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EVALUATION OF FUZZY INFERENCE SYSTEMS USING FUZZY LEAST SQUARES

Joseph M. Barone
Loki Software, Inc.

P.O. Box 71
Liberty Corner, NJ 07938 USA

SUMMARY
^

Efforts to develop evaluation methods for fuzzy inference systems which are not based on crisp, quantitative data
or processes (i.e., where the phenomenon the system is built to describe or control is inherently fuzzy) are just
beginning. This paper suggests that the method of fuzzy least squares can be used to perform such evaluations.
Regressing the desired outputs onto the inferred outputs can provide both global and local measures of success.
The global measures have some value in an absolute sense but are particularly useful when competing solutions
(e.g., different numbers of rules, different fuzzy input partitions) are being compared. The local measure
described here can be used to identify specific areas of poor fit where special measures (e.g. the use of emphatic
or suppressive rules) can be applied. Several examples are discussed which illustrate the applicability of the
method as an evaluation tool.

INTRODUCTION

Smith and Comer [1] point out that evaluation of the behavior of a fuzzy system can be quite difficult. They also
mention (p. 20) that the qualitative knowledge of the controller designer is more suited to accurate specification of
the antecedent portions of the control rules that to accurate specification of the consequent portions. This is
because (presumably and at least in part) the role of the input variables in system dynamics is more easily
understood in general, and also because the input variables are often more directly and more easily expressible in
fuzzy (linguistic) terms (e.g., temperature as high, medium, and low). This is perhaps even more true in "softer"
areas like psychology and sociology, where "harder" inputs like age and socioeconomic status are used to control
(predict) softer outputs like behavior or risk (for interesting comments along these lines in the context of fuzzy
classification see [2]). In fact, the very foundations of some methods of analysis and prediction used in these soft
areas, especially classical least squares, are predicated upon input variables whose values are assumed to be error-
free measurable (see e.g. [3], Section 1.1).

Methods for the evaluation and tuning of fuzzy systems do not really challenge this assumption; they typically
assume that the designer has the input distributions about right and then adjust formal "parameters" of the
inference mechanism to improve controller performance. Again, this works well in hard areas but should prove
difficult to apply in em|fging softer applications where there is no aspect of the inference process that can be
trusted completely. It becomes important, therefore, in soft applications, to have some way of evaluating the
accuracy and effectiveness of a fuzzy inference system which assumes as little as possible about the validity of the
rules, and even of their essential characteristics, beyond the linguistic properties they express. Furthermore, there
may often be no real way of knowing whether interpolated consequent fuzzy values (values not supplied directly
by an expert) are accurate to the point where they can serve to confirm the chosen system and parameters. It
should prove useful, therefore, to have available methods which can provide overall evaluation measures given
certain assumptions about the structure and regularity of the output (consequent) fuzzy distributions.

Perhaps the most well-characterized and formalized methods for the evaluation and tuning of fuzzy controllers are
those based on the concept of cell mapping [1, 4-5]. Nonetheless, the application of cell mapping to evaluation
and tuning depends crucially on the existence of sufficient crisp input-output pairs to generate the cell maps
(actually, this is a bit of an oversimplification - see [5], pp. 749-750), and also provides no real way to
distinguish between competing fuzzifications of the input state space (unless of course the fuzzification is so bad
that tuning is impossible). This paper suggests that an evaluation based on fuzzy least squares can indeed
distinguish between competing input state space fuzzifications and can be used (quite easily) in cases where
neither the input nor the output is readily defuzzifiable.
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FUZZY LEAST SQUARES

The method of fuzzy least squares was introduced by Diamond [6] as an approach to the fuzzy regression
problem, i.e. as a method for parameterizing the relationship between two sets of fuzzy numbers; its advantage
over other techniques (besides computational simplicity), as Diamond points out, is the amenability of the
parameterization to evaluation by standard measures, e.g., examination of residuals. For the purpose at hand, it is
particularly important that the spatial geometry of the fuzzy least squares method be understood; to accomplish
this goal, we turn briefly to crisp models.

