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A method is described that combines fuzzy system identification techniques with Parallel 

Distributed Compensation (PDC) to develop nonlinear control methods for aircraft using 

minimal a priori knowledge, as part of NASA’s Learn-to-Fly initiative. A fuzzy model was 

generated with simulated flight data, and consisted of a weighted average of multiple linear 

time invariant state-space cells having parameters estimated using the equation-error 

approach and a least-squares estimator. A compensator was designed for each subsystem 

using Linear Matrix Inequalities (LMI) to guarantee closed-loop stability and performance 

requirements. This approach is demonstrated using simulated flight data to automatically 

develop a fuzzy model and design control laws for a simplified longitudinal approximation of 

the F-16 nonlinear flight dynamics simulation. Results include a comparison of flight data with 

the estimated fuzzy models and simulations that illustrate the feasibility and utility of the 

combined fuzzy modeling and control approach. 

Nomenclature 

 

𝑎 =   decay rate 𝑉 =   Lyapunov function 

𝐴, 𝐵 =   state-space matrices 𝑤 =   cell weight 

𝑏 =   wing span, ft 𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 𝑧𝑟𝑒𝑓  =   body-axis reference point 

𝑐̅ =   wing mean aerodynamic chord, ft 𝑥𝑐𝑔 , 𝑦𝑐𝑔, 𝑧𝑐𝑔 =   coordinates of the center of gravity 

𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 , 𝐼𝑥𝑧  =   inertia tensor elements, slug-ft2 𝑥 =   explanatory variable, or state 

𝐽 =   cost function 𝑋 =   matrix of regressors 

𝐾 =   control gains 𝑧 =   modeled output 

𝑚 =   mass, slugs 𝛼 =   angle of attack, deg 

𝑀 =   membership function 𝛿𝑒 =   elevator deflection, deg 

𝑁 =   number of data points 𝜃 =   vector of all parameter estimates 

𝑝 =   vector of cell parameter estimates 𝜙 =   constraint on initial conditions 

𝑃 =   Lyapunov stability matrix 𝜇 =   constraint on control input 

𝑞 =   body-axis pitch rate, deg/s superscripts  

𝑟 =   number of rules 𝑇 =   transpose 

𝑅 =   rule ^ =   estimate 

𝑆 =   wing reference area, ft2 ̅  =   mean 

𝑢 =   control input ̇  =   time derivative 
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I. Introduction 

HE conventional paradigm for the development and flight testing of new or modified aircraft is an iterative, time-

consuming process that typically involves numerous test techniques to generate an aircraft model and design a 

control system. The NASA Learn-to-Fly (L2F) initiative aims to facilitate this process by replacing most of the 

ground-based testing and human involvement with automated, efficient, onboard tools that provide in-flight aircraft 

modeling and learning control, as depicted in Fig. 1 [1]. 

 

 
 

Fig. 1 Conventional aircraft development process vs. Learn-to-Fly concept. 

 

 Recent work at NASA aimed to test all components of the L2F concept experimentally in flight-test operations on 

an aircraft with no a priori model or knowledge of the aerodynamics [1,2]. The L2F technique of real-time global 

nonlinear aerodynamic modeling is based on flight data alone and consists of two main parts. First, efficient flight 

maneuvers must be designed to sufficiently excite the aircraft dynamics. Prior research has shown that Programmable 

Test Inputs (PTIs) that apply automated orthogonal optimized multi-sine perturbation inputs to the control surfaces 

provide rich flight data with low correlations between the explanatory variables [3,4]. Second, a recursive system 

identification scheme is required to estimate the aerodynamic forces and moments based on the explanatory variables 

measured in flight. These recent flight tests, as well as previous work, have successfully demonstrated global nonlinear 

aerodynamic modeling using recursive multivariate orthogonal functions (MOF). Since this method generates a global 

polynomial model, however, it can sometimes inadequately represent significant localized dynamics [5,6,7]. 

 Similar to modeling, the classical approach to control is a lengthy process that involves complex simulations and 

tuning.  Nonlinear control methods such as direct and indirect adaptive control are well-researched methods for aircraft 

flight control [8,9]. Indirect adaptive control methods such as nonlinear dynamic inversion (NDI) used in the recent 

L2F tests, are often derived from an estimated model through dynamic inversion, so the resulting control law can be 

sensitive to model inaccuracies. A control system that is compatible with the L2F concept must automatically adjust 

to a changing model while not interfering with the PTI inputs and the modeling process [10]. 

