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Abstract

Feature selection (FS) is a process which aims to select input domain features that

are most informative for a given outcome. Unlike other dimensionality reduction

techniques, feature selection methods preserve the underlying semantics or meaning

of the original data following reduction. Typically, FS can be divided into four

categories: filter, wrapper, hybrid-based and embedded approaches. Many strategies

have been proposed for this task in an effort to identify more compact and better

quality feature subsets. As various advanced techniques have emerged in the de-

velopment of search mechanisms, it has become increasingly possible for quality

feature subsets to be discovered efficiently without resorting to exhaustive search.

Harmony search is a music-inspired stochastic search method. This general technique

can be used to support FS in conjunction with many available feature subset quality

evaluation methods. The structural simplicity of this technique means that it is

capable of reducing the overall complexity of the subset search. The naturally

stochastic properties of this technique also help to reduce local optima for any

resultant feature subset, whilst locating multiple, potential candidates for the final

subset. However, it is not sufficiently flexible in adjusting the size of the parametric

musician population, which directly affects the performance on feature subset size

reduction. This weakness can be alleviated to a certain extent by an iterative

refinement extension, but the fundamental issue remains. Stochastic mechanisms

have not been explored to their maximum potential by the original work, as it does

not employ a parameter of pitch adjustment rate due to its ineffective mapping of

concepts.

To address the above problems, this thesis proposes a series of extensions. Firstly, a

self-adjusting approach is proposed for the task of FS which involves a mechanism to

further improve the performance of the existing harmony search-based method. This

approach introduces three novel techniques: a restricted feature domain created

for each individual musician contributing to the harmony improvisation in order

to improve harmony diversity; a harmony memory consolidation which explores

the possibility of exchanging/communicating information amongst musicians such

that it can dynamically adjust the population of musicians in improvising new

harmonies; and a pitch adjustment which exploits feature similarity measures to

identify neighbouring features in order to fine-tune the newly discovered harmonies.



These novel developments are also supplemented by a further new proposal involv-

ing the application to a feature grouping-based approach proposed herein for FS,

which works by searching for feature subsets across homogeneous feature groups

rather than examining a massive number of possible combinations of features. This

approach radically departs from the traditional FS techniques that work by incremen-

tally adding/removing features from a candidate feature subset one feature at a time

or randomly selecting feature combinations without considering the relationship(s)

between features. As such, information such as inter-feature correlation may be

retained and the residual redundancy in the returned feature subset minimised.

Two different instantiations of an FS mechanism are derived from such a feature

grouping-based framework: one based upon the straightforward ranking of fea-

tures within the resultant feature grouping; and the other on the simplification for

harmony search-based FS.

Feature grouping-based FS offers a self-adjusting approach to effectively and effi-

ciently addressing many real-world problems which may have data dimensionality

concerns and which requires semantic-preserving in data reduction. This thesis

investigate the application of this approach in the area of intrusion detection, which

must deal in a timely fashion with huge quantities of data extracted from network

traffic or audit trails. This approach empirically demonstrates the efficacy of feature

grouping-based FS in action.
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Chapter 1

Introduction

D ATA is a magic word, which can become any form of information existing

everywhere in our life. This, in conjunction with the great progress in the

development of computer hardware technology (e.g., in particular, data collection

equipment and storage media) leads to the wide availability of huge amounts of data.

Unfortunately, information analysis of such a big “data bomb” still remains challeng-

ing. As a result, only a small fraction of data is used to any advantage. Therefore,

means of automation, efficiency, and scalability are increasingly required to enable

humans to extract valuable information from these fast expanding mountains of

data.

Knowledge discovery from data (KDD) [172] is a data analysis scheme for discov-

ering useful knowledge that is humanly comprehensible from naturally meaningless

data. It has certain alternative names, including: pattern discovery/analysis [40],
information harvesting [151], knowledge extraction [218], data mining [95], data

archaeology [23], and data dredging [29]. Particularly, data mining also acts as an

important sub-field in KDD. A systemic knowledge discovery involves an iterative

sequence of steps as characterised in Fig. 1.1:

1. Data screening: This is the process of inspecting the data for errors, and

involves techniques such as checking raw data, identifying outliers and dealing

with missing data.

2. Data cleansing: The main task of data cleansing is to correct or remove data

in datasets that is incorrect, incomplete, improperly formatted, or duplicated.

1



1. INTRODUCTION

3. Data reduction: This step is focused on techniques which aim to remove

redundant, irrelevant, or misleading domain features. This allows data mining

methods to perform more efficiently by rendering their data inputs in simpler,

more compact form.

4. Data Mining: Data mining is the most important technique in KDD; it attempts

to uncover the truly interesting data patterns that are hidden in large datasets.

5. Interpretation: This final step is to interpret these extracted patterns into

useful knowledge through techniques such as modelling.

Raw data

Corrected data Screening

Fined data Cleansing

Reduced data Reduction

Patterns Mining

Knowledge Interpretation

Figure 1.1: The knowledge discovery process

Steps 1-4 present essential techniques, albeit different for data preprocessing,

where the data are prepared for mining. Particularly, techniques required in step 3

are exclusively used for solving problems which satisfy high dimensionality. These

techniques can be divided into two categories: those that transform the underlying

meaning of the data features and those that are semantics-preserving. Feature

selection (FS) methods are involved in the latter category, in which subsets of the

original features are selected in order to maximise a suitable evaluation function

2



1.1. Feature Selection

in regards to information quality. As a fundamental step of knowledge discovery,

FS not only helps data mining by improving the performance in terms of efficiency,

but also preserves the human interpretability of the mined useful knowledge. The

development of better FS methods is therefore the main subject of this thesis.

1.1 Feature Selection

Feature selection (FS) [139] is becoming an increasingly necessary step as the issue

of dataset dimensionality becomes ever more pervasive for complex, real-world

problems. Traditionally employed in areas such as data mining, pattern recognition,

and machine learning, FS is now seeing widespread use [184]. This is because

complex problems often contain large numbers of features, which may result in

considerable computational overhead for data-driven knowledge discovery and

decision-making tasks [232]. In particular, certain features may be irrelevant or

redundant and offer no contribution when building robust predictive computational

models. Some may involve a significant amount of noise or even be misleading,

thereby adversely affecting the accuracy of a given model [109].

Combating the naïve assumption of “more features = more knowledge”, which

is the source of the high dimensionality problem, FS works by finding a minimal

feature subset while preserving the underlying semantics of the data. It can be used

to remove irrelevant, redundant, or noisy features. The advantages of FS techniques

lie not only in indirectly alleviating the computational overhead for subsequent

learning mechanisms, but also in offering more compact knowledge representation

and a reduction in data storage requirements [91]. Reflecting these advantages,

FS has become a popular technique for assisting tasks such as text processing, data

classification and system control [143, 188, 189] while there are a wide range of

real-world applications of FS [116, 139, 142] in prominent fields as illustrated in

Fig. 1.2.

Broadly speaking, FS approaches in terms of evaluation methods can be divided

into three different categories (or variants thereof): wrapper, filter, and hybrid

methods [91]. Wrapper methods [92, 120, 121] are often used in conjunction with

inductive learning algorithms (e.g., C4.5 [176]), where the classification accuracy of

the learning mechanism is used as a metric of feature subset quality. Since classifiers

typically require a re-training phase for newly added data, the computational over-

head for large data can often be prohibitive for such methods. Filter methods on the

3



1. INTRODUCTION

other hand, are simple and employ a predefined subset evaluation metric rather than

a classifier learner to estimate the quality of any candidate feature subset. The use

of evaluation metrics that are easy to compute makes feature filters computationally

efficient, which can be computed independently of the subsequent learning task that

exploits the selected feature subset. Nevertheless, high quality values for feature

subset candidates obtained using filter evaluation metrics do not necessarily translate

into good classification accuracies or indeed robust models, when the same features

are used to train and test classifier learners. In an attempt to address both of the

above mentioned problems, so-called ‘hybrid’ methods [244] have been proposed

where elements of both wrapper and filter methods are integrated. As a further

development, embedded FS methods [91], which perform feature selection using

the objective function (e.g., least squares) of a learning algorithm to estimate the

quality of the candidate subset without the need for re-training, have also been

proposed.

1.2 Feature Grouping-based Feature Selection

Although existing work on FS has resulted in many powerful techniques, for most ap-

proaches important information with regard to the level of feature correlation may be

ignored during the selection process. Methods that only iteratively include/exclude

single individual features from a candidate subset of features are typical examples

where this is the case. This loss of feature correlation may lead to a considerable

level of redundancy in the resulting dataset [170]. FS algorithms based upon a

high-level clustering framework can address this issue by grouping those redundant

features together and then selecting the representative features from each group, in

order to form a final set of selected features.

Initial clustering-related FS methods have been reported in the literature [100,

106, 190, 199]. The algorithmic framework for these methods primarily involves two

steps: 1) identifying homogeneous groups of features using clustering techniques;

and 2) performing subset selection on the resulting feature groups. Traditional

clustering methods (e.g., k-means, c-means, hierarchical, and graph-theoretic clus-

tering [104]) are used to obtain object clusters, where the similarity between objects

are measured by distance functions or metrics (e.g., Euclidean distance). However,

information behind features can be measured by information metrics such as mutual
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Figure 1.2: Real-world applications of FS

information [65], correlation coefficient [93], and fuzzy-rough set dependency

[177]. This leads to the ability to cluster redundant features.

1.3 Feature Selection with Nature-Inspired

Techniques

Leaving aside the learning mechanism, the search for the optimal feature subset is

in fact a combinatorially hard problem [76]. An exhaustive search could be used

in order to guarantee a global optimum, but this would also lead to an exponential

increase in computational time-complexity. This means that exhaustive methods

are often computationally intractable for feature subset search where the data is

large. One of the most common approaches to addressing this drawback is to employ
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greedy hill-climbing strategies, where single features (or groups of features) which

result in the greatest increase in the quality of a candidate feature subset (i.e., the

emerging subset of selected features) are greedily added to the candidate subset.

However, many of these approaches, although efficient, can easily become trapped

in local optima. Alternatives that employ metaheuristics may help to escape the

local regions and return, or at least come close to returning, the global optimum.

Examples of these include genetic algorithms (GA) [7], memetic algorithms (MA)

[126], particle swarm optimisation (PSO) [219], harmony search (HS) [81], and

other nature-inspired techniques.

Harmony search (HS) [80] is a recently developed meta-heuristic optimisation

algorithm mimicking a musical improvisation phenomenon, during which each

musician in an ensemble plays a note in order to discover a best overall harmony. HS

has been very successful in addressing various engineering optimisation problems

[4, 43, 69, 131, 202, 215, 237] and machine learning tasks [44, 146]. Several

advantages over traditional optimisation techniques have also been demonstrated

[80, 229].

HS imposes only limited mathematical requirements and is not sensitive to the

initial parameter value settings. As a population-based approach, HS works by

generating a new vector that encodes a candidate solution after considering the

quality of existing tentative solutions. This is in contrast to the classical genetic

algorithms that typically consider only two (parent) vectors in order to produce a new

(child) vector. Due to its popularity, the original HS technique has been improved

by methods that dynamically adjust its parameters [80, 145], making the algorithm

more adaptive to the variance in variable value ranges. Work has also been carried

out to analyse the evolution of the population variance over successive generations

in HS, thereby drawing important conclusions regarding its exploratory power [43].
More variants have been developed in the literature (e.g., [78, 162, 229]) which

attempt to improve its overall search capability.

An application of HS to FS (HSFS) has also been recently developed [53], which

has demonstrated competitive FS outcomes. However, the original HSFS is too

restrictive when adjusting the size of the parametric musician/variable population

which directly affects the performance of the feature subset size reduction. This

weakness is alleviated to a certain extent by an iterative refinement extension, but

the fundamental issue remains. Stochastic mechanisms have not been explored to

6



1.3. Feature Selection with Nature-Inspired Techniques

their maximum potential by the original work, as it does not employ the parameter

of pitch adjustment rate due to its ineffective mapping of concepts.

To address the original shortcomings of HSFS identified above, two different

directional approaches to FS are proposed which attempt to deal with the challenges

in further reducing the size of the feature subset while preserving the subset quality

when compared with existing FS methods.

The first is a so-called self-adjusting method, which extends the original idea of

HSFS. It includes three important improvements:

• The concept of a restricted feature domain is introduced in order to limit

the locally explorable solution domains (of individual musicians), allowing

more informative features to be located more quickly, whilst also reducing

the run-time memory requirement of the algorithm. The more interesting

aspect is that a restricted feature domain avoids the core where a large number

of musicians select the same feature for the emerging subset. As such, it

potentially improves the diversity of feature subsets.

• A harmony memory consolidation mechanism is developed, which allows

musicians (that act as individual feature selectors in the algorithm) to exchange

information on tentatively selected local features, and helps to identify and

remove non-contributing musicians, while also allowing several new musicians

to be recruited in a new iteration, since the musician group may not be

sufficiently large. As a result, the size of the musician group can be dynamically

adjusted during the search.

• A pitch adjustment strategy is presented which mimics the pitch adjustment

behaviour of musicians. It is used by HSFS to fine tune the emerging feature

subsets. In such a scheme, a feature may be substituted by its neighbour, which

is determined via the use of a certain feature similarity measure.

The second directional approach extends a graph-based feature grouping ap-

proach [199], where two FS initialisations using the resulting feature groups are

then derived. In particular, one is based upon music-inspired HS while the other is

based upon the ranking of the obtained feature grouping (which may possibly lead

to sub-optimisation). The main steps of these two FS methods are, basically, the

same:
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1. Construct a connected, undirected, and weighted graph by representing the

features as vertices with the edges created through computing feature redun-

dancy or collaboration with respect to the decision.

2. Generate a minimum spanning tree (MST) from this graph, where an MST

is a graph representation of all the given features inter-connected such that

redundant information on the edges of a given path ensures a global minimum.

3. Obtain feature groupings by breaking links (e.g., eliminating edge(s) with the

minimum weight at a time) between features in the resultant MST.

4. Perform search methods across the feature grouping and evaluate the selected

feature subset.

5. Repeat steps 3-4 until the algorithm terminates (e.g., no better feature subset

can be discovered in the current grouping).

As well as applications to using the benchmark data, the novel techniques are

also applied to a network security problem: intrusion detection [50]. The task of

intrusion detection deals with malicious attacks (e.g., DOS attacks [225] and illegal

access [212])on a computer network. With huge quantities of network data, such

a task, in terms of building attack-predictable models, becomes computationally

intractable. In particular, a dataset drawn from a large amount of network traffic

may contain huge levels of redundant, irrelevant, or noisy information, which can be

solved using the FS techniques. FS may, therefore, reduce this huge amount of data

to a manageable size such that attack predictors can be built more efficiently while

possibly being more predictive. Additionally, the approaches proposed in this thesis,

which are supported with experimental evaluation, have demonstrated advantages

over other existing FS methods.

1.4 Structure of Thesis

The rest of this thesis is structured as follows:

Chapter 2: Background

This chapter includes a systematic overview of existing FS techniques. It begins

with an appraisal of the state-of-the-art FS methods in terms of evaluation functions
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and search strategies. In contrast to these so-called “flat” FS methods that work by

incrementally adding or removing individual features from a given feature subset,

the following section investigates different directional FS methods, which are based

on feature grouping techniques. As the approaches proposed in this thesis mainly

involve HS [81] or its application to FS (HSFS) [53], this chapter includes a section

devoted to discussing the basic principles of HS and HSFS.

Chapter 3: Self-Adjusting Harmony Search-based Feature

Selection

This chapter presents a self-adjusting HSFS method which extends the original idea

of HSFS. This technique introduces three significant strategies to improve the original

HSFS. In particular, a new concept of a restricted feature domain is employed in

order to limit the locally explorable solution domains (of individual musicians),

which allows more useful features to be located more efficiently. A harmony memory

consolidation mechanism is developed, aiming at dynamically adjusting the size of

the musician group during the search. Furthermore, the pitch adjustment strategy

that is used for fine tuning the emerging feature subsets is presented with a feature

similarity measure such that a selected feature may be substituted by its neighbour.

Chapter 4: Feature Grouping-based Feature Selection using a

Graph-theoretic Approach

In this chapter, a graph-based feature grouping framework extends the original idea

proposed in [199], where three novel improvements are made. Firstly, in order to

identify feature relationships, the framework includes a more powerful inter-feature

measure, a three-way mutual information that is available to compute the level

of redundancy and collaboration between features with respect to the decision.

Secondly, the removal of irrelevant data at the earliest stage is no longer considered

because datasets may display the XOR problem scenario or function where two

irrelevant features combined can offer certain information to the decision. Thirdly,

the framework uses a strategy of refining emerging feature groupings using the

feature subsets obtained on these emerging groupings, encouraging the feature

grouping process to be an internal step of FS algorithms rather than treating it as a

preprocessing step that obtains a feature grouping prior to FS.

9



1. INTRODUCTION

The framework itself involves a series of three primary steps. Firstly, a connected,

undirected, and weighted graph is constructed by representing the features as

vertices with the edges created by computing feature redundancy or collaboration

with respect to the decision attribute. Secondly, an algorithm is devised to derive

minimum spanning trees (MSTs) [201] from the constructed graph, where an MST

is a graph representation of all given features inter-connected such that weights

on the edges of a given path ensure a global minimum. Finally, feature groupings

are obtained by breaking links between features in the resultant MST. This general

framework can be implemented in a number of different ways to support feature

selection. In this work, two particular instantiations are described, one based on

the ranking of generated feature groups and the other based upon a music inspired

metaheuristic (harmony search [81]).

Chapter 5: Feature Selection for Intrusion Detection

Network security has become increasingly important in today’s advanced computer

networks, where people are allowed to access information more easily, but which at

the same time are vulnerable to a diverse range of malicious network activities such

as DOS attack (e.g., crashing services and preventing legitimate requests), and illegal

access (e.g., uploading malware and stealing of confidential information), which may

potentially lead to severe real-life consequences such as financial loss for a bank, or

the breach of military confidentiality of a nation-state. An intrusion detection system

is a means for identifying and dealing with these network problems. It is, usually,

a tool which requires building a predictive model using huge amounts of data that

is drawn from network traffic. However, this data, which may contain irrelevant,

redundant, and noisy information, is more likely to impact upon not only the speed

with which predictors may be built, but also upon the accuracy of predictors. These

considerations motivate the application of the FS methods proposed in this thesis

to the task of intrusion detection, where building a predictive, interpretive and

efficient model from data is a requirement. The experimental results show that the

FS methods proposed in this thesis significantly reduce the dimensionality of KDD99

dataset [22] by several orders of magnitude while also dramatically improving the

prediction accuracy of predictors built upon reduced data.

However, in the real-world intrusion detection problem, network traffics used

for training are increasingly augmented and they are not static. Feature subsets
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selected from a given training dataset may be out of date while new data entities

came into the training dataset. Classifiers/intrusion analysers learned over such

selected feature subsets may not deal with unknown data patterns well. Online FS

methods [9], which perform data reduction on the fly when the training dataset

changed or its volume increased, would be better alternatives.

Chapter 6: Conclusion

The thesis concludes with a summary of the key contributions as listed below,

• Two frameworks of FG-based FS are proposed.

• A new Graph-based FG method is carried out and applied to FS methods.

• Self-adjusting harmony search algorithm is proposed with three innovative

mechanisms.

• All proposed FS methods in this thesis are applied to solve the task of intrusion

detection.

Also, a discussion of short-term and long-term topics for further development.

Publications Arising from the Thesis

Publications are consulted in the realisation of the work presented in this thesis,

containing both published papers,

• L. Zheng, R. Diao, and Q. Shen, Self-Adjusting Harmony Search-based Feature

Selection, Soft Comput., vol. 19, no. 6, pp. 1567–1579, 2015.

• L. Zheng, R. Diao, and Q. Shen, Efficient Feature Selection using a Self-

Adjusting Harmony Search Algorithm [240], Proceedings of the 13th UK

Workshop on Computational Intelligence, 2013.

and as yet unpublished in peer-reviewed journals,

• L. Zheng, N. Mac Parthaláin, and Q. Shen, Feature Grouping and Selection

using Fuzzy Linguistic Term-weighted Graph.
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• L. Zheng and Q. Shen, Feature Grouping-based Feature Selection for Intrusion

Detection.

Note that the latter two papers are finished in writing and currently they are under

review by authors.

Appendices

Appendix A offers details of the benchmark datasets employed in this thesis.

Appendix B gives a summary of the acronyms used throughout this thesis.

Appendix C gives a summary of the symbols used throughout this thesis.
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Chapter 2

Background

T He growth of data both in terms of the number of features and the number of

instances is a pervasive problem. The analysis of data with such high levels of

dimensionality quickly becomes computationally intractable. Also, large scale data

often contains irrelevant, redundant, and noisy features. FS techniques, which work

by removing such features while preserving and even improving the interpretation

of the underlying data, can be used to alleviate the problem caused by the “curse

of dimensionality” [18]. FS can be treated as a preprocessing technique used to

deal with the data after the process of data cleansing. The general framework of

FS consists of two major components: feature subset evaluation and feature subset

search. The flowchart shown in Fig. 2.1 presents the interaction between these two

components as well as the stopping criteria, which require not only an appropriate

convergence for proposed algorithms but also a guarantee in case of premature

termination of the algorithms. Having generated a reduced feature set, data related

to relevant features is used for further processing (e.g., the building of classification

and/or clustering models). For those features filtered out, they are discarded.

The work in this thesis is focused on implementing FS based upon stochastic

search strategies and a feature grouping framework. FS is first introduced in Section

2.1 with respect to feature subset evaluation and feature subset search. This is

followed by Section 2.2, where the different feature grouping blueprints for FS

are discussed and also the existing feature grouping methods related to FS or

classification model building are reviewed. As for the nature-inspired metaheuristic,
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Processed Data

Feature subset search

Feature subset evaluation

meet stopping criteria?

Reduced Data

yes

no

Figure 2.1: Flowchart and key components of FS

harmony search has been used and also improved for the task of FS. The principles

of harmony search and its application to FS are elaborated in Section 2.3.

2.1 Feature Selection (FS)

An information system in the context of FS is a tuple 〈X , Y 〉, where X is a non-

empty set of finite objects (also referred to as the universe of discourse); and Y

is a non-empty, finite set of features. For decision systems, Y = {A∪ Z} where

A = {a1, · · · , an} is the set of conditional features, and n denotes the cardinality of

A (note that features in A may be either continuous or discrete-valued), and Z is
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Filter-based FS

Wrapper-based FS

Hybrid FS Embedded FS

Figure 2.2: FS approaches are classified according to evaluation functions

the set of decision features. Given a dataset with n features, the task of FS is to

find a subset S ⊆ A, which contains the most information as A, about Z while the

cardinality of S is encouraged to be as small as possible.

2.1.1 FS Evaluation Functions

Various methods have been developed in the literature for the purpose of evaluating

the quality of feature subsets. In general for such measures a numerical value f (S)
is generated for a given subset S ⊆ A, where A is all available conditional features in

a dataset. The function f : S→ R attempts to map a set of feature subsets onto a

set of real numbers, which is often normalised in the interval [0,1]. In this thesis,

f (;) is 0, indicating the poorest quality of selected feature subset. For any S ∈ S,
where f (S) approaches a value of 1.0, indicates that S is a better feature subset.

In particular, there may exist a set of equal quality feature subsets S′ ⊆ S in any

dataset, when judged by the evaluation function. For the further specification, for

any feature subset Sp, Sq ∈ S′ and Sp 6= Sq, f (Sp) = f (Sq). According to various

evaluation functions, FS can usually be divided into four categories: filter, wrapper,

hybrids, and embedded approaches, as illustrated in Fig. 2.2.

2.1.1.1 Filter Approaches

Filters are a collection of FS approaches that operate independently of the learning

algorithm [91]. In these methods, features which are irrelevant and redundant
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are removed prior to returning the resultant feature subset. Although a filter-

based method is applicable for any subsequent learning algorithm, the resulting

classification performance can vary depending on the feature subset returned by

filter-based methods. Also, the high quality of feature subsets, which are obtained

by filter-based methods, does not necessarily yield high classification accuracy when

these feature subsets are used for training and testing classifier learners. As filter-

based approaches to FS are very cheap (computationally), they are more popular

than other approaches. The most widely employed filter-based approaches are

detailed below.

Information Gain Entropy [122] is a very useful probabilistic model in informa-

tion theory. It is often used for measuring the degree of uncertainty of information

content through estimating the individual probabilities of its observed values. For

given a set of information values observed by the feature ax , Vax
= {v1

ax
, v2

ax
, · · · v|Vax |

ax
},

the entropy of ax can be calculated as follows:

H(ax) =−Σ
|Vax |
i =1p(v i

ax
) log2 p(v i

ax
) (2.1)

where p() is the probability of a value taken by a feature. If the observed values

of ax are in fact partitioned according to another feature ay , and the entropy of ax

with respect to the partitions induced by ay is less than the entropy of ax prior to

partitioning, then there is a relationship between the two features ax and ay . The

entropy of ax after observing ay , which is assumed to have a set of observed values

Vay
= {v1

ay
, v2

ay
, · · · , v

|Vay |
ay
}, is defined as:

H(ax | ay) =−Σ
|Vay |
j =1p(v j

ay
)Σ
|Vax |
i =1p(v i

ax
| v j

ay
) log2 p(v i

ax
| v j

ay
) (2.2)

The above conditional entropy reflects uncertainty about ax is reduced by providing

ay . Information gain [130] (or, alternatively, mutual information [65]) is given by

information gain(ax , ay) = H(ax)−H(ax | ay)

= H(ay)−H(ay | ay)

= H(ax) +H(ay)−H(ax , ay) (2.3)

The higher value of this magnitude measured between features, the lower indepen-

dency between them. However, its higher value measured between a feature and

the decision illustrates this feature can provide more information for the decision.
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As information gain is naturally symmetric, it is useful for measuring inter-feature

correlation. Unfortunately, this measure is biased towards selecting features with

higher information gain. The symmetrical uncertainty measure [231] is introduced

to compensate for such bias. The values of information gain are normalised into the

interval [0,1].

symmetrical uncertainty(ax , ay) = 2.0× [
information gain(ax , ay)

H(ax) +H(ay)
] (2.4)

Information gain is a very common notion in the FS techniques, such as MRMR [170].
These FS algorithms attempt to select informative features by including relevant but

non-redundant features or conversely excluding redundant and irrelevant features.

Interaction Gain Three-way mutual information, which is also known as interac-

tion gain [234] is a metric which attempts to identify feature relationships, including

collaboration and redundancy with respect to the decision. It is a special case

for multivariate mutual information [209]. The general formation of multivariate

mutual information is described as follows:

I(S ∪ Z) =−ΣS′⊆S∪Z(−1)|S∪Z |−|S′|H(S′) (2.5)

where S ⊆ A and the weight of interaction information is the sum over entropies

for all possible subsets S′ ⊆ S ∪ Z . Z is a set of decision features. The entropy of a

subset H(S′) is calculated as:

H(S′) =−Σa∈S′H(a | (S′− {a})) (2.6)

where H(a | (S′− {a})) is the entropy of feature a conditioned by features except

for a in S′. However, the inclusion of n features (rather than the simple binary

case described above) makes it difficult to interpret the meaning of the resulting

value. Therefore, n-way mutual information is difficult to adapt for the purposes of

weighting the relationships between features [105].

