1,900 research outputs found

    Genetic programming for the automatic design of controllers for a surface ship

    Get PDF
    In this paper, the implementation of genetic programming (GP) to design a contoller structure is assessed. GP is used to evolve control strategies that, given the current and desired state of the propulsion and heading dynamics of a supply ship as inputs, generate the command forces required to maneuver the ship. The controllers created using GP are evaluated through computer simulations and real maneuverability tests in a laboratory water basin facility. The robustness of each controller is analyzed through the simulation of environmental disturbances. In addition, GP runs in the presence of disturbances are carried out so that the different controllers obtained can be compared. The particular vessel used in this paper is a scale model of a supply ship called CyberShip II. The results obtained illustrate the benefits of using GP for the automatic design of propulsion and navigation controllers for surface ships

    Optimization of Mobility Parameters using Fuzzy Logic and Reinforcement Learning in Self-Organizing Networks

    Get PDF
    In this thesis, several optimization techniques for next-generation wireless networks are proposed to solve different problems in the field of Self-Organizing Networks and heterogeneous networks. The common basis of these problems is that network parameters are automatically tuned to deal with the specific problem. As the set of network parameters is extremely large, this work mainly focuses on parameters involved in mobility management. In addition, the proposed self-tuning schemes are based on Fuzzy Logic Controllers (FLC), whose potential lies in the capability to express the knowledge in a similar way to the human perception and reasoning. In addition, in those cases in which a mathematical approach has been required to optimize the behavior of the FLC, the selected solution has been Reinforcement Learning, since this methodology is especially appropriate for learning from interaction, which becomes essential in complex systems such as wireless networks. Taking this into account, firstly, a new Mobility Load Balancing (MLB) scheme is proposed to solve persistent congestion problems in next-generation wireless networks, in particular, due to an uneven spatial traffic distribution, which typically leads to an inefficient usage of resources. A key feature of the proposed algorithm is that not only the parameters are optimized, but also the parameter tuning strategy. Secondly, a novel MLB algorithm for enterprise femtocells scenarios is proposed. Such scenarios are characterized by the lack of a thorough deployment of these low-cost nodes, meaning that a more efficient use of radio resources can be achieved by applying effective MLB schemes. As in the previous problem, the optimization of the self-tuning process is also studied in this case. Thirdly, a new self-tuning algorithm for Mobility Robustness Optimization (MRO) is proposed. This study includes the impact of context factors such as the system load and user speed, as well as a proposal for coordination between the designed MLB and MRO functions. Fourthly, a novel self-tuning algorithm for Traffic Steering (TS) in heterogeneous networks is proposed. The main features of the proposed algorithm are the flexibility to support different operator policies and the adaptation capability to network variations. Finally, with the aim of validating the proposed techniques, a dynamic system-level simulator for Long-Term Evolution (LTE) networks has been designed

    Wireless Sensor Networks to Improve Road Monitoring

    Get PDF

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Feature Grouping-based Feature Selection

    Get PDF

    Performance enhancement of multivariable model reference optimal adaptive motor speed controller using error-dependent hyperbolic gain functions

    Get PDF
    The main contribution of this paper is to formulate a robust-adaptive and stable state-space speed control strategy for DC motors. The linear-quadratic-integral (LQI) controller is utilized as the baseline controller for optimal speed-regulation, accurate reference-tracking and elimination of steady-state fluctuations in the motor’s response. To reject the influence of modelling errors, the LQI controller is augmented with a Lyapunov-based model reference adaptation system (MRAS) that adaptively modulates the controller gains while maintaining the asymptotic stability of the controller. To further enhance the system’s robustness against parametric uncertainties, the adaptation gains of MRAS online gain-adjustment law are dynamically adjusted, after every sampling interval, using smooth hyperbolic functions of motor’s speed-error. This modification significantly improves the system’s response-speed and damping against oscillations, while ensuring its stability under all operating conditions. It dynamically re-configures the control-input trajectory to enhance the system’s immunity against the detrimental effects of random faults occurring in practical motorized systems such as bounded impulsive-disturbances, modelling errors, and abrupt load–torque variations. The efficacy of the proposed control strategy is validated by conducting credible hardware-in-the-loop experiments on QNET 2.0 DC Motor Board. The experimental results successfully validate the superior tracking accuracy and disturbance-rejection capability of the proposed control strategy as compared to other controller variants benchmarked in this article
    corecore