Basically, the solutions to linear parameter estimation problems as well as their computational simplicity depend
heavily on assumptions regarding which measurements may be considered to be error-free and which
measurements may not. If either the independent or the dependent variable measurements are taken to be error-
free, then ordinary least squares may reasonably be applied to the data. In such cases, the error (residual) vectors
are orthogonal to the axis (or axes) along which the error-free values are measured. If, on the other hand, both
dependent and independent variable measurements must be assumed to be made with error, the parameter
estimation problem becomes considerably more difficult (even analytically intractable in the general case). In any
case, if a solution can be generated, the error vectors will be orthogonal to the fitted line itself (the first chapter of
[3] contains an excellent summary and relevant examples).

In extreme cases, especially those in which the data points are contaminated by outliers, the differences in the
various solutions may be striking, as is illustrated in the figure below (from [7]). If the x coordinates are assumed
to be error-free and a line is fitted by the method suggested in [7] (not ordinary least squares but equivalent for
the present purpose), then errors orthogonal to the x axis are minimized by a fitted line which passes through the
outlier (the point at 0,0). This is clearly a most undesirable solution. If both the x and y coordinates are assumed
to contain errors, on the other hand, (even isotropic ones), the method yields a much more reasonable fitted line
(the one parallel to the y axis).
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To return to fuzzy considerations, the point is that the method of fuzzy least squares, despite its "ordinary least
squares" character, is more closely related (in spirit, as it were) to fitting (regression) approaches in which both
dependent and variables are measured with error. It should be emphasized, however, that this is not true from a
purely analytic point of view. Once a distance metric is decided upon, and once the hypergeometric characteristics
of the set of triangular fuzzy numbers are established, the fuzzy least squares parameter vector is derived by an
orthogonal projection of the dependent variable vector onto the "cone" of potential solutions exactly as in ordinary
least squares (Diamond's paper [6], pp. 142-146 contains an elegant exposition of these facts, and section 2.3 of
[3] contains highly instructive comments and diagrams in a crisp context). Thus, from an analytical point of view,
though both the independent and dependent variable vectors are fuzzy, one is assumed to be measured without
error while the other is not.
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From another point of view, however, fuzzy least squares is more tike a "total least squares" approach [3] in
which both the dependent and independent vectors (or matrices) are assumed to be measured with errors. This is
because the fuzzy least squares method, with its two separate spatial components (mode and spread), permits the
search for a solution vector to move about a more complex (and hence more flexible) space (in effect, of course,
since the solution is derived analytically). The result of this is that fuzzy least squares can preserve an extremely
good fit in fuzziness even if, for some reason, one or more values in the data are outliers relative to mode. Since
the fuzziness of the dependent and independent variables, taken together, are a measure of the overall uncertainty
of the system, this characteristic has the effect of preserving the degree of overall uncertainty in a manner similar
to total least squares methods.

FUZZY LEAST SQUARES AND FUZZY INFERENCE

It would surely be instructive to pursue the analogy between fuzzy least squares and total least squares further and
more formally, but that would take us far beyond the scope of this paper. It is worth mentioning, though, by way
of leaving the previous topic and beginning the current one, that Diamond's fuzzy least squares minimization
condition (1) could conceivably be replaced to good effect by (2), where minimization of the square of the
distances between the measured (Yj) and calculated (E + bX;) is replaced by minimization of some scalar norm of

the "total error" matrix ([.]) and where XQ is the unobservable "true" vector of fuzzy predictors (see [3], p. 186

and p. 23). If the Frobenius norm were

( E + bX ±l Y ±)2 ( 1 )

F ( E , b , X Q ) = ( d ( X , X 0 ) ; d ( E + b X , Y ) ] (2)

used, a solution to (2) would be equivalent to a solution of the "fuzzy total least squares" minimization function
(cf. [3], p. 186).

Be all of this as it may, it seems fair to conclude that fuzzy least squares is a relatively "robust" form of regression
which is eminently suitable for parameterizing the relationship between two n-dimensional fuzzy vectors with
elements of regular shape (at least triangular and trapezoidal [6]). The vectors being compared do not necessarily
have to be particularly "linear", though they must at least be "coherent" ([6], pp. 150-151); vectors produced as
result of fuzzy inference are as likely to be coherent as not, one would imagine, but the condition is easily tested
for [6], so inference systems which do not produce coherent output should simply not be subjected to the
evaluation procedures suggested here.