The binary case of multivariate mutual information measures the correlation

between any two features with respect to the decision. No assumptions are required

when applied to feature selection techniques, such as those used in the maximum-

relevance and minimum redundancy approach [170]. Also, it can be used to identify

relationships between subsets of features that are similar, again with respect to the

decision [16].
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For any, two given features: ax , ay ∈ A and the decision features Z with a

pool of class labels VZ = {v1
Z , v2

Z , · · · , v|VZ |
Z }, supposing that ax and ay respectively

have themselves, sets of observed values: Vax
= {v1

ax
, v2

ax
, · · · , v

|Vax |
ax
} and Vay

=

{v1
ay

, v2
ay

, · · · , v
|Vay |
ay
}, three-way mutual information can be computed as follows:

I(ai, a j, Z) = Σ|VZ |
l=1Σ

|Vax |
i=1 Σ

|Vay |
j=1 p(v i

ax
, v j

ay
, v l

Z) log
p(v i

ax
, v j

ay
, v l

Z)p(v
i
ax
)p(v j

ay
)p(v l

Z)

p(v i
ax

, v j
ay
)p(v i

ax
, v l

Z)p(v
j
ay

, v l
Z)

(2.7)

Its values are bounded by the inequality:

−[H(ax) +H(ay)]≤ I(ax , ay , Z)≤ [H(ax) +H(ay)] (2.8)

where H(ax) and H(ay) are the entropy of ax and that of ay respectively. In

practical use, interaction gain is often normalised to the interval [−1, 1] by the term

[(H(ax) +H(ay)]. Denote the normalised I(ax , ay , Z) as Ix y , then

Ix y =
I(ax , ay , Z)

H(ax) +H(ay)
(2.9)

In common with conventional two-way mutual information, interaction gain

also satisfies the symmetry property, which means that it is not influenced by the

ordering of the features involved. Unlike two-way mutual information, however,

three-way mutual information can have a positive, negative, or zero value. A positive

interaction gain value implies collaboration between two features. Such inter-feature

collaboration indicates that the two features together provide more information

about the decision attribute than they do individually. The higher positive value, the

stronger the collaboration. A negative interaction value implies that two features are

redundant. In other words, the two features provide common information about the

decision attribute. A low negative value, which tends towards −1.0, demonstrates

high redundancy. A value of zero indicates that the inclusion of feature ax (or ay)

has no impact on the relationship between ay (or ax) and Z . That is, ax and ay

provide information about the decision attribute independently of one another.

Relief Relief is a class of feature weighting algorithms, including Relief [119],
ReliefF [124], RReliefF [181] and their variations [34, 233]. The basic Relief

algorithm only tackles classification problems with two classes although it is very
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sensitive to feature interaction. ReliefF, which is an extension to Relief, improves

upon the original Relief algorithm with its capacity to solve multiclass problems and

deal with incomplete, noisy data. RReliefF is derived from ReliefF, and is applicable

to continuous-valued class problems such as regression [102].

Given a dataset that has |A| features and |X | instances, Relief weights the statisti-

cal relevance of the decision features Z for each conditional feature. A relevance

threshold τ in the interval [0, 1] determines whether the feature is selected. Detail

of the Relief algorithm is shown in Algorithm 2.1.1.

1 W = (0,0, · · · , 0): vector of feature weight that has |A| elements.
2 A = {a1, a2, · · · a|A|}: set of conditional features
3 X : set of given instances
4 S = ;: feature subset
5 for i = 0 to |X | do
6 Pick at random an instance x ∈ X
7 Find a nearest instance xhit for x in the same class
8 Find a nearest instance xmiss for x in the different classes
9 for i = 0 to |A| do

10 Wai
=Wai

− diff(v x
ai

, v xhit

ai
)2/|X |+ diff(v x

ai
, v xmiss

ai
)2/|X |

11 for i = 0 to |A| do
12 if Wai

> τ then
13 S = S ∪ {ai}

14 return S
Algorithm 2.1.1: Basic Relief for FS

Function diff(v xm
ai

, v xn
ai
) calculates the difference between the values of the feature

ai for two instances xm and xn. v xm
ai

and v xn
ai

represents two values taken by instances

xm and xn respectively regarding feature ai. When the values of the feature are

nominal, this function can be defined as:

diff(v xm
ai

, v xn
ai
) =







1 if v xm
ai
6= v xn

ai
,

0 if v xm
ai
= v xn

ai
.

(2.10)

When the values of features are numerical, this function can be defined as:

diff(v xm
ai

, v xn
ai
) =

|v xm
ai
− v xn

ai
|

max(ai)−min(ai)
(2.11)
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where max(ai) and min(ai) are the maximum value and the minimum value of

feature ai respectively. The denominator max(ai)−min(ai) normalises the values of

this function to the interval [0,1]. This function can not only be used to compute

feature weights but also be employed to locate the nearest neighbours for randomly-

generated instances in Algorithm 2.1.1.

Unlike the basic Relief algorithm, ReliefF is not restricted to binary problems.

For the process of finding the nearest neighbour, ReliefF has greater generalisation

by searching k of nearest neighbours for randomly-generated instances instead of

finding only one of the nearest neighbours in the original algorithm. Algorithm

2.1.2 presents an algorithmic description of the FS approach by using ReliefF. The

user-defined parameter k controls the neighbourhood of the estimates and 10 is a

value suggested [123].

1 W = (0, 0, · · · , 0): vector of feature weight that has |A| elements.
2 X : set of given instances
3 A = {a1, a2, · · · a|A|}: set of conditional features
4 VZ : set of class labels
5 S = ;: feature subset
6 for i = 0 to |X | do
7 Pick at random an instance x ∈ X
8 Find x k nearest instances X vx

Z
⊂ X that have the same class label v x

Z with x
9 for vn

Z ∈ VZ \ {v x
Z } do

10 Find x k nearest instances X vn
Z
⊂ X that have the same class label vn

Z

with x

11 for i = 0 to |A| do
12 Wai

=Wai
−Σx i∈X vx

Z
diff(v x

ai
, v x i

ai
)2/(|X | · |X vx

Z
|)+

13 Σ|VZ\{vx
Z }|

n=1 [ p(vn
Z )

1−p(vx
Z )
·Σx i∈X vn

Z
diff(v x

ai
, v x i

ai
)2/(|X | · |X vn

Z
|)]

14 for i = 0 to |A| do
15 if Wai

> τ then
16 S = S ∪ {ai}

17 return S
Algorithm 2.1.2: ReliefF for FS

In order to deal with incomplete data, missing values of features are treated

probabilistically. For the case that either of the two given instances xm (or xn) has

unknown values, the difference between the two instances of feature ai is computed
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as follows,

diff(v xm
ai

, v xn
ai
) = 1− p(v xm

ai
| v xn

Z ) (2.12)

where v xn
Z is the class label taken by instance xn. For the case that both of the given

instances have unknown values, the difference between two instances with respect

to feature ai is approximated using the relative frequencies of the values of feature

ai for all given classes.

diff(v xm
ai

, v xn
ai
) = 1−Σv∈Vai

(p(v | v xm
Z )× p(v | v xn

Z )) (2.13)

where Vai
is all of the values observed by feature ai and again v xm

Z is the class label

taken by instance xm.

In fact, the Relief algorithms can be theoretically explained using probability

theory. The weighting of features (e.g., a feature ai) in Relief is an approximation of

the probabilistic difference:

Wai
=p(different value of ai | nearest instance of different class)

− p(different value of ai | nearest instance of same class) (2.14)

By removing the context sensitivity imposed by the ‘nearest instance’ condition,

features are treated as being independent of one another. Eqn. 2.14 can then be

reformulated as:

Relief(ai) =p(different value of ai | different class)

− p(different value of ai | same class) (2.15)

The weighting can be more formally described as:

Relief(ai, Z) =
Gini′×Σv∈Vai

p(v)2

(1−ΣvZ∈VZ
p(vZ)2)ΣvZ∈VZ

p(vZ)2
(2.16)

where VZ is a set of class labels observed by decisional features Z and Gini′ is a

modification of Gini-index [25], which is similar to information gain. Both of these

are biased towards features with a large number of possible values. Gini′ becomes

the measure shown below:

Gini′ = [ΣvZ∈VZ
p(vZ)(1− p(vZ)]−Σv∈Vai

� p(v)2

Σv∈Vai
p(v)2

ΣvZ∈VZ
p(vZ |v)(1− p(vZ |v))

�

(2.17)
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Gini-index is differentiated from Gini′ by replacing p(v)2

Σv∈Vai
p(v)2

with p(v). In order

to make Relief a symmetrical measure for any two given features, ai and a j, the

measure is computed twice in which both features are treated as the decision feature

once and the final result takes the average between them.

Relief’(ai, a j) =
Relief(ai, a j) +Relief(a j, ai)

2
(2.18)

Correlation Correlation is a measure of the quality of feature subsets rather than

an individual feature in correlation-based FS (CFS) [93] (note that it is different

from the concept of classical linear correlation). Let S be a feature subset and Z be

the set of decisional features, then the correlation between S and Z is calculated as:

correlation(S, Z) =
Σ|S|i=1correlation(ai, Z)

Æ

|S|+Σ|S|i=1, j 6=iΣ
|S|
j=1correlation(ai, a j)

(2.19)

where correlation(ai, Z) is the correlation between individual feature ai and the class

and correlation(ai, a j) is the correlation between any two features ai, a j ∈ S. The

latter correlation is the so-called inter-correlation. Metrics including symmetrical

uncertainty [231], symmetrical Relief [124], minimum description length (MDL)

principle [96], and other techniques described later can also be used to calculate

correlation(ai, Z) and correlation(ai, a j).

In CFS, this correlation measure favours the selection of features that are highly

correlated with the decision attribute and uncorrelated with each other. Irrelevant

features are those that have no correlation with the decision attribute. They have

more impact on the numerator. The removal of irrelevant features will result in better

correlation between feature subsets and the decision attribute. The denominator

controls inter-feature redundancy. High redundancy between features decreases the

performance of feature subsets on this correlation measure whilst low redundancy

between features increases the correlation measure. Therefore, when applying this

measure to FS, features that are highly correlated with the decision attribute and less

redundant with regard to each other emerge in the finally returned subset. However,

the drawback of this measure is that the interaction between features, particularly

those that are irrelevant, remains unconsidered. This is because a combination of

irrelevant features may be highly correlated with the decision attribute.

22



2.1. Feature Selection (FS)

Probabilistic Consistency The consistency measure [45] calculates the discrim-

inability of a given feature subset S ⊆ A with respect to the decision. For each

feature ai ∈ S (i = 1,2, · · · , |S|) , assume that ai has |Vai
| values. For continuous

domains, this implies that feature values have to be discretised. A combination of

values from all different features becomes a pattern, which is a part of an instance

without the class label. The total number of patterns for S is the product of the

quantity of value of all features in S, Πk
i=1|Vai

|. In practice, not all of the possible

patterns have to be contained in a real-world dataset and the consistency measure is

applied to relevant patterns already existing in the dataset. For all emergent patterns

{N j
S : j = 1,2, · · · , n} of S, the concept of probabilistic consistency between S and

the given class labels VZ taken by decisional features Z is mathematically defined by

consistency(S, Z) = 1−
n
∑

j=1

�

∑

vZ∈VZ

p(N j
S |vZ)p(vZ)− sup

vZ∈VZ

(p(N j
S , vZ))

�

(2.20)

where ΣvZ∈VZ
p(N j

S |vZ)p(vZ) is the marginal probability of the pattern N j
S over all

the class labels in VZ , computing the frequency of instances containing N j
S while

p(N j
S , vZ) is the joint probability between the pattern N j

S and a given class label

vZ , computing the frequency of instances that contain N j
S and vZ at the same time.

Instances that contain the same pattern and the same class label are deemed to be

consistent and instances that contain the same pattern but different class labels are

treated as inconsistent with each other. The term supvZ∈VZ
(p(N j

S , vZ)) determines the

most consistent instance(s) for an emergent pattern of S after taking account of all

given class labels. The other instances that contain the same pattern as these most

consistent instances are inconsistent with them because they possess different class

labels.
∑

vZ∈VZ
p(N j

S |vZ)p(vZ)− supvZ∈VZ
(p(N j

S , vZ)) thus computes the inconsistency

rate of an emergent pattern of S. Of course, the Eqn. 2.20 can be simplified as:

f (S, Z) =
n
∑

j=1

sup
vZ∈VZ

(p(N j
S , vZ)) (2.21)

as
∑

vZ∈VZ
p(N j

S |vZ)p(vZ) sums to one for all emergent patterns of S.

Probabilistic consistency has been proven to be a monotonic measure in [10]
and [45]. Given feature subsets {Si : Si ⊆ A and i = 1,2, · · · , n} and the decisional

features Z , if S1 ⊂ S2 ⊂ · · · ⊂ Sn, then consistency(S1, Z) ≤ consistency(S2, Z) ≤
· · · ≤ consistency(Sn, Z). When applying this measure to the feature selection task,

subsets which have higher consistency values may be returned as “optimal” feature
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subsets. For the implementation of probabilistic consistency, a hashing mechanism

can be used in order to improve its computational performance with linear time

complexity [140].

Rough Sets A rough set is a formal approximation of a crisp set, which can be used

for dealing with imperfect data. In an information system, rough set theory (RST)

[169] can be used not only for decision making [147] but also to measure data

dependencies [168]. The similarity between features or the correlation between

features and the decision feature can be described by these data dependencies.

However, rough sets are not used in this thesis but introduced for understanding

its fuzzy extension. Although RST can be treated as a consistency measure, when

compared with traditional crisp set-based consistency measures (e.g., probabilistic

consistency [10]), it supplements their deficiency in handling uncertainty. The basic

notions of RST are illustrated in Fig. 2.3.

The notion of the indiscernibility relation lies at the core of the RST. For any

given subset S ⊂ A, the equivalence classes about S are identified as follows,

IND(S) = {(x i, x j) ∈ X 2 | ∀a ∈ S, a(x i) = a(x j)} (2.22)

This means instances x i and x j are indiscernible when their values a(x i) and a(x j)
described by any feature of S are the same. The equivalence classes of the S-

indiscernibility relation are therefore denoted [x]S. Each equivalence class is a

subset of the universe of discourse X , all of which then form a partition of X .

For any subset W ⊆ [x]Z where [x]Z is a set of equivalence classes with respect

to the decisional features Z , W is approximated by two constraints, which are known

as the lower and upper approximations. The lower approximation SW that indicates

information with certainty describes the instances of interest belonging to W :

SW = {x : [x]S ⊆W} (2.23)

The upper approximation SW extends the lower approximation. It describes the

instances being included in both a class of indiscernible instances and W :

SW = {x : [x]S ∩W 6= ;} (2.24)

The boundary region of W with respect to S, which is identified by SW − SW ,

contains all the uncertain objects between [x]S and W . The positive region is the
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X

X

Lower Approximation

Upper Approximation

Equivalence Classes

Concept being Approximated

Boundary Region

Figure 2.3: Basic notions of rough set

union of lower approximations for all elements of [x]Z ,
⋃

W∈[x]Z
SW , containing all

certainty information about S.

RST has been widely used for developing FS approaches (e.g., [144], [168],
[179], and [207]) as it requires no additional knowledge about the data domain.

Some of the aforementioned techniques utilise feature subset measures derived from

the notion of the positive region, which attempts to locate feature subsets with the

maximum certainty about the decision attribute. Some of them are based on the

lower approximation and the boundary region, which aim to select feature subsets

with the minimum inconsistency about the decision attribute.

Fuzzy Rough Sets RST works well on discrete- or crisp-valued domains. However,

for many real-world problems, the values of features are not necessarily nominal.

Data discretisation is therefore needed in order to make RST computationally appli-

cable to continuous, real value problems. In practice, data discretisation can result

in information (e.g., data consistency) loss. For example, two close values observed

by a real-valued feature in two different instances that have distinct class labels are

in the same order of magnitude after the values of the feature have been discretised,
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are considered the same value. As a result, these two values have lost their ability

to distinguish between the classes. Fuzzy extensions of RST [164, 177], which are

referred to as fuzzy-rough sets (FRS), are developed such that they can handle both

discrete- and continuous-valued features independently of data discretisation.

The purpose of FRS is to approximate a fuzzy concept by two fuzzy sets: a fuzzy

lower and a fuzzy upper approximation. In RST, instances either belong to the lower

approximation with absolute certainty or not at all. In FRS, however, instances have

a membership with each other ranged by the interval [0,1].

For FS, fuzzy-rough set theory can be used either to evaluate the degree of

correlation between features and the decision attribute or to identify redundant

information between features. Although the FRS-based FS approach developed in

[108, 211] have shown to be highly useful, several problems still remain. Firstly,

fuzzy sets have to be defined manually for features. Secondly, the fuzzy lower

approximation might not be a subset of the fuzzy upper approximation. These issues

inspire the development of novel FRS-based FS approaches in [111], where three

new scenarios based on fuzzy similarity relations are developed upon notions of FRS

which include:fuzzy lower approximation; the fuzzy boundary region; or the fuzzy

discernibility matrix.

2.1.1.2 Wrapper Approaches

Unlike filter-based approaches, wrapper-based approaches [120, 121] utilise learn-

ing algorithms as the evaluation function for judging the quality of feature subsets.

They aim to locate feature subsets that are most appropriate for a specific application.

However, this type of approach has a very significant deficiency: problems with high

dimensionality become computationally intractable because, for every evaluation of

each located feature subset, a previously utilised learning model must be retrained

upon the data described by those features in the feature subset, and classification

performance is then returned as the quality of the feature subset. This situation is

compounded further when learning models are complex.

There are many learning models the can be used for wrapper-based approaches,

and these fall into three basic categories: classifiers, regression learners and clus-

terers. Many of the classifier and regression types (if not all) are often related to

supervised learning [154] which attempts to infer models from labelled training

26



2.1. Feature Selection (FS)

instances. Classifiers are regularly used for dealing with discrete-valued problems,

whilst regression analysis is employed for tackling continuous-valued problems. A

wide range of classifiers based on different mechanisms have been developed in

the literature. These mechanisms mostly involve decision trees [26, 176], rule

induction methods [6, 36, 159], Bayesian models [21, 48, 84], and state machines

[84, 129]. As the use of different classifiers has an obvious bias in classification

accuracy for the same data, diverse ensemble methods have also been developed

in order to aggregate the opinions of different classifiers. The popular ensemble

methods are, for example, bagging [56], boosting [186], stacking [224], and voting

[156]. Most clustering methods (e.g., k-means clustering [136] and hierarchical

clustering [113]) deal with unsupervised learning which can be used for building

clustering models as the instances of a given dataset may be unlabelled [72].

2.1.1.3 Hybrid and Embedded Approaches

In an attempt to integrate the advanced elements of both filter and wrapper ap-

proaches, so-called ‘hybrid’ methods [101, 244] have been proposed where both

evaluation functions and learning algorithms serve to evaluate the quality of feature

subsets. In a general framework of these hybrids, evaluation functions are utilised

to roughly screen feature subsets prior to applying learning algorithms. A smaller

number of better feature subsets results, and to these learning algorithms are then

applied to achieve feature subset refinement. As a further development, embedded

methods which perform feature selection using the objective function (e.g., least

squares) of a learning algorithm to estimate the quality of the candidate subset

without the need for re-training have also been proposed [91]. In such methods, FS

has been employed as a sub-process of learning algorithms whilst other approaches

treat FS as an algorithm in isolation.

2.1.2 FS Search Strategies

Having provided diverse evaluation functions that are used for the purpose of mea-

suring feature subset quality, this section introduces scenarios for exploring feature

subsets. Given a dataset with n features, the task of FS is to find the best feature

subset from 2n possible combinations of features. An exhaustive search could be used

in order to guarantee a global optimum, but this would also lead to an exponential

increase in computational time-complexity. This means that exhaustive methods are

often computationally intractable for feature subset search when the data is large.
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To address this computational bottleneck, two broad categories of search technique

have been developed for FS: greedy hill-climbers and metaheuristics. This section

provides an overview of these techniques.

2.1.2.1 Greedy Hill-climbers

Greedy hill-climbers are often used for searching feature subsets in FS. They work by

the incremental inclusion/exclusion of individual features from a candidate feature

subset, with the aim of improving its quality. These techniques, albeit efficient in

locating a feature subset, may lead to a locally optimal choice as the search sub-space

they have visited may not contain the globally best solutions. In order to visit other

solution regions, how is it possible to determine the most appropriate initial element

of the feature subset? By way of example, a number of studies (e.g., [68]) have

adopted a ‘random-start’ strategy to avoid the local optima. For more detail about

this class of search methods, three popular strategies used to implement greedy

hill-climbers for FS are listed below:

1. Stepwise forward selection: Hill-climbers in this scheme are initialised with an

empty set of features. A feature that is judged to be the best of the original

features is the very first added to the set. At each subsequent iteration, the

best of the remainder of the original features is then added incrementally to

the set.

2. Stepwise backward selection: Hill-climbers that employ this scheme are ini-

tialised with the full set of original features. Features judged the worst among

the complete set of features remaining are iteratively removed.

3. Combination of forward selection and backward selection: Hill-climbers based

on this scheme, which combines stepwise forward selection and backward

elimination, are bi-directional search methods. At each step, these methods

select the best feature while removing the worst from among the remaining

features.

The stopping criteria for the methods may vary. The procedure may employ a

threshold on the measure used to determine when to terminate the search process.
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1 A= {a1, a2, · · · , a|A|}: original feature set of given dataset
2 information gain(ai, Z): information gain ratio of any feature ai with respect

to the decisional features Z
3 τ: threshold to determine the best feature (or the worst)
4 ã: current best feature in remaining features
5 S = ;: candidate feature subset
6 while true do
7 ã =Random (A\ S)
8 for ai ∈ A\ S do
9 if information gain(ai, Z)> information gain(ã, Z) then

10 ã = ai

11 if information gain(ã, Z)< τ then
12 return S
13 else
14 S = S ∪ {ã}

Algorithm 2.1.3: Stepwise forward selection for feature subsets

2.1.2.2 Metaheuristics

Metaheuristics are algorithmic frameworks of stochastic and nature-inspired search

strategies. The region containing the best solution is more likely to be explored

thanks to an element of randomness. However, there is no guarantee that the

‘best’ solution will be found; near-best solutions may often be obtained instead

[88]. In order to better organise the reviewed approaches, metaheuristic algorithms

can be divided into three categories that have been successful in the area of FS.

Firstly, biologically-inspired approaches include the Genetic Algorithms (GA) [7],
Genetic Programming [125], Memetic Algorithms [97], and the Clonal Selection

Algorithm [46] from artificial immune systems. Secondly, physical, social and

stochastic algorithms include Harmony Search (HS) [81], Simulated Annealing

[192], Random Search [198], Scatter Search [87], and Tabu Search [85, 86]. Lastly,

swarm systems include Artificial Bee Colony [114], Ant Colony Optimisation (ACO)

[107], Firefly Algorithm [70] and Particle Swarm Optimisation (PSO) [219]. Of

greater interest still, a number of recent studies have investigated the hybridisation

of metaheuristic algorithms in order to discover (and improve upon) good candidate

solutions. These hybrid methods include GA-PSO [135], ACO-GA [134], MA-PSO

[137] and other possible combinations of metaheuristics.

Among the aforementioned algorithms, the most popular three are introduced

in detail in the following section: GA, ACO and PSO. These three algorithms share
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some common characteristics, most importantly is the fact that they are based upon

a population of agents. When applying these techniques in order to solve the FS

problem, each population stores a solution, representing a feature subset in a binary

manner. Assuming there is a solution, taking the form “01010001”, every single

bit encodes a single feature: the value ‘1’ means that the corresponding feature is

selected while ‘0’ indicates that the feature is not selected. This bit set therefore

illustrates that the second, fourth, and eighth features are selected to form the

feature subset, {a2, a4, a8}.

FS can be a dual-objective optimisation problem. The quality of feature subsets

is required to be maximised while the cardinality of those feature subsets must also

be simultaneously minimised. To make a comparison between two given feature

subsets: Spi ∈ A and Sp j ∈ A, an adopted scheme is formally described as follows,

Spi
> Sp j

⇔ f (Spi
)> f (Sp j

)∨ ( f (Spi
) == f (Sp j

)∧ |Spi
| ∨ |Sp j

|) (2.25)

where these feature subsets are compared first in terms of the quality. The cardinality

of the subsets is then used as a tie-breaker. Alternatively, in order to compare the

quality of a pair of feature subsets via a single numerical difference, weighted

aggregation (e.g., OWA [227]) may be applied by integrating the multiple objective

functions. In this dual-objective case, the quality and the cardinality of a feature

subset may be simply integrated using two weighting parameters α and β:

Spi
> Sp j

⇔ α f (Spi
) + β

|A|
|Spi |

> α f (Sp j
) + β

|A|
|Sp j |

(2.26)

According to the problem at hand, these weighting parameters may be equal or

biased. Of course, they can also be self-adaptive from one problem to another.

Since GA, ACO and PSO are all population-based, a number of the common

representations in these three techniques can be formalised as follows:

• pi ∈ P A population P of individuals pi

• Spi ∈ S Set of candidate feature subsets Spi
maintained by pi

• S
˜

Current worst subset

• S̃ Current best subset
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• bSpi

j A bit indicating selection state (0 or 1) of the j th feature in Spi

• f (S) The evaluated quality of any feature subset S

• λ Current iteration/generation

• λmax Maximal iteration/generation

• r A random value/component

• B A temporary subset

Genetic Algorithms Genetic Algorithms (GA) [7] are inspired by observations of

natural evolution. It works by passing the useful genetic information of parents to

offspring through operating events such as crossover and mutation of chromosomes,

a chromosome being a set of genes which are the carriers of genetic information. A

considerable number of studies in the literature (e.g., [160, 228]) have argued for

the usefulness and relevance of applying GA to FS. In these implementations, each

gene is used to represent the binary state of a feature: ‘1’ indicates that a respective

feature is active and then selected; and ‘0’ signals that the feature is not selected.

That is, each chromosome acts as a feature subset.

The FS processes using GA are presented in Algorithm 2.1.4. Lines 5-7 are the

initialisation stage, where the initial population P is formed by randomly generating

feature subsets. The size of P is predefined and maintained in successive generations.

The population reproduction module is depicted in lines 8-32. The assignment

statement in line 10 attempts to propagate the current best feature subset to the

next generation such that the useful features can pass from generation to generation,

although these current best subsets may not be the best in the succeeding generation.

For breeding each pair of a new population, two individual chromosomes are

randomly selected from the current population and manipulated mainly using

crossover and mutation operators. Lines 18-22 describe a scenario of operating

crossover on two selected chromosomes. It first locates a crossover point along the

length of the chromosome, and then exchanges the gene sequences in the same

structure such that two new chromosome are produced. However, a gene naturally

mutate. Therefore, a strategy of gene mutation for these two new chromosome is

presented in lines 23-28. If the mutation event of a gene happens, the state of this

gene will be set to the negation of its current state. Both crossover and mutation
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events are respectively controlled by two threshold parameters: the crossover rate rc

and the mutation rate rm. The reproduction process for a single generation is not

completed until the size of the newly-produced population is equal to that of the

current population. After that, the new population takes the place of the current

population, where all feature subsets are evaluated and the current best subset is

then updated. The algorithm terminates when the current iteration λ satisfies λmax

or the quality of the best and worst subsets evaluates to equal.

The GA-based FS algorithm does not change the flow of the internal processes

of the original GA, which makes it simple to implement with slightly fewer notions

translated such as mapping feature subsets into chromosomes. Being a randomised

algorithm, however, the optimisation response time and the selected subset are not

deterministic. And there is no guarantee that the best feature subset (if not the

global best subset) can be found in a predefined amount of iterations. For tasks of

on-line streaming FS, the effectiveness of GA will be less because of these drawbacks.

Finding a reasonable setting for predefined parameters for a specified problem also

becomes challenging since the problem domain of FS is hugely varied.

Ant Colony Optimisation The Ant Colony Optimisation (ACO) algorithm and

its variants have been systematically introduced and investigated in a number of

studies such as [57, 58, 60]. It is mainly used for solving difficult combinatorial

optimisation problems (e.g., a popular travelling salesman [59], vehicle routing

[17], and scheduling [152]). In particular, the task of FS can be considered as

a combinatorial problem. Quite a number of studies [107, 115, 192] have been

carried out in order to apply ACO to FS, and bear this observation out. The key

idea of ACO is based on the foraging behaviour of ants, which is capable of locating

the shortest path between colony and food source through biologically-mediated

communication (e.g., pheromone).

