6,944 research outputs found

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM

    A multi-attribute decision making procedure using fuzzy numbers and hybrid aggregators

    Get PDF
    The classical Analytical Hierarchy Process (AHP) has two limitations. Firstly, it disregards the aspect of uncertainty that usually embedded in the data or information expressed by human. Secondly, it ignores the aspect of interdependencies among attributes during aggregation. The application of fuzzy numbers aids in confronting the former issue whereas, the usage of Choquet Integral operator helps in dealing with the later issue. However, the application of fuzzy numbers into multi-attribute decision making (MADM) demands some additional steps and inputs from decision maker(s). Similarly, identification of monotone measure weights prior to employing Choquet Integral requires huge number of computational steps and amount of inputs from decision makers, especially with the increasing number of attributes. Therefore, this research proposed a MADM procedure which able to reduce the number of computational steps and amount of information required from the decision makers when dealing with these two aspects simultaneously. To attain primary goal of this research, five phases were executed. First, the concept of fuzzy set theory and its application in AHP were investigated. Second, an analysis on the aggregation operators was conducted. Third, the investigation was narrowed on Choquet Integral and its associate monotone measure. Subsequently, the proposed procedure was developed with the convergence of five major components namely Factor Analysis, Fuzzy-Linguistic Estimator, Choquet Integral, Mikhailov‘s Fuzzy AHP, and Simple Weighted Average. Finally, the feasibility of the proposed procedure was verified by solving a real MADM problem where the image of three stores located in Sabak Bernam, Selangor, Malaysia was analysed from the homemakers‘ perspective. This research has a potential in motivating more decision makers to simultaneously include uncertainties in human‘s data and interdependencies among attributes when solving any MADM problems

    Managing Interacting Criteria: Application to Environmental Evaluation Practices

    Get PDF
    The need for organizations to evaluate their environmental practices has been recently increasing. This fact has led to the development of many approaches to appraise such practices. In this paper, a novel decision model to evaluate company’s environmental practices is proposed to improve traditional evaluation process in different facets. Firstly, different reviewers’ collectives related to the company’s activity are taken into account in the process to increase company internal efficiency and external legitimacy. Secondly, following the standard ISO 14031, two general categories of environmental performance indicators, management and operational, are considered. Thirdly, since the assumption of independence among environmental indicators is rarely verified in environmental context, an aggregation operator to bear in mind the relationship among such indicators in the evaluation results is proposed. Finally, this new model integrates quantitative and qualitative information with different scales using a multi-granular linguistic model that allows to adapt diverse evaluation scales according to appraisers’ knowledge

    "The connection between distortion risk measures and ordered weighted averaging operators"

    Get PDF
    Distortion risk measures summarize the risk of a loss distribution by means of a single value. In fuzzy systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted Averaging (WOWA) operators are used to aggregate a large number of fuzzy rules into a single value. We show that these concepts can be derived from the Choquet integral, and then the mathematical relationship between distortion risk measures and the OWA and WOWA operators for discrete and nite random variables is presented. This connection oers a new interpretation of distortion risk measures and, in particular, Value-at-Risk and Tail Value-at-Risk can be understood from an aggregation operator perspective. The theoretical results are illustrated in an example and the degree of orness concept is discussed.Fuzzy systems; Degree of orness; Risk quantification; Discrete random variable JEL classification:C02,C60

    Fuzzy-logic framework for future dynamic cellular systems

    Get PDF
    There is a growing need to develop more robust and energy-efficient network architectures to cope with ever increasing traffic and energy demands. The aim is also to achieve energy-efficient adaptive cellular system architecture capable of delivering a high quality of service (QoS) whilst optimising energy consumption. To gain significant energy savings, new dynamic architectures will allow future systems to achieve energy saving whilst maintaining QoS at different levels of traffic demand. We consider a heterogeneous cellular system where the elements of it can adapt and change their architecture depending on the network demand. We demonstrate substantial savings of energy, especially in low-traffic periods where most mobile systems are over engineered. Energy savings are also achieved in high-traffic periods by capitalising on traffic variations in the spatial domain. We adopt a fuzzy-logic algorithm for the multi-objective decisions we face in the system, where it provides stability and the ability to handle imprecise data

    ISO9126 BASED SOFTWARE QUALITY EVALUATION USING CHOQUET INTEGRAL

    Get PDF
    Evaluating software quality is an important and essential issue in the development process because it helps to deliver a competitive software product. A decision of selecting the best software based on quality attributes is a type of multi-criteria decision-making (MCDM) processes where interactions among criteria should be considered. This paper presents and develops quantitative evaluations by considering interactions among criteria in the MCDM problems. The aggregator methods such as Arithmetic Mean (AM) and Weighted Arithmetic Mean (WAM) are introduced, described and compared to Choquet Integral (CI) approach which is a type of fuzzy measure used as a new method for MCDM. The comparisons are shown by evaluating and ranking software alternatives based on six main quality attributes as identified by the ISO 9126-1 standard. The evaluation experiments depend on real data collected from case studies

    Integration of perception and reasoning in fast neural modules

    Get PDF
    Artificial neural systems promise to integrate symbolic and sub-symbolic processing to achieve real time control of physical systems. Two potential alternatives exist. In one, neural nets can be used to front-end expert systems. The expert systems, in turn, are developed with varying degrees of parallelism, including their implementation in neural nets. In the other, rule-based reasoning and sensor data can be integrated within a single hybrid neural system. The hybrid system reacts as a unit to provide decisions (problem solutions) based on the simultaneous evaluation of data and rules. Discussed here is a model hybrid system based on the fuzzy cognitive map (FCM). The operation of the model is illustrated with the control of a hypothetical satellite that intelligently alters its attitude in space in response to an intersecting micrometeorite shower
    • 

    corecore