 An alternative approach to both modeling and control, and the subject of the work presented in this paper, involves 

fuzzy logic. Introduced by Zadeh in Ref. [11], fuzzy logic involves a linguistic characterization of a system or process 

in the form of if/then statements called rules, where the consequent (output) is determined through fuzzy inference as 

a weighted combination of the truth values of the antecedent (input). Takagi-Sugeno (TS) fuzzy modeling was first 

presented in Ref. [12] as a method to represent a nonlinear dynamic system as a weighted combination of linear time 

invariant (LTI) subsystems. 

 Most fuzzy control methods generate the plant input as a weighted combination of inputs associated linguistically 

with the measured error, similar to a proportional-integral-derivative (PID) controller. These applications of fuzzy 

control do not directly rely on a mathematical model of the system, are typically based on a heuristic design process 

that renders them difficult to guarantee fundamental stability and performance requirements, and are often challenging 

to generalize across multiple platforms. Nevertheless, this fuzzy control approach has found many applications, such 

as in roll control and aircraft sensor failure diagnosis [13,14]. 

 In contrast, Wang introduced a more rigorous fuzzy control method known as Parallel Distributed Compensation 

(PDC) that directly builds on the TS fuzzy model structure [15]. A linear control law is designed for each component 

LTI system simultaneously using a linear matrix inequality (LMI) formulation, and the total system input is a weighted 

combination of the individual control laws [16,17]. PDC combines traditional linear systems theory and Lyapunov 

theory to provide methods that have been shown to guarantee global asymptotic stability [16], robustness [18], optimal 

performance [19], and other performance constraints [20].   

T 
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 Prior L2F modeling work built on the fuzzy logic approach in Ref. [12] to develop a system identification routine 

that divided the nonlinear model into multiple linear parts that were weighted at each point in time according to the 

explanatory variables [6]. The fuzzy modeling method generated a global model with partitioned subsystems that 

accounted for localized variations more precisely than the MOF modeling approach. 

 Although fuzzy modeling and PDC have found a variety of applications across robotics and general process 

control, they have only recently been introduced to the aerospace field. Moreover, the properties of these fuzzy systems 

render them conducive to an improved method of aircraft control. A common approach to nonlinear aircraft control is 

to linearize a system at several equilibrium points and to gain schedule a linear controller at each reference condition. 

A curve can then be fitted through the various controllers to ensure smooth transitions, but a priori knowledge of the 

system as well, as extensive simulations, are typically used to guarantee global stability and performance. An 

advantage of the fuzzy logic approach is that the fuzzy model in Ref. [6], which can be generated automatically 

onboard an aircraft, is already partitioned into numerous linear subsystems, so PDC can be used to automate the design 

process for the linear control laws, as well as the curve fit between them, in a way that guarantees stability and 

performance. In the past, PDC has been applied to fuzzy models that have been built through local approximation [21] 

or sector nonlinearity [22], which require a priori knowledge of the system, but it has not, to the authors’ knowledge, 

been applied to an identified fuzzy system. 

 The work presented in this paper builds on the fuzzy logic modeling algorithm developed in Ref. [6] to explore 

the feasibility of applying the PDC control approach and demonstrates the utility of this nonlinear control method 

through simulations. Although it is implied that the identified model can be updated recursively, and the control laws 

can be improved accordingly in real-time, this work performs a single batch system identification process and explores 

how PDC can be applied to an identified fuzzy model.  

 The following section describes the theory of fuzzy modeling and PDC, while Section III discusses the application 

to an F-16 aircraft and the resulting simulations. Finally, Section IV details conclusions drawn from this work.  

 

II. Theory: Fuzzy Modeling and Parallel Distributed Compensation 

A. Fuzzy Modeling 

Fuzzy modeling is a mathematical tool that can be used to partition a nonlinear system into several linear 

subsystems known as cells, so that the overall nonlinear behavior of the system can be captured by a weighted 

combination, or fuzzy blending, of such subsystems. There are generally three ways to build a TS fuzzy model. The 

first method partitions the global system by approximating it at various equilibrium points to generate linearized 

systems that can be combined in a fuzzy framework. Although this method produces the least complex model, it is 

also the least accurate representation of the global model.  The second and most common approach, known as sector 

nonlinearity, transforms an analytical model into an exact fuzzy representation of the dynamics by evaluating the 

nonlinear terms at their extreme values within a specified sector and deriving curves between them. The last method 

is system identification, in which the fuzzy cells are estimated through test data. This method can produce a reliable 

model in an automated fashion and has the flexibility to be used across multiple platforms. The work in this paper 

builds on the third fuzzy modeling approach, which will be summarized below.  

