first-order equations with time dependent kd; 1.90% error). The finite 

differences approach using three different temperature correction coefficients for each 

of the three phases (method 2b) also provided a better performance than method 1b 

(2.61% vs 3.02%). 

 

Table 7.2 Average NRMSE over all trials. 

Modelling approach NRMSE Range (%) Average NRMSE (%) 

Method 1a: averaged kd 1.94 – 8.84 4.15 

Method 1b: optimized kd 1.86 – 6.38 3.02 

Method 2a: averaged T coefficient 1.62 - 11.98 5.02 

Method 2b: three phases 1.20 – 6.32 2.61 

Method 3: three phases 1.13 – 3.56 1.86 

Method 4: three phases 1.34 – 3.18 1.90 

 

7.5.1.2 NRMSEs per trial 

 

When looking at the results for each individual dataset, presented in Table 7.3, the 

findings mostly mirror those of Table 7.2. In the case of the data from Malamis et al. 

(2016), the same order is maintained, with methods 3 and 4 providing the most accurate 

models in every case, followed by method 2b, method 1b and then methods 1a and 2a. 

In the cases of data from Petric et al. (2012) and Kulcu (2016), method 2b has the 

lowest NRMSE in a few cases, though the results of methods 2b, 3 and 4 remain very 

similar. Beyond what was gleaned in section 7.5.1.1, an important takeaway of Table 
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7.3 is the consistently improved performance of the novel methods (2b, 3 and 4) when 

compared to the traditional models (methods 1a, 1b and 2a). In every trial, methods 1a 

and 2a are outperformed by the three proposed approaches, while method 1b, which 

represents the most accurate simple model currently available, is outperformed in all 

but two of the twelve trials. 

 

Table 7.3 NRMSE of the individual datasets. Note that the “CF model” (correction 

function model) is described in section 3.1.4. 

  NRMSE (%) 

Dataset Modelling 

approach 

Trial 1 Trial 2 Trial 3 Trial 4 Average  

Malamis et 

al. (2016) 

Method 1a 8.84 4.66 6.35 5.72 6.39 

Method 1b 6.38 3.40 4.36 4.54 4.67 

Method 2a 7.54 8.92 11.98 11.82 10.07 

Method 2b 3.17 5.00 6.32 3.41 4.48 

Method 3 3.56 1.13 1.34 2.28 2.08 

Method 4 3.18 1.64 2.41 1.97 2.3 

 CF model 2.15 3.97 4.64 7.8 4.64 

Kulcu 

(2016) 

Method 1a 2.26 3.25 5.18 3.20 3.47 

Method 1b 2.11 1.87 3.13 2.01 2.28 

Method 2a 1.94 1.88 3.13 2.03 2.24 

Method 2b 1.29 1.2 2.32 1.67 1.62 

Method 3 1.38 1.25 2.4 1.43 1.62 

Method 4 1.35 1.34 2.31 1.44 1.61 

Petric et al. 

(2012) 

Method 1a 3.27 1.94 2.66  2.62 

Method 1b 2.24 1.86 2.11  2.07 

Method 2a 2.26 4.41 1.62  2.76 

Method 2b 1.88 1.56 1.82  1.75 

Method 3 2.14 1.59 1.97  1.90 

Method 4 2.12 1.63 1.62  1.79 

 CF model 1.86 0.99 1.53  1.46 

 

7.5.1.3 Numerical and visual quality of fit over different process durations  

 

Further insight can be derived from looking at the profiles of the models compared to 

the experimental data, as presented in Figure 7.2, as well as a quantitative assessment 

of this in Table 7.4, which presents the average NRMSE of each modelling approach for 

three periods: days 1 to 5, 6 to 10 and 11 to the end (processes varying between 20- 

and 25-days, total). Both Table 7.4 and Figure 7.2 highlight the advantages of 

considering degradation in separate phases. In the simulations implementing methods 

1, an overprediction of biodegradation during the beginning of the process can be noted, 

followed by an underestimation of degradation afterwards. This is to be expected, given 
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the impact of using an invariable kd, and reflects the reason the authors sought to 

explore these alternative modelling approaches. By using a constant degradation rate 

during the entire process, regardless of whether it is averaged or optimized, degradation 

will inevitably be over or underestimate at different locations. For example, if a maximum 

degradation rate is used (e.g., kd = kmax, measured around 60°C), degradation outside 

of thermophilic stages, notably at the beginning of the process, will be greatly 

overestimated. Conversely, if a degradation rate at a lower reference temperature (e.g., 

kd measured at 45°C) is used, then early degradation would be overestimated, while 

degradation during the thermophilic phase would be greatly underestimated. This latter 

case is what we observe in Figure 2 when looking at the results for method 1b. 

 

Indeed, when looking at phase 1 (days 0 to 4), it can be noted that method 1b greatly 

overestimates degradation when compared to the other modelling approaches. This is 

confirmed towards the end of this period, when experimental data shows that 

degradation is around 32% of biodegradable organic matter (BOM), versus the 40% 

predicted by method 1b. The other three methods (2b, 3 and 4), which represent the 

novel approaches, are all closer to the real value, varying between 29 and 32%. Moving 

into phase 2, method 1b still overpredicts degradation early on, while quickly starting to 

underpredict it around day 7. During this same time period, the other three models 

continue to follow the experimental curve very well, with methods 2b and 4 being 

particularly close, while method 3 lags behind somewhat, though it is still much more 

accurate than method 1b. Thus far, between phases 1 and 2, the advantages of the 

variable degradation rate (achieved through the correction coefficients) is clear, allowing 

for inhibited degradation during phase 1, followed by unrestricted degradation during 

phase 2, better mirroring the reality of the process. This once again comes into play at 

the transition between phases 2 and 3, where the degradation becomes more inhibited 

again and progresses slower, though the benefit might be less obvious on this relatively 

small timeframe given that the majority of degradation has already happened in this 

case, and thus everything (models and experiments) converges towards about 80% of 

BOM degraded.   

 

Comparatively, in methods 2b through 4, which all demonstrated similar behaviours, the 

error during the early phase of composting was decreased. In some cases, degradation 

was even underestimated, given the slightly inhibitive moisture and oxygen coefficients 

used (cMC = 0.95, cO2 = 0.90). For example, in the case of trial 2 of Petric et al. (2012), 
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the error could be decreased from 1.56% to 1.41% by increasing oxygen and moisture 

coefficients to 1 during the second phase (a period of 4 days). This can always be 

considered and optimized by modellers, but given the interest in as simple a modelling 

approach as possible, the authors believe that the trade-off of using constant moisture 

and oxygen coefficients outweighs the small increase in error. Furthermore, in 

corroboration with the earlier findings, methods 3 and 4 generally outperformed the 

other methods, including method 2b.  

 

Table 7.4 Average NRMSE during early, mid and late stages of composting. 

 Average NRMSE (%) 

Modelling approach Days 0 to 5 Days 6 to 10 Days 11 to 

end 

Method 1a 2.98 5.30 3.93 

Method 1b 3.89 3.17 2.16 

Method 2a 3.84 3.29 1.70 

Method 2b 1.97 2.12 2.68 

Method 3 1.77 2.15 1.59 

Method 4 1.74 2.21 1.59 

 

 

Figure 7.2 Comparison of modelling approaches with experimental data for trial 2 of 

Malamis et al.’s (2016) dataset. Note the ability of the proposed modelling approaches 

(2b through 4) to better approximate the impact of variable degradation rate when 

compared to method 1b. 
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7.5.1.4 Comparison with models implementing full correction functions 

 

The last comparison that the authors believe is important to make is a comparison of 

the results of these simple models, using only degradation rates and phase duration 

information to those of first-order models using temperature, oxygen, and moisture 

correction functions (and data). The most precise version of these models, implementing 

eq. 1, use optimized degradation rates (kd) alongside the cardinal temperature or Haug 

(1993) models for temperature, Haug (1993) model for moisture and Monod equation 

for oxygen (combination found through data not presented in this work). In the aim of 

seeing how the novel simple models compare to these models implementing correction 

functions, a first-order model (eq. 7.1) with the cardinal temperature, Haug (1993) 

(moisture) and Monod corrections was applied, using a finite difference numerical 

approach. This assessment was undertaken with Petric et al.’s (2012) and Malamis et 

al.’s (2016) datasets, totalling in seven different trials. The results of this assessment 

are provided in the rows denoted as “CF model” in Table 7.3. 

 

Of the seven trials compared, four models using the full correction functions managed 

to slightly outperform the simple modelling approaches with the lowest NRMSEs (one 

from Malamis et al. (2016) and three from Petric et al. (2012)), while three performed 

significantly worse (three from Malamis et al. (2016)). Of these models that 

outperformed the simple modelling approaches, the difference in NRMSE was small, once 

again pointing to the potential benefits of these new approaches. Indeed, the largest 

difference between a model using full correction functions with a lower NRMSE than a 

simple modelling approach was 0.57% (Petric et al. (2012), trial 2), with the “full” model 

providing an NRMSE of 0.99% vs method 2’s 1.56%. On the other hand, when looking 

at the cases where the simple approaches outperformed the more complex ones, a much 

more significant difference is observed. The largest of these differences was observed in 

the case of trial 4 from Malamis et al. (2016), with a difference of 5.83% (1.97% method 

4 vs 7.80% with full correction functions). Therefore, the modelling approaches proposed 

in this paper might also benefit from being less sensitive to different combinations of 

correction functions, which can lead to significant differences in results. For example, 

using the case of Malamis et al.’s (2016) trial 4, as mentioned above, the combination 

of correction functions led to an NRMSE of 7.80%, while the most optimal combination 

of correction functions led to an error of 6.71% (in this case, a combination of Haug 

(1993) for temperature, Stombaugh and Nokes (1996) for moisture, and Higgins and 
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Walker (2001) for oxygen), though this is still significantly outperformed by method 4 in 

this particular case. 

 

Another possible reason for the apparent benefit of the simpler models is that the use 

of correction functions on such small timescales (daily variations) might further 

contribute to the sensitivity of the models, producing overly reactive responses. This 

impact can be compounded when using the traditional finite differences resolution 

approach, given that the degradation of each time step is dependent on that of prior 

steps, something that is not the case in the models of methods 3 and 4. Indeed, when 

implementing correction functions, a sharp increase or decrease in one of the controlling 

variables can relate to an equally important stimulation or inhibition of microbial activity 

through these methods, not taking into consideration a potential lag in the response of 

the system to the environmental conditions. This will be further discussed in section 

7.5.4. 

 

7.5.2 Values of the correction coefficients and time relationships 

 

Given the central role of correction coefficients in the proposed modelling approaches, 

the authors thought it pertinent to investigate the values of the correction coefficients 

for the first and last phases, given that the second phase had a coefficient set to 1 in all 

trials. The mean value of the temperature correction coefficient for phase 1, cT,1, was 

0.45, with a standard deviation of 0.06. The lowest and highest observed values were 

0.32 and 0.55. It is important to note, however, that not all experimental trials exhibited 

a first phase, with all of the experiments from Kulcu (2016) and one experiment from 

Petric et al. (2012) starting directly in the highly active thermophilic phase (t1 = 0). For 

the third phase, the mean temperature correction coefficient, cT,3, was 0.64, with a 

standard deviation of 0.09, and a low and high of 0.47 and 0.87. Of the processes 

exhibiting three phases, the mean duration of the second phase was 1.93 times longer 

than the first phase, with a standard deviation of 0.75. However, the authors stress that 

this information on timing is based on a very limited set of experimental data and is in 

no way intended to be a generalizable guideline; it is purely for informational purposes.   
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7.5.3 Sensitivity and scenario analysis 

 

The newly proposed modelling approaches are built around the notion of splitting the 

degradation rate into distinct phases with different degradation rates and lengths. 

Therefore, uncertainty on these parameters could potentially have a significant impact 

on the output of the models. This is especially important given how the duration of the 

phases were based on experimental temperature data in this paper, something that may 

not be available when applying such a model. To assess this, a sensitivity analysis and 

scenario analyses were applied. 

 

Regarding the sensitivity analysis, model parameters (kd, cT, cMC, cO2) were varied between 

-75% and 400% of their initial (optimized) value, examining the impact on the NRMSE; 

the results of which are shown in Figure 7.3. Note that, given the mathematical form of 

the modelling approaches, kd is always multiplied by the correction coefficients, and so 

the response of varying one of these parameters is the same as varying the others. 

Looking at Figure 7.3, we note that, despite differences in approaches, all models, 

including the traditional first-order model (methods 1), responded in nearly the same 

manner. NRMSE increased to 43% at -75% of the parameter value and decreased nearly 

linearly approaching 0%. The increase in error associated with increasing parameter 

values was quasi-logarithmic, increasing to around 6% at a 25% increase, near 16% at 

100% increase and 27% at 400% increase. Of note is that methods 3 and 4 were slightly 

less sensitive than the first-order model (method 1), though overall, the differences were 

minor. Method 2 appeared to be slightly more sensitive than methods 3 and 4, likely due 

to the compounding of errors stemming from the finite differences resolution approach, 

as mentioned in section 7.5.1.4. Therefore, given the similarity in the results of the 

sensitivity analysis for all methods, a scenario analysis was devised to glean more 

information on the models. 
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Figure 7.3 Sensitivity analysis on variations in modelling parameters (𝐤𝐝, 𝐜𝐓, 𝐜𝐌𝐂, 𝐜𝐎𝟐). 

For the scenario analysis, to make the assessment manageable, given the large number 

of potential scenarios and datasets, only three of the trials were assessed: the one with 

the lowest NRMSE (Kulcu (2016) trial 2), the highest NRMSE (Malamis et al. (2016) trial 

1), and a middle ground (Petric et al. (2012) trial 1). For these cases, the following 

modifications were applied: complete removal of phase 3, replacement of phase 1 with 

phase 2, replacement of phase 2 with phase 1, change in the timing of the phases to 

see whether the NRMSE could be lowered, and an increase in the duration of phase 1 or 

2 of around 30%, with an equivalent decrease in the other phase. These tests were 

undertaken for methods 2b, 3 and 4, in every case.  

In all cases, only minor differences were observed between the three methods, so the 

following results apply to all three, an overview of which is presented in Table 7.5. 

Overall, the results demonstrate the resilience of the proposed approaches, showing 

consistently low errors, even when faced with significant changes in timing. For example, 

some of the highest errors were obtained when removing phase 3, which usually 

accounted for more than half of the process duration. In these cases, the NRMSEs 

increased to between 2.94% to 7.32%, though errors on later readings were more 
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significant, increasing to 5% to 16%. The other main source of error was the complete 

omission of one of the other two phases by replacing it with another (replacing phase 

1/2 with the other), with errors increasing to between 2.13% to 7.52%. However, 

whenever the three phases were maintained, even with significant changes in timing, 

the errors remained relatively low and even decreased in some cases. Indeed, the 

highest NRMSE for this kind of scenario being 4.13% in the case of Malamis et al.’s 

(2016) trial 1, which is only 0.83% higher than the average of the optimal scenarios 

presented previously. This all points to two main conclusions: (1) the three-phased 

approach is beneficial to these methods, given the much more important increase in 

error when removing a phase; and (2) potential uncertainty in the duration of the phases 

may not circumvent the benefits of splitting the degradation into multiple phases, even 

if these phases do not completely coincide with reality. Indeed, in the latter case, when 

comparing the results in Tables 7.3 and 7.5, it can be noted that increasing/decreasing 

the first two phases still leads to a lower NRMSE than model 1b for two of the three 

scenarios, the exception being trial 2 of Kulcu (2016), though this also happens to be 

the trial with the lowest NRMSE overall. 

 

Table 7.5 Results of the various modelling scenarios applied. Given the similarity in the 

values of the results, an average of the NRMSE for methods 2b, 3 and 4 is provided. In 

the table, P1 refers to phase 1, P2 phase 2, and P3 phase 3. 

 Average NRMSE (%) 

Scenario Malamis et al. 

(2016), trial 1 

Kulcu (2016), 

trial 2 

Petric et al. 

(2016), trial 1 

No scenario 3.30 1.26 2.04 

Remove P3 7.38 2.95 5.21 

Replace P2 with P1 6.23 3.23 2.66 

Replace P1 with P2 7.52 - 2.13 

Modify duration 3.09 1.20 2.04 

Increase P1/decrease P2 4.13 2.26 2.10 

Increase P2/decrease P1 3.13 - 1.98 

 

In the aim of further validating the resiliency of these methods and the benefits of a 

three-phase structure, “general” models were applied using the parameter values and 

timing relationships identified in section 7.5.2, the results of which are shown in Table 

7.6. In this case, phase 1 was assumed to last 3 days, while phase 2 was set as being 

twice as long (rounding up of 1.93). The temperature correction coefficients were 0.45 

for the first phase, 1 for the second, and 0.64 for the third. The results of this application 

using general parameters yielded good results, with the NRMSE varying between 2.13% 
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to 5.29%, with method 4 providing the lowest NRMSE in all three cases, though the 

difference in errors between the methods is very close.  

 

Table 7.6 Results from the application of the modelling methods with the “general” 

parameters and time relationships identified in section 7.5.2. 