In ACO-based FS algorithms, features are represented as nodes in a fully con-

nected undirected graph, and a candidate feature subset S is therefore a path

connecting the visited features. The ant movements on the graph are guided by

two sets of hints: the heuristic information η and the pheromone values τ. η is

a two-dimensional matrix, which is constructed prior to the ant search and then

maintained until the algorithm terminates. The size of the matrix is |A| × |A|, where

A is the original input feature set. Unit ηi j = η ji stores the evaluated quality of the
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1 pi ∈ P, i = 1 to |P|: the initial population
2 Spi

, Sp j
: existing feature subsets associated with pi and p j respectively

3 rc: crossover rate
4 rm: mutation rate
// Initialisation

5 for i = 1 to |P| do
6 for j = 1 to |A| do

7 bSpi

j = Random ({0, 1})

// Reproduction
8 λ= 1
9 while (λ++)< λmax ∧ f (S

˜
) 6= f (S̃) do

10 B1 = B2 = S̃
11 for i = 3 to |P| do

12 Bi = Spi
with a probability of f (Spi

)

Σ|P|i=1 f (Spi )

13 Bi+1 = Sp j
with a probability of f (Sp j

)

Σ|P|i=1 f (Spi )

14 if Bi == Bi+1 then
15 r = Random ({1, 2, · · · , |A|})
16 bBi

r = ¬bBi

r
17 else

// Crossover
18 r = Random ([0,1])
19 if r < rc then
20 r = Random ({1, · · · , |A| − 1})
21 for k = 1 to r do

22 bBi+1

k = bSpi

k , bBi

k = bSp j

k

// Mutation
23 for k = 1 to |A| do
24 r = Random ([0,1])
25 if r < rm then
26 bBi

k = ¬bBi

k

27 if r < rm then
28 bBi+1

k = ¬bBi+1

k

29 i = i+ 2

30 for i = 1 to |p| do
31 Spi

= Bi

32 Evaluate Spi
, for all pi ∈ P

33 Update S̃

Algorithm 2.1.4: Genetic Algorithm for FS
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feature subset {ai, a j}, and illustrates the correlation between ai and a j. τ is another

matrix of the same size with η that stores the intensities of pheromone deposited

by the ants. τi j indicates the intensity of a single path between ai and a j, which is

often initialised with a constant value τ0.

As seen in Algorithm 2.1.5, for every iteration, each ant starts from a random

feature ar , which is set as the current feature ac of ants. The probability of the move

from ac to the next unvisited feature au is determined by

probu =
τ α

cuη
β

cu

Σaunot visitedτ
α

cuη
β

cu

(2.27)

where α and β are predefined weighting parameters. Unlike η, which is fixed after

construction, τ is dynamically changeable during the activity of ants. The update of

τ is based on two observations:

1. A certain proportion of pheromone could naturally evaporate such that the

intensity of pheromone will be reduced over time.

2. Every single ant traversing a path will lay down its pheromone (suppose that

all ants release the same amount of pheromone), which will increase the

intensity of pheromone.

In addition to the mechanism of updating pheromone described in Algorithm 2.1.5,

various pheromone-updating strategies are devised in a number of studies (e.g.,

[33, 107, 115]). A common approach to updating pheromone with respect to these

two observations is then presented as follows:

τi j = ρτi j +∆τi j (2.28)

where

∆τi j = Σ
|P|
i=1

f (Spi
)

|Spi |
(2.29)

when the path between two features: ai and a j has been traversed. Otherwise,

∆τi j is zero. The parameter ρ is a decay constant, which is used to simulate the

evaporation of pheromone. In particular, line 25 in Algorithm 2.1.5 presents a

method that properly stops an ant and then completes the search for a feature subset,

once the inclusion of further features cannot improve the quality of the current

feature subset.
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These intelligent ants are capable of discovering a desirable feature subset.

However, building the predefined η requires |A| × |A| subset evaluations. That is, the

ACO-based FS algorithm may become computationally impractical for large datasets.

To address this problem, two methods can be considered: one is to use a more

compact evaluation function in order to reduce the time cost of evaluating subsets;

the other is to identify the core feature subset in advance such that only features

except for the core subset are used to build η, which could reduce the dimensionality

of η and shorten the subset evaluation times. Also, the influence of configuring ρ

on subset selection remains to be further investigated. To improve the performance

of subset selection, dynamic strategies, for example, can be used to adjust the value

of ρ iteratively.

Particle Swarm Optimisation As a swarm intelligence implementation, the origi-

nal particle swarm optimiser (PSO) [117] attempts to locate the optimal solution in

search space by sending a population of intelligent particles P, which are capable

of achieving information vantage points from which to determine the global best

(gbest) and the past best (pbest). The global best is the best solution achieved so far

by any particle in the population and the past best is the best solution obtained so far

by an individual particle. Due to the popularity and simplicity of the PSO algorithm,

many of its variants have been developed to significantly improve its search power.

In [191], an additional parameter called inertia weight is introduced to the standard

PSO algorithm and used to fine-tune the original velocity of particles. In [205], the

standard particle swarm optimiser is improved by the addition of a neighbourhood

operator by which particles are able to interact with neighbours. In [118], a binary

version of the PSO algorithm is proposed such that PSO can deal with discrete binary

variables.

When applied to FS [219] (see Algorithm 2.1.6), the velocity vi of a given feature

subset Spi
representing the number of features to be changed is computed by:

vi = wvi + c1r1d(S̃, Spi
) + c2r2d(S̃pi

, Spi
) (2.30)

where w is the inertia weight used to linearly reduce the velocity of particles. The

weights c1 and c2 in Eqn. 2.30 are the acceleration constants, which control the

roaming distance of particles. The terms r1 and r2 are the random components:

they embody the randomness of PSO in conjunction with stochastically initialising P.

The function d() is used to calculate the distance between two feature subsets. To
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1 pi ∈ P, i = 1 to |P|: the ant population
2 Spi

: current path (feature subset) traversed by ant pi

3 ηi j = η ji, i, j = 1 to |A|: heuristic information
4 τi j = τ ji, i, j = 1 to |A|: pheromone intensities
5 ρ: pheromone evaporation rate
6 τ0: constant pheromone
7 τsum: total amount of pheromone over τ and used as a nominator
// Initialisation

8 for i = 1 to |A| − 1 do
9 for j = i+ 1 to |A| do

10 ηi j = f (ai, a j)
11 τi j = τ0

// Ant Traversals
12 λ= 1
13 while (λ++)< λmax do

// Pheromone Evaporation
14 for i = 1 to |A| − 1, j = i+ 1 to |A| do
15 τi j = ρτi j

16 τsum+= τi j

// Normalisation
17 for i = 1 to |A| − 1, j = i+ 1 to |A| do
18 τi j =

τi j

τsum

// Path Construction
19 for i = 1 to |P| do
20 r = Random ({1,2, · · · , |A|})
21 Spi

= Spi ∪ {ar}
22 Current feature possessed by i th ant, ac = ar

23 while |Spi |< |A| do
24 select au /∈ Spi ∧ probu is the largest
25 if f (Spi ∪ {au})< f (Spi

) then
26 break
27 else
28 Spi

= Spi ∪ {au}
29 ac = au

30 τcu = (
1− f (Spi

)
2
) + f (Spi

)τcu

31 for i = 1 to |P| do
32 for i = 1 to |A| − 1, j = i+ 1 to |A| do
33 τi j = τi j + f (Spi

)

34 Update S̃

Algorithm 2.1.5: Ant Colony Optimisation for FS
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implement this function, Hamming Distance [94] could be an option to compute the

distance between any two subsets Spi
and Sp j

:

d(Spi
, Sp j
) = |Spi

⊕ Sp j
| (2.31)

The velocity of particles is not positively infinite; it is limited by the predefined

maximum velocity vmax . However, the setting of vmax is an intractable problem. If

vmax is set to a small value, it is highly possible that particles fly around their past

best subset. If vmax is set to a large value, particles may easily bias good subsets. In

the literature [219], the value of vmax is initialised with the number of conditional

features |A| of a problem at hand and then set to a third of |A| during the iteration

stage. This configuration of vmax has the obvious effect in subset selection for a

number of datasets. For more general approaches, configuring vmax in a dynamic

scheme are worth further investigating.

2.2 Approaches Related to Feature Grouping

In this section, a number of studies [12, 106, 199, 242, 243] concerning feature

grouping are introduced. Most of these implement feature grouping via clustering

similar (or highly dependent) features together, some of which then use the resulting

feature grouping for the task of FS. Since there exist few general approaches to

feature grouping in the literature, several recently developed feature grouping

methods, which relate closely to this research, are then reviewed in what follows.

2.2.1 FS using Correlation Coefficient Clustering

In an attempt to determine the relevance between the features themselves and

the decision attribute, information-based metrics such as mutual information [65],
correlation coefficient [93], and fuzzy-rough set dependency [177] may be used. In

[100], a correlation coefficient is used to assist in identifying pair-wise redundancy

between features and also the relatedness between these features and the decision.

The conventional K-means method is adopted for grouping of features. By selecting

a representative feature from each group, a feature subset is then formed. The

representative feature chosen from each group depends on its correlatedness to

the decision attribute. Those features most correlated to the decision attribute are

selected to represent the full group of features. However, this approach requires the
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1 pi ∈ P, i = 1 to |P|: the particle population
2 Spi

: feature subset found by particle pi

3 c1, c2: acceleration constants
4 w ∈ [wmin, wmax]: inertia weight
5 vi ∈ [1, vmax]: current velocity of particle pi

// Initialisation
6 Randomly generate feature subsets
// Search Iteration

7 λ= 1
8 while (λ++)< λmax do
9 Update S̃, S̃pi

(including feature subset evaluations)
10 for i = 1 to |P| do
11 r1 =Random ([0,1])
12 r2 =Random ([0,1])

// Update Velocity of particle pi

13 vi = wvi + c1r1d(S̃, Spi
) + c2r2d(S̃pi

, Spi
)

14 if vi > vmax then
15 vi = vmax

16 if vi < 1 then
17 vi = 1

// Update Feature Subset
18 if vi > d(S̃, Spi

) then
19 while k < vi do
20 for j = 1 to |A| do

21 if bS̃
j ∧ bSpi

j == 1 then

22 b = bSpi

j , bSpi

j =Random ({0, 1})

23 if b == bSpi

j then
24 k++

25 else
26 while k < vi − d(S̃, Spi

) do
27 for j = 1 to |A| do

28 if bS̃
j ∧ bSpi

j == 0 then
29 b = bS̃

j , bS̃
j =Random ({0, 1})

30 if b == bS̃
j then

31 k++

32 Spi
= S̃

33 w = wmin+ (1−
λ

λmax
)(wmax −wmin)

Algorithm 2.1.6: Particle Swarm Optimisation for FS
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specification of the number of feature groups and, therefore, the cardinality of the

selected feature subset in advance.

2.2.2 FS using Graph-based Clustering

In [199], an efficient clustering-based feature selection algorithm is proposed for

high dimensional data. This algorithm adopts the symmetrical uncertainty measure

defined by Shannon entropy to gauge inter-feature correlation and correlation

between a conditional feature and the decision attribute. A feature is considered to

be irrelevant when the degree of symmetrical uncertainty between it and the decision

attribute is less than the predefined threshold. Otherwise, features are treated as

relevant. The degree of symmetrical uncertainty between features illustrates the

level of redundant information. By exploiting these rules, FS is implemented by

an algorithm which includes the following steps: 1) removing irrelevant features;

2) clustering features of the most redundant information using graph-theoretic

methods; and 3) selecting the most relevant feature from each group to form the

final selected feature subset. Using this algorithm, it does not require to a predefined

number of feature groups, which can be determined iteratively by the algorithm

itself. However, features within the same group may have a large difference in

relevance between a single feature and the decision attribute.

2.2.3 Fuzzy Rough-based FS using Feature Grouping

In [106], a hill-climbing approach to FS based on feature grouping is proposed,

where an evaluation metric based on fuzzy-rough set dependency is utilised to

determine the internal ranking of the features in each group as well as the overall

subset quality. A correlation coefficient is used to calculate the degree of redundancy

between any pair of features. If the correlation between a given pair of features

is greater than a predefined threshold, then one is considered to be redundant

and both features are then assigned to the same group. Each individual group is

initialised with a single distinct feature prior to recruiting other group members.

As a result, an individual feature can be included or assigned to more than one

group. Features are then internally ranked within each of the groups according

to fuzzy-rough set dependency prior to returning the final subset. This algorithm

is generally efficient, but it requires to assume that what degree of correlation

coefficient between features is considered redundant. Different configurations of

this parameter may have significantly different impacts upon the FS outcome.
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2.2.4 Feature Transformation using Feature Grouping

In addition to the aforementioned representations of feature grouping-based FS

methods, more recently the concept of feature grouping has also been used to shrink

the regression models by removing or merging redundant features. In [242], for

instance, a feature grouping method is embedded within the process of sparse mod-

elling. Firstly, the popular OSCAR algorithm [64] is used to generate a so-called

coefficiency matrix between features. Those features which have identical coeffi-

cients are then grouped together and those with coefficients of zero are immediately

discarded. The new features formed by merging features in the same group are

subsequently used to train a sparse regression model. Testing against selected real-

world datasets (e.g., breast cancer [22]), the regression models generated by this

algorithm may be more robust than those obtained by conventional methods, though

this may not always be the case. Nevertheless, with the growth of the dimensionality

of problems at hand, this particular algorithm tends to be more efficient than others.

2.3 Feature Selection with Harmony Search (HSFS)

The initial purpose of this research is related to the idea of harmony search for the

task of FS. This section consists of two parts. The first part introduces the principles

of HS and its variants. The second part presents the mechanism for applying HS to

FS.

2.3.1 Harmony Search (HS)

HS is a meta-heuristic search algorithm which mimics the improvisation process

of musical performers, and is primarily oriented towards discrete-valued variables

rather than continuous variables in differential calculus. Each musician represents a

decision variable of the objective function playing a note (value) in order that the

ensemble may construct a harmony (solution) that optimises this function. Newly

generated harmonies are iteratively progressed based on musicians’ experience (a

pool of existing harmonies) and used to update historical solutions with respect to

the harmony quality.
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2.3.1.1 Principles of HS

The original purpose of the HS algorithm is to solve optimisation problems. The

process consists of five steps, and is described in detail as follows:

1. Initialise parameters: Basic HS uses five pre-defined parameters, including

harmony memory size (|H|), the harmony memory considering rate (HMCR),

the maximum number of iterations (λmax), the pitch adjustment rate (PAR)

and the adjusting bandwidth (BW). H is a set of harmonies stored in the

harmony memory (HM). HMCR and PAR respectively control the global and

local search of the HS algorithm. In a typical implementation, both of them

take values ranged from 0 to 1. BW is an arbitrary length only for continuous

variables and used to adjust the found value. λmax controls the upper limit of

the search progress. In addition, another parameter, the group of musicians M

is defined by the problem itself, the size of which denoted as |M | is equal to

the number of variables in the function being optimised.

2. Initialise HM: A two-dimensional matrix is used to represent HM, where each

row indicates a solution vector and each column dedicated to a single musician

stores the musician’s experience. In HM, the number of rows is predefined

by |H| and the number of columns is equal to |M |. Thus, the HM takes the

following form:

HM=















xH1

1 xH1

2 · · · xH1

|M | f (x1)
xH2

1 xH2

2 · · · xH2

|M | f (x2)
...

...
. . .

...
...

xH |H|
1 xH |H|

2 · · · xH |H|
|M | f (x|H|)















.

xH j

i denotes a value taken by a unit xH j

i where i indicates i th variable and H j

is the j th harmony. f (x) is an objective function, evaluating the quality of a

given solution vector x.

3. Improvise a new harmony: A new solution vector, x′ = (xH ′

1 , xH ′

2 , · · · , xH ′

|M |) is

generated considering three impact factors: HMCR, PAR, and a random value

r, taking a value between 0 and 1. A new value xH ′

i of the i th variable is
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obtained according to the following rules:

xH ′

i =











xH ′

i ∈ X i if HMCR≤ r

xH ′

i ∈ HMi if HMCR> r

xH ′

i + random(−1, 1)× BW if PAR> r

(2.32)

where X i is a set of all possible values of the i th variable and HMi = {x
H1

i , xH2

i , · · · ,
xH |H|

i } is the i th column of HM, indicating the historical values of the i th musi-

cian. During this improvisation process, when either the condition HMCR≤ r

or HMCR> r is matched, the value xH ′

i will be randomly generated from X i or

HMi respectively. If the condition PAR> r is satisfied, xH ′

i is obtained by ran-

domly generating a value out of all possible historical values and adjusting this

value based on the formula xH ′

i +random(−1, 1)×BW. Alternatively, BW can be

replaced by using musicians’ own experiences: xH ′

i +random(−1, 1)×(vU
i −v L

i )
where vU

i and v L
i are the maximum value and the minimum value of the i th

musician in the HM respectively. Other variables choose new values for the

new solution in the same manner. A single improvisation is completed once

all variables have nominated a value. To further ease the understanding of

HS, Algorithm 2.3.1 presents an outline of the improvisation procedure in

pseudocode.

1 |M |: number of musicians (variables)

2 x′ = (xH ′

1 , xH ′

2 , · · · , xH ′

|M |): new solution vector
3 X i: value domain of i th musician

4 HMi = {x
H1

i , xH2

i , · · · , xH |H|

i }: the i th column of HM indicating set of historical
values of the i th musician

5 BW : arbitrary distance bandwidth
6 for i = 1 to |M | do
7 if Random ([0, 1])<HMCR then
8 xH ′

i =Random (HMi)
9 else

10 xH ′

i =Random (X i)

11 if Random ([0, 1])<PAR then
12 xH ′

i = xH ′

i +Random ([-1,1])×BW

Algorithm 2.3.1: Improvisation process of original HS
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4. Update HM: The quality of the newly generated solution is evaluated using a

pre-specified objective function f (x). If the new solution x′ obtains a higher

evaluation than any of the existing solutions, x′ will replace the worst solution

in HM. This is symbolically equivalent to:

x′ ∈ HM∧ xworst /∈ HM (2.33)

Otherwise, do nothing.

5. Check stopping criterion: If the number of improvisation reaches λmax , the

algorithm stops. Otherwise, repeat step 3 and step 4.

The PAR and BW play a very important role in the HS algorithm. They not

only have the ability to fine-tune the improvised harmony but also influence the

convergence rate of the algorithm. The original fixed values of PAR and BW through

the whole algorithm impair the flexibility of HS because the different stages of

the algorithm may require configuration of a pair of different values for PAR and

BW. Therefore, in order to eradicate the drawbacks of fixed values of PAR and BW,

a scheme of dynamically adjusting the values of PAR and BW with each further

iteration is introduced in [145]. At the outset of the algorithm, PAR and BW are set

to a small value and a large value respectively. The value of PAR is linearly increased

based on the following formula:

PAR= PARmin+
PARmax − PARmin

λmax
×λ (2.34)

where PARmax and PARmin are the maximum and minimum PAR respectively.

And the value of BW is logistically reduced by

BW= BWmax × exp(
log( BWmin

BWmax
)×λ

λmax
) (2.35)

where BWmax and BWmin are the maximum and minimum BW respectively. However,

the determination of a suitable set of BWmax and BWmin (or PARmax and PARmin)

becomes another new problem.
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2.3.1.2 Applications of HS

Since the structure of HS is simple and easy to implement, HS has been widely ap-

plied to various science and engineering optimisation problems [77, 79, 82]. These

include: real-world applications (e.g., tour planning, timetabling and sudoku puzzle);

bio & medical applications (e.g., RNA structure prediction and hearing aids); com-

puter science problems (e.g., internet routing, web page clustering, and robotics);

electrical engineering problems (e.g., energy system dispatch, photo-electronic detec-

tion and multi-level inverter optimisation); civil engineering problems (e.g., vehicle

routing, flood model calibration and structural design); and mechanical engineer-

ing problems (e.g., satellite heat pipe design, heat exchanger design and offshore

structure mooring).

2.3.2 HSFS Algorithms

The original HSFS algorithm [54], in terms of approaches to representing feature

subsets, has two versions: binary-valued and integer-valued HSFS.

2.3.2.1 Binary-valued HSFS

Bit set representation of a feature subset is very common in metaheuristic-based

FS techniques. When applying HS to the binary-valued FS problem, musicians are

directly mapped onto all available features of a given dataset, which will take a

value between ‘0’ and ‘1’. Each bit therefore indicates the selection state of its

corresponding feature. The value ‘1’ means that this feature is selected as the

element of emerging subsets while ‘0’ means that this feature is not selected as that

of emerging subsets at all.

The binary-valued HSFS algorithm continues to use the main structure of the

original HS. The steps of the binary-valued HSFS algorithm are then listed as follows:

1. Initialise parameters: In this algorithm, four parameters of the original HS

remain to be used, including |H|, HMCR, λmax and |M |. PAR and BW are

replaced by using the flip rate (FR), which works in the same way as the

mutation rate of GA. Therefore, every single bit has the FR probability being

flipped between the two values ‘0’ and ‘1’. In particular, |M | is firmly set to

|A|, where A is all available features of a given dataset. That is, every single

musician is denoted as a distinct feature.
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2. Initialise HM: HM now is a two-dimensional matrix with the size of |H| × |A|.
Each row indicates a feature subset while each column indicates the historical

state of its corresponding feature. The form of HM is as follows:

HM=















bH1

a1
bH1

a2
· · · bH1

a|A|
f (S1)

bH2

a1
bH2

a2
· · · bH2

a|A|
f (S2)

...
...

. . .
...

...

bH |H|
a1

bH |H|
a2

· · · bH |H|
a|A|

f (S|H|)















.

A bit bH j

ai
denotes the selection state of the i th feature ai in the j th harmony

SH j
. The value of the bit bH j

ai
, b

H j

ai
is between ‘0’ and ‘1’. This means every

single musician only has a value domain of two choices. PAR and BW, which

are originally used for fine-tuning continuous variables, may be too powerful

to be exploited for such binary-valued variables. A harmony SH j
turns out to

be a feature subset S j via the inclusion of features that are valued by ‘1’. f (S j)
is the evaluation result of S j, which can be estimated by any of the subset

measures introduced in Section 2.1.1.

3. Improvise new feature subset: A new harmony SH ′ = {b
H ′

a1
, b

H ′

a2
, · · · , b

H ′

a|A|
} is

generated based on factors involving HMCR, FR and a random number r (0<
r < 1). The state of each feature in SH ′ is changed in accordance with the

following rules:

b
H ′

ai
=























b
H ′

ai
∈ {0,1} if HMCR≤ r

b
H ′

ai
= 0 if HMCR> r ∧Σ|H|j=1 b

H j

ai
< |H|

2

b
H ′

ai
= 1 if HMCR> r ∧Σ|H|j=1 b

H j

ai
> |H|

2

b
H ′

ai
= ¬b

H ′

ai
if FR≤ r

(2.36)

HMCR is still important in this algorithm although the state of every single bit

in SH ′ is randomly determined between two choices when the value of HMCR

is less than a random value r. However, if HMCR is larger than a random

value, the situation of selecting a value is slightly different from the original

HS algorithm. The bit takes the value that most frequently emerges in the

historical HM values of its corresponding feature. FR works independently

of HMCR. It enables the fine-tuning of the selection state of a feature by

flipping the currently selected value to its negation. The improvisation of such

binary-valued feature subset is then algorithmically depicted in Algorithm

2.3.2.
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1 |M |: number of musicians (features)

2 SH ′ = {b
H ′

a1
, b

H ′

a2
, · · · , b

H ′

a|A|
}: new binary-valued harmony

3 for i = 1 to |M | do
4 if Random ([0, 1])<HMCR then

5 if Σ|H|j=1 b
H j

ai
< |H|

2
then

6 b
H ′

ai
= 0

7 else if Σ|H|j=1 b
H j

ai
> |H|

2
then

8 b
H ′

ai
= 1

9 else

10 b
H ′

ai
=Random ({0,1})

11 if Random ([0, 1])<FR then

12 b
H ′

ai
= ¬b

H ′

ai

Algorithm 2.3.2: Improvisation process of binary-valued HSFS

4. Update HM: The quality of the newly formed feature subset is evaluated

using an evaluation function f (S). If the new harmony SH ′ is better than the

harmony, which has the lowest evaluation result in the current HM, SH ′ then

replaces this so-called worst harmony SHworst
. This is symbolically equivalent

to:

SH ′ ∈ HM∧ SHworst
/∈ HM (2.37)

Otherwise, do nothing. Note that there may exist more than one harmony

matching the lowest evaluation result; in this case, the harmony having most

selected features is deemed the worst.

5. Check stopping criterion: If the number of improvisations reaches λmax or

the optimal feature subset in HM is not changed within a large number of

iterations, the algorithm then stops. Otherwise, repeat steps 3 and 4.

2.3.2.2 Integer-valued HSFS

HS is conventionally used to solve optimisation problems of a fixed number of

variables. However for FS, the size of feature subsets varies. In fact, the size of the

emerging subsets themselves should be reduced, while optimising their evaluation

results. There is no direct means to employ HS to solve the FS problems. Therefore,

a mapping scheme, such as those shown in Table 2.1, is devised in the original HSFS
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[54] to make possible the use of HS for the FS problems. A musician is best described

as a “feature selector”, where the available features for the feature selectors are

converted to musical notes for musicians. Each musician may vote for one feature to

be included in the feature subset when such an emerging subset is being improvised.

The harmony is then the combined vote of all musicians, indicating which features

are being nominated.

Table 2.1: Concepts mapping from HS to FS

HS Optimisation FS

Musician Variable Feature Selector
Musician Note Variable Value Feature
Harmony Solution Vector Subset
Harmony Memory Solution Storage Subset Storage
Harmony Evaluation Fitness Function Subset Evaluation
Optimal Harmony Optimal Solution Optimal Subset

In HSFS, all possible features of a given dataset A form the range of musi-

cal notes available to each musician. Multiple musicians are allowed to choose

the same feature while they may opt to choose none at all. For further under-

standing, three example harmonies and their derived feature subsets are described

in Table 2.2. The harmony SH1
represents a subset of six distinctive features:

S1 = {a1, a2, a3, a4, a7, a10}. SH2
shows an overlapping selection from musicians

m1−3, and an abandoned choice (denoted as a−) from m6, representing a reduced

subset S2 = {a2, a3, a13}. SH3
signifies the feature subset S3 = {a2, a4, a6, a13}, where

a3→ a6 indicates that m4 originally voted for a3, but was forced to change its choice

to a6 due to HMCR activation.

Table 2.2: Feature subsets encoding scheme

m1 m2 m3 m4 m5 m6 Derived Subset S

SH1
a2 a1 a3 a4 a7 a10 {a1, a2, a3, a4, a7, a10}

SH2
a2 a2 a2 a3 a13 a− {a2, a3, a13}

SH3
a2 a− a3→a6 a2 a13 a4 {a2, a4, a6, a13}

Regarding the above mapping and conversion scheme, the steps of the integer-

based HSFS algorithm are formally described as follows:
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1. Initialise parameters: The parameters involved in the integer-based HSFS

algorithm are the same as those in the original HS, including |H|, HMCR, λmax

and M . In particular, PAR is no longer used. The underlying motivation of

employing PAR is to fine-tune the selected values to their neighbouring values.

It may help to improve solutions when the problem domain is real-valued.

However, each integer value used here is just a feature index. Therefore, such

neighbouring relations are not applicable between features. The number of

feature selectors is equal to that of musicians M and set to |A| in the original

HSFS, where A is all available features of a given dataset.

2. Initialise HM: HM, a two-dimensional matrix is now a store of features rather

than bits. The size of HM is also |H| × |A|. Each row contains a feature subset

while each column contains the historical features selected by a specified

feature selector. The HM then takes the following form:

HM=















aH1

1 aH1

2 · · · aH1

|A| f (S1)
aH2

1 aH2

2 · · · aH2

|A| f (S2)
...

...
. . .

...
...

aH |H|
1 aH |H|

2 · · · aH |H|
|A| f (S|H|)















where any unit aH i

j , i = 1,2, · · · , |H|, j = 1,2, · · · , |A| of HM takes a feature

index ai, i = 1,2, · · · , |A| as its value, representing a selected feature. When

the value of any unit aH i

j , aH i

j is null, it means that the j th musician votes no

feature for the i th subset. Also, when aH i

j = aH i

j+1, it means the j th and ( j + 1)th

musicians choose the same feature for the i th subset. A harmony then becomes

a feature subset by removing overlapping and null indices. f (S i) is the feature

subset evaluation result of S i.