The goal of the modeling process is to describe a dependent variable as a linear polynomial expansion that relates 

it to the measured explanatory variables. A fuzzy model is represented by a set of rules, or cells, in the form of if/then 

statements. Membership functions (MF), which vary from 0 to 1, are used to partition each normalized explanatory 

variable into weighted parts and describe the relevance of different sections across the range of the variable to each 

linear model. 

To estimate the nonlinear function P, the ith rule is expressed as 

 

 𝑅𝑖:  𝐼𝐹 𝑥1 𝑖𝑠 𝑀1,𝑖  𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑘  𝑖𝑠 𝑀𝑘,𝑖  𝑇𝐻𝐸𝑁 𝑃 = 𝑝𝑜,𝑖 + 𝑝1,𝑖𝑥1 + ⋯ + 𝑝𝑘,𝑖𝑥𝑘       𝑖 = 1, … , 𝑟 (1) 

 

where 𝑥1 … 𝑥𝑘  are the 𝑘 explanatory variables used in the modeling, 𝑀1,𝑖 … 𝑀𝑘,𝑖 are the associated membership 

functions, and 𝑝𝑜,𝑖 … 𝑝𝑘,𝑖 are the estimated parameters in the polynomial expansion of 𝑃𝑖 , the ith linear cell used to 

describe P.  

 The process of designing the rule base or set of rules for a fuzzy system can be divided into three main parts: 

choosing explanatory variables, assigning membership functions, and estimating parameters.  
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1. Explanatory Variables  

The explanatory variables must be chosen carefully so that there is enough information to sufficiently describe the 

dependent variable, while not leading to an over-parametrized and complex model. If the model structure within each 

cell is unconstrained, this process can be automated through a search cycle that is initialized with a (large) pool of 

candidate variables that is purged if it becomes apparent that a certain variable has minimal modeling value. For a 

restricted model structure within each cell, such as a linear state-space formulation, the states and controls can be 

chosen.  

 

2. Membership Functions 

The structure and complexity of the global fuzzy model are based on the shape, number, and distribution of MFs 

across each explanatory variable’s range. The MFs can take on a variety of different shapes, but the specific shape 

chosen will play a significant role in the fuzzy system’s ability to account for nonlinear dependencies in the variables. 

Figure 2 shows an example of ramp-shaped MFs that partition a single variable into one, two, and three segments. 

 

 
                          (a) 1 MF                                            (b) 2 MFs                                              (c) 3 MFs 

 

Fig. 2 Ramp-shaped membership functions. 

 

 If all of the explanatory variables have one MF, they are each weighted with a value of 1 across their entire 

(normalized) range, and the result is a single linear model. However, if the function being modeled has a nonlinear 

dependency on a specific explanatory variable, that variable is partitioned into smaller regions as more MFs are added. 

Each rule combines one MF for each explanatory variable into a single cell that describes the local behavior, and the 

nonlinear model is a combination of these cells that are weighted according to their MF values. Note that a higher 

number of MFs will yield a more complex nonlinear model. The total number of cells within a fuzzy model is the 

product of the number of MFs for each variable. 

 

3. Parameter Estimation 

 The output of each cell is weighted by the product of all of its MFs, which is defined as  

 

 𝑤𝑖(𝑧) = ∏ 𝑀𝑗,𝑖(𝑥𝑗)

𝑘

𝑗=1

 (2) 

 

The final weighted output of a fuzzy model with r cells is 

 

 𝑃(𝑡) =
∑ 𝑤𝑖(𝑥(𝑡)){𝑝𝑜,𝑖 + 𝑝1,𝑖𝑥1(𝑡) + ⋯ + 𝑝𝑘,𝑖𝑥𝑘(𝑡)}𝑟

𝑖=1

∑ 𝑤𝑖(𝑥(𝑡))𝑟
𝑖=1

 (3) 

 

Equation (3) can be expressed in the ordinary least squares matrix form given in Eq. (4) where 𝑧 is an 𝑁 ×  1 vector 

of time history data for the dependent variable P, X is an 𝑁 ×  (𝑘 + 1) ∗ 𝑟 matrix of weighted regressors for all cells, 

and the unknown parameters 𝑝0 … 𝑝𝑘 for all of the cells are collected in a single vector 𝜃. 