 NRMSE (%) 

Modelling 

approach 

Malamis et al. 

(2016), trial 1 

Kulcu (2016), 

trial 2 

Petric et al. 

(2016), trial 1 

Method 2b 4.21 2.16 3.51 

Method 3 5.29 2.13 2.96 

Method 4 3.48 2.13 2.59 

 

7.5.4 Model usability and limitations 

 

All of the approaches explored and developed in this study aimed at being simple, both 

conceptually and regarding their numerical application. However, there are some 

differences between a few of the methods that could influence which one a modeller 

might want to implement. One of these particularities is notably regarding methods 3 

and 4 when compared to methods 2/2b.  Unlike methods using finite differences, these 

methods provide an estimation of degradation with respect to time that is in a way 

independent of prior degradation. In the case of methods 2/2b, the use of finite 

differences means that the degradation over a time interval is dependent on the amount 

of substrate at the beginning of the time-step and is therefore affected by prior 

degradation. As highlighted earlier when comparing to models implementing correction 

functions, this might contribute to a propagation in errors by causing an overreactive 

model, an issue which may be less present in methods 3 and 4 and that might offer an 

advantage when it comes to simple modelling. 

 

It is also important to address the potential for under and overfitting when it comes to 

such simple models. Given the simplicity of the models and how they are based on first-

order kinetic expressions, over-fitting was not an issue. There were fears though that 

the low NRMSEs obtained throughout this study could be a product of underfitting. 

However, this was found to not be the case through a visual comparison of data with the 

model outputs, as highlighted in Figure 7.2, as well as through comparison of the results 

of the simple models with traditional models.  
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Regarding limitations, it is important to once again note that these simple approaches 

are aimed at providing models that can give a very general idea of degradation during 

composting and are not intended as a fundamental representation of the biodegradation 

process. Indeed, following the work of chapter 6, these models are intended at being 

simple, approachable, and understandable. As such, these assessments have been 

undertaken using the aforementioned assumption that the process is well operated. It 

is possible that some of these assumptions might not hold true for all systems. Indeed, 

despite having a variable and representative range of substrates, temperature, moisture, 

and oxygen profiles in the experimental datasets used for this study, the models were 

not evaluated for extreme conditions during the process. Such conditions could be 

present even in well-operated systems, such as semi-batch composting, where the 

addition of substrate can lead to a sharp temperature decrease, or naturally aerated or 

windrow systems which can see more significant oxygen and moisture depletion. 

 

7.5.5 Further research 

 

The present work demonstrates the ability of a variety of simple mathematical 

approaches to model organic matter degradation during composting, without requiring 

temperature, oxygen or moisture content data, and their associated correction functions. 

However, despite the strong results provided by the simple models, further research on 

degradation patterns during composting would be necessary. Given the limitations 

highlighted in section 3.4, the main challenge for simple composting modelling is the 

development of generalizable models.  

 

Being able to predict the transition between the composting phases would be of the 

greatest benefit, both to the models developed here and to the field of composting 

modelling as a whole. Given the near-inverse exponential nature of degradation, 

determining the duration of the earlier phases is more important when focusing on 

organic matter. An important part of the length of composting processes is due to curing 

and maturation, which are poorly understood phenomena, from a modelling perspective, 

and far outweigh the scope of these simple models. The advantages in applications of 

simple models for decision-making is that the variability of these phases can be 

considered in scenario analyses, which are highly recommended when modelling for 

decision support (Walling and Vaneeckhaute, 2020a). However, it would be interesting 

to establish the duration of the separate phases or if the timing of their transition can 
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be related to other process conditions. Avenues that could potentially be explored include 

whether a relative rate of degradation can be associated to a change in phase (transition 

from more active to less active phases), or whether a relationship can be established 

between the duration of phases relative to one-another. Furthermore, as highlighted in 

section 7.5.4, separating the process into three phases appears to provide better results 

than a single or two-phased approach. However, further validation would be beneficial 

with different operating conditions. If improved performances are necessary, then it 

could be interesting to investigate separating the process into a few more phases, such 

as four or five.  A separation into more phases was not investigated given that, the more 

phases considered, the further a model is from being “simple” and the closer it is to 

being a traditional model with correction functions.  

 

In terms of application of this work, the proposed modelling approaches can provide a 

basis for future composting models, notably for application in decision-making scenarios 

where information may be lacking, or the needs for quick results and optimization may 

make it unfeasible to use more detailed methods. These kinetic models can also be used 

as a basis for simple models with a greater scope than simply predicting degradation. 

For example, conversion/yield factors, which are commonly used in composting 

modelling to relate many different phenomena to degradation, such as moisture 

production, oxygen consumption, gas emissions (Walling and Vaneeckhaute, 2020b), 

heat generation, etc. (Mason, 2006; Walling et al., 2020), could still be used to provide 

a wider assessment of the composting process.  
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7.6 Conclusion 

As highlighted in the results and discussion, the novel methods provided very good 

estimations of the biodegradation, with the NRMSEs of these methods varying between 

1.13% and 6.32% over the entirety of the datasets. These methods, notably methods 

2b, 3 and 4, managed to not only provide low errors, but also ensured a better visual 

quality of fit with experimental data, showcasing their ability to better represent the 

realities of composting. These methods also managed to outperform the simplest 

existing kinetic models (method 1b), while also performing very closely to or significantly 

better than more complex models implementing correction functions for moisture 

content, oxygen, and temperature. Furthermore, the scenario analysis also supports the 

benefits of separating the degradation into three phases, instead of one or two, while 

demonstrating the relative resilience of the models to potential uncertainty in the timing 

of the phases. However, separation into more phases (four or five) was not assessed 

and may present potential for improvements, though it is important to balance potential 

benefits with the goal of simplicity in this case. Furthermore, the models also provided 

adequate results when using completely generalized data (i.e., non-optimized 

degradation rates or temperature coefficients). 
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Chapter 8: PCM, a parsimonious composting model 

for decision-making and optimization 

8.1 Résumé 

Dans le but de faciliter la prise de décision par l'évaluation et l'optimisation de l’opération 

du compostage, un modèle de compostage parcimonieux (PCM) a été développé, calibré 

et validé. Le modèle aborde de nombreux domaines qui ont été omis ou qui sont absents 

des travaux antérieurs, notamment d'une manière accessible et compréhensible. Grâce 

au modèle, il est possible d'obtenir des prévisions pour le ratio C/N, le carbone total 

(TC), l'azote total (TN), les émissions de NH3, de N2O, de CH4 et de CO2, ainsi que les 

propriétés physiques telles que la teneur en humidité, le volume, poids, etc. Le modèle 

permet également d'évaluer facilement les mélanges de compostage, le 

dimensionnement du procédé, ainsi que des évaluations économiques de base. Le 

modèle a démontré une grande précision, avec une erreur quadratique moyenne 

normalisée (NRMSE) variant entre 2,35 et 7,92% pour la composition solide, tandis que 

les estimations des émissions variaient généralement entre 1,47 et 9,48%, bien que 

l'estimation de la perte totale d'azote reste la facette la plus incertaine, avec un NRMSE 

de 25,35% sur l'ensemble de validation. 

Mots clés: biodégradation aérobique; économie circulaire; modélisation; simulation; 

prédiction; gestion des déchets   



 

187 

8.2 Abstract 

In the aim of facilitating decision-making through evaluation and optimization of 

composting operations, a parsimonious composting model (PCM) has been developed, 

calibrated, and validated. The model addresses many areas that have been omitted or 

lacking from prior works, notably in an approachable and understandable manner. 

Through the model, it is possible to obtain predictions for final C/N, total carbon (TC), 

total nitrogen (TN), NH3, N2O, CH4, and CO2 emissions, as well as physical properties 

such as moisture content, volume, weight, etc. The model also allows for easy evaluation 

of composting mixtures, process sizing, as well as the basis for economic assessments. 

The model has demonstrated strong accuracy, with a normalized root mean squared 

error (NRMSE) varying between 2.35-7.92% for solid composition, while estimates for 

emissions generally varied between 1.47-9.48%, though estimation of total nitrogen loss 

remains the most uncertain facet, with an NRMSE of 25.35% over the validation set.  

Keywords: aerobic biodegradation; circular economy; modelling; simulation; 

prediction; waste management  
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8.3 Introduction 

As society has shifted away from a paradigm of disposal and elimination of waste towards 

a model of recovery and reuse, composting has been one of the alternatives that has 

placed itself at the forefront of this shift. By allowing for a relatively simple and 

inexpensive conversion of organic waste into valuable soil amendment (compost), 

composting has seen itself become one of the drivers of this transition towards more 

sustainable and circular economies, being practiced both at industrial and individual 

scales (Walling et al., 2019). Currently, composting is used to treat approximately 14% 

of global municipal organic waste (Chen et al., 2020a), a number that will only increase 

as a growing number of countries and regions implement laws and directives aiming to 

ban landfilling, which currently represents approximately 70% of world municipal organic 

waste disposal (Chen et al., 2020a). Examples of such initiatives include the Landfill 

Directive of the European Union (EU) (EU, 1999), which has nearly eliminated landfilling 

in countries such as Austria, Belgium, Germany, the Netherlands and Sweden, and the 

recent adoption of the Circular Economy Action plan, which seeks to revise prior 

legislation to limit landfilling to a maximum of 10% of municipal waste by 2030. Locally, 

in Quebec, Canada, there is the Quebec Residual Materials Management Policy which 

aims to ban the landfilling and incineration of organic materials by 2022 (Hébert, 2012). 

Similar legislation in other countries, alongside growing social consciousness towards 

sustainable development and economies, has therefore placed composting as a key 

component of this transition.  

However, organic wastes are various in sources and characteristics, each one requiring 

specific considerations to ensure optimal operation of composting. This variability is 

further compounded by the dynamic and highly variable nature of the composting 

process, which is defined by continually changing process variables, such as oxygen, 

temperature, moisture, pH, carbon to nitrogen (C/N) ratio, and chemical and biological 

characteristics of the waste. Given the time and effort required to evaluate composting 

at the laboratory and pilot scale, with results only being viable for the tested conditions, 

mathematical modelling has cemented itself as a powerful and necessary tool for 

composting process evaluation, implementation, and optimization (Walling et al., 2020). 

Indeed, models, when accurately developed and calibrated, can produce generalizable 

assessments, allowing for the rapid simulation and evaluation of various scenarios, 

without requiring long, costly, and tedious experimental work.  
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To date, a majority of composting models have focused on the fundamentals of the 

process, centering on biodegradation kinetics, and heat and mass balances (Mason, 

2006; Walling et al., 2020). Through numerically complex models, it is possible to obtain 

dynamic profiles for a variety of variables, such as odor and gas emissions, temperature 

distribution, degradation of specific substrates, microbial populations, among many 

others (Walling et al., 2020). However, though such models are very useful for research 

or case by case process optimization, they can be problematic for decision-making. 

Indeed, in decision-making contexts, their complexity can detract from efficient decision-

making, by rendering them hard to understand and use (Walling and Vaneeckhaute, 

2020a). To favor user understanding and transparency, model flexibility and simplicity 

are paramount to provide high quality decision support (Hajkowicz, 2008; McIntosh et 

al., 2011; Walling and Vaneeckhaute, 2020a). On the other hand, most current 

parsimonious composting models, i.e. models that aim to provide a desired level of 

explanation by utilizing as few predictors as possible, lack the necessary depth to be 

useful for evaluation and decision-making, providing basic determination of 

biodegradation and process time (e.g. Nakasaki and Ohtaki, 2002; Ro et al., 2018; 

Walling and Vaneeckhaute, 2021b). Indeed, further consideration of factors that are 

primordial for decision-making, such as economic evaluations, environmental impact, 

and process logistics, are nearly non-existent in the literature, with only a handful of 

models addressing some of these issues (e.g. Proietti et al., 2016; Soto-Paz et al., 2019). 

Therefore, there currently exists no composting model designed around the needs of 

decision-makers, needs that were thoroughly identified in chapter 6, and which can 

provide a simple, understandable, and holistic simulation and assessment of the 

composting process.  

Given this context and in the aim of providing approachable and usable tools for decision-

makers to aid in the transition towards more circular economies, this article presents the 

development and application of a novel parsimonious composting model. This model 

seeks to provide a general and holistic evaluation of industrial composting processes at 

minimal computational effort. Beyond the basic considerations of most composting 

models, such as biodegradation and mass balances, the proposed model also includes 

options for evaluating composting recipes, estimates of greenhouse gas emissions and 

nutrient loss and transformation, process sizing, and basic economic evaluations; all of 

this in the aim of providing the necessary information for decision-makers.  
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This paper is divided as follows: materials and methods are presented in section 8.4, 

going in detail on the structure of the composting model, its boundaries and limitations, 

the assumptions and equations used throughout, the development of novel relationships, 

and the calibration and validation of the model using a wide set of data from the 

literature. Section 8.5 presents the results of the model validation through an NRMSE 

and global sensitivity analysis, as well as discussing model limitations and providing 

perspectives for future work and research, followed by a brief conclusion in section 8.6. 

8.4 Materials and methods 

8.4.1 Composting model 

The model, named PCM (Parsimonious Composting Model), aims to a provide quick, easy 

to understand, accessible, and accurate evaluation of the composting process, the 

outputs of which can then be coupled with decision-making methods or optimization 

tools for use by decision-makers. The model is intended for project scoping and early 

assessment, as well as a certain degree of optimization, allowing for comparison between 

various alternatives that can be supplemented through sensitivity or scenario analyses. 

However, given its structure and flexibility, the model can easily be amended to fit a 

variety of situations. Given that environmental decision-making requires more than 

technical information, often necessitating economic, environmental and social 

considerations (Walling and Vaneeckhaute, 2020a), the model implements certain 

functionalities to provide general predictions for some of these areas most used by 

decision-makers, such as basic process sizing, general economic estimations, and 

greenhouse gas (GHG) emissions assessments.  

The model covers the following major areas: (1) determination and optimization of 

composting recipes (mixture between co-substrates and/or bulking agents), (2) 

estimation of biodegradation and end product quality and quantity, (3) estimation of 

nutrient (nitrogen (N) and phosphorus (P)) loss through emissions and leaching, (4) 

prediction of GHG emissions, considering methane (CH4), carbon dioxide (CO2), and 

nitrogen dioxide (N2O), and ammonia (NH3) emissions, (5) process sizing, and (6) 

economic evaluation, though the latter two will not be discussed in this paper.  

8.4.1.1 Model boundaries and structure 

From a process perspective, the boundaries of the model extend from the mixing of the 

organic waste and co-substrates or bulking agents to the storage of final compost. For 
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the time being, pre-processing steps are not included directly, such as grinding and 

moistening, though they are taken into account through the model inputs (section 

8.4.1.2), while collection of organic matter and distribution of compost will be added in 

future work through coupling with a database and geographic information system 

(Vaneeckhaute et al., 2021). Figure 8.1 presents a conceptual overview of the model 

structure. 

 

Figure 8.1 Conceptual overview of the model and its boundaries. General flow rates are 

presented in the figure, while the model tracts total mass (dry and wet), carbon, 

nitrogen, and phosphorus throughout the entire process chain. 

The primary and most impactful decision on the model design has been to model the 

process as a steady state system, allowing for the greatest simplification by 

circumventing the dynamic modelling used by most composting models. Indeed, despite 

composting being dynamic in nature, when assessing a process, in this case a 

composting facility, on a long enough timescale, a steady state can be envisioned. From 

this perspective, and as shown in Figure 1, the composting plant can be seen as a process 

with substrates and bulking agents as inputs, and leachate, gaseous emissions, compost 

and recycled bulking agents as outputs, respective to mass. The aim of the model is not 

to track and predict the state of organic matter and related emissions throughout the 

process and at specific time intervals, but simply to determine the state of the organic 

matter following composting and global estimates of emissions. This, of course, does not 

take into consideration any variations of organic matter production over time (seasonal, 

peaks and lows), but such factors can be considered on their own, as will be discussed 

later. 

8.4.1.2 Model inputs 

In the aim of favoring accessibility and understanding, the composting model has been 

designed to use commonly known and easily obtainable inputs and parameters, given 
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the limited information that is often available when setting up new processes or at 

composting facilities. As such, the different substrates of the models are defined with 

the following information: volumetric flow rate (v̇), moisture content (MC), % carbon 

(%C) in dry matter, % nitrogen (%N) in dry matter, bulk density (ρ), degradation rate 

(k), and a degradable fraction of organic matter (fd). From this information, the % 

organic matter (%OM) in dry matter is determined by assuming that approximately 50% 

of the organic matter is carbon, and thus is 2 times the %C (Pribyl, 2010). A mass flow 

rate (ṁ) can either be input or calculated using the volumetric flow rate and the bulk 

density, given the need for a mass basis in the following calculations. 

8.4.1.3 Step 1: Composting recipe and preparation 

The first step considered by the model is a preparation step (mixing in Figure 8.1), where 

the substrate(s) and potential bulking agents are mixed, providing the influent that will 

be used for the composting process.  