3. Improvise a new feature subset: A new feature subset SH ′ = {aH ′

1 , aH ′

2 , · · · , aH ′

|A|}
is improvised according to the following rules:

aH ′

j =







aH ′

j ∈ A= {a1, a2, · · · , a|A|} if HMCR≤ r

aH ′

j ∈ HM j = {a
H1

j , aH2

j , · · · , aH |H|

j } if HMCR> r
(2.38)

where HM j is a set of historical features selected by the j th musician, stored

in a column of HM. When the HMCR ≤ r event is activated, musicians will

randomly choose a feature from all available features of a given dataset.
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2.3. Feature Selection with Harmony Search (HSFS)

Otherwise, they will randomly select a feature from features that are stored in

HM. For further understanding the integer-valued HSFS, the improvisation of

a new harmony is depicted in Algorithm 2.3.3.

1 |M |: number of musicians (feature selectors)

2 SH ′ = {aH ′

1 , aH ′

2 , · · · , aH ′

|A|}: new integer-valued harmony

3 HM j = {a
H1

j , aH2

j , · · · , aH |H|

j }: historical features selected by j th musician
4 A= {a1, a2, · · · , a|A|}: set of all possible features of a given dataset
5 for j = 1 to |M | do
6 if Random ([0,1])<HMCR then
7 aH ′

j =Random (HM j)
8 else
9 aH ′

j =Random (A)

Algorithm 2.3.3: Improvisation process of integer-valued HSFS

4. Update HM: The updating strategy of the integer-based HSFS algorithm is the

same as that in the binary-based version. The worst feature subset is replaced

with the newly generated subset, which is of higher quality regarding the

subset size and the evaluation result:

SH ′ ∈ HM∧ SHworst
/∈ HM (2.39)

Otherwise, do nothing.

5. Check stopping criterion: The algorithm terminates when the iteration number

reaches λmax or the optimal feature subset in HM is not changed within a large

number of iterations. Otherwise, repeat steps 3 and 4.

In addition, this original integer-based HSFS algorithm has been improved in the

literature [54], where a refinement mechanism, which works by setting the number

of musicians |M | to the size of the current best-found feature subset |SH best | after

every certain harmony improvisation, is used to further reduce the size of subsets

and a dynamic scheme is applied for iteratively adjusting the predefined parameters

including |H| and HMCR in real-time.
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2.4 Summary

In this chapter, the basic theory of FS is introduced regarding the approaches to

evaluating feature subsets and strategies for searching features. Evaluation ap-

proaches developed in the FS-related literature are categorised into three classes,

including: the filter [91], wrapper [120, 121], hybrid [101, 244], and embed-

ded approaches [91]. Three scopes with respect to search strategies—exhaustive

search, hill-climbing, and metaheuristic—are discussed. In particular, three popular

metaheuristic-based FS techniques are reviewed in detail. They are the FS algorithms

based on GA [7], ACO [107], and PSO [219], which have been used for comparative

experimental evaluation.

This chapter also discussed two different frameworks for applying feature group-

ing techniques to FS and reviewed the existing approaches to feature grouping, as

the methods proposed in Chapter 4 exploit feature grouping to implement the task

of FS.

Moreover, as the HS algorithm has been used or improved for searching feature

subsets in this thesis, its main principles and its application to FS (HSFS) were

presented. Two versions of HSFS algorithms—so-called binary-valued HSFS and

integer-valued HSFS—were then introduced in detail, including a discussion of their

advantages and disadvantages.
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Chapter 3

Self-Adjusting Harmony

Search-based Feature Selection

I N this chapter, a technique improved the original idea of feature selection with

harmony search (HSFS [54]) is proposed. It includes three new mechanisms.

Firstly, a feature grouping is introduced in order to produce a so-called restricted

feature domain (RFD) for every single musician (that act as individual feature

selectors in the algorithm). The use of RFDs is to limit the locally explorable

solution domains (of individual musicians), allowing more informative features to

be located more quickly, whilst also reducing the run-time memory requirement of

the algorithm. Secondly, a harmony memory consolidation mechanism is developed,

which allows musicians to exchange information on tentatively selected features

locally, and helps identify and remove non-contributing musicians. As a result, the

size of the musician group can be dynamically adjusted during the search. Thirdly, a

pitch adjustment strategy is presented which mimics the pitch adjustment behaviour

of instrumentalists. It is used by HSFS for fine tuning the emerging feature subsets.

In such a scheme, a feature may be substituted by one of its similar features, which

is determined by using a certain feature similarity measure. The formal description

of these enhancements is given in Section 3.1, which is followed with experimental

evaluation as presented in Section 3.2.
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3. SELF-ADJUSTING HARMONY SEARCH-BASED FEATURE SELECTION

3.1 Self-Adjusting HSFS

The original HSFS algorithm, in spite of being easy to be implemented, relies on

a limited set of basic procedures to improvise and search for good quality feature

subsets. However, the algorithm can potentially be modified to better support FS.

This section details three new components developed to enhance the performance

of HSFS.

3.1.1 Restricted Feature Domain

In the original HSFS implementation, all musicians mi ∈ M , i = {1, . . . , |M |} jointly

use a single domain of values, which is the pool of all possible features of a given

dataset A. The total number of features |A| inevitably affects the rate at which

musicians identify good quality features. The presence of less informative features

or multiple duplicates of the same feature also reduces the likelihood of locating

better features through harmony memory considering rate (HMCR) activation. As a

result, the algorithm may potentially spend unnecessary iterations searching poor

quality candidate solutions, and such emerging feature subsets will be discarded

since they introduce no improvement to the harmony memory (HM).

A new concept termed “restricted feature domain” is proposed to remedy the

aforementioned shortcoming. This mechanism restricts the value domain ℵi for any

given musician mi to a selective subset of A. The RFDs are constructed during the

initialisation phase and reconstructed when the number of musicians is adjusted

during the iteration phase. Hence, the recombination of RFDs dynamically affects

the choice of musicians throughout the search process. Of course, the union of these

RFDs should be equivalent to the full set of features:
⋃

i∈{1,2,...,|M |}ℵi = A in order to

ensure that no important features are mistakenly left out. The feature distribution

amongst all the musicians should also be random but uniform. The cardinality of

ℵi is thus devised to be controlled by a restricted ratio δ, 0 < δ ≤ 1, such that

|ℵi| = dδ · |A|e. The operator d e indicates it takes the ceiling integer of a real number.

A set of RFDs can be generated through various methods, so long as the desired

properties that are described above are satisfied. Additionally, if problem domain-

specific information is available (e.g., provided by human experts), RFDs may also

be populated or adjusted in favour of better quality features. At the current stage,

for simplicity, an RFD is empirically generated by randomly removing features until
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3.1. Self-Adjusting HSFS

|ℵi| = dδ · |A|e,δ = 0.8, while maintaining a full coverage of features across all

musicians. The pseudo code of the suggested mechanism is given in Algorithm 3.1.1

where Random( ) is an operator randomly taking an element from a set of features.

1 A: full set of features
2 M : group of musician mi ∈ M , i = 1, 2, · · · , |M |
3 HMCR: harmony search considering rate
4 |H|: harmony memory size
5 SH ′: new harmony being improvised

6 HMi =
⋃|H|

j=1 aH j

i : the i th column of HM, indicating note domain of musician mi

7 ℵi = A: RFD of musician mi

8 for i = 1 to |M | do
9 while |ℵi|> dδ · |A|e do

10 ℵi = ℵi\ Random (ℵi)

11 while
⋃

i∈{1,2,··· ,|M |}ℵi 6= A do
12 for i← 1 to |M | do
13 ℵi = ℵi\ Random (ℵi)
14 ℵi = ℵi∪ Random (A\

⋃

i∈{1,2,··· ,|M |}ℵi)

15 SH ′ = ;
16 for i = 1 to |M | do
17 if Random ([0,1]) < HMCR then
18 SH ′ = SH ′∪ Random (HMi)
19 else
20 SH ′ = SH ′∪ Random (ℵi)

21 return SH ′

Algorithm 3.1.1: HSFS with RFD

3.1.2 Self-Configuration of the Musician Size

The main challenge for FS is to effectively reduce the size of candidate feature subsets,

while maintaining their original semantics. The iterative refinement procedure

employed by the original HSFS aims to address this issue, to a certain extent,

by its flexible mapping of musical concepts onto their associated elements in FS.

In particular, a musician is not tied to a specific feature, thereby becoming an

independent, single-feature-selector. This sharply contrasts with many alternative

methods that rely on binary-valued feature subset representation.

The iterative refinement procedure first initialises the number of musicians to

be the size of the complete set of original features |M | = |A|. This avoids the
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3. SELF-ADJUSTING HARMONY SEARCH-BASED FEATURE SELECTION

configuration of |M | to be manually defined by human, and that the feature subset

size may be adjusted according to the actual amount of redundancy present in the

data. |M | is then iteratively reduced (in so doing, the size of feature subsets to

be selected is restricted) until no smaller solution can be found without sacrificing

the evaluation score. As such, although effective, this procedure leads to repetitive

executions of the entire search process, and the earlier executions may also over-

restrict the search process to a sub-optimal solution region.

1 if |M | 6= max
j∈{1,2,··· ,|H|}

|S j| then

2 |M |= max
j∈{1,2,··· ,|H|}

|S j|

3 for j = 1 to |H| do
4 if |M |< |SH j | then

// Consolidation
5 while |M |< |SH j | do
6 SH j

= SH j \ {a−}

7 else
// Expansion

8 while |M | > |SH j | do
9 SH j

= SH j ∪ {a−}

Algorithm 3.1.2: Process of HMC

The self-adjusting HSFS algorithm proposed herein embeds an alternative pro-

cedure to the aforementioned. It attempts to dynamically and naturally adjust |M |
throughout a single execution of the search, via a means of identifying and eliminat-

ing potentially non-contributing musicians (with their note domains fully filled by

duplicated nominations or discarded votes a−). This procedure is referred hereafter

as harmony memory consolidation (HMC). The pseudo-code of HMC is given in

Algorithm 3.1.2. In particular, to better determine the presence of non-contributing

musicians, the following process needs to be performed:

1. The duplicating nominations within each of the harmonies stored in the

harmony memory are replaced by a−.

2. The desirable value of |M | may then be derived using the formula given below:

|M |= max
j∈{1,2,··· ,|H|}

|{ai|ai ∈ SH j
, ai 6= a−}|+ 1. (3.1)
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3.1. Self-Adjusting HSFS

Alternatively, |M | may be determined by first converting harmonies SH j
, j =

1,2, · · · , |H| into feature subsets S j, and then computing:

|M |= max
j∈{1,··· ,|H|}

|S j|+ 1. (3.2)

3. The existing harmonies are trimmed by randomly removing a− ∈ SH j
, until

|SH j |= |M |, j = 1, 2, · · · , |H|.

4. The normal HSFS improvisation process is then resumed, on the basis of the

newly consolidated harmony memory.

Table 3.1: Consolidation of harmony memory

Iteration Harmony Memory

k
a1 a− a2 a− a1 a2 a3

a2 a4 a5 a− a− a5 a5

k (HMC)
a1 a− a2 a− a− a− a3

a2 a4 a5 a− a− a− a7

k+ 1
a1 a2 a− a− a3

a2 a4 a5 a− a7

An illustrative example is given in Table 3.1. The initial harmony memory

(at iteration k) consists of several duplicate and discarded nominations, which

are identified during the HMC process. For instance, feature subset (a1, a−, a2, a−
, a1, a2, a3) may be changed into (a1, a−, a2, a−, a−, a−, a3) in this given example. The

number of musicians is then reduced to |M | =max(3, 4) + 1 = 5, and the respective

harmonies are also trimmed. The resultant harmony memory after consolidation is

then used for the next iteration (k+ 1).

Table 3.2: Expansion of harmony memory

Iteration Harmony Memory

k
a1 a2 a3 a−
a2 a7 a4 a5

k+ 1
a1 a− a3 a− a2

a− a7 a4 a5 a2

Note that the HMC procedure may also be utilised to facilitate the expansion

of the musician group because the value of |M | is determined with respect to the
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3. SELF-ADJUSTING HARMONY SEARCH-BASED FEATURE SELECTION

size of the largest feature subset in HM as shown in Eq. 3.2. The rationale behind

such a mechanism is to allow larger feature subsets to be nominated, if they may

lead to a potentially higher (overall) quality solution. Table 3.2 details an example

of harmony memory expansion where the harmony memory at iteration k contains

a candidate feature subset of size |S| = |M |. It is probable that there exists more

informative feature subsets of size |S′|> |M | and, therefore, the size of the musician

group is enlarged by inserting a− at random positions for all SH ∈ HM.

3.1.3 Feature Subset Adjustment using Feature Similarity

Measures

The base HS algorithm involves another parameter termed “pitch adjustment rate”

(PAR). It offers a stochastic mechanism that allows a note chosen by a given musician

to be shifted to a similar one. The underlying motivation for this mechanism is that

minor adjustments into adjacent values may help discover better quality solutions,

which is generally true for real-valued optimisation problems. PAR, in conjunction

with δ, ensures that fine adjustments can be made to an emerging solution, and the

solution region may be sufficiently explored.

The original HSFS algorithm does not exploit the benefits offered by PAR. This

is because, now that the values represent feature indices, each feature and its

neighbours may not have such general relation, and, therefore, an adjustment will

result in a change to a possibly unrelated feature nearby. However, the absence of

PAR hinders the strength of the algorithm in terms of its effectiveness for finding

good quality feature subsets.

Having recognised this, the pitch adjustment mechanism is re-introduced in

this improved HSFS approach together with a method to determine neighbouring

features. These neighbours are features similar to one another. In the context of FS,

the use of the parameter PAR, (0 ≤ PAR ≤ 1), will enable a musician to choose a

neighbouring feature. Such a feature bears a similarity with the original features

within the range calculated on the basis of the formula (1−ω)+Rand(2×ω), where

ω is the fret width [80] that constrains the maximal amount of dissimilarity allowed.

Note that (1−PAR) denotes the possibility of using the chosen value without further

alteration. Also, as suggested in the original HS algorithm, the pitch adjustment

procedure and HMCR activation are set to two mutually exclusive events so that
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3.1. Self-Adjusting HSFS

further adjustment is only carried out when a feature is selected from within the

harmony memory.

To determine the neighbouring features, a number of existing feature similarity

measurements may be employed. For example, non-parameter test-based approaches

such as the Walds-Wolfowitch test [112] may be used to detect the closeness of

probability distributions of the variables. However, such measures are sensitive to

both the location and the dispersion of the distributions [20, 148], and, therefore,

they may not be suitable for measuring the similarity of features in arbitrary datasets.

Alternatively, the dependency between the features may be utilised to calculate the

degree of feature similarity. In order to obtain the degree of similarity between

any paired features, two existing dependency measures, both linear (correlation

coefficient-based [155]) and non-linear (fuzzy-rough set-based [111]) are used.

3.1.3.1 Correlation Coefficient-Based Feature Similarity

Correlation coefficient is a common linear method for measuring the degree of

similarity between two random variables. Correlation coefficient ρ between two

random variables x and y is formulated as:

ρ(x , y) =
σx y

σxσy
(3.3)

σx y =
1

n− 1
(

n
∑

i=1

x i yi − nx̄ ȳ) (3.4)

where σx and σy signify the variance of a variable and σx y the covariance between

two variables. If x and y are entirely correlated, then a purely linear relationship

exists and ρ(x , y) is ±1. Independence of x and y implies ρ(x , y) = 0. Hence, the

quantity can be used as a measure of similarity between two features [100] with the

following properties:

1. |ρ(x , y)| ≤ 1.

2. ρ(x , y) = 0 if and only if x and y are linearly correlated.

3. ρ(x , y) = ρ(y, x).

4. If x∗ = ax+ b and y∗ = c y+d for certain constants a, b, c, d, then ρ(x∗, y∗) =
ρ(x , y), implying that the similarity measure is not affected by rescaling and

transformation of variables.
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The correlation coefficient may be sufficient for the strength of feature similarity,

but it makes a strong assumption on linear and highly dependent relationships

between features. Non-linear patterns are neglected. For example, assume there

exists a quadratic relationship between the value of x and y (x = y2), and y is

evenly distributed in the range of [−1,1]. The resulting correlation coefficient is

ρ(x , y) = 0, indicating that x and y are independent. However, there in fact exists

a strong dependency between them. So an alternative approach may be necessary.

3.1.3.2 Fuzzy Rough Set-Based Feature Similarity

Fuzzy-rough set theory [47, 177] is an extension of traditional rough set theory

[167] where there are two sets and the lower and upper approximation are defined

using fuzzy notions [61]. A rough set is centred upon crisp information granulation.

In the crisp case, elements either belong to the lower approximation with absolute

certainty or not at all. In the fuzzy-rough case, elements may have a membership in

the range [0, 1], allowing greater flexibility in handling uncertainty. Given a vague

concept C , the fuzzy lower and upper approximations for S are defined as:

µRS C(x i) = inf
x j∈X

I(µRS
(x i, x j),µC(x j)) (3.5)

µRS C(x i) = sup
x j∈X

T (µRS
(x i, x j),µC(x j)) (3.6)

where I is a fuzzy implicator and T a t-norm. µC(x j) is the membership of instance

x j belonging to C . RS is the fuzzy similarity relation induced by the subset of features

S:

µRS
(x i, x j) = Ta∈S{µRa

(x i, x j)} (3.7)

with µRa
(x i, x j) being the weight of similarity between instance x i and x j for feature

a. The following three common fuzzy similarity models can be constructed for this

purpose.

µRa
(x i, x j) = 1−

|a(x i)− a(x j)|
|amax− amin|

(3.8)

µRa
(x i, x j) = exp

�

−
(a(x i)− a(x j))2

2σ2
a

�

(3.9)

µRa
(x i, x j) =max

�

min

�

(a(x j)− a(x i) +σa)

σa
,

(a(x i)− a(x j) +σa)

σa

�

, 0

�

(3.10)
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where σa and σ2
a are the standard deviation and the variance of the values of feature

a taken by all instances in X respectively, amax is the maximum value under the

feature a, and amin is the minimum value. The choice of measurement of the fuzzy

similarity relation has a significant impact on the resultant fuzzy partitions, and thus

the subsequently selected feature subsets.

Regarding the fuzzy lower approximation defined in Eqn. 3.5, the fuzzy positive

region, which contains all instances of X that can be classified into classes of X/Q, is

calculated as follows:

µPOSRP (Q)
(x) = sup

C∈X/Q
µRP C(x) (3.11)

The resulting degree that a set of features Q depends on another set of features P is

denoted as P ⇒Q and is defined as:

γP(Q) =

∑

x∈X µPOSRP (Q)
(x)

|X |
(3.12)

Since the proposed approach only concerns similarity measurements between two

arbitrary single features, say, ai and a j ∈ A. Eq. 3.12 may be re-written as:

γ(ai, a j) =

∑

x∈X µPOSR{ai }
({a j})(x)

|X |
(3.13)

representing the dependency degree of feature ai upon a j. This formula is used to

locate the suitable closest and most dependent neighbouring feature. For clarification,

Algorithm 3.1.3 shows the pseudo-code of the improvisation process using pitch

adjustment.

3.1.4 Self-Adjusting HSFS

The procedure for the complete self-adjusting HSFS algorithm is illustrated in Fig.

3.1. It incorporates three new modules: RFD construction, harmony memory

consolidation, and PAR-based feature subset improvisation.

The complexity of the HSFS algorithm is analysed below. The initialisation

requires O(|M | × |H|) operations to randomly populate the subset storage, and the

improvisation process is of the order O(|M | × kmax) because every feature selector

needs to produce a new feature at every iteration. Here, |H| is the subset storage size,

|M | is the number of feature selectors, and λmax is the maximum number of iterations.
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1 SH ′: new harmony being improvised

2 HMi =
⋃|H|

j=1 aH j

i : the i th column of HM, indicating note domain of musician mi

3 ℵi: RFD of musician mi

4 γ(ap, aq), feature similarity measure described in Eqn. 3.13
5 for i = 1 to |M | do
6 if Random ([0,1]) < HMCR then
7 ap = Random (HMi)
8 if Random ([0,1]) < PAR then

// ∆ is a random degree of the similarity between
features

9 ∆= 1−ω+ Random (2ω)
10 aq = argmin

aq∈A,aq 6=ap

|(γ(ap, aq)−∆)|

11 SH ′ = SH ′ ∪ {aq}
12 else
13 SH ′ = SH ′ ∪ {ap}

14 else
15 SH ′ = SH ′ ∪ {Random (ℵi)}

16 return SH ′

Algorithm 3.1.3: Improvisation process using PAR

The construction of restricted feature domains requires O(|M | ×λmax× dδ× |A|e),
which occurs in both the initialisation and iteration phases when the number of

musicians is changed. The HMC procedure has a computational complexity of

O(|H| × |M |) since all stored harmonies need to be examined and consolidated. The

additional overhead introduced by the PAR process is largely due to the feature

similarity matrix construction, which incurs a cost of up to O(|A|2× |X |2), where |X |
is the total number of times instances in dataset are trained.

Thus, the overall algorithm complexity (including the initial cost of computing

the feature similarity values) is:

O(|A|2× |X |2) +O(|M | × (|H|+ dδ|A|e)×λmax) (3.14)
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Setting parameters Construct RFDs

Fill memory with random harmonies

Convert harmonies to subsets

Evaluate Subsets

Re-Construct RFDs

Improvise harmony using PAR & HMCR

Convert harmony to subset

Evaluate subset

Replace worst
harmony

in memory
Discard harmony

Simplify harmonies in harmony memory

Self-adjust the number of musicians

Initialisation Phase

Improvisation Phase

Initialise Harmony Memory

Update Harmony Memory

Consolidate Harmony Memory

Figure 3.1: Proposed self-adjusting HSFS algorithm
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3.2 Experimentation and Discussion

In this section, the results of experimental investigations are reported to demonstrate

the capabilities and characteristics of the proposed improvements. Notationally,

in the results HSFSSA stands for the whole algorithm that incorporates all of the

newly proposed mechanisms. Section 3.2.1 presents a comparison with other search

methods, including greedy hill-climbing (GHC), the original HSFS (HSFSO) and two

nature-inspired optimisation techniques: genetic algorithms (GAs) [7] and particle

swarm optimisations (PSO) [219]. Two filter-based feature subset evaluators with

the evaluation results f (S), 0 ≤ f (S) ≤ 1, the correlation-based (CFS) evaluator

and the probabilistic consistency-based (PCFS) evaluator, are employed. The experi-

mentation uses a total of 10 real-valued UCI benchmark datasets [73], several of

which are of high dimensionality and/or contain a large number of objects, thereby

presenting reasonably realistic challenges for the proposed techniques. A summary

of these datasets is provided in Table 3.3.

The parametric settings used for the investigated algorithms are those that have

been constantly employed in the recent related research. In particular, the parameter

of the maximum number of generations/iterations λmax of all the stochastic search

methods—including HSFSSA, HSFSO, GAs and PSO—is set to 5000 in order to

prevent them from being prematurely terminated. Also, these stochastic search

methods are population-based, which require configuring the population of solutions

P properly. The number of populations |P|, strictly speaking, is therefore set to

20 for all of them. The other inherent parameters of the algorithmic mechanisms

are treated as follows: both weighting constants c1 and c2 of PSO are equal to

2; the crossover rate rc and the mutation rate rm of GA are set to 0.6 and 0.033

respectively; the harmony memory considering rate HMCR=0.8 and the number of

musicians |M |= |A| regarding HSFSO; and the pitch adjustment rate PAR=0.8 and

the HMCR=0.8 with respect to HSFSSA.

Note that the C4.5 algorithm [176] is adopted due to its popularity as a verifier of

the quality of the selected feature subsets from an end classifier learner’s perspective,

where stratified ten-fold cross-validation is exploited for accuracy validation.

3.2.1 Comparison with Alternative Search Strategies

Stratified tenfold cross-validation (10-FCV) is used. For a given dataset, it works by

dividing the data into ten sub-tables. Nine of these ten sub-folds are employed for
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Table 3.3: Dataset information

Dataset Features Objects Decisions C4.5

arrhythmia 280 452 13 64.38
handwritten 257 1593 10 75.83
ionosphere 35 230 2 87.83
libras 91 360 15 69.72
multifeat 650 2000 10 94.75
secom 591 1567 2 89.60
segment 20 1500 7 95.73
sonar 61 208 2 71.15
cnae 857 1080 9 88.8
web 2557 149 5 51.6

training, where FS is employed to learn the optimal feature subset. The remaining

single fold is used to test the classifier using the selected feature subset. This

process is then repeated ten times. Therefore, each fold is used for testing only

once and the stratification of the data ensures that each class label has the same

representation in all folds, thereby helping to alleviate bias/variance problems [19].
In the experiments, 10-FCV is performed using ten different random folds of the

data in order to lessen the impact of random factors within the heuristic algorithms.

These 10× 10 sets of evaluations are aggregated to produce the final experimental

outcomes.

In addition, a paired t-test with two-tailed p = 0.01 has been performed in order

to compare the statistical differences between results obtained by HSFSO and HSFSSA,

as given in Table 3.4 and Table 3.5. The symbol ‘b’ indicates that HSFSSA obtains

a better result than HSFSO, ‘=’ denotes that there exists no statistical difference

between the results, and ‘w’ signifies that HSFSSA results in a statistically worse

search performance. These comparisons are made in terms of whether the generated

feature subsets offer a higher evaluation score, a smaller subset size and/or better

classification accuracy.

Using the CFS evaluator to obtain results as reflected in Table 3.4, higher evalua-

tion scores are obtained using the proposed techniques for six of the ten datasets

(indicated with v) when compared to HSFSO. For the remaining four datasets—

ionosphere, secom, segment, and sonar—more compact subsets are discovered with

equal evaluation scores (or with a tiny difference in evaluation score). The bold

figures signify improved performance when compared with GHC, where HSFSSA
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3. SELF-ADJUSTING HARMONY SEARCH-BASED FEATURE SELECTION

Table 3.6: Comparison of execution time (millisecond) between different subset
methods using CFS.

HSFSSA HSFSO GA PSO GHC

arrhythmia 1792 1138 5418 1371 127
handwritten 1650 954 8044 3416 1807
ionosphere 46 37 180 195 11
libras 817 152 984 435 26
multifeat 9413 5587 59173 27802 10460
secom 6754 4557 28847 16035 923
segment 26 17 80 132 13
sonar 76 80 412 290 16
cnae 155363 139857 65066 23613 1300
web 97512 135671 169760 27068 15879

Table 3.7: Comparison of execution time (millisecond) between different subset
methods using PCFS.

HSFSSA HSFSO GA PSO GHC

arrhythmia 4202 4336 34957 4514 912
handwritten 155 140 127 5463 4877
ionosphere 444 394 85 334 30
libras 1198 1234 11559 1099 190
multifeat 424 407 222 10535 5037
secom 29084 30858 291034 30571 2372
segment 3044 2710 2152 597 84
sonar 552 534 5132 579 52
cnae 122361 106798 324843 52925 39711
web 101459 94431 778 26575 1975

enables further reduction of the size of the selected feature subsets. Although the

GAs are capable of identifying higher quality subsets for several datasets, they are

unable to identify good quality solutions for the higher dimensional datasets such as

arrhythmia, multifeat, secom, cnae, and web. Importantly, the classification accuracy

of the classifier learners built using the reduced feature subsets (selected by HSFSSA)

is improved, particularly for arrhythmia (by 13.40%), sonar (by 5.04%), and web

(by 5.43%).

For Table 3.6 and Table 3.7, note that the execution time of HSFSSA is longer

than HSFSO for most of the datasets except sonar and web, which is caused by
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3.2. Experimentation and Discussion

the complexities incurred by the introduction of self-adjusting components. This

observation confirms the complexity analysis performed in Section 3.1.4.

Employing the PCFS evaluator to obtain results as reflected in Table 3.5, the

performance improvement over the original algorithm is more obvious, where better

subsets are selected across all datasets. Note that only a single feature is selected

by GHC for the secom dataset. This is because no additional features offer any

increase in the evaluation score, when combined with this selected feature. However,

better combinations of features do exist, which are successfully identified by all

other employed stochastic approaches. Feature subsets obtained by GAs are mostly

comparable to the others in terms of the evaluation scores. GAs are indeed able

to identify feature subsets of optimal quality for the dataset libras. The classifiers

built using the feature subsets selected by HSFSSA also show improved classification

performance for six of the ten datasets. Interestingly, higher classification accuracies

are obtained by HSFSSA for nine of the whole ten datasets when compared to HSFSO.

For the remaining dataset, libras, the minor differences in accuracy are acceptable,

given the substantial reduction in the averaged feature subset size (16.40 for HSFSSA,

and 57.23 for HSFSO).