 

 𝑧 = 𝑋𝜃 (4) 
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The parameter vector 𝜃 can then be estimated in an equation-error approach using least squares by defining the cost 

function 

 

 𝐽(𝜃) =
1

2
(𝑧 − 𝑋𝜃)𝑇(𝑧 − 𝑋𝜃) (5) 

 

which has the solution 

 

 �̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑧 (6) 

  

The effectiveness of the resulting model can be described by a number of modeling metrics. In particular, the 

coefficient of determination defined in Eq. (7) represents a model fit quality measure that varies from 0 to 1 and 

describes how much of the variation in the data is captured by the model. 

  

 𝑅2 =
∑ [�̂�(𝑖) − 𝑧̅]2𝑁

𝑖=1

∑ [𝑧(𝑖) − 𝑧̅]2𝑁
𝑖=1

 (7) 

    
 The fuzzy model process described above is typically used to model a non-dimensional force or moment 

coefficient based on a wide array of potential explanatory variables; however, in the context of state feedback control 

through PDC, the nonlinear model is most conveniently expressed in state space form as 

 

 �̇�(𝑡) = 𝐴(𝑥, 𝑢)𝑥(𝑡) + 𝐵(𝑥, 𝑢)𝑢(𝑡) (8) 

  

and the corresponding rules for the fuzzy model are given as 

 

 𝑅𝑖: 𝐼𝑓 𝑥1(𝑡) 𝑖𝑠 𝑀1,𝑖 … 𝑎𝑛𝑑 𝑥𝑘(𝑡) 𝑖𝑠 𝑀𝑘,𝑖  𝑡ℎ𝑒𝑛 �̇�(𝑡) = 𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡)    𝑖 = 1,2, … , 𝑟 (9) 

 

Equation (9) is the same expression as Eq. (1) where the parameters 𝑝0 … 𝑝𝑘  associated with states 𝑥(𝑡) are collected 

into a vector 𝐴𝑖 and those associated with controls 𝑢(𝑡) are represented by 𝐵𝑖 . The complete fuzzy model in Eq. (3) 

then becomes   

 

 �̇�(𝑡) =
∑ 𝑤𝑖(𝑥(𝑡)){𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡)}𝑟

𝑖=1

∑ 𝑤𝑖(𝑥(𝑡))𝑟
𝑖=1

 (10) 

 

where each of the r linear systems is weighted according to the MFs associated with it. Although the least squares 

modeling process is performed separately on each dependent variable, when multiple state derivatives are estimated 

as functions of states and control inputs with the same number of MFs, a nonlinear system can be represented as a 

weighted combination of LTI subsystems, and Eq. (10) is expressed in matrix form. 

B. Parallel Distributed Compensation 

The fuzzy model in Eq. (10) that consists of multiple weighted LTI systems can be used directly for control system 

design via state feedback using PDC. For each linear cell in the fuzzy model, a corresponding set of control gains 𝐾𝑖 

is designed, and the total system input is the weighted combination of each cell’s individual input. Each rule in Eq. 

(9) can then be expanded as 

 

 𝑅𝑖: 𝐼𝑓 𝑧1(𝑡) 𝑖𝑠 𝑀1,𝑖 … 𝑎𝑛𝑑 𝑧𝑘(𝑡) 𝑖𝑠 𝑀𝑘,𝑖  𝑡ℎ𝑒𝑛 {
�̇�(𝑡) = 𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡)

𝑢(𝑡) = −𝐾𝑖𝑥(𝑡)
}   𝑖 = 1,2, … , 𝑟 (11) 

 

and the total input to the fuzzy model is 

 

 𝑢(𝑡) = −
∑ 𝑤𝑖(𝑥(𝑡))𝐾𝑖𝑥(𝑡)𝑟

𝑖=1

∑ 𝑤𝑖(𝑥(𝑡))𝑟
𝑖=1

 (12) 
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Finally, combining Eqs. (10) and (12), the closed-loop system is 

 

 �̇�(𝑡) =
∑ ∑ 𝑤𝑖(𝑥(𝑡))𝑤𝑗(𝑥(𝑡)){𝐴𝑖 − 𝐵𝑖𝐾𝑗}𝑥(𝑡)𝑟

𝑗=1
𝑟
𝑖=1

∑ ∑ 𝑤𝑖(𝑥(𝑡))𝑤𝑗(𝑥(𝑡))𝑟
𝑗=1

𝑟
𝑖=1

 (13) 

 

Traditionally, closed-loop stability for a single cell can be explored by finding a matrix P to fulfill the steady-state 

form of the quadratic Lyapunov inequality in Eq. (14). 