Fuzzy least squares, then, forms the basis for a simple evaluation technique for fuzzy inference systems. Given
two possible solutions, regress the known (fuzzy) output (the "correct" values) on the output fuzzy sets generated
by the two inference processes. Compare the two solutions via any of many available evaluation methods, and
keep the one which evaluates higher. Certain evaluation methods may even suggest ways in which the better
solution can be improved. Space does not permit further general discussion, so we conclude by introducing a few
evaluation measures and by providing examples of their use. It is worth noting at this point that the calculations
needed to perform fuzzy least squares and to compute the evaluation measures are straightforward and can be
performed with minimal computational overhead. It is also worth noting that it is may be possible to extend the
domain of this method to inference systems which do not produce fuzzy "numerical" output by "fitting" fuzzy
numbers over the fuzzy sets by linear interpolation as is done in fuzzy modeling (see, e.g. [8]), but this matter
will not be pursued here.

EVALUATION MEASURES

1. GLOBAL MEASURES. The most obvious global measure of success are the least squares residuals. A related
value which varies conveniently between 0 (no correlation) and 1 (perfect correlation) is the correlation
coefficient. For generality, we define (see [9], p.280) the fuzzy multiple correlation coefficient (MCC) as
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_ I ( E + bX .,Y ) \L
M C C = ( =r^ ) ( 3 )

Z ^ (i^, y )

where d again is the distance between two fuzzy numbers [6] and where Y is the mean dependent fuzzy value,
even though all examples in this paper are univariate and extensions to the multivariate case are non-trivial ([6], p.
156).

Another useful global measure of success is the relative entropy of the fuzzy least squares solution as defined in
[10]. This form of relative entropy is a measure of the success of the regression "line" in tracking the fuzziness of
the elements of the dependent variable vector. It is defined as (see [10] for a detailed description and rationale):

n ,

spread ( y y ) spread ( y y )
where v J i y ± ) = max(0. 5, min(— L£-±i ,-*: ^-^))

spread(yi) spread(yi)

and where yj is the estimated yj (i.e., E + bXj).

2. LOCAL MEASURES. The only local evaluation method discussed here will be the weighted squared
standardized distance [11-12]. In the univariate case, the WSSD can be written as:

(n - l)b2.d(Xi,X)2
WSSD± = „' i' (5)

S>l"<^'r>

where X and Y are the X and Y means

where b is the regression coefficient, and where d again is the fuzzy distance. In ordinary least squares regression,
the magnitude of WSSDj is used to determine whether or not point i is a "high-leverage point", i.e., a point in a
sparse region of the X-space (see, e.g.', [12], pp. 94 ff.). We are interested here in the WSSD because a fuzzy
inference tends to produce similar or identical output when the inference mechanism operates near the centers of
the involved fuzzy sets and to produce rapidly changing output as the inference mechanism operates near areas of
overlap (and thus near areas of heavy interpolation). A good inference mechanism should produce transitional
areas in its output which correspond to areas of overlap in the output data partition. Thus, the output vector
produced by a fuzzy inference should have clusters of similar or identical values which match the reference values
near the centers of the elements of the output reference partition, and rapid changes in value which match the
reference values in and near the overlap areas of the output reference partition. This phenomenon will produce
clusters of points with similar or identical leverage in the regression followed by points with unique leverage
values (at the transitional areas). In a good model, then, the clusters and transitions in WSSD values will line up
nicely with the centers and overlap areas of the output reference partition respectively.