During this step, the properties of this new mixture are determined: 

Flow rates are combined and moisture content, % carbon, % nitrogen, C/N ratio and 

bulk density are determined, following the below equations (eqs. 8.1 to 8.5). 

MC =
∑(ṁi ∗ MCi)

∑ ṁi

 (8.1) 

%C =
∑(ṁi ∗ %Ci)

∑ ṁi

 (8.2) 

%N =
∑(ṁi ∗ %Ni)

∑ ṁi

 (8.3) 

C N⁄ =
∑(ṁi ∗ %Ci)

∑(ṁi ∗ %Ni)
 (8.4) 

ρ =
∑ ṁ

∑ v̇
(8.5) 

where MC is moisture content (%), ṁi is the total (wet) mass flow rate of 

substrate/bulking agent i (kg/d), %Ci is the % carbon content of substrate/bulking agent 

i (%), %Ni is the % nitrogen content of substrate/bulking agent i (%), C/N is the C/N 

ratio (-), and ρ is the bulk (apparent) density (kg/m3). 
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At this step, the substrate and bulking agents are also deconstructed into degradable 

and non-degradable fractions. The degradable fraction, Xdeg, is the (dry) fraction of 

biodegradable organic matter, as described in eq. 8.6, while the non-degradable fraction, 

Xnon−deg, is the remaining dry fraction (eq. 8.7).  

Xdeg,i = ṁi ∗
%OMi

100
∗ (1 − MCi 100⁄ ) ∗ fdeg,i (8.6) 

Xnon−deg = ṁi ∗ (1 − MCi 100⁄ ) − Xdeg,i (8.7) 

Where fdeg,i is the biodegradable fraction of organic matter (-) of substrate i.  

The total flowrate of the influent (kg/d) can then be calculated using the degradable and 

non-degradable fractions, alongside the MC (eq. 8.8). 

ṁ =
∑(Xdeg,i + Xnon−deg,i)

(1 − MCi 100⁄ )
 (8.8) 

This recipe can then be optimized to try and ensure an optimal composting recipe, which 

is widely considered as consisting in a MC between 45 and 65, a C/N ratio between 25 

and 35, and a bulk density between 300 and 700 kg/m3 (Alberta Environment and Parks, 

2018). Otherwise, outside of these ranges, there can be some detrimental or undesired 

impacts on the process, as will be discussed in section 8.4.1.4. 

8.4.1.4 Step 2: Active composting 

An overview of the active composting phase of the model is provided in Figure 8.2. Active 

composting, i.e., from the beginning of composting until the curing phase, is modeled 

through a first-order kinetic expression, as presented in eqs. 8.9 and 8.10: 

Xconsumed = Xdeg,in − Xdeg,out = Xdeg,in(1 − exp(−kt)) (8.9) 

Xdeg,out = Xdeg,in exp(−kt) (8.10) 

where Xconsumed is the amount of substrate biodegraded (kg/d) during the process and k 

is the degradation rate constant (d-1).  

Given the aim of the model, it is assumed that the composting process is well operated, 

meaning that temperature is non-inhibitive (e.g., not composting at 25 °C), since 

modelling the impact of these parameters requires dynamic modelling, which is not the 

aim here. If ever oxygen is known to be inhibitive, as can be the case in naturally aerated 
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piles, users can simply modify the degradation rate according to a Monod correction, 

using a half-saturation constant of 2% v/v (Haug, 1993; Richard et al., 2006; Walling 

and Vaneeckhaute, 2021b). Therefore, the degradation rate (k) should be measured for 

the “optimal” conditions described above, with the exception of temperature (Walling 

and Vaneeckhaute, 2021b). However, C/N ratio and moisture can have a significant 

impact on biodegradation. Indeed, C/N ratios above 40 are known to decrease 

degradation rate (Guo et al., 2012; Yan et al., 2015), given the lack of accessible 

nitrogen, inhibiting bacterial proliferation. As such, a switching function is implemented 

into the model to cut the degradation rate when outside of the optimal ranges (eq. 8.11). 

Xconsumed = {
Xdeg,in(1 − exp(−kt))      if C N⁄ < 40

Xdeg,in(1 − exp(−cC N⁄ kt))   if C N⁄ ≥ 40
 (8.11) 

where cC N⁄  is a limitation on the degradation rate (-) dependent on the C/N ratio. Based 

on the work of Jhorar et al. (1991), we have implemented four ranges (eq. 8.12): 

between 40 and 60, cC N⁄  is equal to 0.8, meaning that 80% of optimal degradation is 

obtained; between 60 and 80, cC N⁄  is 0.7, it is 0.6 between 80 and 100, and it is 0.2 

above 100.  

cC N⁄ = {

0.8   if 40 ≤ C N⁄ < 60
0.7   if 60 ≤ C N⁄ < 80
  0.6  if 80 ≤ C N⁄ < 100
0.2  if C N⁄ ≥ 100         

 (8.12) 

Similarly, moisture contents below 40% are generally considered as being inhibitive. A 

variety of studies have aimed at assessing the impact of moisture on biodegradation, 

leading to the development of various mathematical equations to express this 

relationship. The most notable and commonly used examples include the models of 

Stombaugh and Nokes (1996) and Haug (1993); (Walling et al., 2020). Using the 

averaged output of both models, the following polynomial expression is used to 

represent the impact of MC (eq. 8.13). 

MClimitation = 8.246510422 ∗ 10−7 ∗ MC4 − 1.52753622 ∗ 10−4 ∗ MC3 + 0.009556 ∗ MC2

−0.2101 ∗ MC + 1.494195 (between 20 and 70%) (8.13)
 

Below 20%, MClimitation is given a value of 0 (completely inhibitive), while above 70%, it 

is given a value of 1 (non-inhibitive), independent of the type of composting system 

used or the type of substrate, as expressed in eq. 8.14.  



 

195 

Xconsumed = {

Xdeg,in(1 − exp(−kt))       if MC ≥ 40

Xdeg,in(1 − exp(−MClimitationkt))   for  20 ≤ MC < 40
 

0 if MC < 20

(8.14) 

Therefore, the equation used for degradation in the model is as follows (eq. 8.15): 

Xconsumed = Xdeg,in(1 − exp(−MClimitationcC N⁄ kt)) (8.15)  

The same type of balances are undertaken for % carbon and nitrogen as well, but first 

require a consideration of the bulking agents used in the process. The main interest of 

bulking agents is to control moisture and density/free air space of the system, as 

demonstrated in eqs. 8.1 and 8.2, while adjusting the C/N ratio of the mixture. Like any 

organic matter, bulking agents are characterized by a wide range of biodegradability. 

For example, some materials have: very high biodegradability, such as cereal and 

cardboard (biodegradability of 70-95%), high biodegradability, such as wheat straw 

(biodegradability of 50% to 70%), moderate biodegradability, such as grass hay 

(biodegradability of 50%), and poor biodegradability, such as wood residues 

(biodegradability of 20% to 30%) (Loehr, 2012; Yabannavar and Bartha, 1993). 

Furthermore, bulking agents can be “lost” or broken down, either through mixing, 

compacting, or screening. Therefore, it is important to consider the balance on bulking 

agents throughout the process, leaving the following (eq. 8.16): 

ṁBA,in − ṁBA,deg − ṁBA,lost = ṁBA,out (8.16) 

For the sake of simplicity and given that little research has been done on the subject, 

we assume that the degraded fraction of bulking agents has the same degradation rate 

as the substrate; the benefit from the bulking agent already being taken into account 

through improved composting conditions. Of the fraction that is lost (XBA,lost), it is 

possible that a portion could be degraded, another could remain undegraded, and 

another could leave the system, but the model currently assumes that it simply exits the 

system, with any potential degradation being simply addressed by increasing XBA,deg and 

decreasing XBA,lost. The recovery of bulking agents is therefore equivalent to XBA,out, which 

varies for every type of bulking agent based on size and biodegradability. The range of 

recovery can be highly variable. Generally, considering a well operated process, highly 

biodegradable agents such as cardboard should not be recoverable (recovery of 0) 

(Itävaara et al., 1997), while poorly biodegradable substances, such as wood chips, tend 

to be much more recoverable, often between 60 and 90% (Wei et al., 2001), with certain 

agents having been designed to be as recoverable as possible (>90%). 
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Figure 8.2 Conceptual overview of the model structure used for active composting in the model. The output of the mixing step 

is used as input for this section. We start with a calculation of the modified degradation rate due to potential inhibition from 

moisture and C/N ratio. Degradation is then determined through a first-order reaction over an input or optimized time period (t) 

and the amount degraded is emitted as greenhouses gases and ammonia, following the equations presented in sections 8.4.1.4.1 

and 8.4.1.4.2. Leaching is a further cause of nutrient and water loss from the system. A water balance is then undertaken to 

determine the moisture content of the compost, using evaporation and biological water generation, alongside leaching. A carbon 

and nitrogen balance for the entire mixture is then calculated, followed by the removal of bulking agents, which requires the 

recalculation of the new nitrogen and carbon balance to determine the final C/N ratio, alongside inert and undegraded 

(degradable) materials.
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8.4.1.4.1 Carbon emissions  

Carbon loss is at the heart of the composting process, both from a technical and 

environmental perspective. Indeed, the main element transformed during composting is 

carbon, representing over 50% of the mass lost during the process (Breitenbeck and 

Schellinger, 2004; Hao et al., 2004). This carbon is the primary energy source for the various 

microorganisms in the composting environment and is mainly emitted as carbon dioxide 

(CO2), with methane (CH4) stemming from inevitable anaerobic zones in the composting 

environment. Therefore, carbon emissions can be directly linked to the degradation rate and 

we can assume that the amount of carbon emitted as both gases is equivalent to the amount 

of carbon degraded (Walling et al., 2020). Consequently, we can use the following equations 

(eqs. 8.17 and 8.18) to estimate these emissions: 

CO2 = Xconsumed ∗
%Cdegradable

100
∗ CO2yield ∗ % emitted as CO2 (8.17) 

CH4 = Xconsumed ∗
%Cdegradable

100
∗ CH4yield ∗ % emitted as CH4 (8.18) 

where %Cdegradable is the % carbon in the substrate mixture, which is assumed to be 50%. The 

values of CO2yield and CH4yield are determined stoichiometrically, knowing that the 

decomposition of 1 kg of carbon (83 moles) will yield 3.65 kg of CO2 or 1.33 kg of CH4. 

However, the amount of carbon emitted as CO2 and CH4 (%C emitted as CO2/CH4) can be 

highly variable depending on process conditions. Studies directly assessing the impact of 

moisture content on emissions from composting are surprisingly lacking, though recent 

studies have pointed to the same trend: CH4 emissions increasing exponentially as a function 

of moisture content (Ermolaev et al., 2019; Xu et al., 2020). Based on data extracted from 

the literature, eq. 19 was obtained from a regression to describe methane emissions, as 

shown in Figure 3. More details on the experimental datasets used for calibration and 

validation will be presented in section 8.4.2.1. %CO2 emissions are then calculated by 

assuming that the remainder of emissions are in the form of CO2, as presented in eq. 8.20.  

% emitted as CH4 = {
exp(−16.6771 + 0.274338 ∗ MC)  if MC ≤ 70

20    if MC ≥ 70
(8.19) 

% emitted as CO2 = 100 −% emitted as CH4 (8.20) 
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Figure 8.3 Methane emissions as a function of moisture content, based on experimental 

datapoints sourced from the literature. 

8.4.1.4.2 Nitrogen emissions  

Similarly to carbon, the main pathway for nitrogen loss during composting is through gaseous 

emissions, notably as ammonia (NH3), nitrous oxide (N2O), and nitrogen gas (N2). Many 

operating variables influence the form of nitrogen emissions, such as temperature, pH, 

aeration rate, moisture content, and C/N ratio. The literature has once again shown a wide 

range of emissions, with limited guidance on the subject. Therefore, using experimental data 

drawn from the literature, we sought to identify potential predictors for nitrogen loss. Based 

on 55 datapoints (each representing a unique composting trial), discussed in section 8.4.2.1, 

the relationship between total nitrogen loss and other parameters, such as initial moisture, 

C/N ratio, NH3, N2O, total organic carbon (TOC) loss, and maximum temperature, were 

evaluated. Of the various predictors, initial moisture, initial C/N ratio, maximum temperature, 

and proportion of NH3 and N2O emissions were found to provide no predictive capabilities (R2 

varying between 0.003 to 0.11 for linear relationships). However, when applying a 

multivariate linear regression using TOC loss and maximum temperature as variables, an R2 

of 0.6614 was achieved based on 13 datapoints (the only points with the necessary data), as 

shown in Figure 4 and expressed in eq. 8.21. The fit of the relationship is far from perfect, 
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but it is the best we could achieve without delving into more complex modelling and with the 

data on hand. 

TNloss(%) = 0.841126 ∗ TOCloss + 0.459095 ∗ Tmax − 49.5819 (8.21) 

 

Figure 8.4 Predicted vs experimental total nitrogen loss using the multivariate linear 

expression obtained by regressing total nitrogen loss as a function of total organic carbon loss 

and maximum temperature. 

This percentage can then be converted to a mass base, using the %N in the substrate mixture 

(eq. 8.22): 

TNloss(kg d)⁄ = v̇ ∗
(100 − MC)

100
∗ %N ∗

TNloss(%)

100
 (8.22) 

From the total nitrogen loss, we then compute NH3 and N2O emissions. Stoichiometrically, we 

know that 1 kg of N (71.4 moles) yields 1.21 kg of NH3 and 1.57 kg of N2O, leading to the 

following expressions (eqs. 8.23 and 8.24): 

NH3 = TNloss ∗ % emitted as NH3 ∗ 1.21 (8.23) 

N2O = TNloss ∗ % emitted as N2O ∗ 1.57 (8.24) 
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Nitrogen emissions are also significantly affected by moisture content. Many studies have 

found that N2O emissions are linearly linked (negative correlation) to moisture content 

(Ermolaev et al., 2019; Xu et al., 2020; Yang et al., 2019), while Wang et al. (2013a) found 

moisture to have the highest correlation with N2O emissions. Building on this knowledge, we 

investigated the influence of moisture on N2O emissions, based on 30 experimental trials from 

the calibration dataset. We chose to represent this relationship with two separate linear 

equations, expressed in eq. 8.25, one decreasing as moisture increases, up to a MC of 63%, 

where the trend reverses and emissions increase rapidly as a function of moisture, as shown 

in Figure 8.5. 

% emitted as N2O = {
−0.9342 ∗ MC + 59.929   if MC < 63
3.0677 ∗ MC − 192.02       if MC ≥ 63

(8.25) 

 

Figure 8.5 Experimental N2O emissions as a function of initial moisture content. Between 40 

and 63%, we see a negative trend, whereas this reverses and becomes positive above 63%. 

Grey unfilled circles were disregarded when undertaking the linear regression. 

Regarding NH3, the best predictor included in the model was found to be the maximum 

temperature. Based on the calibration dataset, eq. 8.26 was obtained and found to be a very 

good predictor of the proportion of NH3 emissions (R2 = 0.899). This relation is presented in 

Figure 8.6. 
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% emitted as NH3 = 1.7839 ∗ Tmax − 48.794 (8.26) 

 

Figure 8.6 Proportion of ammonia (NH3) emissions as a percentage of total nitrogen loss as 

a function of temperature. 

If N2O and NH3 emissions do not amount to 100%, which is likely in good operating conditions, 

the remainder of gaseous N losses is assumed to be emitted as N2. 

8.4.1.4.5 Leaching 

Leaching can be an important source of nutrient loss during composting, notably for nitrogen 

and phosphorus. However, the production and characterization of composting leachate is 

much too variable to be modeled in this situation. For example, based on Roy et al.’s (2018) 

review, ranges for leachate production at industrial sites treating between 1000 to 1500 tons 

of waste per day were between 4 and 400 m3; while nitrogen contents of the leachates can 

vary by more than three orders of magnitude (Krogmann and Woyczechowski, 2000). As 

such, in the current model, leaching is left as a user input, where the user can either state 

the amount of leachate produced and its nitrogen and phosphorus content or can simply set 

a % N and P loss through leaching, this information then being used for water and nutrient 

balances. Eqs. 8.27 to 8.29 are used to determine nitrogen, phosphorus, and carbon loss 

through leaching: 
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Nloss,leaching = Leachateproduction ∗ Nleachate (8.27) 

Ploss,leaching = Leachateproduction ∗ Pleachate (8.28) 

Closs,leaching = Leachateproduction ∗ Cleachate (8.29) 

8.4.1.4.6 Water balance 

In the aim of predicting final moisture content of the compost, a global mass balance on water 

is applied (eq. 8.30) (Walling et al., 2020): 

MCout = 
ṁinMCin + G(HA,in − HA,out) + YH2OXdestroyed − ṁleaching

ṁout

 (8.30) 

HA = 0.622
HRPs

P − HRPs
 (8.31) 

Ps = exp (A −
B

T + D
)P (8.32) 

Where G is the mass flowrate of air (kg air/d), HA,in/out are the absolute humidity at the inlet 

and outlet of the airflow (kg H2O/kg air), YH2O is the biological yield (generation) of water and 

is given a value of 0.4312 kg H2O/kg of organic matter, based on (Woodford, 2009). HR is the 

relative humidity of the air (-), while Ps is the pressure of saturated vapor (Pa), and P is the 

ambient pressure (Pa). The value of 0.622 in eq. 8.31 is the ratio of the ideal gas constant of 

dry air (287 J/kg.K) and vapor (461.5 J/kg.K) (Wang et al., 2015). The constants in the 

expression for the pressure of saturated vapor (eq. 32) in the range of composting 

temperatures are: A = 11.961, B = 3993.7, and D = 233.9 (Xi et al., 2005). For the relative 

humidity of the outlet, we assume the air is saturated, given the residence time of air in the 

composting environment, though this can be easily modified.  