 

 (𝐴 − 𝐵𝐾)𝑇𝑃 + 𝑃(𝐴 − 𝐵𝐾) < 0 (14) 

 

In order to guarantee stability for the global closed-loop model across all of the cells, the controller design problem is 

expressed as a set of LMIs where Eq. (14) must be satisfied for each LTI system with a single matrix P that is common 

among them. If 𝑋 = 𝑃−1, and a positive definite matrix 𝑋 and matrices 𝑀𝑖 , 𝑖 = 1, … , 𝑟 can be found to satisfy 

 

 −𝑋𝐴𝑖
𝑇 − 𝐴𝑖𝑋 + 𝑀𝑖

𝑇𝐵𝑖
𝑇 + 𝐵𝑖𝑀𝑖 > 0 (15) 

   

 −𝑋𝐴𝑖
𝑇 − 𝐴𝑖𝑋 − 𝑋𝐴𝑗

𝑇 − 𝐴𝑗𝑋 + 𝑀𝑗
𝑇𝐵𝑖

𝑇 + 𝐵𝑖𝑀𝑗 + 𝑀𝑖
𝑇𝐵𝑗

𝑇 + 𝐵𝑗𝑀𝑖 > 0     (16) 

 𝑖, 𝑗 = 1, … , 𝑟;   𝑖 < 𝑗  

 

then 𝑃 = 𝑋−1 and the gains for each cell can be solved as 𝐾𝑖 = 𝑀𝑖𝑋
−1 to guarantee global asymptotic stability. The 

LMI formulation can then be further modified to incorporate a constraint on settling time by considering the Lyapunov 

function of  

 

 �̇�(𝑥) ≤ −2𝑎𝑉(𝑥) (17) 

 

where 𝑎 represents the convergence rate, and the modified LMI formulation is shown in Eqs. (18-19). 

 

 −𝑋𝐴𝑖
𝑇 − 𝐴𝑖𝑋 + 𝑀𝑖

𝑇𝐵𝑖
𝑇 + 𝐵𝑖𝑀𝑖 − 2𝛼𝑋 > 0 (18) 

   

 −𝑋𝐴𝑖
𝑇 − 𝐴𝑖𝑋 − 𝑋𝐴𝑗

𝑇 − 𝐴𝑗𝑋 + 𝑀𝑗
𝑇𝐵𝑖

𝑇 + 𝐵𝑖𝑀𝑗 + 𝑀𝑖
𝑇𝐵𝑗

𝑇 + 𝐵𝑗𝑀𝑖 − 4𝛼𝑋 > 0     (19) 

 𝑖, 𝑗 = 1, … , 𝑟;   𝑖 < 𝑗  

 

Equations (18-19) can be solved using a generalized eigenvalue minimization to maximize the convergence rate, or 

the desired convergence parameter can be imposed on the problem, as it was in this work.  

 A constraint on control input is enforced by including Eqs. (20-21) in the LMI, 

 

 
[

𝑋 𝑀𝑖
𝑇

𝑀𝑖 𝜇2𝐼
 ] ≥ 0 (20) 

 

 𝑋 − 𝜙2𝐼 ≥ 0 (21) 

 

where 𝜇 is the upper bound on the control input and 𝜙 is the upper bound on the initial condition, such that  
‖𝑢(𝑡)‖2 ≤ 𝜇 and  ‖𝑥(0)‖2 ≤ 𝜙. Despite these performance constraints imposed on the LMI, it is still posed a 

feasibility problem. Modifying this formulation to produce an optimal solution is the subject of ongoing work. 

 

III. Results: Fuzzy Modeling, PDC, and Simulations for F-16 Aircraft 

This section describes the automated fuzzy system identification procedure applied to data from a nonlinear F-16 

simulation. The resulting model is used in conjunction with PDC to develop control laws. The purpose of this 

section is to show the utility of fuzzy modeling together with PDC by demonstrating their effectiveness on an 

approximation of the longitudinal dynamics through various simulations. 
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A.  Aircraft 

 Simulated F-16 flight data was acquired from within the System IDentification Programs for AirCraft (SIDPAC) 

software toolbox.23 The nominal geometry and mass properties of the F-16 used in the nonlinear simulations are 

summarized in Table 1. The simulated flight data consisted of a maneuver that began at a trimmed angle of attack of 

4 deg at 25,000 ft. The pilot slowly increased the angle of attack by pulling back on the elevator and simultaneously 

excited the system with manual doublets, intending to excite the longitudinal dynamics across a wide range of angle 

of attack. The time histories of angle of attack (𝛼), pitch rate (𝑞), and elevator deflection (𝛿𝑒) are shown in Fig. 3. 