A NOTE ON "PffiCEWISE" APPROXIMATIONS

It is important to note that this paper is not suggesting that fuzzy least squares is to be used to construct an
accurate "piecewise" approximation to some unknown "functional relationship" between input and output fuzzy
sets. To understand better what is being suggested, consider a fuzzy Lagrangian interpolation polynomial which
relates the true output fuzzy sets and the ones generated by the inference (as in [13] with n+1 fuzzy points). As
with crisp Lagrangian interpolation, such a polynomial could be used, for instance, to compute error bounds
(using contour integrals in the complex plane [14]) if we knew the "true" functional relationship between the
actual output fuzzy sets and the generated ones; such a relationship may not exist, of course, in the general case
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and in the usual sense of the word functional, but would in any event depend on the accuracy of the inference
process as an interpolator and "smoother". The least squares regression line, then, serves in this context as a crude
continuous approximation to some presumably nonlinear and possibly unrecoverable "difference" function.

EXAMPLES

All of the examples discussed here are based on examples from Cao and Kandel [15]. Since their examples are
based on crisp input and output (rotational speed of a d.c. series motor as a function of input current), the output
was "refuzzified" as described below so that fuzzy regression could be applied. The data sets in our examples,
therefore, are not "inherently" fuzzy, but they do have the advantage of being associated with thoroughly
analyzed models which are easy to evaluate for accuracy (in a crisp sense). Note also that as was mentioned
earlier, the notion of "reshaping" the output of a fuzzy inference process so that it can be analyzed by fuzzy least
squares is not an unreasonable one, though of course for useful application it would require more elaborate
methods than the one used here.

1. The "model" curve of Example 7 in [15] is a connected piecewise linear curve of five segments with overall
rising trend. The model curve is "covered" by the five overlapping fuzzy sets shown in Figure 1. Assuming that
this consequent set representation is reasonable, the fuzziest areas of coverage (i.e., the areas of maximal overlap)
are those around the output values 800, 1400, and 1800 (800 because the rules do not reference the second set
(SMALL)). Ideally, the inference system should map the corresponding input values (1.0, 3.0, and 7.0) into these
same transition areas. Cao and Kandel cover the input range by six overlapping fuzzy sets; we use the WSSD,
MCC, and relative entropy to compare their six input set partition with a four input set partition and an eight
input set partition. The rules in the four and eight input set cases are adjusted to conform insofar as is possible
with the content of Cao and Kandel's original (six input set) rules. The crisp output data and the crisp inferred
output data were fuzzified by using 10%, 15%, or 20% of the mode as the left and right spreads, increasing the
percentage as the numbers got larger; in this manner, a reasonably coherent output data set and inferred output
data set were constructed. The rules themselves are as follows (in each case the input domain is distributed equally
among the component sets):

NULL-> ZERO
ZERO-SMALL -> MEDIUM
SM ALL-MEDIUM -> LARGE
LARGE -> VERY LARGE

NULL-> ZERO
ZERO-> MEDIUM
SMALL-> LARGE
MEDIUM -> LARGE
LARGE -> VERY LARGE
VERY LARGE -> VERY LARGE

NULL-> ZERO
ZERO-> MEDIUM
ZERO-SMALL -> MEDIUM
SMALL -> LARGE
SMALL-MEDIUM -> LARGE
MEDIUM-LARGE -> VERY LARGE
LARGE - > VERY LARGE
VERY-LARGE -> VERY LARGE

As Table 1 shows, good results were obtained when the fuzzified inferred values were regressed on the fuzzified
output data (the table shows only the crisp values, i.e., the modes of the fuzzified values). The transition points
match nicely, the MCC is high, and the relative entropy is low (of course, the MCC and entropy values are most
meaningful when compared with other prospective solutions). When only four antecedent sets are used, however,
the results suffer dramatically. The transition points miss the mark by a considerable margin, the MCC is lower,
and the relative entropy is higher. With eight antecedent sets results are better but still not as good as with six (it
is important to note here that overlap was retained at 50%). If one had started with the four or eight set inference
machine, the lack of matchups in the transition areas would have been a clue that the results could be improved
upon. It is worth noting that the relative magnitudes of the fuzzy constants are a decent guide to the relative merits
of the various models. Figures 1, 2, and 3 show the distributions of the crisp output values relative to the output
set and to the covering fuzzy sets (the fuzzy partition) for the consequent portions of the inference rules; note that
only the six antecedent set solution produces distinct transition values in the vicinity of the transition regions of
the output fuzzy partition, and that this fact is reflected in the WSSD values. For details of the membership
functions, input and output data, and the rules themselves refer to [15].
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TABLE 1 : RESULTS FOR EXAMPLE 7 OF CAO and KANDEL WITH MAX/MIN
INFERENCE

