58,214 research outputs found

    Fuzzy Least Squares Twin Support Vector Machines

    Full text link
    Least Squares Twin Support Vector Machine (LST-SVM) has been shown to be an efficient and fast algorithm for binary classification. It combines the operating principles of Least Squares SVM (LS-SVM) and Twin SVM (T-SVM); it constructs two non-parallel hyperplanes (as in T-SVM) by solving two systems of linear equations (as in LS-SVM). Despite its efficiency, LST-SVM is still unable to cope with two features of real-world problems. First, in many real-world applications, labels of samples are not deterministic; they come naturally with their associated membership degrees. Second, samples in real-world applications may not be equally important and their importance degrees affect the classification. In this paper, we propose Fuzzy LST-SVM (FLST-SVM) to deal with these two characteristics of real-world data. Two models are introduced for FLST-SVM: the first model builds up crisp hyperplanes using training samples and their corresponding membership degrees. The second model, on the other hand, constructs fuzzy hyperplanes using training samples and their membership degrees. Numerical evaluation of the proposed method with synthetic and real datasets demonstrate significant improvement in the classification accuracy of FLST-SVM when compared to well-known existing versions of SVM

    Evaluation of fuzzy inference systems using fuzzy least squares

    Get PDF
    Efforts to develop evaluation methods for fuzzy inference systems which are not based on crisp, quantitative data or processes (i.e., where the phenomenon the system is built to describe or control is inherently fuzzy) are just beginning. This paper suggests that the method of fuzzy least squares can be used to perform such evaluations. Regressing the desired outputs onto the inferred outputs can provide both global and local measures of success. The global measures have some value in an absolute sense, but they are particularly useful when competing solutions (e.g., different numbers of rules, different fuzzy input partitions) are being compared. The local measure described here can be used to identify specific areas of poor fit where special measures (e.g., the use of emphatic or suppressive rules) can be applied. Several examples are discussed which illustrate the applicability of the method as an evaluation tool

    Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering

    Get PDF
    Let Q be a given n×n square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n×K fuzzy memberships matrix P is found by least-squares approximation of the off-diagonal elements of Q by inner products of rows of P. By contrast, kernelized fuzzy c-means is not least-squares and requires an additional fuzziness parameter. The aim is to popularize additive fuzzy clustering by interpreting it as a latent class model, whereby the elements of Q are modeled as the probability that two individuals share the same class on the basis of the assignment probability matrix P. Two new algorithms are provided, a brute force genetic algorithm (differential evolution) and an iterative row-wise quadratic programming algorithm of which the latter is the more effective. Simulations showed that (1) the method usually has a unique solution, except in special cases, (2) both algorithms reached this solution from random restarts and (3) the number of clusters can be well estimated by AIC. Additive fuzzy clustering is computationally efficient and combines attractive features of both the vector model and the cluster mode

    On Fuzzy Regression Adapting Partial Least Squares

    Get PDF
    Partial Least Squared (PLS) regression is a model linking a dependent variable y to a set of X (numerical or categorical) explanatory variables. It can be obtained as a series of simple and multiple regressions of simple and multiple regressions. PLS is an alternative to classical regression model when there are many variables or the variables are correlated. On the other hand, an alternative method to regression in order to model data has been studied is called Fuzzy Linear Regression (FLR). FLR is one of the modelling techniques based on fuzzy set theory. It is applied to many diversified areas such as engineering, biology, finance and so on. Development of FLR follows mainly two paths. One of which depends on improving the parameter estimation methods. This enables to compute more reliable and more accurate parameter estimation in fuzzy setting. Second of which is related to applying these methods to data, which usually do not follow strict assumptions. The application point of view of FLR has not been examined widely except outlier case. For example, it has not been widely examined how FLR behaves under the multivariate case. To overcome such a problem in classic setting, one of the methods that are practically useful is PLS. In this paper, FLR is examined based on application point of view when it has several explanatory variables by adapting PLS

    Separated antecedent and consequent learning for Takagi-Sugeno fuzzy systems

    Get PDF
    In this paper a new algorithm for the learning of Takagi-Sugeno fuzzy systems is introduced. In the algorithm different learning techniques are applied for the antecedent and the consequent parameters of the fuzzy system. We propose a hybrid method for the antecedent parameters learning based on the combination of the Bacterial Evolutionary Algorithm (BEA) and the Levenberg-Marquardt (LM) method. For the linear parameters in fuzzy systems appearing in the rule consequents the Least Squares (LS) and the Recursive Least Squares (RLS) techniques are applied, which will lead to a global optimal solution of linear parameter vectors in the least squares sense. Therefore a better performance can be guaranteed than with a complete learning by BEA and LM. The paper is concluded by evaluation results based on high-dimensional test data. These evaluation results compare the new method with some conventional fuzzy training methods with respect to approximation accuracy and model complexity

    Fruit production forecasting by neuro-fuzzy techniques

    Get PDF
    Neuro-fuzzy techniques are finding a practical application in many fields such as in model identification and forecasting of linear and non-linear systems. This paper presents a neuro-fuzzy model for forecasting the fruit production of some agriculture products (olives, lemons, oranges, cherries and pistachios). The model utilizes a time series of yearly data. The fruit forecasting is based on Adaptive Neural Fuzzy Inference System (ANFIS). ANFIS uses a combination of the least-squares method and the backprobagation gradient descent method to estimate the optimal food forecast parameters for each year. The results are compared to those of an Autoregressive (AR) model and an Autoregressive Moving Average model (ARMA).Fruit forecasting, neuro-fuzzy, ANFIS, AR, ARMA, forecasting, fruit production, Agricultural Finance, Crop Production/Industries,

    An Extended Kalman Filter (EKF) Approach on Fuzzy System Optimization Problem

    Get PDF
    Optimizing the membership functions of a fuzzy system can be viewed as a system identification problem for a nonlinear dynamic system. Basically, we can view the optimization of fuzzy membership functions as a weighted least-squares minimization problem, where the error vector is the difference between the fuzzy system outputs and the target values for those outputs. The extended Kalman filter algorithm is a good choice to solve this system identification problem, not only because it is a derivative-based algorithm that is suitable to solve the weighted least-squares minimization problem, but also because of its appealing predictor-corrector feature for nonlinear system model. In this paper, we present an extended Kalman filter approach to optimize the membership functions of the inputs and outputs of the fuzzy controller. The effect of the measurement noise covariance R on the convergence of the fuzzy controller is also investigated. Experimental results show that the optimized fuzzy controller achieves significant improvement on performance. In addition, the smaller the measurement noise covariance R is, the faster the optimized fuzzy controller would converge

    Fuzzy Modeling and Parallel Distributed Compensation for Aircraft Flight Control from Simulated Flight Data

    Get PDF
    A method is described that combines fuzzy system identification techniques with Parallel Distributed Compensation (PDC) to develop nonlinear control methods for aircraft using minimal a priori knowledge, as part of NASAs Learn-to-Fly initiative. A fuzzy model was generated with simulated flight data, and consisted of a weighted average of multiple linear time invariant state-space cells having parameters estimated using the equation-error approach and a least-squares estimator. A compensator was designed for each subsystem using Linear Matrix Inequalities (LMI) to guarantee closed-loop stability and performance requirements. This approach is demonstrated using simulated flight data to automatically develop a fuzzy model and design control laws for a simplified longitudinal approximation of the F-16 nonlinear flight dynamics simulation. Results include a comparison of flight data with the estimated fuzzy models and simulations that illustrate the feasibility and utility of the combined fuzzy modeling and control approach
    • …
    corecore