3.2.2 Effect of Individual Strategy

Two of the datasets with the largest number of features, multifeat and secom, are

employed for the remainder of the experimentation. Each of the proposed mod-

ifications to HSFS is tested on its own in order to ascertain what benefits these

strategies offer individually. Fig. 3.2 illustrates the effects of the restricted ratio δ

which controls the size of the RFDs. The results are collected using different values

for δ ranging from 0.1 to 1, with an interval of 0.1. Intuitively, if the value of δ is

too small, the musicians may have too few features to work with, which will limit

the solution quality. For both datasets, the quality of the selected subsets approach

peaks at δ = 0.8, when 80% of features in A are utilised.

Fig. 3.3 aims to demonstrate the effectiveness of the HMC process. The algorithm

successfully adjusts the number of musicians to a reasonable level, down from the

initial setting of |M |= |A|, without subjective intervention. The reduced group size

further encourages the remaining feature selectors to identify even smaller candidate

solutions. The compactness of the resulting subsets as reported in Table 3.4 and

Table 3.5 also provides good evidence for the positive impacts of this process.
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3. SELF-ADJUSTING HARMONY SEARCH-BASED FEATURE SELECTION

Figure 3.2: Demonstration of the effects of RFD using different δ ∈ [0.1,1]

The final set of experiments is carried out in order to study the effects of the

pitch adjustment rate, by varying ω from 0 to 1 with an interval of 0.1. This

parameter manipulates the shift ratio, where a feature is replaced with a random

close neighbouring feature. Fig. 3.4 shows the size and evaluation scores of the best

solutions recorded during the search process. The performance of both datasets,

multifeat and secom, peaks atω = 0.2, when a feature shifts to neighbouring features

with a probability of 20%. Obviously, if the value of ω is set too large, good quality

features may be neglected.
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3.3. Summary

Figure 3.3: Automatic configuration of musician size using HMC

3.3 Summary

This chapter has presented a self-adjusting FS search algorithm which improves the

original harmony search-based feature selection [53] with three new techniques.

The proposed techniques are conceptually simple and require limited computational

overheads in order to achieve positive effects. The musicians in HSFSSA improvise

new candidate feature subsets using a selective portion of the full set of original

features (RFD), and dynamically adjust their subset size via the HMC process. The

pitch adjustment strategy, re-introduced to HSFS via feature similarity measures

allows finer yet relevant adjustments to emerging feature subsets. Experimental
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3. SELF-ADJUSTING HARMONY SEARCH-BASED FEATURE SELECTION

Figure 3.4: Demonstration of the effects of PAR using different ω ∈ [0,1]
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3.3. Summary

results show that the added enhancements can indeed further improve the quality

of the resultant feature subsets (when compared to the original HSFS approach),

and also obviate the need to precisely pre-configure the size of the musician group.
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Chapter 4

Feature Grouping-based Feature

Selection

T He general concept of feature grouping (FG) can be simply considered as a par-

titioning of a set of features. The purpose is to group so-called similar features

and place them into the same group. Having completed this, information regarding

inter-feature correlation can be estimated easily. Depending on the measure used

to compute the inter-feature similarity, features within a group may be determined

to be highly redundant with respect to each other, equally relevant to the decision

attribute, or not only highly redundant with respect to each other but also equally

relevant to the decision attribute while features between groups may be known to

be less redundant (or even independent). In particular, FS may potentially benefit

from FG techniques, for example, a-priori knowledge that the properties of features

can be exploited by FS. That is, FS can be efficiently and effectively performed on a

grouping of features. This has therefore inspired novel frameworks of FG-based FS,

which has been carried out in the present research.

There may exist two forms of FG with regards to feature overlap between groups:

so-called exclusive FG where any single individual feature only belongs to a single

group [106], and non-exclusive FG where different groups may contain the same

features [100]. Exclusive FG can be a special case of a more general non-exclusive

FG when there are no overlapping features amongst the groups. To implement

FG, conventional clustering techniques (e.g., k-means, c-means, hierarchical, and
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4. FEATURE GROUPING-BASED FEATURE SELECTION

graph-theoretic clustering [104]) in conjunction with inter-feature similarity metrics

may be applied in order to cluster those redundant features together.

Traditionally, clustering techniques are focused on grouping similar data instances

together. Distance metrics (e.g., Euclidean distance) are used to calculate the

similarity between instances. However, feature is a nominal term such that the

similarity between features cannot be simply computed using quantitative metrics.

Information-based metrics such as mutual information [65], correlation coefficient

[93], fuzzy-rough set dependency [177], and probabilistic consistency [10] can

be used for the purposes of computing the similarity between any pair of features.

Such measurable high-level similarities lead to classical clustering methods that are

available to obtain homogeneous feature groups.

4.1 Proposal for High-level Framework for Feature

Grouping-based FS

In the framework of FG-based FS proposed in this thesis, FS is performed on a

number of feature groups by selecting representative features from each single group

(or selecting none or multiple features for some particular groups) in order to obtain

a feature subset rather than identifying a subset in 2|A| combinations of features

(where A is all of the conditional features of a given dataset). Two schemes can

be used for implementing FG-based FS. In the first scheme, FG is considered an

independent system and acts as a preprocessing step for FS. In the second, FG is used

as an internal component of FS which will iteratively interact with other components

of FS such that both a desirable feature grouping and a quality subset can be refined.

These two structural schemes are discussed in more detail in the following sections.

4.1.1 FS with FG Being Preprocessed

This structural FG-based FS scheme, formally described in Fig. 4.1, consists of

two main parts: 1) generating a desirable grouping by clustering similar features

together using the feature clustering/partitioning techniques; and 2) obtaining the

feature subset by performing FS on the pre-generated grouping. These two process

are independent. The grouping process is completed prior to the outset of executing

the FS. A powerful mechanism for obtaining a quality exclusive feature grouping,

on which the optimal or suboptimal feature subset can be discovered, is therefore
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Input Features

Clustering/Partitioning

Feature Grouping

Feature Subset Search

Feature Subset Evaluation

Meet Stopping Criteria?

Feature Subset

yes

no

Feature grouping process

Feature Selection process

Figure 4.1: FS with FG as a preprocessing step
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essential. Having such feature groupings been determined, a certain number of

feature combinations that may involve the optimal subset cannot be reached when

the inclusion of features is selected partially or not at all from every single feature

group. This issue can be alleviated by a non-exclusive FG strategy, which builds a

group for each of the input features in a given dataset, and then absorbs a similar

feature as the member of existent groups. In doing so, all combinations of feature

subsets are fairly accessible disregarding the limitation of the search methods used.

The possible advantages of FG preprocessing features into several homogeneous

groups consist of two aspects: 1) the largest size of emerging feature subsets can be

determined in advance by an FG when applying the obtained FG to FS that works

by selecting one feature from each group to form a feature subset; and 2) it is not

necessary to repeat the grouping process to obtain a quality FG.

4.1.2 FS with FG Being An Internal Component

In this structural FG-based FS scheme as formatted in Fig. 4.2, the FG process is used

as an internal component in the FS approaches, and is capable of communicating

with the subset selection process on the fly. Such communication is illustrated in the

work flow of this FG-based FS scheme as listed below:

1. Obtain a feature grouping by performing the FG methods on the entire set of

input features of a given dataset.

2. Generate a feature subset by combining features selected from this grouping

(e.g., choosing one feature from each group).

3. Evaluate this selected feature subset using any of the evaluation functions

described in Chapter 2.

4. If the evaluation result of the feature subset selected from the current feature

grouping is better than that of the subset selected from the previous feature

grouping, repeat steps 1-3.

5. Otherwise, terminate algorithm.

As seen from the above algorithm steps, obtaining a reasonable feature grouping

depends upon the quality of subset produced from it. In doing so, the feature group-

ing is improved in terms of finding better subsets on its feature groups. However,
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Input Features

Clustering/Partitioning

Feature Grouping

Feature Subset Search

Feature Subset Evaluation

Meet Stopping Criteria?

Feature Subset

yes

no

Figure 4.2: FS with FG as an internal component
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repeatedly calling the FG process actually augments the computation overhead of

this algorithm, although the subset selection process performing on the resulting

feature grouping may reduce its overall computational overhead.

4.2 Feature Grouping-based FS using

Graph-theoretic Approaches

Information in terms of the redundancy between relevant features (aka., inter-feature

relevance) is the main focus of this work. Therefore, identifying homogeneous fea-

ture groups may help in removing redundancy from the final returned feature

subset. This chapter introduces a series of different strategies to improve existing

FS approaches based on minimum spanning tree-based feature grouping (GBFG)

[199], where FS is implemented by feature selecting from the groups of an emerging

feature grouping. Firstly, three-way mutual information has been adopted in order to

compute the relationships between features, rather than the symmetrical uncertainty

measure using Shannon entropy [231], such that redundant and collaborative infor-

mation regarding the decision will be retrieved. Secondly, two new feature selection

mechanisms based on GBFG are proposed: one based upon the straightforward

ranking of features from the resultant feature groupings, and another which is based

on a music-inspired metaheuristic. In addition, a grouping procedure with iterative

refinement is also described using the evaluation result of the returned feature

subset.

The improved GBFG-based FS framework is illustrated in Fig.4.3, where the

ellipse blocks stand for data flow, the rectangle blocks of solid lines represent a

process, and the rectangle blocks of dashed lines are the methods or measures that

may be used to implement the specified processes. The improved framework is

different from the original approaches. In the original GBFG-based FS approaches,

there is an initial step to remove features that are considered irrelevant using the

symmetrical uncertainty measure. The removal of such features may result in

information loss regarding inter-feature collaboration (e.g., the XOR problem as

described in Table 4.1 and those inputs of the individual variable ‘a’ (or ‘b’) are

irrelevant with respect to their outputs while those inputs ‘a’ and ‘b’ together are fully

relevant with respect to their outputs). This process of removing irrelevant features,

therefore, is pruned in the improved framework. The more precise technical details
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Dataset

Compute a graph on features

Find minimum spanning tree

Build feature grouping

Feature groups

Select feature subset

Evaluate subset quality

Feature subset

iterative refinement

Kruskal’s

· · ·
Prim’s

Metaheuristics

· · ·
Hierarchical

Interaction gain

Fuzzy-Rough Sets

Consistency

Correlation

Rough Sets

· · ·
Information gain

Figure 4.3: Framework for feature selection using GBFG

relating to GBFG and its components are presented in Section 4.3 and FS with GBFG

is described in Section 4.4.

Table 4.1: The XOR problem in FS

a b a ⊕ b

0 0 0
0 1 1
1 0 1
1 1 0

4.3 Graph-based Feature Grouping

In this section, a three-way mutual information metric is used to measure relation-

ships between features and then generate a feature graph, which is represented as
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an adjacency list in order to efficiently build a minimum spanning tree (MST) upon

this constructed graph. Thus, the resulting MST is used to obtain feature groupings.

4.3.1 Relationship Metrics and Interaction Gain

The problem of how features may be regarded as either redundant or relevant

is significant to the FS. Generally speaking, redundant features are those whose

information content is already present in other features; and irrelevant features are

those which provide no information with respect to the decision attribute, while

naturally, relevant features are highly correlated to the decision. Moreover, relevant

features are further divided into two classes according to the level of information

which they carry, namely, strong relevance and weak relevance. In terms of such

relations between features, or relations between features and the decision attribute,

three possible ways of forming feature groups, if not all, are discussed: 1) simply

clustering highly redundant features; 2) clustering features that are equally relevant

to the decision attribute; and 3) clustering features that are not only highly redundant

(with respect to each other) but also equally relevant to the decision.

Many of the quality metrics developed in the literature (e.g., those reported in

[100, 106, 199, 242]) may be adopted in order to distinguish between different

types of features by using them as a measure of correlation or dependency. High

values of correlation can be used not only to indicate redundancy between features

but also to suggest that the relationship between features and the decision are

strongly relevant. A moderate value typically implies a weak relevance, while a

value level close to zero signifies irrelevance. This regularisation is always defined

independently of the decisional features, because metrics most used in the literature

can only be applied to assess the pair-wise relationship between two features. Either

of paired features could be conditional or decisional.

Taking a different approach in this research, a measure of three-way mutual

information is used to build a graph from the original features. This measure is

also known as interaction gain [234], which is a metric that attempts to identify

relationships between domain features, including collaboration and redundancy

with respect to the decision. No assumptions are required when applying three-way

mutual information to feature selection, such as those assumed in the maximum-

relevance and minimum redundancy based approach [170]. Also, employing this

measure has the advantage that it helps to identify the relationships between subsets
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of features that are similar, again with respect to the decision attribute [194]. The

formality of three-way mutual information is described in conjunction with its

properties in Chapter 2.1.1.1.

4.3.2 Feature Graph Construction

In the very initial stage of GBFG, a graph is constructed according to the distribution

of the features and their relatedness. Each of the conditional features is represented

by a node in the graph and the relationships between features are represented by

graph edges. Let A = {a1, a2, · · · , a|A|} be the full set of conditional features in a

dataset, ai, a j ∈ A and Z be the decisional features, the concept of feature matrix

which represents the relatedness can be introduced with the normalised interaction

gain, Ii j, i, j ∈ {1, 2, · · · , |A|}, i 6= j, which is computed from I(ai, a j, Z) between the

features ai and a j as per Eqn. 2.9. Z is a set of decisional features. In so doing, a

link between a pair of features is established if a non-zero normalised interaction

gain is calculated between them and the link is weighted by such calculated gain

values.

Table 4.2: Example: feature relatedness matrix

Feature a1 a2 a3 a4 a5 a6 a7 a8

a1 0 0.25 0 0.4 0 0.5 0.6 0
a2 0 0.15 0 0 0.1 0.35 0
a3 0 0.45 0.3 -0.6 0 0
a4 0 0.2 0.3 -0.5 0
a5 0 0.4 0.15 0
a6 0 0 0
a7 0 0
a8 0

Table 4.2 shows an example of a graph matrix. Features a1 − a7 have certain

non-zero weighted links with the others. Feature a8 is an extreme case which has

no interaction with the others at all. In terms of three-way mutual information, this

means that a8 provides information about the decision independently of the rest.

The addition of such features will neither improve the performance of inter-feature

collaboration of the others nor demonstrate that they are redundant with respect

to the rest. Such features naturally have no available links with the others and are

disregarded at the feature grouping stage. The graph constructed with this matrix
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can be depicted as shown in Fig. 4.4. Of course, in making feature selection, all such

features should be included in the returned subset owing to their independence of

those features selected from the resulting groups. However, noisy features may be

incorrectly identified as such independent features. Therefore, in practical use, an

examination of these features should be provided before their inclusion.
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0.35
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−0.5
0.4

0.15

Figure 4.4: Graph constructed with the link weights given in Table 4.2

To represent a graph efficiently which helps information storage and retrieval,

the concept of an adjacency list is introduced. An adjacency list is itself a collection

of unordered lists of neighbours of the nodes given in the graph and is a common

way to represent structural relationships in graph theory. For example, the graph of

Fig. 4.4 can be re-represented as the adjacency list in Fig. 4.5, where the head of the

list represents the features and from which the arrows map onto their neighbours.

Each neighbour has two elements: the first points to an adjacently connected feature;

and the second element encodes the weight of the link between the two features.
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Figure 4.5: Adjacency list for the weighted graph of Fig. 4.4

Such an adjacency list helps to reduce computational overhead when building a

so-called MST from the original graph. An MST is basically a sub-graph of a graph,

containing all of the nodes from the original super graph such that its nodes are

connected together with the minimal total weighting for all edges. Importantly, an

MST does not involve cycles for any of its edges. From the adjacency list obtained

in Fig. 4.5, the MST illustrated in Fig. 4.6 can be easily derived. Note that if the

constructed graph is not connected, then a minimum spanning forest (MSF) that

is a set of MSTs (one of which is implied by an independent component in the

constructed unconnected graph) is derived instead of an single MST.

4.3.3 Grouping of Features

The use of three-way mutual information reinforces the concepts of collaboration and

redundancy. Features which are collaborative can provide more information about

the decision than they can individually, and features which are redundant provide

common information (possessed by each of them) about the decision attribute.

The larger the positive value of three-way mutual information, the stronger the

collaborative contribution of the features. Similarly, the smaller the negative value of
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Figure 4.6: A possible MST derived from the original graph (using the example
adjacency list of Fig. 4.5)

three-way mutual information, the higher the level of redundancy between features.

Reflecting the above observations, features that are of low collaboration or highly

redundant with respect to the decision are desirable candidates for membership of

the same group such that a feature subset with strong collaboration may be obtained

when applying FS on these resultant feature groups. To group features following

this observation can be achieved by an MST in conjunction with three-way mutual

information.

Excluding those features that are independent of the others, non-zero weighted

edges are then added to an adjacency list in order to obtain an MST by using the

generic and effective Kruskal’s algorithm [41]. Given a connected, undirected, and

weighted graph G, this MST algorithm works as follows:

1. Initialise a new graph with non-independent features as nodes without an

edge, each forming an individual component (or tree).

2. Select one of the lightest-weighted edges from G randomly.
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3. Judge whether the edge connects two different components: if so, these two

components are merged together into one; otherwise, this edge is discarded.

4. Repeat steps 2 and 3 until all nodes within the new graph are connected and

return the new graph as the resulting MST.

The MST built through the above process contains |A′| nodes and (|A′| − 1)

edges, where A′ is a subset of all possible features A in the given dataset minus

those independent features. Denote the collection of all independent features as A′′,

then A′′ = A \ A′. In particular, each independent feature in A′′ will make a group

on its own. Note that such resultant T may not be unique, however the sum of

edge weights will be identical for the different versions of T (given the fact that all

versions are minimum spanning trees in the first place).

In an MST T , the removal of a certain number of edges will result in a forest F ,

which contains the same number of subtrees as the number of removed edges plus

one. The proposed approach works by iteratively removing edge(s) of the overall

largest weight from the MST such that features are separated into several different

subtrees. Each subtree may then be viewed as an emerging feature group because

features within this subtree are highly redundant or of low collaboration. Thus, the

resulting forest F can be interpreted as a grouping of features.

For example, recall the MST of Fig. 4.6, which is derived from the graph as

per Fig. 4.4 where a8 ∈ A′′ has no links with others, firmly forms an independent

group in itself, and is omitted at the current stage. From this, the feature grouping

process can be illustrated as follows: Initially, the forest F contains only a single tree

T = {A′, E′} where A′ = {a1, a2, · · · , a7} and E′ = {< a3, a5 >, < a1, a2 >, < a5, a7 >,

< a2, a6 >, < a4, a7 >, < a3, a6 >}, with its elements respectively weighted by

those given in the list {0.3,0.25,0.15,0.1,−0.5,−0.6}. The proposed approach

attempts to remove edges that take the maximum weight in F iteratively. Thus, the

edge < a3, a5 > (of a weight 0.3) is removed in the first instance and the current

tree is then divided into two subtrees T 1
new = {{a4, a5, a7}, {< a4, a5 >,< a5, a7 >}}

and T 2
new = {{a1, a2, a3, a6}, {< a2, a3 >,< a1, a2 >, < a2, a6 >}}. Note that if

there exist other edges with the weight of 0.3, these edges are then removed

within the same iteration. The F now contains two members {T 1
new, T 2

new} rather

than the original single state {T}. As such, a grouping of two feature groups

{{a4, a5, a7}, {a1, a2, a3, a6}} is formed in place of the previous fully connected tree.
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4.3.4 Complexity of GBFG

GBFG applied to the all input features excluding those independent of the others

has three stages: 1) the calculation of feature relationships in the graph; 2) the

building of an MST; and 3) the grouping of features. The complexity can therefore

be considered in terms of these three steps.

Without losing generality, suppose that the input dataset has |A| features. In the

first stage, the complexity of computing the relationship for each pair of features

is O((|A|2 − |A|)/2). Note that in practical terms, certain features may not have any

correlation with others and these independent features can be pruned from an

emerging MST. In stage two, suppose that |A′′| features are removed owing to

their independence of all the other features, an emerging MST will have |A′| nodes

(|A′| = |A| − |A′′| ≤ |A|) and hence, the graph generated from this stage will have
(|A′| ∗ (|A′| − 1))/2 edges. The complexity of building an MST is therefore O((|A′|2 − |A′|)/2). In

the third stage, to obtain a feature grouping containing |F | groups (F is a forest of

subtrees of an MST, each of which represents a feature group), (|F |−1) edges will be

eliminated from the resulting MST in total. The grouping process is then of the order

O(|F |−1). Additionally, each of the |A′′| independent features will form a group itself.

Building such groups requires |A′′| operations. Thus, the complexity of the entire

approach in conjunction with the group building process for those independent

features is O((|A′|+ |A′′|)2 − (|A′|+ |A′′|)/2+ (|A′|2 − |A′|)/2+ |F | − 1+ |A′′|) in total. For further

understanding the grouping process, its pseudo-code is given in Algorithm 4.3.1.

4.4 Feature Selection with GBFG

In this section, two novel feature selection techniques based on GBFG are proposed.

The first method carries out feature selection through a straightforward quality-

guided selection of features from the generated feature groups. The second performs

feature selection from the feature groups by employing harmony search [81] in an

effort to discover equivalent or better feature subsets more efficiently than the first

method. The key is of course how to efficiently search for effective feature subsets.

This forms the main part of the work below.
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1 A: set of conditional features
2 Z: decisional features
// Step 1: construct a graph using features by

calculating three-way mutual information between
features

3 G = {V, E}: undirected graph, where V = A and E = ;
4 while ai, a j ∈ V do
5 if < ai, a j >/∈ E then

6 Weight(< ai, a j >) =
I(ai, a j, Z)

H(ai) +H(a j)
7 E = E ∪ {< ai, a j >}

// Step 2: build an MST, T over G using Kruskal’s
Algorithm

8 Remove those independent features A′′ in G
9 T = Kruskal(G) where T = {A′, E′}
// Step 3: generate feature grouping

10 while the current grouping cannot generate a better feature subset do
11 Remove edge(s) with the maximum weight in T
12 Generate feature grouping by clustering those features that are linked as a

group

13 Build an individual group for each feature that is independent of the others
Algorithm 4.3.1: GBFG: Graph-based feature grouping

4.4.1 Evaluation of Feature Subset Quality

To start with, the quality measure that is used to adjudge the emerging feature

subset quality is presented first. Feature subsets are formed following the choice of

representative features from every single group (resulting from running Algorithm

4.3.1), and then are evaluated using a certain quality measure. Here, the popular

probabilistic consistency measure is used (although other evaluation methods such

as those based on mutual information [65], correlation coefficient [155], and

fuzzy-rough set dependency [111] may be used as an alternative). In addition to its

popularity, probabilistic consistency is chosen as the quality measure because it offers

a consistent mechanism to calculate the discriminability of a given feature subset

S ⊆ A with respect to given class labels. The principle of probabilistic consistency is

elaborated in Chapter 2.1.1.1.

Suppose that the evaluated quality of the candidate feature subset selected from

the current feature grouping is better than that of the subset selected from the

previous grouping, indicating the grouping process may be further improved (to
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potentially lead to better quality of feature subsets). Thus, at this stage, the grouping

building process is recalled to generate a new feature grouping by further eliminating

edges in the previous MSTs. From this, a new feature subset can be obtained by

selecting representative features from every single group. This iterative refinement

terminates if no better feature subsets are returned. The following presents two

implementations of an FS mechanism, both of which utilise the feature subset quality

measure as defined above.

4.4.2 Search for GBFG-based Quality Feature Subsets

4.4.2.1 Straightforward Quality-guided Feature Selection

This method can be readily implemented using three-way mutual information. The

key steps are described as listed below:

1. Locate a pair of features taking the largest value from three-way mutual

information, which indicates that these two features are most collaborative.

Note that such a pair of features may not be unique. If there exist more than

one pair of features like this, the first located pair will be returned.

2. Include these two most collaborative features into the emerging feature subset

S.

3. For the remaining feature groups that do not contain features in S, find a

feature from each group that is most collaborative with S about the decision

attribute and add it to S until all groups have nominated a representative

feature. Here, the degree of collaboration between a feature ai of a given

group and S is recursively defined as follows:

Col(ai, S) = Σa j∈S I(ai, a j, Z). (4.1)

Algorithm 4.4.1 implements this straightforward feature selection method. In

order to locate a pair of most collaborative features in the constructed graph as per

Fig. 4.4 that has up to (|A′|2 + |A′|)/2 non-zero weighted edges where A′ is the set of

features excluding those independent features A′′ out of the all input conditional

features A, it will take (|A′|2 + |A′|)/2 operations to find such a pair of features for the

worst case. Suppose that a feature grouping of |F | groups is obtained by the GBFG

algorithm, where F is a forest of subtrees of an MST (each of which represents a

88



4.4. Feature Selection with GBFG

feature group). F ′ is a set of feature groups that contain two most collaborative

features, which have been selected as the elements of an emerging feature subset.

Those groups that have not nominated a representative for the emerging subset yet

are denoted as F ′′, then F ′′ = F \ F ′. As features in the feature groups of F ′′ are of

potential collaboration with those features that have been selected in an emerging

subset, for each group T i ∈ F ′′ (i = 1, 2, · · · , |F ′′|), one of the features that are most

collaborative with the elements of the emerging subset is designated to be a new

member of it. Thus, Σ|F
′′|

i=1 |T
i| operations are required to search for such features in F ′′

groups. The examination and inclusion of those independent features is of the order

O(|A′′|) as they may provide additional information regarding the decision. Therefore,

the complexity of generating a feature subset is O((|A′|2 + |A′|)/2+Σ|F
′′|

i=1 |T
i|+ |A′′|) at

a time. If such a subset generation process runs ι (1 ≤ ι ≤ |F |) times until the

desirable subset is found, the total complexity of the straightforward quality-guided

feature selection will be O(ι ∗ ((|A′|2 + |A′|)/2+Σ|F
′′|

i=1 |T
i|+ |A′′|)).

1 F = {T 1, T 2, · · · , T n}: set of feature groups from graph-based grouping
2 S = ;: set of selected features
3 Search edge < ai, a j > of the largest weight in the constructed graph as shown

in Fig. 4.4
// There may be more such edges in the constructed graph

and the first met is obtained.
4 Include features ai and a j into S
5 foreach i = 1 to n do
6 if T i ∩ S == ; then
7 foreach a ∈ T i do
8 if Col(a, S) is the largest then
9 S = S ∪ {a}

10 A′′: the collection of all independent features
11 for a ∈ A′′ do
12 if f (S ∪ {a}, Z)> f (S, Z) then
13 S = S ∪ {a}

14 return S
Algorithm 4.4.1: GBFG-FS: Straightforward feature selection

To continue the example used in Section 4.3.3, a grouping of two feature groups

{{a4, a5, a7}, {a1, a2, a3, a6}} is obtained after the first iteration of the GBFG algorithm

without yet considering any independent features. Based on the graph constructed

using three-way mutual information, features a7 and a1 are identified to be most
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collaborative with each other and, therefore, they are included in the emerging

feature subset S = {a7, a1}. In this particular case, a7 and a1 appear in {a4, a5, a7}
and {a1, a2, a3, a6} respectively. These two feature groups have therefore nominated

a feature each. However, more generally, there may exist situations where two

most collaborative features are in the same group. In such cases, both of these two

features are included in the emerging subset S, and then another feature is selected

from each of the groups that has yet to nominate a feature representative to S. If

the evaluation of this obtained subset is better than that of the subset selected from

the previous grouping in the same manner, the feature grouping process continues

while assigning S to an empty set. Otherwise, the algorithm returns the selected

feature subset and terminates. In this example, suppose that the evaluation result

of the feature subset obtained from the current grouping is better than that of the

subset produced from the previous grouping. Thus, the next grouping results in

three groups: {a1}, {a2, a3, a6}, and {a4, a5, a7}. As with the last iteration, a1 and

a7 are included in S. For the group {a2, a3, a6} that has yet to nominate a feature,

compute the collaboration between each feature of {a2, a3, a6} and S based on Eqn.

4.1. The value of the collaboration of a2 and S is 0.25+ 0.35; that of a3 and S is

0+ 0; and that of a6 and S is 0.5+ 0. As a2 has the largest collaboration value, it is

then included in S. This leads to feature subset {a1, a2, a7} being selected.