ASTERISKS MARK TRANSITION POINTS

DATA

2000
1980
1960
1940
1920
1900
1800*
1700
1680
1660
1640
1620
1600
1500
1400*
1300
1200
1000
800*
600
400
MCC
R. ENT

6 ANT.
SETS
2000.0
1950.0
1900.0
1950.0
2000.0
1950.0
1700.0
1600.0
1600.0
1600.0
1600.0
1600.0
1600.0
1600.0
1400.0
1200.0
1200.0
1200.0
937.50
450.00
400.00

WSSD
FOR 6
1.1587
0.9439
0.7513
0.9439
1.1587
0.9439
0.2024*
0.0608
0.0459
0.0459
0.0459
0.0459
0.0459
0.0459
0.0446*
0.4275
0.4275
0.4275
1.4192*
4.8495
5.3181
0.9837
3.7707

4 ANT.
SETS
1600
1600
1600
1600
1600
1600
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
450
450
400
400

WSSD
FOR 4

.0105

.0106

.0106

.0106

.0106

.0106
0.0129
0.0129
0.0063
0.0063
0.0063
0.0063
0.0063
0.0063
0.0063
0.0241
0.0241
2.6917
2.6917
3.0746
3.0746
0.9411
5.8724

8 ANT.
SETS

1950
1950
2000
1950
1950
2000
1950
1600
1600
1600
1600
1600
1600
1200
1200
1200
1200
1200
1200
450
400

WSSD
FOR 8
0.8653
0.8653
1.0614
0.8653
0.8653
1.0614
0.8653*
0.0569
0.0432
0.0432
0.0432
0.0432
0.0432
0.3541
0.3541
0.3847
0.3847
0.3847
0.3847
4.3971
4.8227
0.9537
4.4829

FOR 6 ANTECEDENT SETS Y = (20.4, 3.82, 3.82) + .99X

FOR 4 ANTECEDENT SETS Y = (248.0, 40.50, 40.50) + 1.08X

FOR 8 ANTECEDENT SETS Y = (90.6, 15.32, 15.32) + .95X

SIX PUSITECEQENT F="UZZY SETS

ooo laoo 1000 aooo
CRXSR OUTPUT VR1-UES

i.oo
f=-XCS. St FOUR nrslTECEDENT RUZZY SETS

aoo iaao leoo aooo
CRXSR OUTRUT V«l_UES
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f=-XO. 3t EXOMT WMTECEDEfsIT SETS

CRISR OUTPUT VRL-LJES

2. The model curve of Example 3 in [IS] is a piecewise linear curve with two trend shifts. For this example, we
flattened the bottom and shifted the second peak left to conform with the output of an eight antecedent fuzzy set
approximation. As can be seen from the results below (and as would be expected), the eight-antecedent model
yields better statistics. Nevertheless, the six-antecedent model conforms better to the transition points (not shown,
but fairly obvious from an inspection of Figures 4 and 5). This suggests that the flattened area might be better
approximated by emphasizing the appropriate rule in the rule set [ 15] and retaining the six antecedent fuzzy sets
(note that to do this it is necessary to switch from max-min to product-sum inference - see [16]). As can be seen
from the third column of values in Table 2, this hypothesis proves correct - there is little difference between the
eight-antecedent results and the six-antecedent results with emphasis, and the six-antecedent version is truer
through the transitions. If the second peak is shifted back to its original spot, in fact, the six-antecedent version
with emphasis is better on all statistics. Note again that the magnitude of the fuzzy constant is a good indication of
the relative merits of the various models. The rules are as follows:

NULL -> VERY LARGE
ZERO-> MEDIUM
SMALL -> ZERO
MEDIUM -> MEDIUM
LARGE - > VERY LARGE
VERY LARGE -> MEDIUM

NULL-> VERY LARGE
ZERO-> MEDIUM
ZERO-SMALL-> ZERO
SMALL-> ZERO
SMALL-MEDIUM -> MEDIUM
MEDIUM- LARGE -> VERY LARGE
LARGE -> LARGE
VERY-LARGE -> MEDIUM