8.4.1.4.7 Output 

From the information presented throughout section 8.4.1.4, the general characteristics and 

properties of the effluent from the active composting phase can be determined. These include 

the flow rates (mass and volumetric), the weight and volume reduction, the amount of carbon 

and nitrogen in the effluent, as well as the C/N ratio and moisture content.  

For carbon and nitrogen, these are determined through a mass balance over the process, 

using the following equations (eqs. 8.33 and 8.34): 
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%Cout =
ṁin ∗ (1 − MCin 100⁄ ) ∗ Cin − Xdestroyed ∗ Cdegradable

ṁout(1 − MCout 100⁄ )
∗ 100 (8.33) 

%Nout =
ṁin ∗ (1 − MCin 100⁄ ) ∗ Nin − TNloss,gas+leaching

ṁout(1 − MCout 100⁄ )
∗ 100 (8.34) 

From this, we then calculate the final C and N content of the compost (eqs. 8.35 and 8.36): 

%Ccompost =
ṁout ∗ (1 − MCout 100⁄ ) ∗ Cout − ṁBA,out ∗ CBA

ṁcompost(1 − MCout 100⁄ )
 (8.35) 

%Ncompost =
ṁout ∗ (100 −MCout) ∗ Nout − ṁBA,out ∗ NBA

ṁcompost(1 − MCout 100⁄ )
 (8.36) 

8.4.1.5 Step 3: Maturation 

The output of the active composting step is then used as the input for the final step of the 

process: curing. During curing, humic substances are formed by secondary reactions 

(condensation and polymerization of organic chains) and compost is made more suitable for 

agricultural application by the improvements in pH, further decrease in C/N ratio, and 

increased stabilization, reducing phytotoxicity (Gao et al., 2019; Wu et al., 2017; Xie et al., 

2019). 

Sadly, modelling of curing and maturation during composting currently presents a significant 

knowledge gap, so there is no available mechanistic method to predict the duration or the 

changes that will happen during this phase (Walling et al., 2020). The model proposes three 

alternatives to users: (1) the users can simply set a default duration for the curing step or, 

(2) a more mathematical approach can be used where a degradation rate is assumed for 

certain of the components over time. For example, a user could state that during this step 

1% of the total carbon is expected to be emitted as CO2 per week. However, to the best of 

our knowledge, no such information exists. The final option (3) would be to use a degradation 

rate that includes the whole process, from start to end of curing, and treat the results of the 

active composting model as being representative of the entire process. The output of this step 

can then be considered as an input for storage, during which no major change in composition 

should occur. Therefore, storage needs are simply calculated by considering a mass balance 

of compost in and compost out, over time. 
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8.4.2 Model calibration and validation 

8.4.2.1 Calibration dataset 

An extensive calibration and validation was undertaken on the model. As described throughout 

section 8.4.1, a large dataset of composting research was created from the literature, linking 

various starting properties to output properties, along with certain operating conditions, such 

as maximal temperature. In all, 55 experimental datapoints from 42 studies were used to 

calibrate the equations developed throughout the model, notably for nitrogen and CH4 

emission. Most of the studies used in the calibration dataset had been previously inventoried 

in the meta-analysis from Cao et al. (2019), alongside the works of Ermolaev et al. (2019) 

and Jiang et al. (2011). 

8.4.2.1 Validation dataset 

For the validation dataset, it was primordial to have a representative and diverse dataset with 

all the necessary data. For that reason, the literature was scoured for articles that could 

provide such information. Of the 13 paper initially identified, we were only capable of 

validating the mass balances of a small portion of these, resulting in 5 separate studies and 

13 experimental trials who’s results and data were usable. The works chosen for the validation 

set are those of Luo et al. (2013), Shen et al. (2011), Eklind et al. (2007), Yang et al. (2013), 

and Mulbry and Ahn (2014). These datasets cover a range of substrates and bulking agents, 

including: chicken manure, corn stalks, dairy manure, dry grass, household waste, kitchen 

waste, pig manure, sawdust, spent mushroom substrate, and straw. Composting volumes 

included experiments at 60 L, 200 L, and 1900 L, with durations varying from 7 to 59 days, 

and total carbon losses between 32.0% and 65.1%. Aeration strategies were variable 

throughout the studies, including intermittent aeration, continuous aeration, and passive 

aeration (through weekly mixing), while moisture control was also very variable, with about 

half the studies maintaining constant moisture and the other half letting moisture change 

along with the process. Initial MCs varied from 57.5% to 66.9%, initial C/N ratios varied 

between 17.5 and 32.5, while maximum temperatures ranged from 40 °C to 75 °C. This 

variability in substrates, processes, process sizes, and operating conditions, provides a strong 

basis to validate the generalizability of the calibrated model.  
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8.4.3 Assessment of models 

8.4.3.1 Quality of fit 

The quality of fit of the outputs of the models were compared quantitatively to the 

experimental results using a Normalized Root Mean Square Error (NRMSE) using eqs. 8.37 

and 38. 

RMSE = √
∑ (ymodel,i − yexp,i)

2
 n

i=1

n
 (8.37) 

NRMSE =
RSME

max(yexp) − min(yexp)
× 100 (8.38) 

Where n is the amount of data points, ymodel,i is the output predicted by the model for 

experiment i, and yexp,i is the experimental value for output for experiment i.  

8.4.3.2 Sensitivity and linear regression analyses 

Global sensitivity analyses were undertaken on the model to ascertain how sensitive the 

various outputs are to uncertainty and to determine the impact of input variables on the model 

outputs. For the global analysis, the standardized regression coefficient (SRC) method was 

used, where the outputs of Monte Carlo simulations were fit to a linear regression. Both the 

Monte Carlo and linear regressions were undertaken in MATLAB, following a reprogramming 

of the composting model in this software. All global sensitivity analyses, which each consisted 

of 10000 simulations, were triplicated to assess replicability, which was found to be very high. 

The parameters varied during the Monte Carlo simulations were the main user inputs: 

moisture content, carbon and nitrogen contents, maximum temperature, degradation rate 

(k), and degradable fraction (fd). 

The results of the Monte Carlo simulations for the outputs of interest were then assessed as 

multivariate linear functions of the model factors through linear regression. These outputs 

include: total nitrogen loss, CH4, NH3, N2O, and total emissions, final C/N ratio, moisture 

content, and organic matter. The aim of the multivariate linear regression was not to produce 

linear models, given that the composting model is purely deterministic and only a few linear 

relationships exist within it. The goal was instead to use the standardized regression 

coefficients (SRCs) of the linear models to rank the significance of their effect on the various 

performance indicators (i.e., the outputs mentioned above) (Vaneeckhaute et al., 2018b). 
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The model factors were then ranked according to the ranking thresholds presented in Table 

1, taken from Vaneeckhaute et al. (2018b). 

Table 8.1 Ranking thresholds based on standardized regression coefficients (SRCs) used to 

determine factor importance. Taken from Vaneeckhaute et al. (2018b). 

Class Cut-off threshold Description Importance 

1 |SRC| > 0.1 ± 1% fraction of total variance Very high 

2 |tSRC| > tn−p,0.95 Significant at the 5% confidence level High 

3 |tSRC| > tn−p,0.90 Significant at the 10% confidence level Moderate 

4 |tSRC| > tn−p,0.85 Significant at the 15% confidence level Low 

5 |tSRC| ≤ tn−p,0.85 Not significant Very low 

 

8.5 Results and discussion 

8.5.1 Model assessment and performance 

8.5.1 NRMSE analysis 

The optimized models, where parameters were globally calibrated to minimize error for each 

specific case, were both a form of validation of the mass balances and the mathematical 

representation of the process, as well as a tool for initial calibration, providing insight into 

what relations performed adequately or needed modification. As demonstrated in Table 8.2, 

the calibration of the models to ensure optimization led to great results, highlighting the 

validity of the mass balances applied. Indeed, the NRMSE ranged from 0.98 to 3.57% for final 

C/N, TC, TN, and TN loss, while the absolute error over each trial varied from 0.0 to 5.7%. 

Discrepancies can be easily explained through data processing errors and rounding errors, 

especially given that the data stemmed from the literature and therefore was already 

somewhat manipulated beforehand. Indeed, the average absolute error for the optimized 

models is of 1.1%. 

Following this initial step of individual calibration to achieve optimization, a global model 

calibration was undertaken, using the relationships developed from the literature and 

presented throughout section 8.4. This calibrated model was then applied to the validation 

set to evaluate its performance in a variety of different situations, as discussed in section 

8.4.2.2. The NRMSEs of these models are also presented in Table 8.2, where we can observe 

a generally very strong performance. Indeed, the NRMSEs for final C/N, TC, and TN are 

between 2.35 and 7.92%, while, disregarding one outlier, NRMSEs for proportions of NH3, 

N2O, and CH4 emissions varied between 1.47 and 9.48%. Given the aim of the model to 
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provide general, quick, and easily accessible analysis, these results are extremely promising. 

However, estimates of total nitrogen loss remain problematic, with this relationship between 

the least accurate of the ones applied, as discussed in 8.4.1.4.2. Despite the NRMSE of 

25.35% for TN loss being within what we consider acceptable for this type of model 

application, it remains high, especially when compared to the model performance on other 

levels. Indeed, with a more accurate prediction of total nitrogen loss, the optimization 

capabilities of the model would be greatly strengthened.   

Table 8.2 NRMSE of the optimized and generally calibrated models. 

 NRMSE (%) 

Output Optimized models Calibrated models 

C/N 3.11 7.92 

TC 3.57 3.58 

TN 1.24 2.35 

TN loss 0.98 25.35 

NH3-N emissions (% of nitrogen 

loss) 

0.00 9.48 

N2O-N emissions (% of nitrogen 

loss) 

0.00 17.87 (3.80)a 

CH4 emissions (% of carbon loss) 0.00 25.54 (1.47)a 

aNRMSE when the results of the “CK trial” of Yang et al. (2013) are not considered, given 

significant N2O (24.1%) and CH4 (18.5%) emissions measured during this experiment. 

To provide a better view of how the generally calibrated model outputs compared to 

experimental results, Figure 8.7 provides a comparison of both. As we can observe, the model 

offers very accurate predictions in most cases, while the previously mentioned outlier is clearly 

observable in plots e and f. One important note is that, despite the higher error in TN loss, 

the impact on final total nitrogen and C/N ratio appears to be minimal, given that nitrogen is 

present in such low quantities in composting substrates and final composts, especially in 

comparison to carbon. Indeed, from the validation set, initial nitrogen varied between 1.3 and 

2.2%, while final nitrogen was between 1.0 and 2.9%. Therefore, a 20% error in TN loss can 

relate to an error of less than 5% in output composition, depending on mass loss. However, 

where this can have a more important impact on model results is in estimating total NH3 and 

N2O emissions, which can have a noted influence on environmental assessments following the 

model use. This is especially the case for N2O emissions, given its elevated global warming 

potential.  
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Figure 8.7 Comparison of modelling and experimental outputs. The dotted line has a slope 

of 1, indicating a perfect fit. 

8.5.2 Global sensitivity analysis 

The aim of the sensitivity analysis was to provide insight into what input variables most 

affected model outputs. Despite all the model relations being deterministic, as expressed 

through the equations of section 8.4, some output variables can be influenced by more than 

one factor. We hoped that the knowledge gained from the global sensitivity analysis would 

therefore help users identify which input properties should be targeted to modify specific 

outputs. However, following the assessment of the results of the sensitivity analysis, with the 

ranking of predictor importance being presented in Table 8.3, it appears that the six input 

variables assessed were important or very important in most cases. This result makes it more 
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difficult to provide the information that was initially desired, but also points to the strength of 

the model design. Indeed, the fact that, in most cases, the input variables have a significant 

impact on outcomes is a testament to the simplicity achieved by the model. This indicates 

that the inputs chosen for the model are indeed the ones that best represent the composting 

situation, and that further simplification/model reduction is unlikely to provide benefit, the 

latter point having been validated through the assessment of all different model combinations 

during the sensitivity analysis.  

Table 8.3 Ranking of predictor importance from the global sensitivity analysis. The following 

abbreviations are used for importance: very high (VH), high (H), moderate (M), low (L), very 

low (VL). Columns in the table include initial moisture content (MCi), initial nitrogen (Ni), initial 

carbon (Ci), degradation rate (kd), maximum temperature (Tmax), and biodegradable fraction 

(fd). 

 Predictor importance 

Output MCi Ni Ci kd Tmax fd 

C/Nout VH VH VH VH H VH 

MCout VH H VH M H VH 

OMout H M H H H H 

TNloss H H H H VH H 

NH3 emissions VH VH H H VH H 

N2O emissions VH VH VL M VH L 

CH4 emissions VH M VH H H VH 

Total emissions VH VH L M VH M 

 

8.5.3 Limitations and perspectives 

Given the assumptions and simplifications made along the way, the model does obviously 

present some limitations. These limitations notably and mainly relate to certain process 

conditions not being considered, such as pH, dynamic temperature, and the impact of aeration 

on anything other than the water balance. However, as shown through this paper and 

discussed in Walling and Vaneeckhaute (2020a), this does not seem to have a major impact 

on the global mass balances when considering a well-operated system. Free airspace is 

another aspect that is not currently considered in the model. Its impact on process kinetics 

appears to be limited (Walling and Vaneeckhaute, 2021b), but it can have an important impact 

on emissions, given that it regulates oxygen availability throughout the environment.  

Another important aspect to highlight is that this model does not take into account potential 

changes from traditional composting that can have an impact on the process, such as using 

chemical additives or undertaking mitigation strategies to reduce GHG emissions. Similarly, 



 

210 

constant thermophilic or hyperthermophilic composting can also have an influence, both on 

degradation rate and emissions that are not considered in the model. This, however, can 

always easily be considered by changing some of the model parameters. 

Regarding future work, the greatest need that became apparent through this work is for a 

comprehensive and exhaustive meta-analysis examining the impact of input variables and 

operating parameters on emissions and outputs during composting. Through this work, we 

have identified some relationships based on limited experimental data, but having a 

comprehensive dataset linking C/N ratio, aeration, temperature, carbon loss, and pH to a 

variety of outcomes, such as total nitrogen, NH3, N2O, NOx-N, NH4-N, and CH4, would be of 

great benefit to this model, as well as any future composting models.  

8.6 Conclusion 

The model developed through this work has demonstrated great potential to be a valuable 

tool for decision-makers, allowing for quick, easy, and accurate prediction of composting 

outcomes, such as end quality (carbon and nitrogen content, moisture content), and 

greenhouse gas emissions (CH4, CO2, N2O), as well as ammonia loss (NH3). By basing itself 

solely on initial nitrogen and carbon, moisture content, maximum temperature, along with a 

degradation rate and degradable fraction, the model offers very accurate predictions. 

Furthermore, by having every aspect of the model clearly linked to an input parameter, it is 

very easy to understand how operating choices can impact the process, promoting learning 

among users who may be less knowledgeable about the subject.  
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Conclusion and perspectives 

Conclusion  

The aim of this PhD dissertation was to support the transition towards more sustainable and 

circular economies by developing tools which could aid in optimizing the composting process, 

one of the primary contributors to organic waste valorization. Three research phases were 

conducted, building on each prior phase. The first phase consisted of a consolidation and 

development of the fundamentals of composting modelling (Chapters 1-3), followed by an 

experimental and modelling investigation of nutrient loss and GHG emissions during 

composting in phase 2 (Chapters 4 and 5). This was then supplemented by the third and final 

phase of the PhD, which aimed at facilitating the use of models for successful environmental 

decision support (Chapters 6-8). Through these three phases, fundamental and practical 

knowledge on composting modelling were advanced equally, resulting in a well-rounded work 

that pushed our knowledge and produced creative and usable tools. In the introduction, five 

research questions were identified, with the answers to these questions and the main 

conclusions and outputs from this dissertation being presented below. 

Phase 1: Consolidation and development of the fundamentals of composting 

modelling 

 

Research question 1: What is the current state of knowledge in the field of composting 

modelling? 