Two-percent Gaussian white noise was added to each of the data channels in a way that is similar to what would be 

seen in-flight. 

 

Table 1. Geometry and mass properties in F-16 nonlinear simulation 

 

length 𝑐̅, ft 11.32 

wing span 𝑏, ft 30 

wing area 𝑆, ft2 300 

𝑥𝑟𝑒𝑓 , ft 0.35𝑐̅ 

𝑦𝑟𝑒𝑓 , ft 0.000 

𝑧𝑟𝑒𝑓 , ft 0.000 

𝑥𝑐𝑔, ft 0.25𝑐̅ 

𝑦𝑐𝑔, ft 0.0 

𝑧𝑐𝑔, ft 0.0 

𝑚, slug 647.2 

𝐼𝑥, slug-ft2 9,496 

𝐼𝑦 , slug-ft2 55,814 

𝐼𝑧, slug-ft2 63,100 

𝐼𝑥𝑧 , slug-ft2 982 

 

 

 
 

Fig. 3 F-16 simulated flight data time histories. 

 

B.  Fuzzy Modeling  

Although the fuzzy modeling process is a recursive algorithm that can be updated onboard an aircraft in real-time, 

this work modeled the system in a batch form to focus on the effectiveness of incorporating PDC, with the 

understanding that PDC could be applied periodically as the model is updated. To simplify the processes of modeling 

and PDC, the aircraft longitudinal dynamics were approximated through the state derivatives �̇� and �̇�, which were 

modeled as functions of 𝛼, 𝑞, and 𝛿𝑒. Each LTI subsystem is then represented in state space form by Eq. (22).  

 

 
[
�̇�
�̇�

] = [
𝐴11 𝐴12

𝐴21 𝐴22
] [

𝛼
𝑞] + [

𝐵11 𝐵12

𝐵21 𝐵22
] [

𝛿𝑒

1
] (22) 

 

The state derivatives �̇� and �̇� were modeled individually before being combined into the state space representation of 

the longitudinal system dynamics. The resulting constant parameters in the 𝐴 and 𝐵 matrices were estimated using 
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least squares for each fuzzy cell. 𝐵12 and 𝐵22 represent 𝑝0 in Eq. (1), i.e., the constant bias term associated with each 

linear subsystem. 

 It is only necessary to partition an explanatory variable if �̇� or �̇� has a nonlinear functional dependency on that 

variable. Batterson and Klein in Ref. [24] discuss partitioning a longitudinal aerodynamic force or moment with many 

crisply partitioned subsystems across the range of angle of attack alone, given that much of the nonlinearity of the 

longitudinal motion results from variation in angle of attack. With this in mind, the fuzzy model structure was 

simplified by partitioning only angle of attack with multiple MFs. The resulting number of cells in a fuzzy model is, 

therefore, equal to the number of angle of attack partitions. 

 Candidate fuzzy models for �̇� and �̇� were estimated as the number of angle of attack partitions was increased from 

one up to eight, and the results of the corresponding 𝑅2 statistics are summarized in Fig. 4. 

 

 
 

Fig. 4 Comparison of coefficient of determination for varying 𝛂 partitions. 

 

 𝑅2 increases significantly from one up to three partitions, but additional MFs do not appear to improve the model 

quality for either �̇� or �̇�. Note that 𝑅2 alone is a limited assessment of the model quality, and additional statistical 

metrics, such as the Predicted Squared Error (PSE), which penalizes model complexity, could provide further insight. 

However, this work explores not only the model quality itself but also how well the controller responds with varying 

resolution, or number of partitions, across the nonlinear dynamics. It is still worth noting, however, that the model 

complexity is directly parallel to that of the controller, so to improve the likelihood of finding a solution to Eq. (15-

16), fewer cells are preferred.  

 Figures 5-6 compare the model fits for �̇� and �̇� between one angle of attack partition (effectively a linear model), 

and three partitions, respectively. The aerodynamics truly vary as a function of dynamic pressure since the flight data 

spans a large range of angle of attack, so the inclusion of aircraft velocity as a state and therefore, as an explanatory 

variable, would be a good first approximation to capture this dependency and improve the model fit beyond what is 

shown below.  
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Fig. 5 Comparison of F-16 data and fuzzy model with 𝜶 = 𝟏𝑴𝑭. 

 

 

 
          Fig. 6 Comparison of F-16 data and fuzzy model with 𝜶 = 𝟑𝑴𝑭. 