In the above illustration, the feature a8, which is independent of the others, has

been excluded intentionally to simplify the description. However, as an independent

feature, it may provide different and possibly useful information to the decision.

From this viewpoint, it is necessary to evaluate the quality of the feature subset of

{a1, a2, a7, a8}. If this inclusion improves the evaluation result, features a1, a2, a7

and a8 will be returned as the outcome of feature selection. Otherwise, return only

features a1, a2, and a7 as the feature selection result.

4.4.2.2 GBFG-based Feature Selection with Harmony Search

As mentioned previously, the tree generated in the MST discovery step may not be

unique and this means that the overall process is non-deterministic. This is where a

metaheuristic approach may offer assistance in strengthening the work. Selecting an

‘optimal’ feature subset from groups of features is a combinatorially difficult problem.

Exhaustive search can guarantee that the best feature subsets will be discovered,

but this is often computationally impractical for real-world applications. Harmony
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search (HS) [81] may be useful for the task of selecting features from a particular

feature grouping. This observation has inspired the following development.

HS for GBFG-based Feature Selection The original harmony search-based feature

selection approach (HSFS) as represented in [54] can be extended to take advantage

of the GBFG framework. In particular, musicians are mapped onto feature selectors,

which are equal to the number of features of a given dataset. Suppose that a dataset

has |A| conditional features, each selector then has |A| choices. This means that the

space for the harmony search is |A||A| in theory. Here, harmony search is employed in

order to reduce the size of the search space and thus computational effort. In contrast

to the original approach [54], where feature selectors are assigned for each feature,

here a single selector is assigned to each feature group. Given a feature grouping

of |F | groups that are obtained by the GBFG algorithm from |A′| (|A′| = |A| − |A′′|)
features where A′′ is a set of independent features and A is a set of all conditional

features, the search space is then reduced to |F ||A′| (where typically |F | � |A′|),

while a single selector has |A′| choices. Again, the original approach treats FS as a

bi-objective optimisation problem while the new algorithm turns FS into a single

objective optimisation problem. That is, the feature subset size is no longer needed

to be considered in evaluating feature subsets thanks to the introduction of GBFG.

The steps of the GBFG-based HS algorithm are listed as follows:

1. Initialise parameters: In this algorithm, five parameters continue to be used,

including |H|, HMCR, PAR, λmax , and |M |. BW is not used any more. In FS,

each feature is an independent granule. The neighbouring features cannot be

computed simply by using the standard arithmetic operators and the random

value, which are used by the proposals of BW that are developed in [81, 80].
Instead of using BW, the feature similarity measure via calculating the degree

of probabilistic consistency between two features is then used for identifying

the neighbouring features after the activation of PAR, which is not used in the

original HSFS algorithm. The alternative similarity measures represented in

[241] are also considered for use. As a given number of selectors is assigned

to each of |F | feature groups (F is a forest of subtrees of an MST, each of which

represents a feature group) that are obtained by GBFG (see Section 4.3.3), |M |
is set to the number of groups |F | rather than that of features |A| (|A| � |F |) in

the original HSFS algorithm.
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2. Initialise HM: HM now is a two-dimensional matrix with the size of |H| × |F |.
Each row stores a feature subset while each column stores HMS historical

features, taking the form below:

HM=















aH1

1 aH1

2 · · · aH1

|F | f (S1, Z)
aH2

1 aH2

2 · · · aH2

|F | f (S2, Z)
...

...
. . .

...
...

aH |H|
1 aH |H||

2 · · · aH |H|
|F | f (S|H|, Z)















where the value of a unit aH j

i , aH j

i is a feature selected by the i th feature selector

in the j th harmony and f (S j, Z) is the evaluation function used to calculate

the quality of a given feature subset, S j to the decisional features Z . Note that

there may exist duplicated features in a harmony and thus the size of a feature

subset may be less than its corresponding harmony.

3. Improvise new feature subsets: A new harmony SH ′ = {aH ′

1 , aH ′

2 , · · · , aH ′

|F |} is

generated based on as the same three factors as the original HS, involving

HMCR, PAR, and a random value r (0< r < 1). A new feature aH ′

i is selected

by the i th feature selector with respect to the following rules:

aH ′

i =











aH ′

i ∈ T i if HMCR≤ r

aH ′

i ∈ HMi = {a
H1

i , aH2

i , · · · , aH |H|

i } if HMCR> r

the closest neighbour of aH ′

i if PAR> r

(4.2)

where T i is a homogeneous group of those features that are only utilised by the

i th feature selector and HMi is a column of historical features selected by the

i th musician, being stored in HM. When the condition HMCR≤ r is satisfied,

the feature selector will randomly select a feature from its own homogeneous

group. Otherwise, the feature selector will randomly select a feature from its

historical feature pool. PAR works independently of HMCR. If the condition

PAR > r is satisfied, a feature from its historical feature pool is randomly

generated and replaced by its closest neighbour feature. Recalling the graph

of Fig. 4.4 constructed using three-way mutual information, neighbours of a

feature are topologically connected features. The link of the smallest weight

determines the closest neighbour of this feature in terms of all possible links

regardless of whether the link is negative-weighted or positive-weighted.
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4. Update HM: The quality of each newly-produced harmony is computed using

the probabilistic consistency measure f (S, Z) after converting the harmony to

a feature subset. With respect to the evaluated quality, the update of HM is

then denied if no existing feature subsets worse than the new feature subset

are found. Otherwise, the HM is updated based on the following rule:

SH ′ ∈ HM∧ SHworst
/∈ HM (4.3)

5. Check stopping criterion: If the number of improvisations reaches λmax or the

best harmony in HM has not been changed for a large number of iterations,

the algorithm stops and returns the selected features as the outcome of feature

selection in conjunction with those features that are independent of the others

while improving the subset evaluation. Otherwise, repeat steps 3 and 4.

GBFG-HS Algorithm and Complexity The procedure of the GBFG-HS algorithm

is illustrated in Algorithm 4.4.2. In line 1, the set of feature groups is obtained

using GBFG. Lines 2-4 form the initialisation stage of GBFG-HS where O(|F | ∗ |H|)
operations are reserved to randomly populate HM. At the improvisation stage,

which is implemented in lines 5-15, the generation of new harmonies is of the

order O(|F | ∗λmax) because all feature selectors each select a new feature at every

iteration. In lines 16-18, those independent features A′′, which may provide different

information from the feature subset obtained by the HS process, are examined to

decide whether to include them. It takes |A′′| operations for the inclusion of those

independent features. Therefore, the single process of the GBFG-HS algorithm is

O(|F | ∗ (λmax + |H|)). Such a single FS process is repeated after a new feature

grouping is obtained. If the subset generation process thus performs ι ( ≤ ι ≤ |F |)
times until the desirable feature subset is attained, all searching processes using

GBFG-HS will be of the complexity O(ι ∗ (|F | ∗ (λmax + |H|) + |A′′|)).

4.5 Experimental Evaluation

In this section, a series of experiments are conducted using 20 different UCI-MLR

benchmark datasets [22]. Experimental studies include: 1) comparison with popular

FS approaches that are based upon an existing feature grouping method (FRFG) [62]
or upon metaheuristics or stepwise greedy search, covering genetic algorithms (GA-

FS) [221], particle swarm optimisations (PSO-FS) [117], and greedy-hill-climbing
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1 F = {T 1, T 2, · · · , T |F |}: set of feature groups from graph-based grouping
2 Z: decisional features
3 S = ;: returned feature subset

4 SH ′ = {aH ′

1 , aH ′

2 , · · · , aH ′

|F |}: new harmony being improvised

5 HMi = {a
H1

i , aH2

i , · · · , aH |H|

i }: the i th column of HM storing historical features
selected by the i th musician

6 SHworst
and SHbest

: worst harmony and best harmony in HM respectively
7 |H|: the size of HM, indicating the number of harmonies
8 |F |: the amount of feature groups, indicating the number of musicians
// Initialisation Phase

9 for j = 1 to |H| do
10 for i = 1 to |F | do
11 aH j

i = Random(T i)
12 end
13 end

// Iteration Phase
14 while (λ++)≤ λmax && SHbest

has not been updated for a large number of
iterations do

15 for i = 1 to |F | do
16 if Random([0,1]) < HMCR then
17 aH ′

i = Random(T i)
18 else
19 aH ′

i = Random(HMi)
20 end
21 if Random([0,1]) < PAR then
22 aH ′

i = the closest neighbour of aH ′

i
23 end
24 end
25 if f (SH ′ , Z)> f (SHworst

, Z) then
26 SH ′ ∈ HM∧ SHworst

/∈ HM
27 end
28 end
29 for i = 1 to |F | do
30 if aH ′

i /∈ S then S = S ∪ {aH ′

i }
31 end
32 A′′: the collection of all independent features
33 for ai ∈ A′′ do
34 if f (S ∪ {a}, Z)> f (S, Z) then S = S ∪ {ai}
35 end
36 return S

Algorithm 4.4.2: GBFG-HS: Feature selection with harmony search

94



4.5. Experimental Evaluation

(GHC-FS) [92]; and 2) comparison with the original harmony search-based feature

selection approach (HSFS) [54].

4.5.1 Experimental Setup

Ten stratified randomisations of 10-fold cross-validation (10FCV) [19] are employed

in generating the experimental results. Note that FS is performed as part of the cross-

validation and each fold results in a new selection of features. Three different aspects

of performance are examined in the evaluation: classification accuracy, final selected

subset size, and average runtime per cross-validation fold. For classification, three

different learning classifiers are used due to their availability (and also, popularity):

JRIP [38], a rule-based classifier; J48 [176], a decision-tree learner; and IBk [42],
a nearest-neighbour classifier (with k = 3). A paired t-test (p = 0.05) is used to

examine the statistical significance of the generated results for both classification

accuracy and subset size.

The datasets used for the experimental evaluation range in size from 120-5000

instances and 10-2557 features. Most of the data have 2-7 decision classes but a

number of them have over 10 up to 19 (e.g., soybean). A summary of the datasets

is shown in Table 4.3. As stated previously, all datasets are drawn from [22]; they

are selected to facilitate comparative studies since they have been used by the other

algorithms that are compared against here.

The parametric settings for the methods, with which the GBFG approaches are

compared, are those typically used by the original approaches in the literature. In

particular, the GA search-based FS method has an initial population size of 20, a

maximum number of generations/iterations of 5000, crossover probability of 0.6 and

mutation probability of 0.033. The number of generations/iterations for PSO search

is set to 5000, whilst the number of particles is set to 20, with acceleration constants

C1 = 2 and C2 = 2. For the harmony search approaches (both HSFS and GBFG-

HS), the maximum number of iterations is again set to 5000, harmony-memory

consideration rate to 0.7, pitch-adjustment rate to 0.8, and harmony memory size to

20. These parameters may not be ideal for all of the datasets employed here and an

optimisation phase may well result in an improvement in performance. However,

such a parameter optimisation phase would need to be performed on a dataset-by-

dataset basis which would involve a significant investment of computational effort

and therefore, is not adopted here.
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4. FEATURE GROUPING-BASED FEATURE SELECTION

Note that for consistency and fair comparison within all experiments concern-

ing FS, the probabilistic consistency measure [45] is used in order to evaluate

feature subsets. Other subset-based evaluation functions may also be applicable,

such as correlation coefficient[155], rough dependency [127], and fuzzy rough

dependency[62], but this is beyond the scope of this thesis.

Table 4.3: Summary of datasets

Dataset Features Instances Classes

heart 14 270 2
glass 10 214 6
cleveland 14 297 5
olitos 26 120 4
ozone 73 2534 2
libras 91 360 15
arrhymythia 280 452 16
water2 39 390 2
water3 39 390 3
web 2557 149 5
wine 14 178 3
secom 591 1567 2
soybean 36 683 19
segment 20 1500 7
vote 17 435 2
ionosphere 35 230 2
credit-g 21 1000 2
breastcancer 10 286 2
multifeat 650 2000 10
waveform 41 5000 3
sonar 61 208 2

4.5.2 Comparison with Popular FS Methods

The proposed approaches (GBFG-FS and GBFG-HS) are evaluated in this section by

comparing them with several popular existing FS methods that are readily available.

FRFG [106] is an existing feature grouping based FS technique and a comparison is

made here as it also performs feature grouping for the task of FS. GA-FS and PSO-FS

use metaheuristic strategies while GHC-FS employs a greedy search. In FRFG, a

grouping on features is formed by clustering redundant features, which are defined

if the degree of correlation between features exceeds a predefined threshold β that
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4.5. Experimental Evaluation

Table 4.4: Classification accuracy (%(sd)): unreduced data

Dataset Classifiers

IBk(k=3) J48 JRIP

heart 79.11(6.74) 78.15(7.38) 78.63(7.37)
glass 69.84(8.57) 68.08(9.24) 68.19(10.23)
cleveland 55.7(6.35) 53.39(7.28) 54.08(3.36)
olitos 81.25(9.08) 65.75(12.07) 68.25(11.29)
ozone 93.71(0.92) 92.48(1.34) 93.13(1.33)
libras 80.67(5.62) 69.36(8.34) 54.61(9.8)
arrhymythia 58.37(3.75) 65.78(5.75) 70.55(5.42)
water2 82.28(4.47) 81.59(6.48) 82.26(6.8)
water3 84.82(4.48) 83.18(5.47) 82.1(4.81)
web 37.97(4.31) 57.63(11.25) 55.57(13.23)
secom 92.72(0.74) 89.49(1.97) 92.52(1.03)
soybean 91.2(3.16) 91.78(3.17) 91.88(3.03)
segment 94.95(1.67) 95.71(1.84) 93.23(2.08)
vote 93.08(3.68) 96.57(2.55) 95.61(2.79)
ionosphere 82.74(5.72) 86.13(6.17) 86.78(7.43)
credit-g 72.21(3.24) 71.25(3.15) 71.92(3.65)
breastcancer 73.13(5.51) 74.28(6.02) 71.37(6.62)
multifeat 97.97(0.94) 94.62(1.68) 92.17(1.84)
waveform 77.67(1.78) 75.25(1.89) 79.14(1.7)
sonar 83.76(8.46) 73.61(9.3) 75.06(8.64)

can take values from 0 to 1. Best results tend to be obtained when β is set to a value

between 0.8 and 0.9, therefore two sets of results are presented in each of Tables

4.7 – 4.8. The execution time for the two algorithms proposed in this work and that

for the existing FS methods are reported in Table 4.9. Note that in each table, the

figures presented in bold typeface indicate a result that is statistically significant.

In terms of classification accuracy, although all three classifiers return slightly

different results for the same dataset, there are no statistically significant differences

amongst them. When compared with the other approaches with respect to the

JRIP classifier, both GBFG methods outperform the others for eleven of the twenty

datasets. For the remainder, GHC-FS is statistically significant for the datasets olitos

while FGFR is statistically significant for the soybean dataset. The remainder are

all statistically comparable. Thus, the proposed methods are the overall winner.

In terms of the classification results for J48, overall, the proposed GBFG-based

algorithms also outperform others for half of twenty datasets. In particular, for the
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4. FEATURE GROUPING-BASED FEATURE SELECTION

Table
4.5:

C
om

parison
w

ith
other

FS
m

ethods:
average

classification
accuracies

(%
(sd))

for
the

JR
IP

classifier

G
B

FG
-H

S
G

B
FG

-FS
FR

FG
G

A
-FS

PSO
-FS

G
H

C
-FS

β
=

0.8
β
=

0.9

heart
78.89(7.21)

76.63(8.61)
79.41(7.13)

79.22(6.94)
79.37(6.56)

79.41(6.58)
78.81(6.89)

glass
66.41(7.89)

66.43(9.26)
67.23(9.10)

67.13(9.13)
66.85(9.17)

65.51(9.03)
66.89(9.03)

cleveland
53.18(2.68)

53.78(3.65)
53.92(3.32)

54.56(3.29)
55.23(3.31)

55.53(3.81)
55.13(3.21)

olitos
65.00(12.91)

65.50(12.54)
67.00(13.13)

66.42(13.11)
64.67(12.09)

64.42(14.26)
69.42(12.20)

ozone
93.33(1.12)

93.13(1.27)
93.28(1.22)

93.15(1.06)
93.19(1.02)

92.83(1.18)
93.29(1.21)

libras
51.67(12.51)

49.67(9.01)
53.94(7.89)

53.31(8.90)
54.14(8.69)

54.08(7.99)
52.94(8.05)

arrhym
ythia

69.69(6.86)
65.77(6.77)

70.34(6.11)
70.34(6.11)

69.47(5.72)
70.38(5.97)

71.13(5.41)
w

ater2
82.56(6.26)

84.15(5.65)
82.44(5.17)

83.77(5.15)
82.97(5.95)

82.56(5.80)
83.38(5.41)

w
ater3

82.31(6.78)
80.95(6.06)

82.49(5.49)
82.46(6.37)

82.74(6.87)
81.54(6.13)

82.56(6.69)
w

eb
57.64(11.16)

56.20(11.24)
54.44(12.69)

54.29(12.91)
55.16(11.17)

51.39(12.27)
56.17(12.19)

secom
93.36(0.32)

93.06(0.76)
92.47(1.12)

91.08(1.48)
92.69(1.00)

92.51(1.21)
93.20(0.57)

soybean
76.13(5.10)

74.49(5.17)
84.65(6.12)

83.90(6.08)
69.57(5.97)

82.05(5.82)
80.00(3.49)

segm
ent

92.47(1.30)
92.16(3.47)

93.84(1.71)
93.84(1.71)

93.15(2.45)
93.59(2.01)

93.94(1.91)
vote

95.64(3.94)
95.42(3.08)

95.52(2.78)
95.70(2.74)

95.47(2.68)
95.40(2.77)

95.61(2.73)
ionosphere

86.09(6.74)
84.52(7.75)

86.65(7.63)
86.65(7.63)

85.04(6.58)
83.74(7.76)

87.04(7.59)
credit-g

70.60(5.95)
72.25(3.89)

71.36(3.88)
71.39(4.50)

71.74(3.83)
72.41(3.99)

72.49(4.40)
breastcancer

71.37(6.63)
70.93(5.90)

71.62(6.14)
71.24(7.03)

70.96(6.96)
71.24(6.58)

71.33(6.53)
m

ultifeat
86.90(2.88)

72.46(6.18)
87.10(4.57)

87.50(3.45)
82.32(2.84)

81.53(2.94)
88.04(2.57)

w
aveform

76.64(2.08)
78.37(2.10)

78.35(1.84)
78.19(2.12)

76.88(2.07)
75.66(2.20)

78.09(1.92)
sonar

71.64(9.92)
72.83(9.97)

73.81(9.72)
74.73(9.88)

71.51(9.40)
74.93(9.82)

74.93(9.82)
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Table
4.7:

C
om

parison
w

ith
other

FS
m

ethods:
average

classification
accuracies

(%
(sd))

for
the

IB
k

(k=
3)

classifier

G
B

FG
-H

S
G

B
FG

-FS
FR

FG
G

A
-FS

PSO
-FS

G
H

C
-FS

β
=

0.8
β
=

0.9

heart
81.85(6.64)

77.33(8.16)
79.67(7.34)

79.52(7.26)
79.48(7.76)

79.48(7.76)
78.74(8.03)

glass
75.69(10.21)

71.60(9.01)
73.58(9.90)

73.58(9.83)
72.92(9.86)

70.88(9.83)
72.92(9.98)

cleveland
53.21(7.21)

53.92(6.65)
54.87(6.37)

55.21(6.57)
54.18(6.20)

54.12(6.96)
53.78(5.88)

olitos
70.00(17.66)

76.42(11.11)
77.33(10.53)

76.58(10.71)
74.00(10.68)

76.83(9.52)
75.92(11.90)

ozone
93.25(1.01)

93.45(1.01)
93.70(0.93)

93.70(0.98)
93.50(1.09)

93.63(0.88)
93.56(1.01)

libras
76.39(6.31)

71.58(7.48)
77.22(6.50)

77.33(6.74)
75.86(6.28)

79.11(5.65)
76.31(6.26)

arrhym
ythia

63.51(5.32)
62.37(6.00)

61.24(4.74)
61.24(4.74)

60.70(5.18)
59.60(4.34)

61.39(4.49)
w

ater2
83.08(4.05)

84.46(5.14)
86.49(5.42)

87.15(5.30)
86.95(5.19)

85.26(4.56)
87.31(5.04)

w
ater3

81.79(3.72)
80.23(5.63)

85.23(4.67)
84.56(5.00)

84.87(4.94)
82.77(4.51)

84.77(4.65)
w

eb
58.12(8.26)

57.28(8.46)
43.20(9.91)

43.88(10.90)
38.43(7.06)

39.71(8.93)
56.85(13.00)

secom
92.47(1.07)

92.29(1.63)
92.92(0.64)

93.63(1.89)
92.25(1.09)

92.72(0.82)
92.73(0.88)

soybean
73.93(4.68)

76.61(4.86)
82.68(5.95)

82.09(6.12)
66.97(5.38)

79.87(5.09)
78.42(4.01)

segm
ent

94.67(1.54)
94.49(3.62)

95.58(1.78)
95.58(1.78)

94.80(1.80)
94.95(1.87)

94.94(1.63)
vote

95.64(3.13)
94.51(3.67)

93.47(3.40)
93.50(3.59)

94.28(3.22)
94.48(3.70)

94.05(3.57)
ionosphere

86.52(4.32)
85.70(7.50)

84.70(7.40)
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4.5. Experimental Evaluation

heart and web datasets, GBFG-HS is the only approach that achieves statistically

better performance, consistently outperforming the others. The results for the IBk

classifier offer similar overall performance and this can be seen across the feature

subsets returned by different FS techniques.

Table 4.8 presents the results in terms of average selected feature subset size.

The statistically smallest size achieved by GBFG-HS emerges from all twenty datasets

while GBFG-FS also offers better performance in reducing features for the majority

of datasets when compared with GA-FS, PSO-FS, and FRFG-based FS. These results

indicate that the graph-based approach is very effective in achieving compact rep-

resentations. To the credit of GHS-FS, for the datasets multifeat and waveform, the

average feature subset size achieved is statistically comparable to that obtained by

GBFG-HS. Note that when compared with GBFG-FS, GBFG-HS not only achieves

better classification accuracy but also offers even further reduction in terms of re-

turned feature subset size for over half of the datasets. GBFG-FS, however, offers a

significant reduction in runtime and this is clear from Table 4.9. It also is the most

efficient amongst all of the FS methods and across all datasets, with the notable

exception of the web dataset. For this dataset, GA-FS offers a very good execution

time, but its corresponding subset size is huge when compared with the other FS

methods. Although the runtime efficiency of GBFG-FS is not as good as that of

GBFG-FS, it is more efficient than the other FS methods except for GHC-FS when

dealing with large datasets such as arrhymythia, secom, and multifeat.

4.5.3 Comparison with HSFS

In order to further illustrate the potential of GBFG-HS, it is important to demonstrate

that it improves upon the original harmony search based feature selection (HSFS)

method (which uses the same search strategy) [54]. This section presents such a

comparative analysis. Tables 4.10-4.11 show the average classification accuracies

(%) for each of the three classifiers, subset sizes returned, and execution time (MS)

for each of the 20 benchmark datasets. Again, bold typeface indicates a result that is

statistically better than the same respective result, whilst ordinary typeface indicates

a comparable result.

In terms of the classification accuracy, it can be seen that GBFG-HS offers compa-

rable results to those of HSFS. It is when the results of the respective approaches in

terms of subset size are considered in light of the classification accuracies that the
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w
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sonar
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71.64(9.92)
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74.33(10.19)
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Table 4.11: Comparison of HSFS and GBFG-HS: average subset size (cardinality(sd))
and average execution time (millisecond(sd))

GBFG-HS HSFS

Dataset Subset Size Execution Time Subset Size Execution Time

heart 6.60(1.43) 230(49) 9.68(0.53) 333(50)
glass 5.50(0.85) 181(36) 6.73(0.53) 262(73)
cleveland 6.70(1.16) 238(44) 8.37(0.69) 330(40)
olitos 7.80(1.62) 153(45) 13.84(1.14) 195(20)
ozone 12.40(0.97) 5208(476) 35.84(1.08) 8164(432)
libras 8.60(0.52) 510(91) 46.61(1.99) 1203(40)
arrhymythia 8.90(1.60) 959(171) 150.58(2.38) 7702(2225)
water2 4.50(1.58) 295(69) 20.39(1.11) 837(55)
water3 3.20(0.42) 329(36) 19.54(1.31) 855(87)
web 6.98(0.74) 1414253(318) 1459.65(5.51) 2226400(116)
secom 2.10(1.10) 1334(146) 326.61(3.42) 30692(1818)
soybean 10.80(1.99) 1061(89) 16.88(1.06) 1511(40)
segment 7.00(1.15) 2176(266) 8.32(0.66) 3359(442)
vote 5.30(0.82) 391(86) 9.13(0.68) 864(162)
ionosphere 6.40(1.07) 278(54) 16.13(1.18) 454(81)
credit-g 10.60(1.51) 1856(277) 12.29(0.59) 2776(108)
breastcancer 7.00(0.47) 426(62) 7.08(0.27) 572(115)
multifeat 6.90(0.88) 8189(664) 353.72(2.87) 54541(8564)
waveform 11.70(1.57) 33977(3805) 18.46(0.86) 39292(2371)
sonar 9.20(1.40) 287(51) 31.53(1.77) 577(55)

advantage of employing the GBFG-HS becomes clear. Of the 20 datasets, GBFG-HS

offers reductions that are impressive and statistically better than those of HSFS for

almost all datasets: 19 out of 20. Even for the remaining dataset, i.e., the breast-

cancer, the results are statistically comparable. For the web dataset as an example,

GBFG-HS offers a reduction of 99.6% over the result returned by HSFS, and 94% for

the arrhythmia dataset. This illustrates the significantly improved performance of

the GBFG-HS approach over the original HSFS, owing to the fact that it is capable

of discovering compact and robust feature subsets. When comparing the execution

time for each approach, it can be seen from the table that with the exception of the

web and waveform datasets, GBFG-HS offers considerable speed-up in performance.

For the two previous exceptions noted, the reasons for the high execution times

may be related to the high dimensionality of the datasets meaning that the actual

feature grouping phase takes a long time. Therefore, a more efficient algorithm

mechanism for feature grouping would be desirable. However, despite this GBFG-HS
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4. FEATURE GROUPING-BASED FEATURE SELECTION

does perform better than the original HSFS algorithm [54] in terms of the average

size of the selected feature subsets.

In order to gain a more useful insight into the behaviour of both a single particular

process of GBFG-HS and HSFS, as the search for feature subsets progresses, a further

investigation has been carried out on two of the (relatively) complex datasets:

arrhythmia and multifeat. In Fig. 4.7-4.8, three plots are shown in each of the

two figures: the dashed lines represent subset size, whilst the dotted lines illustrate

the subset evaluation results that are computed using the probabilistic consistency

measure. The solid lines indicate classification accuracy. All of these are plotted with

respect to the total number of executed iterations for the evaluation (5,000), at an

interval of 500.

As can be seen, the observed trend shows a logarithmic increase in evaluation

score coupled with a stable and very low subset size for GBFG-HS from the outset.

For arrhythmia, the trend is even more pronounced. Statistically, there are no

significant differences in the resulting classification accuracies as the outcomes are

essentially comparable. However, what is most interesting is that there is a huge

difference in the trend in terms of subset size between HSFS and GBFG-HS which

becomes obvious from the outset, indicating that whilst GBFG-HS may sometimes

not score as well in terms of absolute classification accuracy, it always results in very

compact feature subsets.
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Figure 4.7: Analysis of GBFG-HS and HSFS in terms classification accuracy, subset
size, and evaluation score for the arrhythmia datasets
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Figure 4.8: Analysis of GBFG-HS and HSFS in terms classification accuracy, subset
size, and evaluation score for the multifeat datasets
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4.6 Summary

This chapter has presented a novel framework for feature grouping that extends

the original idea proposed in [199], upon which two instantiations for the task of

feature selection are proposed. The first is a simple group-then-rank approach based

on the selection of representative features from the feature groupings generated. The

second, however, uses a metaheuristic approach for the search process, as the simple

inclusion of feature representatives selected from feature groups may not consider

information about inter-feature collaboration. In particular, harmony search has

been used for the purpose of selecting the final subset. The multiple alternatives for

the finally selected subset obtained using harmony search means that it offers even

further flexibility.