From the first phase of the project (Chapters 1 to 3), a consolidated basis of knowledge on 

composting modelling was achieved through a systematic review on composting modelling, 

and the first review on the subject since 2006 (Chapter 2). This review pointed towards the 

strong support, both experimental and theoretical, of mass and energy balances in the 

process, as well as the validity of first-order degradation kinetics to represent biodegradation 

due to hydrolysis’ role as the rate-limiting step in composting. Furthermore, a variety of 

understudied research areas that would benefit from further research were identified, 

including modelling of: different processes (non-reactor systems), physical parameter 

variation during the process (volume, bulk density), quality and nutrient composition of 

composts, substrate biodegradability, as well as the great potential for emerging modelling 

approaches, such as machine learning.  
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This was then supplemented by the development of fundamental knowledge on composting, 

with the identification of which pairings of correction functions provided the most accurate 

predictions, out of the large quantity of functions proposed throughout the literature (Chapter 

3), aiming at answering the second research question:  

 

Research question 2: What correction functions (if any) are most appropriate to model 

composting kinetics? 

The answer to this question can be found in Table 3.6 of Chapter 3, which identified the best 

pairings as comprising of either the Haug (1993) or cardinal temperature correction for 

temperature, the Stombaugh and Nokes (1996) or Haug (1980/1993) moisture correction, 

and the Monod oxygen correction.  

 

Phase 2: Experimental and modelling investigation of nutrient loss and GHG 

emissions during composting 

Research question 3: How can we mathematically model emissions of GHGs and nutrient 

loss during composting in a mechanistic fashion?  

Building on the work of phase 1 and in the aim of answering the third research question, the 

second phase produced a brief but consolidated overview of experimental composting 

methods, aimed at bridging a gap in the accessibility of this information. This was followed 

by the detailing of our own experimental plan to evaluate the composting process, along with 

its GHG emissions and nutrient transformation and loss (Chapter 4); a plan whose 

implementation faced significant delays due to COVID-19. Chapter 5 then presented the 

development and attempted calibration and validation of a comprehensive composting model 

aimed at predicting traditional composting outputs (degradation, temperature, moisture) with 

a deepened focus on GHG emissions and nitrogen. The model proved to be capable of 

predicting degradation, temperature, and moisture with good accuracy, but nitrogen remains 

an area that requires more development. Profiles for TKN, nitrate and ammonia nitrogen can 

be accurately predicted, depending on calibration, but not alongside carbon and the other 

outputs, pointing towards a decoupling in some of the model’s foundations. Due to having to 

base the calibration and validation on an experimental dataset from the literature, given the 

lack of our own experimental data because of COVID-19, it was not possible to develop the 

model further, having fully exhausted the options available to us. Nevertheless, the model 

was analyzed through multiple Monte Carlo analyses to understand its behaviour and what 

areas should be targeted for further development, allowing a methodology and the numerical 

methods to be in place to quickly calibrate and validate the model when the information 
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becomes available. Beyond this, key takeaways from the model development process were 

identified, which will hopefully provide valuable insight and guidance for future modelling 

efforts seeking to explore composting. 

 

Phase 3: Facilitating the use of models for successful environmental decision 

support  

Given some of the challenges encountered in phase 2, particularly regarding the accessibility 

of the models identified throughout the literature, as well as the one developed in Chapter 5, 

this phase aimed at developing our knowledge on what makes a model approachable and 

usable, as well as applying this knowledge in developing more usable composting models, 

leading to the identification of the fourth research question: 

Research question 4: What practices, notably regarding mathematical modelling, should be 

implemented to favor successful environmental decision-making and system design?  

To answer research question 4, a comprehensive review of environmental models and decision 

support systems was undertaken, focusing on what factors promoted their success and the 

primary challenges faced by these systems. In the end, 13 major challenges were categorized 

into three primary categories (stakeholder, model, and system-oriented challenges), with 

over 60 recommendations provided (Chapter 6). Table 6.1 identifies the key challenges faced 

by many environmental decision-oriented models and systems, while Figures 6.1 to 6.3 

provides our recommendations on model and system development to mitigate these 

challenges and promote a successful design process.  

This knowledge was then applied in the following two chapters to answer the final research 

question: 

Research question 5: How can we model the composting process in both a simple and 

generalizable fashion? 

The first effort to answer this question was the development and assessment of three novel 

modelling approaches to composting kinetics, presented in Chapter 7. The approaches are 

based on a first-order kinetic expression and consist in breaking the process down into three 

or more phases, based on the traditional phases observed during composting (mesophilic, 

thermophilic, mesophilic). The three proposed modelling approaches managed to consistently 

outperform the traditional first-order degradation expression widely used throughout 

composting literature, with NRMSEs varying between 1.13% and 6.32%. Furthermore, these 

approaches were also found to outperform the most optimal combination of correction 
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functions that had previously been identified in Chapter 3. Finally, all of the work undertaken 

in the prior seven chapters was leveraged into the development of a parsimonious composting 

model (PCM). The model aimed at being understandable, easy to approach, efficient, and 

accurate, all of which it achieved. Using only one process (a first-order biodegradation kinetic) 

and five parameters, the model achieved NRMSEs varying between 2.35% and 7.92% for 

C/N, total carbon, and total nitrogen contents, while errors on emissions estimates were 

generally between 1.47% and 9.48%. This was achieved through the development of 

empirical relationships relating a variety of process outcomes (e.g., NH3, CH4 and N2O 

emissions) to starting or operating conditions, alongside strong mechanistic foundations for 

carbon and moisture dynamics, all of which was validated and calibrated with datasets 

comprising experimental results from nearly 50 independent studies, contributing to the 

generalizability of the model. However, despite these very good outcomes, estimation of 

nitrogen loss remains problematic, as was the case for Chapter 5. Total nitrogen loss through 

the PCM only achieved an NRMSE of 25.33% which, though not particularly consequential in 

the grand scheme, given the low concentration of nitrogen in composts compared to carbon, 

highlights a more fundamental issue with nitrogen prediction in composting. As mentioned 

previously in this section, the hypothesis of the author is that this one area lacking precision 

is most likely due to the absence of pH in both the models of Chapter 5 and 8. 

Perspectives 

Throughout this Ph.D., with the constant questioning and learning that came with it, many 

interesting and stimulating issues which deserve to be addressed have been raised, as well 

as some areas that the author had hoped to address but was unable to. These questions can 

be divided into three primary axes, seeking to study or optimize: (1) the composting process, 

(2) composting modelling, and (3) environmental decision support. 

1. The composting process 

The process at the heart of this dissertation has been extensively studied over the past 

decades, though the inherent complexity of the process, with so many factors impacting its 

outcomes, and its widespread and growing implementation, keep it a deeply exciting and 

valuable area to explore. Regarding the composting process, the author is of the opinion that 

the main interests for future studies are in the realm of process modification and optimization, 

with the following notable examples coming to mind:  
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• Optimization of biodegradation: The focus of significant research, optimization of 

biodegradation remains among the most important aspects of composting research. 

Of particular interest are the growing areas of “non-traditional” composting, such as 

constant temperature processes (including both mesophilic and thermophilic 

composting), hyperthermophilic composting, and composting with additives and 

inoculants to favor certain aspects of the process. Indeed, it is the long treatment 

period necessary for certain composting operations which presents one of the process’ 

biggest drawbacks, leading to larger spatial and equipment requirements, and thus 

being one of the main factors contributing to costs.   

• Investigation of nutrient recovery and recycling approaches: The work in this 

dissertation has focused primarily on recycling nutrients through traditional 

composting methods. However, recovery can also be promoted through control and 

changes to the process, many of which can benefit from further assessment. Examples 

of areas that could be of benefit to study include the inoculation of compost with certain 

microbial species that can either favor nutrient retention or render them more 

accessible to crops (see works of Kumar and Singh (2001), Wei et al. (2017), and 

Estrada-Bonilla et al. (2017)), using certain bulking agents (see works of Dias et al. 

(2010), Chan et al. (2016) and Lim et al. (2017)), and composting in acidic conditions 

alongside inoculation with acid-tolerant microbes to decrease ammonia emissions (see 

works of Nakasaki et al. (2013) and Kuroda et al. (2015)) and favor phosphorus 

solubilization. Another interesting pathway is the addition of magnesium to the 

composting environment to promote struvite precipitation (see works of Wang et al. 

(2013b) and Chan et al. (2016)). 

Furthermore, composting could also be applied alongside nutrient recovery 

technologies, such as nitrogen and phosphorus recovery, especially from liquid 

(leachate) streams. Though the production of leachate and their compositions can vary 

widely, these streams can be charged in nutrients, which either need to be removed 

or recovered. Ammonia stripping and adsorption for nitrogen removal/recovery and 

struvite precipitation or ion-exchange/adsorption for phosphorus could be targeted to 

these flows. Indeed, based on the study of Roy et al. (2018), nutrient concentrations 

of composting leachates from large-scale facilities have been reported as varying 

between 5 to 21 180 mg NH4-N/L (36–2275 mg/L for mixed municipal solid waste; 

5.1-558 mg/L for yard waste; 4-2720 mg/L for green waste; 218-21180 mg/L for 

wastewater treatment sludge; 443-1091 mg/L for digestate) and 0.5 to 485 mg TP/L 
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(0.5-288 mg/L for mixed municipal solid waste; 1.5-485 mg/L for green waste; 22-88 

mg/L for wastewater treatment sludge).  

• Investigation of phosphorus, potassium, and micronutrients during 

composting: In a similar vein, as was noted in a few places throughout this 

dissertation, as well as by Li et al. (2013), there is a particular lack of research on the 

state of nutrients and their transformation during composting, with nitrogen having 

been the primary target of research to this point. Chapter 1 presented a brief but near 

comprehensive review of the works on phosphorus speciation during composting, while 

potassium and micronutrients have seen even less study. However, these remain 

valuable areas of research, given the necessity of having a complete and balanced 

fertilization scheme, as much for agriculture as for environmental health and 

sustainability. This will become ever more valuable with the inevitable transition 

towards more restrictive fertilizer application guidelines. 

• Consolidation of knowledge on the fate of contaminants during composting: 

Regarding these strictening guidelines, an understandably growing focus in the realm 

of organic waste management is the elimination of contaminants, including heavy 

metals, organic and inorganic compounds, pathogens, as well as emerging 

contaminants, such as brominated diphenyl ethers (PBDES), chlorinated paraffins, 

polydimethylsiloxanes (PDMS), per-and polyfluoroalkyl substances (PFAS), 

microplastics, and pharmaceuticals. Unlike some of the prior perspectives, the area of 

contaminants in composting has seen strong interest for a long time. Works have 

explored all of these highlighted areas, ranging from early works on “traditional” 

contaminants, such as pathogens and organic compounds, in the 1980s (e.g., Bishop 

and Chesbro (1982), Hurst and Gerba (1989) and Racke and Frink (1989)), while 

recent works have explored a wide slew of emerging contaminants (Choi et al., 2019; 

Dubey et al., 2021). However, as of writing this dissertation, the knowledge on the 

impact of composting on various contaminants is dispersed throughout the literature, 

with no consolidation of this knowledge into an easily accessible source. This leads to 

varying degrees of conflicting information being presented throughout literature on the 

fate of these contaminants, even with regard to pathogen elimination (Franke-Whittle 

and Insam, 2013). Therefore, a systematic review on the fate of contaminants during 

composting would be of high value to research in the field moving forward, as well as 

serving for the much larger fields of agriculture and environmental management.   
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• Comprehensive and systematic review of emissions from composting: As was 

seen in chapter 8, when trying to determine relationships between emissions and 

certain operating conditions/process variables empirically, as well as in some works, 

notably the meta-analysis of Cao et al. (2019), there appears to be a strong correlation 

between specific conditions and emissions. However, a stronger validation, undertaken 

through a meta-analysis, would be warranted. The author believes that a study of 

emissions through a meta-analysis would be of much greater value than an 

experimental study, given the inherent variability that impacts the composting 

process, which is highly unlikely to be observable at an individual experimental scale. 

Indeed, significant experimental and field work has been undertaken on composting 

emissions and consolidating this information to develop empirical models would be of 

great benefit to the field. The work of Cao et al. (2019) can present a great basis for 

this, but given that it was not the intention of their study, many important parameters, 

variables, and outcomes (N2O, CH4) are not included.    

• Study and review of economics of composting processes and facilities: 

Similarly to the meta-analysis on emissions, when undertaking the work of chapter 8, 

the author wanted to include a simple but robust economic assessment module for the 

parsimonious model. The intention was to use traditional techno-economic assessment 

tools such as Lang factors for cost estimates, as well as estimating process costs on a 

weight, volume, or area basis. However, such information was surprisingly difficult to 

find and, in most cases, unavailable. Indeed, the two main works that were identified 

on the subject were those of Wei et al. (2001) and van Haaren (2009). The prior 

studied small and mid-scale composting processes for sewage sludge treatment and 

found a range of US$ 35 to US$ 187 per ton (dry) for aerated static piles and US$ 11 

to US$ 87 for windrows. The latter focused on evaluating large-scale composting 

processes in the US and obtained a cost of approximately US$ 22 per ton for open-air 

windrow composting, including capital investments, while operating costs were 

estimated at around US$ 12 per ton. Such ranges made it difficult to come to any 

conclusions. Therefore, having an up to date and in-depth study of the costs of 

composting operations, with the development of economical assessment tools, such 

as Lang factors, could be of great benefit to the study and evaluation of composting 

processes and research. 

Regarding information that the author can provide that may aid in such an endeavour, 

the only insight that can be given is that, currently, tipping fees in Quebec, Canada, 
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range between US$ 47 to US$ 55 per ton received, which matches with the present 

range of US$ 40 to US$ 72 reported by the Environment Research & Education 

Foundation for the United States, with a national average of US$ 55 per ton received 

(EREF, 2021). 

• Inventory of composting kinetic rates: In any composting model, the most likely 

factor limiting the use of the model or the validity of the assessment is the rate of the 

reaction. As was demonstrated in chapters 3 and 7, when fitting a relatively simple 

kinetic expression (first-order, modified first-order) to experimental data, great 

accuracy could be achieved, with NRMSEs frequently below 5%. However, despite 

being at the heart of nearly every composting model, obtaining accurate composting 

kinetics remains one of the most nebulous aspects in the field. As was discussed in 

chapter 4, the work of Baptista et al. (2012), which found a variability of 3900% in 

composting kinetic rates reported at laboratory scales, vs 300% for full-scale 

operations, clearly highlights the need to standardize how rates are measured and to 

move towards more realistic and representative studies. Having an inventory of 

degradation rates, either at specific process conditions (temperature, moisture 

content, oxygen content, pH), or generalized for a process with known (variable) 

conditions, and for individual substrates, could be of great help to make the various 

tools developed throughout the field of composting modelling much more accessible 

and usable. Moving towards a standardization in this regard should help alleviate part 

of the great amount of uncertainty that surrounds composting modelling. 

• Study of the role of pH in controlling the composting process: What the author 

believes to be the missing link in allowing for the PCM to accurately predict nitrogen 

loss, pH remains a very pertinent subject to explore. Currently, pH is mainly an 

observed variable in most of the composting field, serving at most as a way to track 

the progression of biodegradation (decreasing pH during early stages due to 

production of organic acids, increasing pH as these acids are consumed and the 

compost matures). 

2. Composting modelling  

Modelling of composting, seeking to either understand and emulate in detail the complex 

processes going on during the composting process, as was done in chapter 5, or trying to 

capture this complexity while distilling the process into an approachable and streamlined 
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framework, such as in chapter 8, remains an area with great potential for development. 

Notable areas for future work include:  

• Study of the aspects highlighted in the perspectives of chapter 2 (see section 

2.6 for full details): 

o Composting systems other than reactors and windrows; 

o Variation in volume and the impact of compaction in composting; 

o Maturation (humic matter development); 

o pH and chemical speciation for nutrients and heavy metals; 

o Biodegradability of substrates. 

• Development of machine learning coupled with imaged-base approaches: 

Another extremely interesting aspect of composting modelling that was identified 

during the comprehensive review of chapter 2, the (slowly) growing sector of artificial 

intelligence and image-based modelling in composting is an area which has significant 

potential to become a key actor in composting monitoring, control, and optimization. 

The promise of being capable of predicting and optimizing process conditions and 

outcomes, based solely on images, would be a major step towards producing models 

that would see strong interest at the industrial level. Such approaches can also be of 

value to other organic waste treatment processes, such as for assessing the quality of 

digestates from anaerobic digestion. However, acquiring the significant amount of data 

needed to train these models, as well as ensuring that the pathways they use are 

understandable and communicable (see chapter 6), remain major challenges that 

modellers must be aware of.  

• Continuation of the work undertaken in this dissertation: This thesis has 

provided a strong validation for modelling of carbon, energy, and water dynamics in 

composting, while providing a valuable foot forward with modelling of nitrogen during 

the process. However, as detailed in chapters 5 and 8, nitrogen remains an aera that 

requires more development. Chapter 8 highlighted our ability to accurately estimate 

the proportion of nitrogen emissions (as N2O vs NH3 vs N2), but quantifying nitrogen 

loss remains a challenge. Furthermore, the comprehensive model of chapter 5 still 

requires re-evaluation, modification, and appropriate calibration and validation with 
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the planned composting experiments. Once this process is done, new perspectives will 

present themselves. Of interest will be to undertake a global sensitivity analysis to 

ascertain both the sensitivity of the model and evaluate model simplification, following 

the methodology of Vaneeckhaute et al. (2018b) and the one used in chapter 8. 