                              

 To help visualize how the MFs are used to partition the explanatory variables, consider a familiar case of modeling 

the coefficient of lift 𝐶𝐿 = 𝑓(𝛼) for this F-16 data with three MFs as shown in Fig. 2c. This would lead to a fuzzy 

model with three linear cells. The nonlinear modeling process can be thought of as generating one linear subsystem 

that more accurately represents the low angle-of-attack dynamics, a second that represents the moderate range, and a 

third that is weighted more strongly at high values, as shown in Fig. 7. The weighted combination of the three linear 

systems generates a global nonlinear system with smooth transitions between the linear components. 
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             (a) 1st 𝜶 partition                                      (b) 2nd 𝜶 partition                                    (c) 3rd 𝜶 partition 

 

Fig. 7 Fuzzy model partitions for 𝑪𝑳 = 𝒇(𝜶) with 𝜶 = 𝟑𝑴𝑭, normalized. 

 

 The MF shapes from Fig. 2c plotted over the data in each partition indicate which part of the data each linear 

model is most closely fitted to. The cyan lines are the linear models for each partition, the grey lines are the 

weighted versions of each linear model across the range of angle of attack, and the green line is the weighted 

combination of the contributions from each partition, i.e., a nonlinear model for 𝐶𝐿, as computed in Eq. (10). 

 A significant limitation to the fuzzy model identified in this way using test data is that although it is divided into 

several linear subsystems, it only guarantees the global model itself to be physically meaningful. Since the 

coefficients for all of the cells are estimated in a single least-squares estimation using fuzzy regressors that are 

weighted according to the MFs for each cell, they cannot be considered meaningful individually. Only when all of 

the cells are weighted and combined as in Eq. (10) does the complete physical, nonlinear model emerge. Moreover, 

when the corresponding cells for the �̇� and �̇� models are augmented in matrix form, the dynamics associated with an 

individual LTI subsystem cannot be considered physical. This limits the insight into how the nonlinear model is 

partitioned and represents a current drawback to this identification process over the other types of fuzzy models 

discussed at the beginning of Section IIA. This lack of physicality requires further investigation with regards to its 

impact on PDC; nevertheless, it is shown that PDC is still a feasible control method. 

 

 

C.  Parallel Distributed Compensation 

While a solution to Eqs. (15-16) will ensure closed-loop stability for the fuzzy system, it will not guarantee tracking 

of a reference signal. To track an angle-of-attack command, each component LTI system must therefore be augmented 

with an integrator �̇� = 𝛼𝑐 − 𝛼 to allow tracking of a reference angle-of-attack command, 𝛼𝑐. The open loop 

approximated model in Eq. (22) is modified to 

 

 
[
�̇�
�̇�
�̇�

] = [
𝐴11 𝐴12 0
𝐴21 𝐴22 0
−1 0 0

] [
𝛼
𝑞
𝑧

] + [
𝐵11 𝐵12

𝐵21 𝐵22

0 0
] [

𝛿𝑒

1
] + [

0
0
1

] 𝛼𝑐 (23) 

 

With full state feedback, each cell’s input is then expressed as 

 

 
𝛿𝑒 = 𝐾 ([

1
0
0

] 𝛼𝑐 − [
𝛼
𝑞

−𝑧
]) = [𝐾1 𝐾2 𝐾3] [

𝛼𝑐 − 𝛼
0 − 𝑞

𝑧
] (24) 

 

Since the feedback is associated only with input 𝛿𝑒, the 𝐴𝑖 matrices and only the first column of the 𝐵𝑖  matrices were 

passed through the LMI formulation to solve for a set of gains for each cell in the fuzzy model. The inputs from each 

fuzzy cell are weighted according to the associated MFs to define a single system input as in Eq. (12), with the final 

closed-loop system expressed in Eq. (13). 

 The specified convergence rate in Eqs. (18-19) was set to 0.5 while the parameters 𝜇 and 𝜙 in Eqs. (20-21) were 

set to 5 and 0.01, respectively. These LMI parameters were held constant throughout all of the simulations, and each 

of the resulting control laws was designed automatically using the same algorithm. 
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D.  Simulations 

 Simulations were performed to test the effectiveness of the PDC design algorithm on identified fuzzy models with 

varying numbers of angle of attack partitions. Each simulation was run at 50 Hz using SIDPAC’s full F-16 nonlinear 

aerodynamic database and simulation tools, with elevator deflection limited to −25 deg ≤ 𝛿𝑒 ≤ 25 deg. Multistep 

angle of attack commands were simulated across the nonlinear angle of attack regime to test how well the system 

would respond. 