NULL-> VERY LARGE
ZERO - > MEDIUM
SMALL -> ZERO
(repeat above for emphasis)
(repeat above for emphasis)
MEDIUM -> MEDIUM
LARGE -> VERY LARGE
VERY-LARGE -> MEDIUM

TABLE 2: RESULTS FOR EX. 3 OF CAO AND KANDEL WITH BOTTOM FLATTENED AND ONE PEAK
SHIFTED

INFERENCE TYPE
MCC

REL. ENTROPY

6 ANT. SETS

MAX-MIN
0.896
7.68

8 ANT. SETS

MAX-MIN
0.972
4.97

6 ANT. SETS

PROD-SUM
0.969
5.76

FOR 6 ANTECEDENT SETS MM Y = 1.06X - (126.10, 16.29, 16.29)

FOR 8 ANTECEDENT SETS MM Y = (55.78, 7.85, 7.85) + 0.97X

FOR 6 ANTECEDENT SETS PS Y = (79.82, 14.16, 14.16) + 0.95X
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FIG. 4: SIX RNTECEDENT FUZZY SETS
2OOO

16OO - -

UJ 12OO

800 --

400 - - •olid line — "real" data
dotted line — max min approx.

O.O 2.0 4.0 6.0

I VRLUES

8.0 1O.O

FIG. 5: EIGHT RNTECEDENT FUZZY SETS
2000

•olid line ~ "real" data
dotted line ~ IMK m

2.O 4.0 6.0

I VRLUES

e.o 10.0

3. In this example we return to the data of Example 7 in [IS], but we add a bubble to the line at input values 2 to
3. As we emphasize the rule which raises the output values in that area (SMALL -> LARGE), first once and then
twice, we observe corresponding improvement in the results. This improvement is obvious in the figures below,
and is also tracked nicely once again by the statistics. Note that only the "double emphasis" inference creates a
transition point in WSSD values in the center of the bubble. Since the effect of emphasis is essentially to shift a
transition point toward the emphasized region, this is a sign that the input and output data sets are a good match.
As an illustration of the value of the WSSD, we modified the single emphasis inference results so that just the
spreads matched better in the bubble. Note that, as one might expect, this improves the overall least squares
solution, but note also that this creates a WSSD transition point in the proper place. Since this would not be
apparent from an inspection of the modes alone, the value of the WSSD to a detailed evaluation of the inference
results is clear.
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TABLE 3: RESULTS FOR EXAMPLE 7 OF CAO AND KANDEL
WITH BUBBLE ADDED

STATISTIC
MCC
ENT
WSSD 3.5
WSSD 3.0
WSSD 2.5
WSSD 2.0
WSSD 1.5

DOUBLE EM
0.967
3.90
0.022243
0.022243
0.089423*
0.438807
0.438807

SINGLE EM
0.9565
4.45
0.026888
0.026888
0.398910
0.398910
0.398910

NO EMPHAS
0.896
6.48
0.071660
0.133615
1.005964
1.005964
1.005964

SINGLEM +
0.9566
4.27
0.027036
0.027036
0.378739*
0.400629
0.400629

FOR DOUBLE EMPHASIS Y = (163.27, 24.75, 24.75) + 0.91X

FOR SINGLE EMPHASIS Y = (199.36, 30.17, 30.17) + 0.89X
FOR NO EMPHASIS Y = (503.50, 77.23, 77.23) + 0.73X
FOR SINGLE EMPHAS.+ Y = (198.51, 28.33, 28.33) + 0.89X
+ DIFFERS FROM SINGLE EMPHASIS ONLY IN FUZZINESS OF
VALUES IN BUBBLE (BETTER MATCH)

FIG. 6: EX7 UITH BUBBLE FROM 2 TO 3
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NO EMPHRSIS

a.o 2.O •4.O B.O
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FIG. 8: EX~7 UITH BUBBLE FROM 2 TO 3
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