Interestingly, other search mechanisms such as particle swarm optimisation, ant

colony optimisation, and genetic algorithms are equally applicable to this particular

instantiation of the framework for the task of FS. However, when compared with

existing FS methods (FRFG, GA-FS, PSO-FS and GHC-FS), the proposed harmony

search-based method easily outperforms these, in particular with respect to subset

size across all twenty datasets investigated. Particularly, it offers significant gains

over FRFG-based and PSO-based FS.
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Chapter 5

Feature Selection for Intrusion

Detection

A Computer network communication has grown increasingly pervasive around

the world, so too have various malicious network behaviours (e.g., malware

plantation, illegal access and other harmful network attacks). Existing Internet

security services such as firewalls and anti-virus software may be able to deny

unauthorised access or locate a wide range of malware. However, network-based

attacks (e.g., denial of service (DOS) [138] and its upgraded version—distributed

denial of service (DDOS) [166]) are not detectable and preventable by this kind

of network protection because of their underlying rationales, which are based on

the sending of huge numbers of legal requests to the same destination in order

to precipitate server clashes. These pose a serious threat to on-line services that

require and process sensitive and confidential information (e.g., stock transactions,

commercial websites, and mobile banking).

This has inspired the development of many intrusion detection systems (IDSs),

including Wireshark, Metasploit, Snort and other popular systems [52]. The main

challenge of these IDSs is that they have to analyse intrusions on mountains of

collected network data, which may result in expensive computation. Data reduction

techniques would help by removing irrelevant, redundant, and noisy information

from the data. That is, the dimensionality of data is reduced while the availability of

data may be improved.
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5.1 Background of Intrusion Detection Systems

An intrusion detection system [157] is a defence device or software system which

provides a sense of security for computers and networks. It is capable of monitoring,

recognising, and preventing network attack attempts. An IDS is capable of reacting

to a diverse range of abnormal network behaviours either from end-system insiders

or external penetrators. Particularly, it can deal with intrusions such as DOS attacks

which computer-oriented security tools struggle to sense. Of course, it may lead to

false alarms as well as fail in its analysis of suspicious attack attempts. The frequency

of these negative events reports varies depending on which data analysis modules are

in the place and how they are designed. Most recent studies of intrusion detection

are focused on the use of machine learning techniques to build these important data

analysers [210, 132, 133]. As these data analysers usually suffer from the “curse of

dimensionality” problem [18], feature selection has come to play a more important

role in developing a lightweight, even effective IDS [5].

5.1.1 General Framework of Intrusion Detection Systems

The basic structure of intrusion detection system—including data collection, pro-

cessing, and analysis—is described in Fig. 5.1. A general IDS comprises three

major components: configuration, sensor, and responder. The setup of thresholds,

audit rules, and modes of communication with the responder are accomplished in

the configuration component. the sensor is in charge of analysing intrusions and

contains decision-making mechanisms to that end. A decision made by a sensor is

arrived at by analysing three major information sources: the IDS’s own knowledge

database, system logs, and network traffics.

An IDS knowledge database normally stores the dynamic history of complex

intrusions which are planned by a sequence of network activities. System logs

contain various events triggered in a computer operating system such as user login

or logout, file access, and software usage. The main data source is from network

traffics which are extensively collected from the protected computer network. A

responder receives alerts from the sensor and directly reacts based on the predefined

modes (e.g., deny requests from the suspicious hosts) or reports singularities to

system security operators instead. These operators typically have abundant domain

knowledge of the computer network. The core of an IDS is its sensor. A powerful

sensor can not only make decisions in response to suspected intrusions but is also
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capable of collecting and pre-processing raw data. With these abilities, the sensor

can deal with network intrusions in real-time. Therefore, these kinds of sensors are

often exclusively designed to develop an on-the-fly IDS.

protected network system

IDS Con-
figuration

Sensor
(decision-
making
mecha-
nisms)

Attack
respond
module

System
security
operator

IDS knowledge database

network traffics

alerts alerts

actions actions

Intrusion detection systems

Figure 5.1: General framework of intrusion detection systems with the flowing of
information

5.1.2 Taxonomy and Discussion of Intrusion Detection Systems

IDSs [67] can be categorised in a number of ways and in terms of their properties or

functionalities. Fig. 5.2 presents possible categorical schemes of IDSs in terms of

six aspects: detection strategy, data analysis frequency, protection domain, reaction

method, data source, and architecture. For more detail, different types of IDSs, in

terms of each categorical scheme, are discussed and compared as follows. Note that

a practical IDS may include multiple properties and functionalities and therefore fall

into a number of categories across different categorical schemes.

5.1.2.1 Anomaly-based IDS versus Signature-based IDS

Based on different detection strategies, IDSs can be divided into two groups: the first

performs anomaly analysis on information extracted from normal network traffic

or system activities; and the second detects attacks by matching their signatures

against a library of such based on previously discovered intrusions.

Anomaly-based IDS [75] evaluates suspicious events in a system/network based

on a model of its normal status. Therefore, this kind of IDS is usually trained with a
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Figure 5.2: Taxonomy of intrusion detection systems
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wide range of normal events in order to build a profile of normal behaviours. Any

monitored traffic that is inconsistent with this profile will be classified as anomalous.

A very strict profile will lead to a high false-positive rate because a good deal of

normal traffic not modelled in the profile will be deemed to be system misuses or

network intrusions. Another risk for anomaly detection systems is that they may be

bypassed by an appropriately designed attack. To address these problems, several

methods have been developed in the literature such as [171, 235].

On the other hand, a signature-based IDS [213] uses known attacks (and possible

system vulnerabilities) as a posteriori knowledge. It creates a specific identity or

signature (which could be a byte sequence in network traffic) for every detected

attack. Any traffic event is identified as an intrusion when its signature is matched

in a database of attack signatures stored by this kind of IDS. This only performs

well if the database is populated by a large and up-to-date collection of attach

signatures. However, as the signature dataset grows, the performance of such an

IDS is inevitably impaired. More importantly, these signature engines are ineffective

when dealing with unknown attacks, which may occur through disguising existing

intrusions or changing their behaviour (e.g., using DNS/ICMP instead of SMTP as

per the original design). Also, false positives, albeit in smaller number than in the

case of anomaly-based IDSs, are occasionally triggered.

5.1.2.2 Host-based IDS versus Network-based IDS

Among IDS implementations, some are focused on protecting individual computing

systems (or hosts), while others aim to guard a cloud of computing systems. An

instance of the former is termed a host-based intrusion system (HIDS), and an

instance of the latter a network-based intrusion detection system (NIDS).

An HIDS [230] is typically deployed on individual computing systems. Its main

task is to monitor inbound and outbound traffic between the protected computing

system and external connected networks, while dealing with inter-application traffic

and traffic of between the operating system (OS) and applications. The amount of

usable information from these data sources is, therefore, very limited in the context

of a single computing system. This is why an HIDS can perform efficiently. This type

of IDS also suffers from a number of limitations. A major disadvantage is that there

is a risk that any compromise in the computing system itself may allow attackers

to disable or temper with the IDS. A more practical problem is that the pervasive
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deployment of HIDS for every computing system will lead to huge maintenance

costs. This is compounded by the heterogeneity of host environments (e.g., different

operating systems, and different versions of the same operating system).

Unlike an HIDS, an NIDS [216, 217] is often placed at a strategic point (which

could be a router, switch, or hub) within an intranet, in an effort to monitor traffic

flows passing through this point such that a cloud of hosts are protected with resort

to a single IDS. Compared to HIDS, it is a more efficient way of protecting a large

number of hosts. Such IDSs are very sensitive to attacks from intruders outside the

intranet, but they cannot sense any attack launched within it. As network traffics

are sequences of binary signals that, although exploitable for data analysis, are a

semantically poor source of information about application-level events, NIDSs have

to be equipped with capacities to reassemble, parse, and interpret application-level

traffics such that they can access and analyse high-level information. This is more

obviously the case when application-level traffic is encrypted, in which case NIDSs

may be readily fooled unless they are capable of decrypting this traffic.

5.1.2.3 Passive IDS versus Active IDS

In terms of methods of reacting to suspicious attacks, intrusion detection systems

can be divided into two classes: passive IDS and active IDS [13].

A passive IDS is a system that is configured merely to monitor and analyse

suspicious intrusions. However, it provides no protective or corrective operations

(e.g., removing suspicious files or suspending malware processes) to deal with

suspicious intrusions and potential system vulnerabilities. Instead, it will quarantine

these threats and issue notifications to alert system security operators. Without the

mechanisms to deal with attacks, these IDSs do not threaten suicidal damage to

itself and its protected host when false positives occur. However, this could be an

issue for an active IDS.

An active IDS (which is also known as an intrusion prevention system) is more

advanced than any passive counterpart. It is capable of not only detecting attacks

but also thwarting them, and therefore it requires minimal intervention from system

security operators. There are two main scenarios for actively defending attacks.

The first is to sever network connections from the attacks’ points of origin, and

the second is to block all malicious requests directed at protected systems. The
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second scenario can be readily implemented using existing functionalities included in

network transmission devices, while the first scenario is technically more complicated

as it needs to send requests to remove malicious activities. One optional method is

to leverage third-party cooperation, typically an internet service provider (ISP), such

that attack activities can be stopped by physically disabling all network connections

with malicious hosts. Alternatively, DOS techniques can be adversely exploited to

attack those hosts until no connections or bandwidth are available. Such methods

are normally only contemplated in military or law enforcement contexts.

5.1.2.4 Centralised IDS versus Distributed IDS versus Hierarchical IDS

As for architectures of the IDS data analysis component, these fall into three cat-

egories: centralised IDS [200], Distributed IDS [197, 200], and Hierarchical IDS

[203, 238].

An IDS with a centralised architecture analyses data collected from all hosts

being monitored at one point while its data collection components are distributed

on each monitored host. Examples of such an IDS include IDES [51], IDIOT [128],
NADIR [99], and NSM [158]. These IDSs, in addition to hiring a large number

of data collectors, employ a small number of main IDS components: a system

configurator, a data analyser, an attack responder, and possibly an attack signature

updater. As the number of monitored hosts grows, the data analyser grows in

complexity, requiring larger computing and storage resources to keep up with the

load. Moreover, each monitored host has its own individual characteristics and,

therefore, uniform configurations of the security policies regarding them may be

technically difficult to formulate. More importantly, whenever security polices

are reconfigured, the entire IDS must be rebooted and this results in a temporary

suspension of the monitoring of the involved hosts. During this interim, all hosts

remain unprotected. This also is the case when a main component fails, which

similarly requires a system reboot. However, since each monitored host, except the

one responsible for analysing data, only deploys a data collector, there is very little

overhead imposed on them. Additionally, centralised analysis of data collected from

these hosts make it trivial to detect attacks exhibiting global behaviours.

For an IDS built in a distributed environment, a diverse range of IDS agents

are deployed on different nodes (hosts) spread over a large network, including

mechanical agents and smart agents. Those mechanical agents are responsible only
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for collecting the underlying data corresponding to a single host within the network

monitored. Each smart agent has a set of components, mainly a data analyser and a

network-based information transceiver, with which to monitor a segment (e.g., an

Ethernet that is a type of local area network) of the entire monitored network. The

number of smart agents distributed therefore depends on the number of segments

into which the monitored network is divided. A number of hosts that are configured

with only a data collector for the centralised IDS may now be assigned a smart agent

instead. More overhead is imposed on these hosts as a result. As each active smart

agent only performs analysis on part of the data that is collected across the entire

monitored network, they cannot deal with traffic in a global manner.

However, they are allowed to cross-check with each other via network-based

information transceivers such that, when one or more smart agents for any reason

crash, others can provisionally take over their monitoring duties. Of course, there

may be a bias of monitoring effectiveness because the analysis components may

differ slightly amongst smart agents (e.g., because classifiers in these analysers are

trained with different data sources). This is also the case when hosts have different

configurations. These smart agents can cast an alert to each other. This means that

the spread of infective malwares can be prevented in advance although this may be

at the cost of a fraction of hosts already being compromised with these malwares.

The distributed IDSs, for example, include DIDS [197], GrIDS [203], EMERALD

[173], and AAFID [14].

An hierarchical IDS is an alternative to a distributed IDS, but the set of IDS

agents used in the distributed IDS are organised hierarchically. The ground layer con-

tains numerous mechanical agents in charge of collecting data from the monitored

network. In the second layer, there are a number of smart agents independently

analysing a specific data source. The final layer has a single smart agent that could

be functionally more powerful than agents of the second layer. It receives and

aggregates reports generated by the agents of the last layer in order to globally

analyse network activities. HIDE [238] is an example of an IDS with a hierarchical

architecture.

5.1.2.5 Interval-based IDS versus On-the-fly IDS

In terms of the frequency with which data analysis is performed, IDSs that can be

divided into two classes: a so-called interval-based IDS [185] performs analysis

periodically; and an on-the-fly IDS [141] which does so continuously.
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An interval-based IDS feeds information in a periodic manner and performs

analysis on this information, looking for vulnerabilities and unwanted changes in

the host system environment. This means that data analysis components are not

required to continuously run in the background, but can be called whenever needed.

This therefore reduces the overhead load of the host system. However, hosts being

monitored with such an IDS are exposed in an unprotected environment during the

period between two consecutive calls of the data analysis components.

Such security exposure is not an issue when using an on-the-fly IDS, which

performs continuous, real-time analysis of every event taking place in host systems,

or every outward and inward flow of network traffic within them. This strict moni-

toring leaves no suspicious activity unmonitored, and enhances the level of system

security. However, such intensive analysis requires more host system resources (e.g.,

overheads of computation and storage space) in order to support the background

running of data analysis components.

5.1.2.6 Audit Trail versus System State versus Network Traffic

An audit trail comprises a series of data sources used by IDSs, which typically

includes system logs recording file modifications, usage of software/applications

and current active users. Audit trails are often used by host-based IDSs because

of their ease of access. However, these system logs are usually stored in a single

file and likely to be rewritten using unwanted changes by intruders. Distributing a

certain number of copies of such a file across and beyond the host system may help

detection of unwanted changes to system logs (which will of course incur a storage

overhead).

System state [103] is another data source often used by host-based IDSs. This

type of data records a sequence of normal system states and the transitions they

undergo when infected by a known attack, and this plays the role of a “vaccine”.

In the resulting state machine, the initial state indicates the system state prior to

an attack; the compromised state corresponds to the system state after a successful

attack; and the intermediate states represent transitions corresponding to attack

behaviours. Each intermediate state encapsulates a transition involving suspicious

behaviours, and its successful detection is evidence that the system is potentially

under threat because of intrusion. The earlier behaviours in question, which may

pose severe systemic risk, can then be corrected in a precautionary manner and,

thereby, an intrusion will fail to complete successfully.
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The aforementioned data sources have advantages in handling security problems

within the context of an individual host, but network-based attacks (e.g., DOS)

may be missed. For this reason, network traffics are also important data source

for intrusion detection. To identify a network traffic, a bit stream at a physical

level or packets at higher levels can be used. A robust IDS often utilises network

traffics together with audit trails for the task of intrusion detection. The main

problem of using network traffics is their sheer volume. This poses the challenge of

performing intrusion analysis on a wide range of network traffics, and underscores

the importance of data reduction techniques to support it.

5.2 Intrusion Detection with FS

As techniques for data mining and machine learning are quite mature nowadays,

many classifier learners (e.g., SVM [31], ANN [31], and CART [26]) have been used

for the task of intrusion detection. However, these classifier learners must deal with

mountains of network traffics or audit trails. Efficiently building classifiers for such

large amounts of data therefore remains a challenge. FS, which works by removing

irrelevant, redundant and noisy features while preserving the underlying semantics

of data, may help in rising to it. Potentially, classifiers upon it may be much faster

and detect intrusions with much greater accuracy.

5.2.1 Existing FS Approaches for Intrusion Detection

Given the benefits FS may provide, many classifier-based IDSs have used a diverse

range of FS algorithms (which include various wrapper- and filter-based FS methods)

to enhance the performance of intrusion detection.

In [32], three categories of feature selection algorithms—filter, wrapper, and

hybrid—are thoroughly evaluated in an IDS context, and their advantages and draw-

backs made plain. A wrapper-based feature selection approach using an ensemble

of classifiers, including Bayesian networks (BN) and Classification and Regression

Trees (CART), has been proposed in [30] to develop a lightweight, efficient, and

effective IDS for real-world applications. In [206], classifiers based on support vector

machines (SVM) and neural networks (NN) are used as rankers, which attempt to

rank features by importance and in accordance with author-defined rules.
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These wrapper methods are naturally time-consuming due to the continuous

repetition of training a classifier corresponding to each generated feature subset

although the classification accuracies are immediately returned for features searched.

Alternatively, a filter-based feature selection that employs simple evaluation functions

to gauge feature subsets instead of classifiers themselves is developed in [5]. Two

measures of correlation coefficient (a linear function) and mutual information (a

non-linear function) are used to evaluate candidate feature subsets and two new

feature selection approaches are accordingly proposed. Furthermore, an improved

SVM classifier utilising these filter-based FS methods is then applied to an IDS.

5.2.2 Applying Feature Grouping-based FS to Intrusion

Detection

As investigated in Chapter 3, the new proposed self-adjusting FS (HSFSSA) is able to

locate more compact feature subsets while preserving or improving the availability

of data (e.g., classifiers learned on reduced data may be more predictive) when

compared with traditional popular FS methods.

However, most of the traditional FS techniques (including the method presented

in Chapter 3) developed in the literature work by incrementally including/excluding

an individual feature from an emerging subset or randomly selecting feature combina-

tions without considering relationship between features. The information regarding

inter-feature correlation may be lost. When applying these FS approaches to the

intrusion detection problem, certain irrelevant, redundant, or noisy information may

remain in the reduced data such that the derived intrusion detection systems become

less efficient or even less predictive.

The grouping-based FS presented in Chapter 4 attempts to select representa-

tive features from feature groups, each of which contains features that are highly

redundant. That is, it reduces massively redundant information to a smaller size,

thereby improving the interpretability of data, and even possibly further reducing

data dimensionality.

One of the most significant characters of feature grouping techniques is that they

can deal with features missing their values. In practical applications, in particular,

related to online learning), a number of features may not observe values in data
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streaming and, therefore, it is impossible to use these features for the classifica-

tion/prediction purposes. However, feature grouping methods can find these features

a similar feature and use values of their similar features in order to accomplish the

prediction of patterns of coming network traffics.

This thesis only concentrates on the FS problems or the tasks of feature grouping

in the offline mode. The FS approaches proposed in this thesis may not take the

full advantages of the feature groping technique to its any potential. Therefore,

intrusion detection may take advantage of these newly proposed FS methods detailed

in previous chapters. Hopefully, a more compact, efficient and effective classifier

system may be obtained by using these FS methods. The general framework of

the application of the feature grouping-based FS approach to the task of intrusion

detection is described in Fig. 5.3.

Figure 5.3: The framework of the application of the feature grouping-based FS
approach to intrusion detection problem
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5.3 Experimentation and Discussion

This section presents experimental evaluation of the application of the FS approaches

proposed in Chapters 3-4 to the intrusion detection problem. These FS approaches

involve one presented in Chapter 3 where the original HSFS is enhanced by three

important improvements, leading to its a new variant (referred to as HSFSSA), and

two described in Chapter 4 where FS is performed on an extension of graph-based

feature grouping (GBFG), leading to two FS instantiations based on a straightforward

selection strategy (GBFG-FS) and a music-inspired harmony search (GBFG-HS). The

setup of conducted experiments is described in Section 5.3.1. Comparison with

popular FS approaches that are based upon stochastic or stepwise greedy search,

covering genetic algorithm (GA-FS) [7], particle swarm optimisation (PSO-FS)

[219], and greedy-hill-climbing (GHC-FS) is made in Section 5.3.2.

5.3.1 Experimental Setup

Every individual FS algorithm is set to perform 10 times and takes the average as

the experiment’s results. These results are quantifications of three different aspects

that are the objects of experimental evaluation: classification accuracy, achieved

subset size, and time taken for searching subsets. In particular, for classification

analysis, a wide range of learning classifiers are used due to their availability and

popularity. These include: Naïve Bayes (NB) [183], a probability-based classifier;

J48 [176], a decision-tree learner; JRIP [36], a rule-based classifier; and IBk (k=3)

[42], a nearest-neighbour classifier (with k=3). A paired t-test (p = 0.05) is used to

validate the statistical significance of comparative results.

KDD99, which is a popular benchmark dataset in the UCI repository [22], has

been widely used in the domain of machine learning and intrusion detection [163].
This dataset contains 41 features as described in Table 5.2–5.5, most of which are

numeric while small amounts of which are nominal. The number of training in-

stances of KDD99 is 4,898,431. Due to configuration limitations of the experimental

computer, an alternative set of training instances provided with 10% of the original

training dataset of the UCI repository is used for classifier learning. The original

testing data has 311,029 instances, which is still employed for testing the classifi-

cation accuracy of trained classifiers. The distribution of class labels of the used

training data and testing data are depicted in Table 5.1. Interestingly, the testing

data contains certain types of attacks that have yet emerged in the training data.
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Table 5.1: Instance distribution of training and testing data used for experiments
regarding classification of class labels

2-Class Category 5-Class Category
Training Data Testing Data

Labels Instances Labels Instances

NORMAL (1) NORMAL (0) normal 97278 normal 60593

ABNORMAL (0)

PROBE (1)

portsweep 1040 portsweep 354
ipsweep 1247 ipsweep 306
satan 1589 satan 1633
nmap 231 nmap 84

mscan 1053
saint 736

DOS (2)

neptune 107201 neptune 58001
smurf 280790 smurf 164091
pod 264 pod 87
teardrop 979 teardrop 12
land 21 land 9
back 2203 back 1098

apache2 794
udpstorm 2
processtable 759
mailbomb 5000

U2R (3)

buffer_overflow 30 buffer_overflow 22
loadmodule 9 loadmodule 2
perl 3 perl 2
rootkit 10 rootkit 13

xterm 13
ps 16
httptunnel 158
sqlattack 2

R2L (4)

guess_passwd 53 guess_passwd 4367
ftp_write 8 ftp_write 3
imap 12 imap 1
phf 4 phf 2
multihop 7 multihop 18
warezclient 1020 snmpgetattack 7741
spy 2 named 17
warezmaster 20 warezmaster 1602

xlock 9
xsnoop 4
sendmail 17
worm 2
snmpguess 2406

2 5 23 494021 38 311029
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The parametric settings for the investigated FS methods based on stochastic

search are those most used in the literature. GA-FS has an initial population size

of 20, a maximum number of generations of 5000, a crossover probability of 0.6

and a mutation probability of 0.033. PSO-FS has the same settings for initial

population size and maximum number of generations as GA-FS, but sets both

acceleration constants c1 and c2 to 2. HSFSO has 4 four parameters: the number of

generation is set to 5000; harmony memory size is set to 20; the number of feature

selectors (musicians) is equal to the number of all available features in KDD99; and

harmony memory considering rate is configured to 0.8. HSFSSA uses a different set of

parameters including the maximum number of generations, harmony memory size,

harmony memory considering rate, and pitch adjustment rate. These parameters are

set to 5000, 20, 0.8, and 0.8 respectively. The maximum number of generations is

set to 500 due to the introduction of iterative refinement of feature subsets while

the number of musicians is equal to the number of feature groups obtained from the

feature grouping process. The other parameters—harmony memory size, harmony

memory considering rate, and pitch adjustment rate—are configured to 20, 0.8, and

0.8 respectively.

Note that all FS methods uniformly employ the probabilistic consistency measure

[10] to evaluate the quality of feature subsets. Other subset-based evaluation meth-

ods may also be applicable, such as correlation measure [92], rough dependency

[207], and fuzzy rough dependency [177]. The choice of the subset quality measure

does not influence experimental evaluation for the proposed methods when applied

to the intrusion detection domain. However, this would merit future investigation

because some of these measures may potentially help search strategies to locate

better feature subsets [53].

5.3.2 Comparison with Popular FS Methods

In order to demonstrate the viability of applying the proposed FS methods to intru-

sion detection, a series of comparisons are conducted against existing popular FS

approaches to intrusion detection, involving GA-FS, PSO-FS, HSFSO, and GHC-FS.

The first three use metaheuristic strategies while the last one employs a stepwise

greedy search. The performance of both the proposed and existing methods regard-

ing classification accuracy, subset size, and execution time are reported in Table

5.6–5.8, where the figures presented in bold typeface indicate a result that is statis-

tically significant. Also, note that: the second row of these tables presents results
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5. FEATURE SELECTION FOR INTRUSION DETECTION

Table 5.2: Basic features of individual TCP connections

Feature Name Description Type

1) duration length (number of seconds) of
the connection

numeric

2) protocol_type type of the protocol, e.g., tcp, udp. nominal
3) service network service on the destination,

e.g., http, telnet, etc.
nominal

4) src_bytes number of data bytes from source
to destination

numeric

5) dst_bytes number of data bytes from
destination to source

numeric

6) flag normal or error status of the
connection

nominal

7) land 1 if connection is from/to the same
host/port; 0 otherwise

nominal

8) wrong_fragment number of “wrong” fragments numeric
9) urgent number of urgent packets numeric

Table 5.3: Content features within a connection suggested by domain knowledge

Feature Name Description Type

10) hot number of “hot” indicators numeric
11) num_failed_logins number of failed login attempts numeric
12) logged_in 1 if successfully logged in;

0 otherwise
nominal

13) num_compromised number of “compromised” cond-
itions

numeric

14) root_shell 1 if root shell is obtained;
0 otherwise

nominal

15) su_attempted 1 if “su root” command attempted;
0 otherwise

nominal

16) num_root number of “root” accesses numeric
17) num_file_creations number of file creation operations numeric
18) num_shells number of shell prompts numeric
19) num_access_files number of operations on access

control files
numeric

20) num_outbound_cmds number of outbound commands in
an ftp session

numeric

21) is_hot_login 1 if the login belongs to the “hot”
list; 0 otherwise

nominal

22) is_guest_login 1 if the login is a “guest”login;
0 otherwise

nominal
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5.3. Experimentation and Discussion

Table 5.4: Traffic features computed using a two-second time window

Feature Name Description Type

23) count number of connections to the same
host as the current connection in the
past two seconds

numeric

Note: The following features refer to
these same-host connections

24) serror_rate % of connections that have “SYN” errors numeric
25) rerror_rate % of connections that have “REJ” errors numeric
26) same_srv_rate % of connections to the same service numeric
27) diff_srv_rate % of connections to different services numeric
28) srv_count number of connections to the same

service as the current connection in the
past two seconds

numeric

Note: The following features refer to
these same-service connections

29) srv_serror_rate % of connections that have “SYN” errors numeric
30) srv_rerror_rate % of connections that have “REJ” errors numeric
31) srv_diff_host_rate % of connections to different hosts numeric

before data reduction; the results in rows 3-5 are achieved by the proposed methods;

and the results in rows 6-9 are obtained using existing methods.

For classification analysis, all four classifiers return different results for the same

feature subset, but there are no statistically significant differences amongst them.

With respect to the NB classifier, HSFSSA is statistically comparable with GHC-FS

while outperforming other methods including HSFSO, GA-FS, and PSO-FS. However,

the grouping-based GBFG-FS and GBFG-HS barely preserve the classification accu-

racy that is obtained before data reduction. When compared with existing methods

using J48 classifier, GBFG-HS and HSFSSA achieve statistically better or equal classifi-

cation accuracy. GBFG-FS, albeit statistically better than existing methods except for

GHC-FS, achieves the same results across 10 runs of its algorithm as well as GHC-FS.

This leads to a t-test that cannot perform between GHC-FS and GBFG-FS. Therefore,

the results obtained by them are comparable but not statistically comparable. As for

the rest of classifiers, JRIP and IBk (k=3) comfirm alone with J48 that the proposed

methods are the overall winner. This can also be seen across the feature subsets

returned by different FS techniques.