 First, to motivate this work for nonlinear aircraft control, a linear model was built using only flight data in the 

linear regime of angle of attack up to 12 deg. The aircraft was trimmed at 5 deg, and Fig. 8 shows that while the 

aircraft responds well to a step from 5 to 10 deg, a single linear controller defined over the linear aircraft dynamics is 

insufficient for tracking reference commands well at higher angles of attack. Although the dynamics remain stable, 

the response has large overshoot and oscillatory motion with slow decay.  

 

 
 

Fig. 8 Multistep response with linear controller. 

    

 To better account for the nonlinear dependency of the longitudinal dynamics on angle of attack, nonlinear 

controllers were designed using PDC on fuzzy models with varying numbers of angle of attack partitions. Each of the 

closed loop models, which have one, three, five, and seven partitions, was given multistep angle of attack commands. 

The responses to the multistep inputs are shown in Fig. 9. These closed-loop systems provide more consistent 

responses with better transient properties than the simple linear controller case shown in Fig. 8. 

 Figure 10 allows a closer inspection to compare the responses at each step for each of the individual controllers. 

The controller with the single partition, denoted 𝛼 = 1𝑀𝐹 differs from the linear case shown in Fig. 8 since a linear 

model was fit to the entire data set, including the angle of attack variations up to 40 deg. While the linear model was 

a good fit for the linear region of the data, this model would be fit across the entire data set, but would lose its accuracy 

in any particular region. Nevertheless, it responds fairly well, but does not appear to converge completely within 25 

s, and the response at each step is inconsistent with the others. The 𝛼 = 3𝑀𝐹 case performs better with faster settling 

times and more consistent responses. The 𝛼 = 5𝑀𝐹 case performs best with overshoot limited to just above 1 deg at 

all steps, rapid settling in all cases, and consistent trends in the responses. While the responses in the 𝛼 = 7𝑀𝐹 case 

are fairly consistent at each step, the overshoot increases significantly from all the other cases to above 3 degrees at 

the high alpha-of-attack step. While each controller provides a feasible option to track angle of attack commands 

across the flight regime, an optimization procedure would have to be designed to select the specific number of 

partitions that would prioritize certain performance requirements to more directly influence the nature of the response. 

 Figures 11-12 show similar plots for multistep responses beginning at a trimmed 30 deg condition and stepping 

down to 5 deg. The comparisons between controllers are consistent with the first cases, but the responses do differ 

between the increasing and decreasing reference angle of attack commands. In particular, the 𝛼 = 5𝑀𝐹 case responds 

better in the downward steps, with overshoot limited to less than 0.5 deg except for the first step. 
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Fig. 9 Multistep responses with fuzzy controllers, increasing angle of attack reference commands. 

 

 

 

 
 

Fig. 10 Multistep responses for each fuzzy controller, increasing angle of attack reference commands. 
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Fig. 11 Multistep responses with fuzzy controllers, decreasing angle of attack reference commands. 

 

 

 

 

 
 

Fig. 12 Multistep responses for each fuzzy controller, decreasing angle of attack reference commands. 
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IV. Conclusions 

This work applied PDC in a novel way to a fuzzy model that has been identified using simulated flight data. In the 

past, PDC has been applied to fuzzy models built using an analytical model of the system. This work represented a 

feasibility study of the application of PDC to an aircraft model identified in flight in order to track angle of attack 

commands across the nonlinear flight regime. In support of the L2F concept, the fuzzy model can be generated onboard 

an aircraft with minimal a priori knowledge of the aerodynamics, and PDC can be used to automate the control law 

design based on the fuzzy model structure to guarantee stability and performance requirements.  

A fuzzy modeling routine was used to build an approximated longitudinal model for the F-16 aircraft with varying 

complexity in the number of angle-of-attack partitions, and PDC was applied to track reference angle-of-attack 

commands across the nonlinear flight regime. Modeling results were shown for fuzzy models with one and three 

angle-of-attack partitions, and despite the lack of dynamic pressure information, the model fits were sufficient for 

control purposes.  

The automated control law design through PDC incorporated analytical guarantees for stable responses, tracking 

of angle-of-attack reference commands, and other performance constraints on convergence rate and control input. 

Despite the limited fidelity of the fuzzy model used to build these control laws, satisfactory responses were generated 

for a series of simulated angle-of-attack commands throughout the flight envelope. Four different controllers were 

compared with varying complexities based on the number of angle-of-attack partitions, and the controller built on a 

model with five partitions generated the most consistent responses across the angle-of-attack regime. This work 

demonstrated the feasibility and utility of applying PDC to an identified fuzzy model. 
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