• Increased importance of sensitivity assessments: As discussed in chapter 2 

(section 2.5.5), there is a surprising lack of inclusion of sensitivity assessments in the 

literature on composting modelling (26% of reviewed literature). Such assessments, 

as undertaken in chapters 5 and 8, provide invaluable insight into a model and should 

be commonplace for modellers. Indeed, it is sensitivity analyses which allow us to 

identify key sources of uncertainty, as well as highlighting the relative weight and 

importance of parameters within a model. Through these assessments, we can reflect 

on model design, identify and work to reduce uncertainty as well as potential errors, 

calibrate models, and perform model simplification, contributing significant added 

value to the design process. Moving forward, it would be important for future modelling 

efforts in the field to undertake a more robust model calibration, validation and 

evaluation by including sensitivity assessments.  

3. Environmental decision support 

Throughout phase 3 of this dissertation (chapters 6 to 8), we identified how, for a model or 

system to find practical use, a variety of design considerations focusing on the desires of 

users are paramount, including a focus on accessibility, transparency, and understandability. 

The work of phase 3 has provided what the author believes to be a deep but concise foray 

into the world of environmental decision support systems, followed by the application of this 

knowledge to produce composting modelling tools that meet these requirements. However, 

there remains much to be worked on in this area, particularly given its high importance in 

ensuring the valorization of research and development efforts. The following are some key 

points for work moving forward:  

• Development of a clear guideline/standard for environmental model and 

system development: As stated in the conclusion of Chapter 6, “the production of 

high-quality EDSSs would greatly benefit from the creation of a detailed and formal 

framework to help developers with the challenges they face.” This is indeed one of the 

areas that would most contribute to ensuring the success of environmental decision 

modelling and system design efforts. Having a clear standard or development guide to 

undertake modelling or system design work surrounding environmental decision 
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support would be of great boon to ensuring the success of future endeavours. Indeed, 

as detailed throughout Chapter 6, there is a significant amount of resources being 

spent on developing many of these models and systems, when in practice very few 

find a level of use capable of justifying such an investment.  

• Push towards model and system evaluation: Though not a research perspective 

per se, as was noted in Chapter 6, model and system evaluation (not to be confused 

with validation) is a massive gap that pervades the literature, at least in environmental 

fields. Without researchers and developers evaluating their models and systems, we 

find ourselves faced with an important lack of information regarding how certain design 

strategies or development choices impacted their products, information which is highly 

valuable to guide future development initiatives. Pushing for model and system 

evaluation to become more common place and placing value on the findings of this 

process will be of great benefit. 

• Increasing focus on stakeholders, users, and decision-makers in the field of 

composting modelling (and other, wider, waste-management and 

environmental fields): Finally, following in the same vein as the prior perspective, 

the consideration of stakeholders and users throughout the literature assessed during 

this thesis, both relating to composting modelling and the wider environmental 

management field, remains grossly lacking. These issues were highlighted through a 

few examples in Chapter 6, but the same issues were observed throughout the 

inventoried composting literature. Of the over 200 composting models assessed in the 

review of Chapter 2, targeted considerations focusing on model users were nearly non-

existent, with a plethora of models being developed without much clarity as to the 

target use-case or users. To a certain extent, the model developed in Chapter 5 of this 

thesis also suffers from this, due to its complex nature and non-identifiability, though 

phase 3 was undertaken as a way to remediate this and future work will also seek to 

address this. As work on modelling and system design expands, with our ever-growing 

dependence on computer-based planning and optimization, proper identification and 

documentation of target users and model/system purpose will only contribute to better 

design.   
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Appendix A: List of correction functions used in 

composting literature. 

This appendix presents all the correction functions used in the reviewed literature. The 

equations are presented in the tables in order of use (most used at the top, less used at the 

bottom). Given the varying nomenclature between models, we have maintained their original 

formats and recommend readers consult the references for more details.  

Table A.1 Temperature correction functions used in the reviewed literature in order of use. 

In nearly all cases, T is expressed in degrees Celsius, with the exception of some of the 

Arrhenius equations. 

Temperature correction function References 

fT =
(T − Tmax)(T − Tmin)

2

(Topt − Tmin)[(Topt − Tmin)(T − Topt) − (Topt − Tmax)(Topt + Tmin − 2T)]
 

(Rosso et al., 

1995; Rosso et 

al., 1993) 

fT = e
−E
R
(

1
273T

−
1

273+Tr
)
, fT = e

−E
R
(T−273), fT = e

−E
R
(T2−T1), fT =

A1 exp (−
E1
RT
)

1 + A2 exp (−
E2
RT
) 
,  

fT = Ae
−E
RT 

 

Various forms of 

the Arrhenius 

equation  

fT = C1
T−TR1 − C2

T−TR2  ; often, C1 = 1.066 and C2 = 1.21. (for biomass growth) (Haug, 1993) 

fT = 0.0182T (for hydrolysis) (Haug, 1996) 

fT = −3.11 × 10
−4T2 + 3.48 × 10−2T + 0.0265 (for biomass activity) (Lin et al., 2008) 

fT = 2.142 × 10
−4T2 − 2.356 × 10−2T + 1.348 (for biomass decay) (Ekinci, 2001) 

fT =  1 −
1

1 + e2(T1−T)
+

12

1 + e−0.8(T−T2)
(for biomass decay) 

(Bialobrzewski 

et al., 2015) 

fT,mesophilic   = {
0.033T
1.0

−0.067T + 3.667
  
0 ≤ T ≤ 30 
30 ≤ T ≤ 40
40 ≤ T ≤ 55

  (for hydrolysis)  

fT,thermophilic = {
0.1T − 4.0

1.0
−0.05T + 3.75

  
40 ≤ T ≤ 50 
50 ≤ T ≤ 55
55 ≤ T ≤ 75

 

(Yu et al., 2009) 

(based on 

Ryckeboer et al. 

(2003)) 

fT = α[β − γ
δ(T−20)] (for hydrolysis) (Petric et al., 

2015) 

fTfMC = 0.089 exp (−0.5 [(
MC − 44.22

19.87
)
2

+ (
T − 58.31

16.72
)
2

])  
(Ekinci et al., 

2004b) 

fT = −8 × 10
−6T3 + 0.008T2 − 0.0238T − 0.2643  (for hydrolysis) (Mohee et al., 

1998) 

fT,bacteria = T(80 − T) 1600⁄  T < 80                    (for biomass growth) 

fT,actinomycetes and fungi = T(60 − T) 20(80 − T)⁄  T < 80 
(Kaiser, 1996) 

fT = {
T (T2 − T1)⁄

1.0
3.75 − T (T2 − 10)⁄

T1 < T ≤ T2
T2 < T ≤ T3
T3 < T

 
(Stombaugh and 

Nokes, 1996) 

fT = exp (− (T − 57)
2 254))⁄    (for hydrolysis) (Smith and 

Eilers, 1980) 
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Table A.2 Moisture correction functions used in the reviewed literature from most to least 

used. 

Moisture content correction function References 

fMC =
1

exp(−17.684MC + 7.0622) + 1
 

(Haug, 1993) 

fMC = {
0 

m m2 ⁄ − 1.0
1.0

  

m1 < m ≤ m2

m2 < m ≤ m3

m3 < m
 

(Stombaugh and 

Nokes, 1996) 

fMC = {
1 − 17.3(1 − m 100⁄ )6.94

20.6614(m 100⁄ )4.06
  
m ≥ 40
m < 40

 
(Haug, 1980) 

fTfMC = 0.089 exp (−0.5 [(
MC − 44.22

19.87
)
2

+ (
T − 58.31

16.72
)
2

])  
(Ekinci et al., 

2004b) 

fMC = 0.012m − 0.18 (Mora-Naranjo et 

al., 2004) 

fMC   =

{
 
 

 
 

0
(m −m1) (m2 −m1)⁄

1
(m −m4) (m3 −m4)⁄

0

  

m < m1 
m1 < m < m2

m2 < m < m3

m3 < m < m4

m4 < m < 1

  (for biomass growth) 

Shishido (1999) 

as referenced by 

Seki (2002)  

fMC = −56.97 + 57.98 exp[(−0.5(m − 0.56) 1.52⁄ )2] (Mohee et al., 

1998) 

fMC   

=

{
 
 

 
 

0
(aw − aw0) (1 − aw0)⁄

(aw − aw0)

(1 − aw0)
×
(wH − w)

(wH − wM)

0

  

0 < w < wL: 38.5% 
wL < w < wM ∶ 60%
wM < w < wH: 80%

wH < w

   (for biomass growth) 

aW = w [(1 − Ka)w + Ka]⁄  

(Kaneko and 

Fujita, 1986; 

Seng et al., 

2016) 

fMC = exp(−10.973(𝐹𝑆 − 0.3)
2) (Smith and 

Eilers, 1980) 

 

Table A.3 Oxygen content correction functions used in the reviewed literature in order of 

use. 

Oxygen content correction function References 

fO2 =
O2

O2 + kO2
 

Monod expressions (see 

Richard et al. (2006))  

fO2 =
O2

(
20.95

0.83 + 20.95
) (0.83 + O2)

 
(Baptista et al., 2010) 

fO2 =
O2

0.79 − 0.041T + 0.040XH2O + O2
 

(Higgins and Walker, 2001) 

fO2 =
O2 𝜌𝑎⁄

O2𝜌𝑎 + 0.07
 

(Petric and Selimbašić, 2008) 

fO2 = x1 atan (x2O2) (Keener, 1973) 
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Table A.4 Free air space correction functions used in the reviewed literature in order of use. 

Free air space content correction function References 

fFAS =
1

exp(−23.675FAS + 3.4945) + 1
 

(Haug, 1993) 

fFAS,mesophile = 0.01 + 0.90 exp(− exp(−15.0(FAS − 0.53))) 

fFAS,thermophile = 0.01 + 0.70 exp(− exp(−12.3(FAS − 0.55))) 

(Yu et al., 2009) 

fFAS = −0.0051MC + 0.7567 (Ekinci, 2001) 

 

Table A.5 pH correction function used in the reviewed literature in order of use. 

pH correction function References 

fpH =

{
 
 

 
 

0
0.5 × pH − 2.5

1.0
3.97 − 0.33 × pH

0

  

pH ≤ 5
5 < pH ≤ 7
7 < pH ≤ 9
9 < pH ≤ 12
12 < pH

 

(Liang et al., 

2004) 

fpH = 0.526 × pH − 2.636 Petric et al. 

(2015) based on 

Liang et al. 

(2004) 
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Appendix B: Results of the modelling assessment of 

chapter 3. 

The following tables provide more detailed results on the results of the assessments 

undertaken in this work, notably regarding the average normalized root mean squared errors 

(NRMSEs) and the optimal sets for every trial. 

Fixed 𝐤𝐦𝐚𝐱: 

Table B.1 Average NRMSE for trials with a fixed 𝐤𝐦𝐚𝐱. 

  average NRMSE (% error) 

 Correction function Trial 1 Trial 2 Trial 3 Trial 4 

Temperature 

functions 

Cardinal temperature 5.90 14.15 16.07 21.03 

Arrhenius 5.96 19.00 16.66 18.04 

Haug (1993) 6.03 17.16 14.35 19.44 

Haug (1996) 8.42 17.93 20.80 25.08 

Lin et al. (2008) 11.78 23.95 24.75 27.00 

Stombaugh and 

Nokes (1996) 

13.66 26.81 25.76 25.74 

Kaiser (1996) 12.88 25.50 24.29 21.63 

Moisture 

functions 

Haug (1993) 7.78 14.46 14.02 18.19 

Stombaugh and 

Nokes (1996) 

8.18 15.29 15.84 19.18 

Haug (1980) 7.77 14.42 13.92 18.16 

Mora-Naranjo et al. 

(2004) 

13.44 43.29 41.46 35.10 

Oxygen 

functions 

Monod 8.90 20.89 19.34 20.99 

Baptista et al. (2010) 9.86 20.88 21.69 24.46 

Higgins and Walker 

(2001) 

8.94 20.15 20.11 22.25 

  

Table B.2 NRMSE for individual application of select temperature corrections for trials with a 

fixed 𝐤𝐦𝐚𝐱. 

 NRSME (% error) 

Correction function  Trial 1 Trial 2 Trial 3 Trial 4 

Cardinal temperature 5.32 8.92 14.18 23.16 

Arrhenius 3.46 5.55 10.91 14.53 

Haug (1993) 4.26 5.19 10.21 20.31 
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Table B.3 Optimal set for trial 1 with a fixed 𝐤𝐦𝐚𝐱. 

Combination (Temperature + Moisture + Oxygen) NRSME (% error) 

Rosso + Haug (1980) + Monod 2.16 

Arrhenius + Haug (1980) + Baptista et al. 2.53 

Arrhenius + Haug (1993) + Higgins and Walker  2.56 

Arrhenius + Stombaugh and Nokes + Higgins and Walker  2.57 

Rosso + Stombaugh and Nokes + Monod 2.58 

Arrhenius + Stombaugh and Nokes + Monod  2.76 

Haug (1993) + Stombaugh and Nokes + Monod 2.89 

Haug (1993) + Haug (1980) + Higgins and Walker 2.97 

Haug (1993) + Haug (1993) + Monod 3.01 

Haug (1993) + Haug (1980) + Baptista 3.18 

 

Table B.4 Optimal set for trial 2 with a fixed 𝐤𝐦𝐚𝐱. 

Combination (Temperature + Moisture + Oxygen) NRSME (% error) 

Rosso + Haug (1980/1993) + Monod 4.40 

Rosso + Stombaugh and Nokes + Monod 4.69 

Haug (1993) + Stombaugh and Nokes + Baptista et al.  4.97 

Rosso + Stombaugh and Nokes + Higgins and Walker 5.34 

Rosso + Haug (1980) + Baptista et al. 5.36 

Haug (1993) + Haug (1993) + Baptista et al. 5.47 

Arrhenius + Stombaugh and Nokes + Baptista et al. 5.57 

Rosso + Haug (1993) + Monod 6.21 

Haug (1993) + Stombaugh and Nokes + Higgins and Walker 6.53 

Rosso + Stombaugh and Nokes + Baptista 7.63 

 

Table B.5 Optimal set for trial 3 with a fixed 𝐤𝐦𝐚𝐱. 

Combination (Temperature + Moisture + Oxygen) NRSME (% error) 

Haug (1993) + Stombaugh and Nokes + Monod 3.77 

Haug (1993) + Haug (1993) + Monod 4.21 

Haug (1993) + Haug (1980) + Higgins and Walker 4.44 

Rosso + Haug (1980) + Monod 4.97 

Arrhenius + Stombaugh and Nokes + Monod 6.60 

Haug (1993) + Haug (1980) + Baptista et al. 6.62 

Haug (1993) + Stombaugh and Nokes + Higgins and Walker 6.69 

Arrhenius + Haug (1980) + Higgins and Walker 7.19 

Rosso + Haug (1980) + Higgins and Walker 7.72 

Arrhenius + Haug (1980) + Monod 7.80 
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Table B.6 Optimal set for trial 4 with a fixed 𝐤𝐦𝐚𝐱. 

Combination (Temperature + Moisture + Oxygen) NRSME (% error) 

Arrhenius + Stombaugh and Nokes + Monod 8.28 

Arrhenius + Haug (1993) + Monod 8.96 

Arrhenius + Haug (1980) + Higgins and Walker 9.45 

Haug (1993) + Haug (1980) + Monod 9.75 

Arrhenius + Stombaugh and Nokes+ Higgins and Walker 9.93 

Haug (1993) + Stombaugh and Nokes + Monod 10.85 

Arrhenius + Haug (1980) + Baptista et al. 12.12 

Rosso + Haug (1980) + Monod 12.24 

Arrhenius + Stombaugh and Nokes + Baptista 13.19 

Rosso + Stombaugh and Nokes + Monod 13.56 

 

Optimized 𝐤𝐦𝐚𝐱: 

Table B.7 Average NRMSE for trials with an optimized 𝐤𝐦𝐚𝐱. 

  average NRMSE (% error) 

 Correction function Trial 1 Trial 2 Trial 3 Trial 4 

Temperature 

functions 

Cardinal temperature 2.20 4.17 4.76 8.32 

Arrhenius 5.96 19.00 16.66 18.04 

Haug (1993) 2.68 4.80 3.83 7.86 

Haug (1996) 2.88 3.47 6.81 9.71 

Lin et al. (2008) 5.03 7.11 9.48 10.98 

Stombaugh and 

Nokes (1996) 

6.91 11.70 12.25 12.35 

Kaiser (1996) 10.23 17.12 16.80 14.87 

Moisture 

functions 

Haug (1993) 4.43 7.96 8.73 10.21 

Stombaugh and 

Nokes (1996) 

4.63 7.76 8.63 9.94 

Haug (1980) 4.64 7.98 8.75 10.25 

Mora-Naranjo et al. 

(2004) 

7.17 14.81 15.45 17.21 

Oxygen 

functions 

Monod 5.11 9.89 10.17 11.67 

Baptista et al. (2010) 4.95 8.85 10.2 12.12 

Higgins and Walker 

(2001) 

5.33 8.98 9.83 11.40 

 

Table B.8 NRMSE for individual application of select temperature corrections for trials with 

an optimized 𝐤𝐦𝐚𝐱. 