In Table 5.7, the results in terms of average selected subset size are presented

while subsets represented as a set of integers are also given, each of which has the
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5. FEATURE SELECTION FOR INTRUSION DETECTION

Table 5.5: Traffic features computed according to IP, service, and port of destination
host

Feature Name Description Type

32) dst_host_count number of connections from the
same host as current connection

numeric

33) dst_host_srv_count number of connections from the
same host and same service as
current connection

numeric

34) dst_host_same_srv_rate % of connections from the same
host and same service as current
connection

numeric

35) dst_host_diff_srv_rate % of connections from the same
host but different services as
current connection

numeric

36) dst_host_same_src_port_rate % of connections from the same
source port as current connection

numeric

37) dst_host_srv_diff_host_rate % of connections from the diff-
erent hosts but same service as
current connection

numeric

38) dst_host_serror_rate % of connections from the same
host as current connection that
have “S0” error

numeric

39) dst_host_srv_serror_rate % of connections from the same
host and same service as current
connection that have “S0” error

numeric

40) dst_host_rerror_rate % of connections from the same
host as current connection that
have “SRT” error

numeric

41) dst_host_srv_rerror_rate % of connections from the same
host and same service as current
connection that have “SRT” error

numeric
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5.3. Experimentation and Discussion

best classification accuracy against the remainder nine subsets obtained by the same

individual FS techniques. Interestingly, all presented subsets commonly contain both

feature 5 and 6. This is possibly because these two features are of most importance

in the KDD99 dataset. When compared with existing methods with respect to the

average subset size, GBFG-HS achieves the statistically smallest subset size while

GBFG-FS and HSFSSA have better data reduction than HSFSO, GA-FS and PSO-FS,

but they are (statistically) comparable with GHC-FS.

Although the performance of GHC-HS in terms of classification accuracy and

subset size is slightly outdone by the proposed methods, in Table 5.8, the results

demonstrate that GHC-HS is the most efficient method in comparison with all others.

It is followed by PSO-FS, which is statistically worst for classification accuracy and

subset size when compared with other methods. GA-FS is most time-consuming

while execution time of the remainder are merely acceptable when dealing with

large datasets like KDD99.

Table 5.6: Comparing with existing FS methods using classification accuracy (%(sd))
obtained from various classifiers

FS Methods NB J48 JRIP IBk (k=3)

Unred. 78.08(0) 73.78(0) 91.98(0) 73.92(0)

GBFG-HS 78.17(0.66) 92.63(0.21) 92.09(0.39) 90.97(0.71)
GBFG-FS 78.75(0) 89.33(0) 91.63(0) 91.45(0)
HSFSSA 90.88(0.17) 92.57(0.06) 90.88(0.56) 90.99(0.67)

HSFSO 78.74(0.18) 79.31(0.41) 79.25(3.12) 79.16(0.32)
GA-FS 86.74(0.67) 73.78(0.19) 73.20(0.14) 91.87(0.07)
PSO-FS 86.30(0.37) 73.21(0.09) 73.63(0.17) 91.45(0.23)
GHC-FS 90.52(0) 89.56(0) 91.49(0) 90.88(0)
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5. FEATURE SELECTION FOR INTRUSION DETECTION

Table 5.7: Comparing with existing FS methods using the subset size (cardinality(sd))

FS Methods Subset Size

Unred. {1, · · · , 41} 41(0)

GBFG-HS {3,5, 6, 33, 35, 36, 39} 7.6(0.6)
GBFG-FS {2,5, 6, 12, 23, 28, 33, 35, 37, 40} 10(0)
HSFSSA {3,5, 6, 12, 23, 33, 35, 37, 40} 8.9(0.7)

HSFSO {3,4, 5, 6, 7, 11, 12, 15, 16, 18, 21,38, 40} 11.4(0.5)
GA-FS {1,2, 3, 5, 6, 9, 12,16, 17, 18, 21, 25, 29,32, 33,35, 38, 40} 17.6(1.7)
PSO-FS {1,2, 4,5, 6, 7, 12,13, 15, 21, 22,23, 24, 32, 34, 35, 36,37, 41} 19.1(0.7)
GHC-FS {3,5, 6,12, 13,23, 33,35, 40} 9(0)

Table 5.8: Comparing with existing FS methods using execution time (millisec-
ond(sd))

FS Methods Execution Time

Unred. None

GBFG-HS 1049628(1239)
GBFG-FS 1953156(3583)
HSFSSA 2953617(18762)

HSFSO 2495069(34922)
GA-FS 38113967(45432)
PSO-FS 260936(981)
GHC-FS 139061(478)

5.4 Summary

This chapter surveys a wide range of methods in the taxonomy of intrusion detection

systems and then discusses the advantage and disadvantage of every variety of

classified IDS. For most of IDSs, data dimensionality and its volume have been more

transparently challenging. The existing data reduction methods focusing on FS are

therefore reviewed. Also, the motivation for applying FS methods proposed in previ-

ous chapters is presented. More importantly, a series of experimental evaluations

are conducted on dataset KDD99 in order to illustrate the potential of these newly

proposed FS methods for improving the performance of IDSs based on classifiers,

involving NB, J48, JRIP, and IBk.
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Chapter 6

Conclusion

T His chapter concludes the thesis. It gives a summary of the research presented

in the preceding chapters, focusing on the main contribution. Based on a survey

of the existing literature, many popular FS techniques have been developed using

metaheuristics without recourse to exhaustive search technique. In particular, a

recently developed HSFS algorithm has been identified to be more efficient and

effective in searching quality feature subsets. To find a more compact subset remains

problematic. This issue is eased by employing an iterative refinement strategy

developed in [54]. The refinement process, although effective, leads to repeated

executions of the entire search process. Moreover, the earlier refinements may

also over-restrict the search process to a sub-optimal solution region. Potential

improvements or alternative FS strategies have been proposed in this thesis, involving

efficiently identifying diverse informative feature subsets, fine-tuning discovered

subsets, and selecting features on feature groupings.

6.1 Self-Adjusting Harmony Search-based Feature

Selection

A new so-called “self-adjusting HSFS” method is described in Chapter 3, which

extends the original HSFS idea [53] with three important improvements: the concept

of a restricted feature domain (RFD), harmony memory consolidation (HMC), and

feature subset adjustment. An RFD which allows features to be selected by musicians
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in a medium fraction of all input features effectively increases both the probability

of locating informative features and the diversity of emerging feature subsets. HMC

uses information stored in harmony memory to automatically configure the size of

musician group for improvising new harmonies without human assumption, and

is capable of dynamically adjusting the cardinality of imminent feature subsets

iteratively. The feature subset adjustment, which employs the idea of PAR [81] that

makes possible the incorporation of a wide range of feature similarity measures,

allows emerging feature subsets to be fine-tuned.

The results of experimental evaluation show that, when compared to the original

HSFS approach, the use of these enhancements dramatically improves boththe size

and the classification accuracy evaluation of resulting feature subsets.

6.2 Feature Grouping-based Feature Selection using

Graph-theoretic Approach

Most traditional FS methods are focused on incrementally adding/removing individ-

ual features from emerging feature subsets. This poses the risk of loss of inter-feature

correlation, for example redundant and collaborative information. Feature grouping

approaches allows for the inclusion of highly redundant features in the same group

while reducing the level of redundancy for emerging feature subsets, which are

obtained by selecting features from every single feature group.

Two new methods of FS, which are presented in Chapter 4, are implemented in

the feature grouping framework where the idea of graph-based feature clustering

is employed to generate feature groups. The first of the two methods is based on

a straightforward strategy of selecting representative features from every emerged

group to form feature subsets. This method is a sort of local-oriented search that

may not take full advantage of the resulting feature groupings. The second, based on

a popular stochastic search HS, is therefore proposed which may generate multiple

alternatives for the final output of feature subsets while avoiding local optima. That

is, it provides more flexibility in searching feature subsets.

These new methods have also been experimentally evaluated against other

leading FS approaches. The results confirm that the proposed harmony search-based

method easily outperforms existing FS methods (FRFG, GA-FS, PSO-FS and GHC-

FS), in particular with respect to subset size across all twenty datasets investigated.
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Interestingly, when compared with “flat” HSFS (which is not based on feature

grouping), the use of feature grouping offers a more efficient scenario for HSFS.

6.3 Feature Selection for Intrusion Detection

The task of intrusion detection is to predict potential malicious behaviours in a

computer network by analysing data from network traffic. As more and more data

is extracted from network traffic, its efficient and effective analysis becomes in-

creasingly difficult. To ease this difficulty, FS methods—a powerful tool of data

reduction—have been leveraged to remove redundant, irrelevant, and noisy in-

formation, and this is documented in a large body of recent research [5, 30, 32].
Based on positive experimental evaluations against other leading FS methods, the

FS approaches proposed in Chapter 3 and Chapter 4 are applied to the intrusion

detection domain. When the proposed FS methods are used to process real-world

dataset (KDD99), they extensively reduce the problem dimensionality, while improv-

ing the interpretability of data. This has been verified using a series of experimental

evaluations. In particular, the feature index of informative features selected by the

different approaches are presented in the experimental results, which provide solid

and authoritative evidence of the applicability and utility of the proposed methods

to intrusion detection systems.

6.4 Future Work

Although promising, much can be done to further strengthen the work currently

presented in this thesis. Based on a scale of difficulty involved in addressing potential

issues or implementing theoretical extensions, future plans are divided into short

term tasks and long term tasks.

6.4.1 Short Term Tasks

In terms of the HSFSSA method presented in Chapter 3, despite its obvious value-

addedness, its further refinement is desirable. As the possibility of exchanging

information between musicians has been explored in the HMC procedure, there may

exist alternative applications of this mechanism in order to promote high quality

features, or preserve minority features. Also, these proposed improvements may

be used for other nature-inspired FS search algorithms. In particular, the PAR
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mechanism of HS is conceptually similar to the mutation operators used by GAs and

PSO. Alternative feature similarity measures are also worth investigating, which may

prove to be more efficient than fuzzy-rough set-based measures. Additionally, in

order to accelerate the storing of informative features in harmony memory when

improvising a new harmony, those musicians who discover no features may employ

the most informative feature discovered by the other musicians as their search

results.

Regarding GBFG, presented in Chapter 4, more efficient strategies for gener-

ating groupings are highly desirable. At the moment, a rather simple approach

of iteratively removing edges that are weighted equally largest from the MST is

employed. However, such equal-weighted edges are very rare when using three-way

mutual information. In addition, this can also be time consuming particularly when

combined with an iterative refinement step. A particular strategy might be to adopt a

fuzzy approach where all edge weights are considered linguistically. It would also be

interesting to further investigate the method used for the assessment of the quality

of the feature subsets. For the current approach they are assessed by evaluating

representatives drawn from every single feature group. Since the size of selected

subset is controlled by the number of groups, wrapper or hybrid methods could

be considered for the grouping phase. This may help to ease the computational

overhead and avoid over-fitting which has traditionally been a challenge for such

approaches.

6.4.2 Long Term Tasks

In many real-world applications, an information system is not always static: which

may change dynamically (e.g., add/remove new instances or features) over time.

Theoretical extensions to these techniques in the area of dynamic FS would be

of interest for further developing this work. Alternative areas such as classifier

ensemble reduction with FS that attempts to remove bad performance classifiers in

a classifier ensemble are also applicable. In particular, grouping-based FS methods

merit further investigation in these areas. Such methods are capable of identifying

homogeneous groups of features, classifiers, or other potential objects.

In FS, many known feature subset quality evaluators are based on numerical

measurements, which often normalise values into the range [0, 1]. When applying
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such a subset quality evaluator to stochastic search-based FS, these numerical mea-

surements may lead to lengthy algorithm convergence as a tiny quality improvement

of feature subsets in the very end stage of algorithm will prolong the feature subset

searching process. A fuzzy linguistic terms-based feature subset quality evaluation

may therefore be used in order to achieve the earlier convergence of FS algorithms

based on stochastic search. Moreover, the aggregation of the size of feature subset

and the quality of feature subset into a single fuzzy linguistic term should also be

investigated (e.g., using existing fuzzy T-norm operators or a newly defined fuzzy

T-norm operator).

The GBFG framework itself is a general approach and is not limited to the task of

conventional FS. Within it there is much potential and flexibility for application and

for addressing other approaches to FS, including hierarchical feature selection where

each grouping represents a hierarchy of features rather than a group of redundant

features. Another possible area is semi-supervised or even unsupervised feature

selection [98], where unlabelled instances could be represented by assigning them a

unique class label before performing the grouping phase.

Rule-based systems are pervasive in the area of artificial intelligence (e.g., for

building classifier or inference models). Many existing rule induction approaches

may produce a rule base, which contains inefficient or redundant rules and hence

impairs the performance of rule bases. The approaches to feature grouping-based

feature selection may be used for removing these undesirable rules from induced

rule bases. That is, a more compact and robust rule base may be obtained. Such a

method may be worth further investigating for fuzzy control systems [8].

In real-world applications, for certain problems, the size of the problem domain

will grow continuously over time. This may require the processing of streamed

data instances or features in a timely fashion. Therefore, the framework for on-

line feature grouping-based FS on streamed data instances or features may be a

potential application area for the theoretical extension of current feature grouping-

based FS approaches. This framework can be extended to applications, such as

on-line multi-class classification and regression problems, or to help deal with other

emerging on-line learning tasks, such as on-line transfer learning [165] or on-line

AUC maximisation [239].
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Appendix A

Data Sets Employed in this Thesis

Table A.1: Information of data sets used in the thesis

Data set Feature Instance Class

arrhymythia 279 452 16
breastcancer 10 286 2
cleveland 14 297 5
credit-g 21 1000 2
cnae 857 1080 9
glass 10 214 6
heart 14 270 2
handwritten 256 1593 10
ionosphere 35 230 2
KDD99 (10%) 41 494021 5
libras 91 360 15
multifeat 650 2000 10
olitos 25 120 4
ozone 73 2534 2
secom 591 1567 2
soybean 35 683 19
segment 20 1500 7
sonar 60 208 2
vote 17 435 2
wine 13 178 3
water2 39 390 2
water3 39 390 3
waveform 40 5000 3
web 2556 149 5

The data sets used in the thesis are mostly public available benchmark data,

available through the UCI machine learning repository [22] where datasets are

drawn from real-world problem scenarios. Table A.1 offers a summary of the
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properties of these data sets. Their underlying problem domains are described in

detail below, attaching with the URL of the respective data sets are also given in

order to facilitate easy access.

• Arrhythmia (arrhymythia)

http://archive.ics.uci.edu/ml/datasets/Arrhythmia

This database contains 279 attributes, 206 of which are linear valued and

the rest are nominal [22]. “The aim is to distinguish between the presence

and absence of cardiac arrhythmia and to classify it in one of the 16 groups.

Class 01 refers to ’normal’ ECG classes 02 to 15 refers to different classes

of arrhythmia and class 16 refers to the rest of unclassified ones. For the

time being, there exists a computer program that makes such a classification.

However there are differences between the cardiolog’s and the programs

classification. Taking the cardiolog’s as a gold standard we aim to minimise

this difference by means of machine learning tools.” [90]

• Breast Cancer Wisconsin (breastcancer)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original

“Instances of data are collected periodically as clinical cases are reported.

The database therefore reflects this chronological grouping of the data. This

grouping information appears immediately below, having been removed from

the data itself:

Group 1: 367 instances (January 1989)

Group 2: 70 instances (October 1989)

Group 3: 31 instances (February 1990)

Group 4: 17 instances (April 1990)

Group 5: 48 instances (August 1990)

Group 6: 49 instances (Updated January 1991)

Group 7: 31 instances (June 1991)

Group 8: 86 instances (November 1991)

Note that Group 1 originally contains 369 instances. For the time being, Group

1 has only 367 instances with 2 removed.” [223]
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• Cleveland Heart Disease (cleveland)

http://archive.ics.uci.edu/ml/datasets/Heart+Disease

“This database contains 76 attributes altogether, but all published experiments

refer to using a subset of 14 of them. In particular, the Cleveland database is

the only one that has been used by ML researchers to this date. The decision

attribute refers to the presence of heart disease in the patient. It is integer val-

ued from 0 (no presence) to 4. Experiments with the Cleveland database have

concentrated on simply attempting to distinguish presence (values 1,2,3,4)

from absence (value 0). The names and social security numbers of the patients

were recently removed from the database, replaced with dummy values.” [83]

• Statlog: German Credit Data (credit-g)

https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

“This dataset classifies people described by a set of attributes as good or bad

credit risks. Two versions of datasets are provided. The first dataset is described

with categorical/symbolic attributes. For more general use, attributes that are

ordered categorical have been coded as integer and generate variant dataset

that purely contains numeric attributes.” [63]

• CNAE-9 (cnae)

https://archive.ics.uci.edu/ml/datasets/CNAE-9

“This is a data set containing 1080 documents of free text business descriptions

of Brazilian companies categorized into a subset of 9 categories catalogued

in a table called National Classification of Economic Activities (CNAE). The

original texts were pre-processed to obtain the current data set: initially, it was

kept only letters and then it was removed prepositions of the texts. Next, the

words were transformed to their canonical form. Finally, each document was

represented as a vector, where the weight of each word is its frequency in the

document. This data set is highly sparse (99.22% of the matrix is filled with

zeros).”

[35]

• Glass Identification (glass)

http://archive.ics.uci.edu/ml/datasets/Glass+Identification
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10 attributes are included in this dataset, the latter 8 of which describe the

chemical content of glass. The second one is about the optical properties of

glass. “The study of classification of types of glass (in determining whether

the glass was a type of “float” glass or not) was motivated by criminological

investigation. At the scene of the crime, the glass left can be used as evidence

if it is correctly identified.” [66]

• Statlog: Heart (heart)

https://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)

“This data set is a heart disease database, with 6 real-valued attributes: 1, 4, 5,

8, 10, 12; 1 ordered attribute: 11; 3 binary attributes: 2, 6, 9; and 3 nominal

features: 7, 3, 13. The class label to be predicted: absence (1) or presence (2)

of heart disease.” [195]

• Semeion Handwritten Digit (handwritten)

https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

“1593 handwritten digits from around 80 persons were scanned, stretched in a

rectangular box 16x16 in a grey scale of 256 values.Then each pixel of each

image was scaled into a boolean (1/0) value using a fixed threshold. Each

person wrote on a paper all the digits from 0 to 9, twice. The commitment

was to write the digit the first time in the normal way (trying to write each

digit accurately) and the second time in a fast way (with no accuracy).” [27]

• Ionosphere (ionosphere)

https://archive.ics.uci.edu/ml/datasets/Ionosphere

“This radar data was collected by a system in Goose Bay, Labrador. This

system consists of a phased array of 16 high-frequency antennas with a total

transmitted power on the order of 6.4 kilowatts. See the paper for more

details. The targets were free electrons in the ionosphere. “Good” radar

returns are those showing evidence of some type of structure in the ionosphere.

“Bad” returns are those that do not; their signals pass through the ionosphere.

Received signals were processed using an autocorrelation function whose

arguments are the time of a pulse and the pulse number. There were 17 pulse

numbers for the Goose Bay system. Instances in this database are described by

2 attributes per pulse number, corresponding to the complex values returned

by the function resulting from the complex electromagnetic signal.” [193]
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• (KDD99)

https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data

“This is the data set used for The Third International Knowledge Discovery and

Data Mining Tools Competition, which was held in conjunction with KDD-99

The Fifth International Conference on Knowledge Discovery and Data Mining.

The competition task was to build a network intrusion detector, a predictive

model capable of distinguishing between “bad” connections, called intrusions

or attacks, and “good” normal connections. This database contains a standard

set of data to be audited, which includes a wide variety of intrusions simulated

in a military network environment.” [204]

• Libras Movement (libras)

https://archive.ics.uci.edu/ml/datasets/Libras+Movement

“The data set contains 15 classes of 24 instances each, where each class

references to a hand movement type in LIBRAS (Portuguese name ’LÍngua

BRAsileira de Sinais’, the official Brazilian signal language). In the video pre-

processing, a time normalisation is carried out selecting 45 frames from each

video, in according to an uniform distribution. In each frame, the centroid

pixels of the segmented objects (the hand) are found, which compose the

discrete version of the curve F with 45 points. All curves are normalised in the

unitary space.” [55]

• Multiple Features (multifeat)

https://archive.ics.uci.edu/ml/datasets/Multiple+Features

“This dataset consists of features of handwritten numerals (‘0’–‘9’) extracted

from a collection of Dutch utility maps. 200 patterns per class (for a total

of 2,000 patterns) have been digitized in binary images. These digits are

represented in terms of the following six feature sets:

1. 76 Fourier coefficients of the character shapes

2. 216 profile correlations

3. 64 Karhunen-Love coefficients

4. 240 pixel averages in 2× 3 windows

5. 47 Zernike moments
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6. 6 morphological features.

The first 200 patterns are of class ‘0’, followed by sets of 200 patterns for each

of the classes ‘1–9’.” [214]

• (olitos)

http://michem.disat.unimib.it/chm/download/datasets.htm

This dataset consists of 120 olive oil samples that are analysed on 25 chemical

compositions (e.g., fatty acids, sterols, triterpenic alcohols) of olive oils from

Tuscany, Italy (Armanino et al. 1989). There are 4 classes corresponding to 88

different production areas. Class 1, Class 2, Class 3, and Class 4 contain 50,

25, 34, and 11 observations respectively. [11]

• Ozone Level Detection (ozone)

https://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection

“This dataset contains 7 years (from 1998 to 2004) long ground ozone data

that is collected at the Houston, Galveston and Brazoria area. 72 attributes

are drawn from this data. 10 of these features have been verified to be useful

and relevant for air quality control.” [236]

• SECOM (secom)

https://archive.ics.uci.edu/ml/datasets/SECOM

“A complex modern semi-conductor manufacturing process is normally under

consistent surveillance via the monitoring of signals/variables collected from

sensors and or process measurement points. The measured signals contain

a combination of useful information, irrelevant information as well as noise.

When performing system diagnosis, engineers typically have a much larger

number of signals than are actually required. The Process Engineers may then

use these signals to determine key factors contributing to yield excursions

downstream in the process.” [149]

• (soybean)

https://archive.ics.uci.edu/ml/datasets/Soybean+(Large)

“There are 19 classes, only the first 15 of which have been used in prior work.

The folklore seems to be that the last four classes are unjustified by the data

since they have so few examples. There are 35 categorical attributes, some
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nominal and some ordered. The value “dna” means does not apply. The values

for attributes are encoded numerically, with the first value encoded as “0,” the

second as “1,” and so forth. An unknown values is encoded as “?”.” [208]

• Image Segmentation (segment)

https://archive.ics.uci.edu/ml/datasets/Image+Segmentation

“The instances were drawn randomly from a database of 7 outdoor images.

The images were manually segmented to create a classification for every pixel.

Each instance is a 3× 3 region.” [136]

• Sonar (sonar)

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mine

s+vs.+Rocks)

“This dataset contains 111 patterns obtained by bouncing sonar signals off a

metal cylinder at various angles and under various conditions, and 97 patterns

obtained from rocks under similar conditions. The transmitted sonar signal is

a frequency-modulated chirp, rising in frequency. The data set contains signals

obtained from a variety of different aspect angles, spanning 90 degrees for the

cylinder and 180 degrees for the rock. Each pattern is a set of 60 numbers in

the range 0.0 to 1.0. Each number represents the energy within a particular

frequency band, integrated over a certain period of time. The integration

aperture for higher frequencies occur later in time, since these frequencies are

transmitted later during the chirp.” [89]

• Congressional Voting Records (vote)

https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

“This data set includes votes for each of the U.S. House of Representatives

Congressmen on the 16 key votes identified by the CQA. The CQA lists nine

different types of votes: voted for, paired for, and announced for (these three

simplified to yea), voted against, paired against, and announced against (these

three simplified to nay), voted present, voted present to avoid conflict of

interest, and did not vote or otherwise make a position known (these three

simplified to an unknown disposition).” [187]

• Wine (wine)

https://archive.ics.uci.edu/ml/datasets/Wine
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“These data are the results of a chemical analysis of wines grown in the

same region in Italy but derived from three different cultivars. The analysis

determined the quantities of 13 constituents found in each of the three types

of wines.” The original dataset contains around 30 variables, only 13 of which

somehow remains to be used. [71]

• Water Treatment Plant (water3)

https://archive.ics.uci.edu/ml/datasets/Water+Treatment+Plant

“This dataset comes from the daily measures of sensors in a urban waste water

treatment plant. The objective is to classify the operational state of the plant

in order to predict faults through the state variables of the plant at each of

the stages of the treatment process. This domain has been stated as an ill-

structured domain.” The dataset: water2 has been also used, which is derived

from this dataset with 2 different class labels (which is discriminative to the

original of 3). [15]

• Waveform Database Generator (waveform)

https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+
%28Version+2%29

“This dataset contains 40 attributes, all of which include noise. The latter 19

attributes of them are all noise attributes with mean 0 and variance 1. There

are 3 classes of complex waves, each being generated from a combination of 2

of 3 base wave.” [161]

• MSNBC.com Anonymous Web Data (web)

https://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data

“The data comes from Internet Information Server (IIS) logs for msnbc.com

and news-related portions of msn.com for the entire day of 28-09-1999 (Pacific

Standard Time). Each sequence in the dataset corresponds to page views

of a user during that twenty-four hour period. Each event in the sequence

corresponds to a user’s request for a page. Requests are not recorded at the

finest level of detail—that is, at the level of URL, but rather, they are recorded

at the level of page category (as determined by a site administrator). The

categories are “frontpage”, “news”, “tech”, “local”,“opinion”, “on-air”, “misc”,

“weather”, “health’, “living”, “business”, “sports”, “summary”, “bbs” (bulletin
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board service), “travel”, “msn-news”, and “msn-sports”. Any page requests

served via a caching mechanism were not recorded in the server logs and,

hence, not present in the data.”[28]





Appendix B

List of Acronyms

10-FCV 10-fold Cross-Validation

ANN Artificial Neural Network

ABC Artificial Bee Colony

ACO Ant Colony Optimisation

BN Bayesian Networks

BW Bandwidth

CART Classification and Regression Trees

CFS Correlation-based Feature Selection

CSA Clonal Selection Algorithm

DNS Domain Name System

DOS Denial of Service

DDOS Distributed Denial of Service

FFS Firefly Search

KNN (IBk) K-Nearest Neighbour

FG Feature Grouping

FR Flip Rate

FRS Fuzzy Rough Set
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FRFG Fuzzy Rough-based Feature Grouping

FS Feature Selection

GBFG Minimum Spanning Tree (or Graph)-based Feature Grouping

GA Genetic Algorithm

GP Genetic Programming

GHC Greedy Hill-Climbing

HIDS Host-based Intrusion System

HM Harmony Memory

HS Harmony Search

HMC Harmony Memory Consolidation

HMCR Harmony Memory Considering Rate

HSFS Feature Selection with Harmony Search

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

ISP Internet Service Provider

KDD Knowledge Discovery from Data

MA Memetic Algorithm

MDL Minimum Description Length

MST Minimum Spanning Tree

NB Naïve Bayes-based Classifier

NN Neural Networks

NIDS Network-based Intrusion Detection System

OS Operating System

OSCAR Octagonal Shrinkage and Clustering Algorithm for Regression

OWA Ordered Weighted Averaging

PAR Pitch Adjustment Rate

PCFS Probabilistic Consistency-based Feature Selection
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PSO Particle Swarm Optimisation

RNA Ribonucleic Acid

RFD Restricted Feature Domain

RS Random Search

RST Rough Set Theory

SA Simulated Annealing

SD Standard Deviation

SMTP Simple Mail Transfer Protocol

SS Scatter Search

SVM Support Vector Machine





Appendix C

List of Symbols

a and a with any subscript an individual feature
X set of instances
X with any subscript subset of X
A set of conditional features
Z set of decisional features
Y set of features equal to the union of A and Z
S, S with any superscript subset of A
S set of feature subsets
S′ subset of S
R set of real numbers
Va set of values taken by conditional feature a
VZ set of class labels

taken by decisional features Z
p() the probability mass function of a value

taken by a feature
{ } set notation describing a set of features
\ set minus operator
∪ set union operator
Σ accumulation operator
⋃

the union of multiple sets
| | the cardinality of a set
d e operator taking the ceiling integer

of a real number
[ ] the interval operator

indicating a set of continuous real numbers
C a vague concept in fuzzy-rough set
⇔ conditional expression

indicating “if and only if”
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∧ logic “and” operator
∨ logic “or” operator
6 logic “not” operator
Random( ) randomly take a value from a set
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