 NRSME (% error) 

Correction function  Trial 1 Trial 2 Trial 3 Trial 4 

Cardinal temperature 2.35 4.27 4.70 7.90 

Arrhenius 3.46 4.49 10.73 14.50 

Haug (1993) 2.88 5.00 3.78 7.42 
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Table B.9 Optimal set for trial 1 with an optimized 𝐤𝐦𝐚𝐱. 

Combination (Temperature + Moisture + Oxygen) NRSME (% error) 

Rosso + Mora-Naranjo et al. + Monod 1.84 

Rosso + Mora-Naranjo et al. + Baptista et al. 1.85 

Rosso + Mora-Naranjo et al. + Higgins and Walker 1.96 

Rosso + Haug (1980) + Monod 2.15 

Rosso + Haug (1980) + Baptista et al. 2.16 

Rosso + Stombaugh and Nokes + Monod 2.34 

Rosso + Stombaugh and Nokes + Baptista et al. 2.34 

Rosso + Haug (1980) + Higgins and Walker 2.39 

Haug (1996) + Mora-Naranjo et al. + Higgins and Walker 2.41 

Haug (1996) + Stombaugh and Nokes + Higgins and Walker 2.48 

 

Table B.10 Optimal set for trial 2 with an optimized 𝐤𝐦𝐚𝐱. 

Combination (Temperature + Moisture + Oxygen) NRSME (% error) 

Haug (1996) + Haug (1980) + Higgins and Walker 3.20 

Haug (1996) + Stombaugh and Nokes + Higgins and Walker 3.24 

Haug (1996) + Mora-Naranjo et al. + Higgins and Walker 3.36 

Haug (1996) + Haug (1980) + Baptista et al. 3.44 

Haug (1996) + Stombaugh and Nokes + Baptista et al. 3.45 

Haug (1996) + Haug (1980) + Monod 3.62 

Haug (1996) + Stombaugh and Nokes + Monod 3.64 

Haug (1996) + Mora-Naranjo et al. + Baptista et al. 3.66 

Rosso + Mora-Naranjo et al. + Monod 3.67 

Arrhenius + Stombaugh and Nokes + Baptista et al. 3.71 

 

Table B.11 Optimal set for trial 3 with an optimized 𝐤𝐦𝐚𝐱. 

Combination (Temperature + Moisture + Oxygen) NRSME (% error) 

Haug (1993) + Stombaugh and Nokes + Monod 3.57 

Haug (1993) + Haug (1993) + Monod 3.67 

Haug (1993) + Stombaugh and Nokes + Baptista et al. 3.69 

Haug (1993) + Stombaugh and Nokes+ Higgins and Walker 3.80 

Haug (1993) + Haug (1993) + Baptista et al. 3.80 

Haug (1993) + Haug (1993) + Higgins and Walker 3.88 

Haug (1993) + Mora-Naranjo et al. + Monod 4.11 

Rosso + Stombaugh and Nokes + Monod 4.50 

Rosso + Stombaugh and Nokes + Higgins and Walker 4.61 

Rosso + Stombaugh and Nokes + Baptista et al. 4.61 
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Table B.12 Optimal set for trial 4 with an optimized 𝐤𝐦𝐚𝐱. 

Combination (Temperature +Moisture + Oxygen) NRSME (% error) 

Haug (1993) + Stombaugh and Nokes + Higgins and Walker 6.71 

Haug (1993) + Stombaugh and Nokes + Monod 6.81 

Haug (1993) + Stombaugh and Nokes + Baptista et al. 7.14 

Rosso + Stombaugh and Nokes + Higgins and Walker 7.19 

Haug (1993) + Haug (1993) + Higgins and Walker 7.25 

Haug (1993) + Haug (1993) + Monod 7.33 

Rosso + Stombaugh and Nokes + Baptista et al. 7.33 

Haug (1993) + Haug (1993) + Baptista et al. 7.68 

Rosso + Haug (1993) + Higgins and Walker 7.68 

Rosso + Haug (1993) + Monod 7.81 
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Experimental data use for the model evaluation, adapted from 

Malamis et al. (2016) 

Table B.13 Experimental data for trial 1 

Time 

(day) 

Temperature 

(°C) 

Moisture 

content (%) 

Oxygen 

content (%) 

BOMloss (%) 

0 25.7 65.8 16.3  

1 27.3 65.5 16.8  

2 33.0 66.2 17.4 9.5 

3 40.7 64.2 15.7  

4 47.3 63.3 14.2 27.6 

5 56.7 61.7 12.5  

6 58.7 60.4 9.8  

7 59.7 60.9 9.1  

8 59.0 58.9 11.2 52.1 

9 55.0 60.0 13.7  

10 57.0 59.5 13.0  

11 56.0 58.4 14.3  

12 51.3 57.1 16.0 66.6 

13 48.7 55.9 16.4  

14 49.3 54.4 17.8  

15 46.3 53.9 18.6  

16 46.0 53.3 18.6 70.2 

17 43.7 55.5 18.4  

18 43.7 53.7 19.3  

19 42.7 52.2 19.8  

20 41.0 51.7 19.9 76.8 

21 39.0 51.2 19.9  

22 37.0 51.2 19.6  

23 36.3 50.8 20.0  

24 34.3 49.9 19.8 80.8 

25 34.3 50.5 20.1  
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Table B.14 Experimental data for trial 2 

Time 

(day) 

Temperature 

(°C) 

Moisture 

content (%) 

Oxygen 

content (%) 

BOMloss (%) 

0 28.0 59.3 17.0  

1 31.0 57.0 17.5  

2 40.8 60.7 15.9  

3 49.7 58.1 14.4 31.6 

4 57.5 57.9 12.1  

5 61.1 61.3 10.4 47.6 

6 59.2 58.6 11.5  

7 59.8 59.2 11.0 62.3 

8 55.2 57.2 13.7  

9 53.9 55.8 14.3  

10 50.0 53.5 14.7  

11 48.4 56.6 15.6  

12 46.1 55.0 15.4  

13 47.0 56.0 16.4 73.8 

14 44.8 53.2 17.0  

15 43.4 52.9 18.4  

16 42.1 52.0 18.5 78.9 

17 37.2 51.6 18.9  

18 37.9 50.0 18.5 79.6 

19 34.9 49.0 18.9  

20 34.9 48.3 19.4  

21 31.6 47.7 19.0  

22 28.4 47.4 19.3 80.4 
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Table B.15 Experimental data for trial 3 

Time 

(day) 

Temperature 

(°C) 

Moisture 

content (%) 

Oxygen 

content (%) 

BOMloss (%) 

0 28 60.4 19.1  

1 37.2 57.9 16.8  

2 50 60.7 15.7 15.0 

3 58.9 58.9 14.4  

4 60.5 55.6 13.8  

5 57.5 57.6 15.6 32.1 

6 58.5 58.5 16.2  

7 54.9 59.4 16.9  

8 52.6 57.6 16.3  

9 51.6 56.5 17.8 50.7 

10 52.0 54.2 17.2  

11 49.3 55.8 18.6  

12 47.7 54.4 18.1  

13 48.7 55.9 18.5  

14 48.4 54.3 19.0 59.3 

15 45.4 52.7 18.8  

16 44.4 52.3 17.9  

17 42.5 53.8 18.6 60.7 

18 40.5 52.9 19.1  

19 40.8 51.8 19.8  

20 38.5 51.7 19.3 62.1 

21 39.5 51.3 19.8  

22 37.5 51.0 19.6  

23 34.6 51.0 19.8  

24 32.3 50.1 19.6 62.9 
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Table B.16 Experimental data for trial 4 

Time 

(day) 

Temperature 

(°C) 

Moisture 

content (%) 

Oxygen 

content (%) 

BOMloss (%) 

0 32.0 68.2 14.9  

1 51.0 66.4 12.2  

2 58.9 63.1 12.5 21.4 

3 58.9 60.0 13.6  

4 57.9 62.2 14.2 43.2 

5 58.5 58.5 15.7  

6 54.6 61.0 15.6  

7 52.0 58.8 16.2 62.1 

8 52.3 57.2 17.5  

9 49.7 60.8 17.3  

10 48.4 57.6 18.3 72.6 

11 45.4 55.8 17.9  

12 43.4 54.2 18.1  

13 42.8 54.8 18.1 76.8 

14 40.2 53.6 18.3  

15 39.5 51.8 18.9  

16 39.5 51.3 18.6  

17 38.5 50.6 18.9 79.7 

18 36.6 50.0 19.3  

19 33.3 49.7 19.0 79.7 
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Appendix C: Petersen matrix for the comprehensive composting model 

(chapter 5) 

Table C.1 Petersen matrix for the comprehensive composting model developed in chapter 5. 

  1 2 3 4 5 6 7 8 9 

 Process SI SS XI XS XHB XFH XAOB XNOB XDP 

Bacteria 1. Aerobic growth of 
HB 

 
−

1

YHB
 

  1     

2. Anoxic growth of 
HB on nitrate 

 
−

1

ηYHB
 

  1     

3. Anoxic growth of 
HB on nitrite 

 
−

1

ηYHB
 

  1     

4. Anoxic growth of 
HB on nitric oxide 

 
−

1

ηYHB
 

  1     

5. Anoxic growth of 
HB on nitrous oxide 

 
−

1

ηYHB
 

  1     

Fungi 6. Aerobic growth of 
HF 

 
−

1

YHF
 

   1    

7. Anoxic growth of 
HF on nitrate 

 
−

1

ηYHF
 

   1    

8. Anoxic growth of 
HF on nitrite 

 
−

1

ηYHF
 

   1    

9. Anoxic growth of 
HF on nitric oxide 

 
−

1

ηYHF
 

   1    

10. Anoxic growth of 
HF on nitrous oxide 

 
−

1

ηYHF
 

   1    

Ammonia 
oxidizing 
bacteria 

11. Aerobic growth of 
AOBs 

      1   

12. AOB 
denitrification of NO2 

         

13. AOB 
denitrification of N2O 
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  10 11 12 13 14 15 16 17 18 

 Process SO SNO3 SNO2 SNO SN2O SN2 SNH SND XND 

Bacteria 1. Aerobic growth 
of HB 

−
1 − YHB
YHB

 
     −iXB 

 

  

2. Anoxic growth 
of HB on nitrate 

 
−
1 − ηYHB
1.143ηYHB

 
1 − ηYHB
1.143ηYHB

 
   −iXB 

 

  

3. Anoxic growth 
of HB on nitrite 

  
−
1 − ηYHB
0.571ηYHB

 
1 − ηYHB
0.571ηYHB

 
  −iXB 

 
  

4. Anoxic growth 
of HB on nitric 
oxide 

   
−
1 − ηYHB
0.571ηYHB

 
1 − ηYHB
0.571ηYHB

 
 −iXB 

 
  

5. Anoxic growth 
of HB on nitrous 
oxide 

    
−
1 − ηYHB
0.571ηYHB

 
1 − ηYHB
0.571ηYHB

 
−iXB 

 
  

Fungi 6. Aerobic growth 
of HF 

−
1 − YHF
YHF

 
     −iXB 

 
  

7. Anoxic growth 
of HF on nitrate 

 
−

1 − YHF
1.143ηYHF

 
1 − YHF
1.143ηYHF

 
   −iXB 

 
  

8. Anoxic growth 
of HF on nitrite 

  
−

1 − YHF
0.571ηYHF

 
1 − YHF
0.571ηYHF

 
  −iXB 

 
  

9. Anoxic growth 
of HF on nitric 
oxide 

   
−

1 − YHF
0.571ηYHF

 
1 − YHF
0.571ηYHF

 
 −iXB 

 
  

10. Anoxic growth 
of HF on nitrous 
oxide 

    
−

1 − YHF
0.571ηYHF

 
1 − YHF
0.571ηYHF

 
−iXB 

 
  

Ammonia 
oxidizing 
bacteria 

11. Aerobic 
growth of AOBs 

1 −
3.43

YAOB
 

 1

YAOB
 

   −iXB

−
1

YAOB
 

  

12. AOB 
denitrification of 
NO2 

  -1 1.33      

13. AOB 
denitrification of 
N2O 

   -1 1.5     
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  19  

 Process Salk Process rate (M L-3 T-1) 

Bacteria 1. Aerobic growth 
of HB 

−iXB/14  
 

μHB (
SS

KS + SS
) (

SO
KO + SO

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

)XHBf 

2. Anoxic growth 
of HB on nitrate 

−iXB/14  
 

μHB (
SS

KS + SS
) (

KO
KO + SO

) (
SNO3

KNO3 + SNO3
) (

SNH
KNH + SNH

) (
Salk

Kalk + Salk
) ηNO3XBHf  

3. Anoxic growth 
of HB on nitrite 

−
1 − ηYHB

14 ∗ 0.571ηYHB
−
iXB
14
  

 

μHB (
SS

KS + SS
) (

KO
KO + SO

) (
SNO2

KNO2 + SNO2
) (

KI3NO
KI3NO + SNO

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

) ηNO2XBHf 

4. Anoxic growth 
of HB on nitric 
oxide 

−iXB/14  
 

μHB (
SS

KS + SS
) (

KO
KO + SO

) (
SNO

KNO + SNO + SNO
2 KI4NO⁄

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

) ηNOXHBf 

5. Anoxic growth 
of HB on nitrous 
oxide 

−iXB/14  
 

μHB (
SS

KS + SS
) (

KOH
KOH + SO

) (
SN2O

KN2O + SN2O
) (

KI5NO
KI5NO + SNO

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

) ηN2OXHBf  

Fungi 6. Aerobic growth 
of HF 

−iXB/14  
 

μHB (
SS

KS + SS
) (

SO
KO + SO

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

)XHBf 

7. Anoxic growth 
of HF on nitrate 

−iXB/14  
 

μHB (
SS

KS + SS
) (

KO
KO + SO

) (
SNO3

KNO3 + SNO3
) (

SNH
KNH + SNH

) (
Salk

Kalk + Salk
) ηNO3XBHf  

8. Anoxic growth 
of HF on nitrite 

−
1 − ηYHF

14 ∗ 0.571ηYHF
−
iXB
14
  

 

μHB (
SS

KS + SS
) (

KO
KO + SO

) (
SNO2

KNO2 + SNO2
) (

KI3NO
KI3NO + SNO

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

) ηNO2XBHf 

9. Anoxic growth 
of HF on nitric 
oxide 

−iXB/14  
 

μHB (
SS

KS + SS
) (

KO
KO + SO

) (
SNO

KNO + SNO + SNO
2 KI4NO⁄

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

) ηNOXHBf 

10. Anoxic growth 
of HF on nitrous 
oxide 

−iXB/14  
 

μHB (
SS

KS + SS
) (

KOH
KOH + SO

) (
SN2O

KN2O + SN2O
) (

KI5NO
KI5NO + SNO

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

) ηN2OXHBf  

Ammonia 
oxidizing 
bacteria 

11. Aerobic 
growth of AOBs 

−iXB −
1

7YAOB
 μAOB (

SFA

KFA + SFA + SFA
2 KI8FA⁄

) (
SO

KO,A + SO
)(

KIFNA
KIFNA + SFNA

) (
Salk

Kalk + Salk
) XAOBf 

12. AOB 
denitrification of 
NO2 

 
μAOBηAOB (

SNO2
KNO2 + SNO2

) (
KOH

KOH + SO
) XAOBf 

13. AOB 
denitrification of 
N2O 

1

14
 μAOBηAOB (

SNO
KNO + SNO

) (
KOH

KOH + SO
) XAOBf 
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  1 2 3 4 5 6 7 8 9 

 Process SI SS XI XS XHB XFH XAOB XNOB XDP 

Nitric oxidizing bacteria 14. Aerobic growth of nitric 
oxidizing bacteria 

       1  

Reduction of nitrate to 
ammonia 

15. Assimilative nitrate 
reduction to nitrite 

 -1.14        

16. Assimilate nitrate reduction 
to ammonia 

 -3.43        

Decay 17. Decay of heterotrophic 
bacteria 

   1 − fp -1    fp 

18. Decay of heterotrophic 
fungi 

   1 − fp  -1   fp 

19. Decay of AOBs    1 − fp   -1  fp 

20. Decay of NOBs    1 − fp    -1 fp 

Ammonification/hydrolysis 21. Ammonification of soluble 
organic nitrogen by bacteria 

         

22. Ammonification of soluble 
organic nitrogen by fungi 

         

23. Hydrolysis of entrapped 
organics by bacteria 

 1  -1      

24. Hydrolysis of entrapped 
organics by fungi 

 1  -1      

25. Hydrolysis of entrapped 
organic nitrogen 
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  10 11 12 13 14 15 16 17 18 

 Process SO SNO3 SNO2 SNO SN2O SN2 SNH SND XND 

Nitric oxidizing bacteria 14. Aerobic growth of nitric 
oxidizing bacteria 

1

−
1.14

YNOB
 

1

YNOB
 −

1

YNOB
 

   −iXB   

Reduction of nitrate to 
ammonia 

15. Assimilative nitrate 
reduction to nitrite 

 -1 1       

16. Assimilate nitrate 
reduction to ammonia 

  -1    1   

Decay 17. Decay of heterotrophic 
bacteria 

       iXB
− fpiXP 

 

18. Decay of heterotrophic 
fungi 

       iXB
− fpiXP 

 

19. Decay of AOBs        iXB
− fpiXP 

 

20. Decay of NOBs        iXB
− fpiXP 

 

Ammonification/hydrolysis 21. Ammonification of 
soluble organic nitrogen by 
bacteria 

      1 -1  

22. Ammonification of 
soluble organic nitrogen by 
fungi 

      1 -1  

23. Hydrolysis of entrapped 
organics by bacteria 

         

24. Hydrolysis of entrapped 
organics by fungi 

         

25. Hydrolysis of entrapped 
organic nitrogen 

       1 -1 
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  19  

 Process Salk Process rate (M L-3 T-1) 

Nitric oxidizing 
bacteria 

14. Aerobic growth of 
nitric oxidizing bacteria 

−iXB
14

 μNOB (
SFNA

KFNA + SFNA + SFNA
2 KI9FNA⁄

)(
SO

KO,A + SO
)(

KIFNA
KIFNA + SFNA

) (
SNH

KNH + SNH
) (

Salk
Kalk + Salk

)XNOBf 

Reduction of 
nitrate to 
ammonia 

15. Assimilative nitrate 
reduction to nitrite 

 
1.2 ∙ iXB (

SNO3
K6NO3 + SNO3

)(
KINH

KINH + SNH
) (

KI6NO2
KI6NO2 + SNO2

)(∑Ri

13

i=1

− R21 − R22) 

16. Assimilate nitrate 
reduction to ammonia 

1

14
 1.2 ∙ iXB (

SNO2
K7NO2 + SNO2

) (
KINH

KINH + SNH
)(∑Ri

13

i=1

− R21 − R22) 

Decay 17. Decay of 
heterotrophic bacteria 

 bHBXHB 

18. Decay of 
heterotrophic fungi 

 bHFXHF 

19. Decay of AOBs  bAOBXAOB 

20. Decay of NOBs  bNOBXNOB 

Ammonificatio
n/hydrolysis 

21. Ammonification of 
soluble organic 
nitrogen by bacteria 

1

14
 

kA,HBSNDXHB 

22. Ammonification of 
soluble organic 
nitrogen by fungi 

1

14
 

kA,HBSNDXHF 

23. Hydrolysis of 
entrapped organics by 
bacteria 

 
kh(T)

XS XHB⁄

KX,HB + (XS XHB⁄ )
[(

SO
KO + SO

) + ηh (
KO

KO + SO
) (

∑SNOX
KNO3 + ∑SNOX

)] XHB 

24. Hydrolysis of 
entrapped organics by 
fungi 

 
kh(T)

XS XHF⁄

KX,HF + (XS XHF⁄ )
[(

SO
KO + SO

) + ηh (
KO

KO + SO
)(

∑ SNOX
KNO3 +∑SNOX

)] XHF 

25. Hydrolysis of 
entrapped organic 
nitrogen 

 (R23 + R24)(
XND
XS

) 
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Appendix D: Initial range of parameters for the Monte 

Carlo simulation (step 1) (chapter 5). 

Table D.1 Parameter range for the Monte Carlo in step 1. 

 

 

 

 Parameter Min Max 

Growth rates 𝛍𝐇𝐁 0 50 

𝛍𝐀𝐎𝐁 0 50 

𝛍𝐍𝐎𝐁 0 50 

Half-saturation 

coefficients 

𝐊𝐬 0 200 

𝐊𝐍𝐇 0 5 

𝐊𝐒𝟓 0 200 

𝐊𝐎𝐇 0 0.1 

𝐊𝐍𝐎𝟑 0 0.1 

𝐊𝟏𝟓𝐍𝐎𝟑 0 0.1 

𝐊𝐍𝐎𝟐 0 0.1 

𝐊𝟏𝟔𝐍𝐎𝟐 0 0.1 

𝐊𝐍𝐎 0 0.1 

𝐊𝐍𝟐𝐎 0 0.1 

𝐊𝐅𝐀 0 0.1 

𝐊𝐅𝐍𝐀 0 0.1 

𝐊𝐎𝐀 0 0.1 

𝐊𝐎𝐍 0 0.1 

𝐊𝐗 0 1 

Inhibition 

coefficients 

𝐊𝐈𝟑𝐍𝐎 0 0.1 

𝐊𝐈𝟒𝐍𝐎 0 0.1 

𝐊𝐈𝟓𝐍𝐎 0 0.1 

𝐊𝐈𝟏𝟓𝐍𝐎𝟐 0 0.1 

𝐊𝐈𝐍𝐇 0 0.1 

𝐊𝐈𝟏𝟏𝐅𝐀 0 0.1 

𝐊𝐈𝟏𝟒𝐅𝐀 0 0.1 

𝐊𝐈𝟏𝟏𝐅𝐍𝐀 0 0.1 

𝐊𝐈𝟏𝟒𝐅𝐍𝐀 0 0.1 

Anoxic adjustment 

factors 

𝛈𝐲 0 1 

𝛈𝐍𝐎𝟑 0 1 

𝛈𝐍𝐎𝟐 0 1 

𝛈𝐍𝐎 0 1 

𝛈𝐍𝟐𝐎 0 1 

𝛈𝐇 0 1 

𝛈𝐀𝐎𝐁 0 1 

Decay coefficients 𝐛𝐇𝐁 0 5 

𝐛𝐀𝐎𝐁 0 5 

𝐛𝐍𝐎𝐁 0 5 

Hydrolysis and 

ammonification  

𝐤𝐇,𝐇𝐁, 𝐤𝐚,𝐇𝐁 0 5 

Heat generation 𝚫𝐇𝐒 0 20000 
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Appendix E: Parameters of the comprehensive 

composting model used during validation (chapter 5). 

Table E.1 Parameters used during validation of the comprehensive model of chapter 5. 

Type Variable Description Units Value Reference 

 

 

 

 

 

 

 

 

Biomass yields 

YHB Yield coefficient 

heterotrophic 

bacteria 

g cell TOC 

formed/g TOC 

oxidized 

0.667 adapted from 

ASM/Hiatt and 

Grady (2008) 

YHF Yield coefficient 

heterotrophic fungi 

g cell TOC 

formed/g TOC 

oxidized 

 

0.667 

adapted from 

ASM/Hiatt and 

Grady (2008) 

YAOB Yield coefficient 

AOB 

g cell TOC 

formed/g N 

oxidized 

0.48 adapted from 

ASM/Hiatt and 

Grady (2008) 

YNOB Yield coefficient 

NOB 

g cell TOC 

formed/g N 

oxidized 

0.06 adapted from 

ASM/Hiatt and 

Grady (2008) 

fp Fraction of 

biomass going to 

inert products 

- 0.08 ASM/Hiatt and 

Grady (2008) 

iXB Nitrogen content 

of active biomass 

g N/g cell TOC 0.032 adapted from 

ASM/Hiatt and 

Grady (2008) 

iXP Nitrogen content 

of biomass debris 

g N/g debris 

TOC 

0.022 adapted from 

ASM/Hiatt and 

Grady (2008) 

 

 

CO2, CH4 and 

NH3   

YCO2  CO2 yield 

coefficient 

kg CO2/kg O2 1.375 Stoichiometry  

KPC
H  Henry constant atm L mol-1 0.04 Sommer et al. 

(2006) 

R Gas constant L Pa mol-1 K-1 8.31E3 Known property 

 

 

 

 

Energy balance 

ΔHS Biological heat 

generation 

coefficient 

kJ/kg O2 

consumed 

14000 Finstein (1986) (see 

chapter 2) 

Hi Inlet enthalpy kJ/kg of air - Calculated 

Ho Outlet enthalpy kJ/kg of air - Calculated 

U Global heat 

transfer coefficient 

kW (m2 °C)-1 0.05 Known/measured 

/assumed 

c Heat capacity of 

the substrate 

kJ (kg °C)-1 1.9 Known/measured 

/assumed 
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Mass transfer 

YH2O Metabolic yield of 

water 

kg H2O 

produced/kg O2 

consumed 

0.84 Hénon (2008) 

𝜌𝐷𝑀 Dry bulk density of 

the substrate 

kg/m3 600 Measured/Assumed 

𝜌𝑎 Density of air kg/m3 1.225 Known property 

ε Porosity of the bed - 0.4 Measured/Assumed 
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Appendix F: Continuity check on the comprehensive 

composting model (chapter 5) 

Table F.1 For a model using chemical oxygen demand (COD) inputs: equivalences of the 

various model fractions for COD, nitrogen, and charge (alkalinity).  

 

 COD Nitrogen (N) Charge (HCO3
-) 

SI 1 0 0 

SS 1 0 0 

XI 1 0 0 

XI 1 0 0 

XHB 1 0.086 0 

XHF 1 0.086 0 

XAOB 1 0.086 0 

XNOB 1 0.086 0 

XDP 1 0.06 0 

SO -1 0 0 

SNO3 -4.57 1 -0.071 

SNO2 -3.43 1 -0.071 

SNO -2.86 1 -0.071 

SN2O -2.29 1 -0.071 

SN2 -1.72 1 -0.071 

SNH 0 1 0.071 

SND 0 1 0 

XND 0 1 0 

Salk 0 0 -1 
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Table F.2 For a model using total organic carbon (TOC) inputs: equivalences of the various 

model fractions for TOC, nitrogen, and charge (alkalinity).  

 

 TOC Nitrogen (N) Charge (HCO3
-) 

SI 0.373 0 0 

SS 0.373 0 0 

XI 0.373 0 0 

XI 0.373 0 0 

XHB 0.373 0.032 0 

XHF 0.373 0.032 0 

XAOB 0.373 0.032 0 

XNOB 0.373 0.032 0 

XDP 0.373 0.023 0 

SO -0.373 0 0 

SNO3 -1.705 0.373 -0.027 

SNO2 -1.279 0.373 -0.027 

SNO -1.067 0.373 -0.027 

SN2O -0.854 0.373 -0.027 

SN2 -0.642 0.373 -0.027 

SNH 0 0.373 0.027 

SND 0 0.373 0 

XND 0 0.373 0 

Salk 0 0 -0.373 
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Table F.3 Continuity check on the comprehensive model. 

  1 2 3 4 5 6 7 8 9 10 11 12 

 Process SI SS XI XS XHB XFH XAOB XNOB XDP SO SNO3 SNO2 

Bacteria 1. Aerobic 
growth of HB 

 -1.4993   1     -0.49925   

2. Anoxic growth 
of HB on nitrate 

 -1.6658   1      -0.58253 0.58253 

3. Anoxic growth 
of HB on nitrite 

 -1.6658   1       -1.16608 

4. Anoxic growth 
of HB on nitric 
oxide 

 -1.6658   1        

5. Anoxic growth 
of HB on nitrous 
oxide 

 -1.6658   1        

Fungi 6. Aerobic 
growth of HF 

 -1.4993    1    -0.49925   

7. Anoxic growth 
of HF on nitrate 

 -1.6658    1     -0.58253 0.58253 

8. Anoxic growth 
of HF on nitrite 

 -1.6658    1      -1.16608 

9. Anoxic growth 
of HF on nitric 
oxide 

 -1.6658    1       

10. Anoxic 
growth of HF on 
nitrous oxide 

 -1.6658    1       

Ammonia 
oxidizing 
bacteria 

11. Aerobic 
growth of AOBs 

      1   -
18.05556 

 5.55555 

12. AOB 
denitrification of 
NO2 

 -0.57          -1 

13. AOB 
denitrification of 
N2O 

 -0.57           
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  13 14 15 16 17 18 19 Continuity on 

 Process SNO SN2O SN2 SNH SND XND Salk C N Charge 

Bacteria 1. Aerobic 
growth of HB 

   -0.086   -0.00614 -5.55E-17 -7.8E-5 1.35E-5 

2. Anoxic growth 
of HB on nitrate 

   -0.086   -0.00614 -6.52E-4 7.8E-5 1.35E-5 

3. Anoxic growth 
of HB on nitrite 

1.16608   -0.086   -0.00614 -4.35E-4 7.8E-5 1.35E-5 

4. Anoxic growth 
of HB on nitric 
oxide 

-1.16608 1.16608  -0.086   -0.00614 -4.35E-4 7.8E-5 1.35E-5 

5. Anoxic growth 
of HB on nitrous 
oxide 

 -1.16608 1.6608 -0.086   -0.00614 -4.35E-4 7.8E-5 1.35E-5 

Fungi 6. Aerobic 
growth of HF 

   -0.086   -0.00614 -5.55E-17 7.8E-5 1.35E-5 

7. Anoxic growth 
of HF on nitrate 

   -0.086   -0.00614 -6.52E-4 7.8E-5 1.35E-5 

8. Anoxic growth 
of HF on nitrite 

   -0.086   -0.00614 -4.35E-4 7.8E-5 1.35E-5 

9. Anoxic growth 
of HF on nitric 
oxide 

   -0.086   -0.00614 -4.35E-4 7.8E-5 1.35E-5 

10. Anoxic 
growth of HF on 
nitrous oxide 

   -0.086   -0.00614 -4.35E-4 7.8E-5 1.35E-5 

Ammonia 
oxidizing 
bacteria 

11. Aerobic 
growth of AOBs 

   -5.6416   -0.79979 8.88E-16 7.8E-5 9.29E-5 

12. AOB 
denitrification of 
NO2 

1       2.22E-16 0 0 

13. AOB 
denitrification of 
N2O 

-1 1      -1.11E-16 0 0 
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  1 2 3 4 5 6 7 8 9 10 11 

 Process SI SS XI XS XHB XFH XAOB XNOB XDP SO SNO3 

Nitric 
oxidizing 
bacteria 

14. Aerobic growth 
of nitric oxidizing 
bacteria 

       1  -18 16.6666
7 

Reductio
n of 
nitrate to 
ammonia 

15. Assimilative 
nitrate reduction to 
nitrite 

 -1.14         -1 

16. Assimilate 
nitrate reduction to 
ammonia 

 -3.43          

Decay 17. Decay of 
heterotrophic 
bacteria 

   0.92 -1    0.08   

18. Decay of 
heterotrophic fungi 

   0.92  -1   0.08   

19. Decay of AOBs    0.92   -1  0.08   

20. Decay of NOBs    0.92    -1 0.08   

Ammonifi
cation/hy
drolysis 

21. Ammonification 
of soluble organic 
nitrogen by bacteria 

           

22. Ammonification 
of soluble organic 
nitrogen by fungi 

           

23. Hydrolysis of 
entrapped organics 
by bacteria 

 1  -1        

24. Hydrolysis of 
entrapped organics 
by fungi 

 1  -1        

25. Hydrolysis of 
entrapped organic 
nitrogen 
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  12 13 14 15 16 17 18 19 Continuity on 

 Process SNO2 SNO SN2O SN2 SNH SND XND Salk C N Charge 

Nitric 
oxidizing 
bacteria 

14. Aerobic growth 
of nitric oxidizing 
bacteria 

16.66667    -0.086   -0.00614 0 -7.8E-5 1.35E-5 

Reductio
n of 
nitrate to 
ammonia 

15. Assimilative 
nitrate reduction to 
nitrite 

-1 1       0 0 0 

16. Assimilate 
nitrate reduction to 
ammonia 

 -1   1   0.14286 2.20E-16 0 -1.43E-5 

Decay 17. Decay of 
heterotrophic 
bacteria 

      0.0812  2.43E-17 8.76E-5 0 

18. Decay of 
heterotrophic fungi 

      0.0812  2.43E-17 8.76E-5 0 

19. Decay of AOBs       0.0812  2.43E-17 8.76E-5 0 

20. Decay of NOBs       0.0812  2.43E-17 8.76E-5 0 

Ammonifi
cation/hy
drolysis 

21. Ammonification 
of soluble organic 
nitrogen by bacteria 

    1 -1  0.07143 0 0 -1.57E-4 

22. Ammonification 
of soluble organic 
nitrogen by fungi 

    1 -1  0.07143 0 0 -1.57E-4 

23. Hydrolysis of 
entrapped organics 
by bacteria 

        0 0 0 

24. Hydrolysis of 
entrapped organics 
by fungi 

        0 0 0 

25. Hydrolysis of 
entrapped organic 
nitrogen 

     1 -1  0 0 0 
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• Vaneeckhaute C, Walling E, Rivest S, Belia E, Chartrand I, Fortin F, Mostafavi M. (2021). 
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Book chapters: 

 

• Walling E, Moerman W, Verstraete W, Vaneeckhaute C. (2021) Resource recovery from 

industrial wastewater: What and how much is there? In Resource Recovery from Water: 

Principles and Application. IWA publishing.  
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• Walling E, Babin A, Vaneeckhaute, C. (2019). Nutrient and Carbon Recovery from Organic 

Wastes. In Biorefinery (pp. 351-373). Springer, Cham. 
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