2,003 research outputs found

    Fuzzy rule-based system applied to risk estimation of cardiovascular patients

    Get PDF
    Cardiovascular decision support is one area of increasing research interest. On-going collaborations between clinicians and computer scientists are looking at the application of knowledge discovery in databases to the area of patient diagnosis, based on clinical records. A fuzzy rule-based system for risk estimation of cardiovascular patients is proposed. It uses a group of fuzzy rules as a knowledge representation about data pertaining to cardiovascular patients. Several algorithms for the discovery of an easily readable and understandable group of fuzzy rules are formalized and analysed. The accuracy of risk estimation and the interpretability of fuzzy rules are discussed. Our study shows, in comparison to other algorithms used in knowledge discovery, that classifcation with a group of fuzzy rules is a useful technique for risk estimation of cardiovascular patients. © 2013 Old City Publishing, Inc

    IMPROVED EVOLUTIONARY SUPPORT VECTOR MACHINE CLASSIFIER FOR CORONARY ARTERY HEART DISEASE PREDICTION AMONG DIABETIC PATIENTS

    Get PDF
    Soft computing paves way many applications including medical informatics. Decision support system has gained a major attention that will aid medical practitioners to diagnose diseases. Diabetes mellitus is hereditary disease that might result in major heart disease. This research work aims to propose a soft computing mechanism named Improved Evolutionary Support Vector Machine classifier for CAHD risk prediction among diabetes patients. The attribute selection mechanism is attempted to build with the classifier in order to reduce the misclassification error rate of the conventional support vector machine classifier. Radial basis kernel function is employed in IESVM. IESVM classifier is evaluated through the performance metrics namely sensitivity, specificity, prediction accuracy and Matthews correlation coefficient (MCC) and also compared with existing work and our earlier proposed works

    Fuzzy Parameterized Complex Multi-Fuzzy Soft Expert Set in Prediction of Coronary Artery Disease

    Get PDF
    In this work, state the risk and treatment of coronary artery disease our aim. The weighted fuzzy parameterized complex multi-fuzzy soft expert set plays the main roads to arrive a maple treatment. We take a reality values of the a asymptotes systolic blood pressure, lowdensity lipoprotein cholesterol, maximum heart rate, blood sugar, old peak and age of nine patients and transform by FORTRAN program to weighted fuzzy parameterized complex multifuzzy soft expert set. By Kong algorithm state the positive and negative decision, from these decisions state the degree of risk and treatments. Our decision helps the hospital doctor to state the treatments drug therapy or intervention

    A Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to Knowledge Acquisition

    Get PDF
    Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to knowledge acquisition is proposed in this paper as a viable solution to the challenges of rule-based unwieldiness and sharp boundary problem in building a fuzzy rule-based expert system. The fuzzy models were based on domain experts’ opinion about the data description. The proposed approach is committed to modelling of a compact Fuzzy Rule-Based Expert Systems. It is also aimed at providing a platform for instant update of the knowledge-base in case new knowledge is discovered. The insight to the new approach strategies and underlining assumptions, the structure of FARME-D and its practical application in medical domain was discussed. Also, the modalities for the validation of the FARME-D approach were discussed

    Linear discriminant analysis and principal component analysis to predict coronary artery disease

    Get PDF
    Coronary artery disease is one of the most prevalent chronic pathologies in the modern world, leading to the deaths of thousands of people, both in the United States and in Europe. This article reports the use of data mining techniques to analyse a population of 10,265 people who were evaluated by the Department of Advanced Biomedical Sciences for myocardial ischaemia. Overall, 22 features are extracted, and linear discriminant analysis is implemented twice through both the Knime analytics platform and R statistical programming language to classify patients as either normal or pathological. The former of these analyses includes only classification, while the latter method includes principal component analysis before classification to create new features. The classification accuracies obtained for these methods were 84.5 and 86.0 per cent, respectively, with a specificity over 97 per cent and a sensitivity between 62 and 66 per cent. This article presents a practical implementation of traditional data mining techniques that can be used to help clinicians in decision-making; moreover, principal component analysis is used as an algorithm for feature reduction

    Machine learning applications in cardiac computed tomography: a composite systematic review

    Get PDF
    Artificial intelligence and machine learning (ML) models are rapidly being applied to the analysis of cardiac computed tomography (CT). We sought to provide an overview of the contemporary advances brought about by the combination of ML and cardiac CT. Six searches were performed in Medline, Embase, and the Cochrane Library up to November 2021 for (i) CT-fractional flow reserve (CT-FFR), (ii) atrial fibrillation (AF), (iii) aortic stenosis, (iv) plaque characterization, (v) fat quantification, and (vi) coronary artery calcium score. We included 57 studies pertaining to the aforementioned topics. Non-invasive CT-FFR can accurately be estimated using ML algorithms and has the potential to reduce the requirement for invasive angiography. Coronary artery calcification and non-calcified coronary lesions can now be automatically and accurately calculated. Epicardial adipose tissue can also be automatically, accurately, and rapidly quantified. Effective ML algorithms have been developed to streamline and optimize the safety of aortic annular measurements to facilitate pre-transcatheter aortic valve replacement valve selection. Within electrophysiology, the left atrium (LA) can be segmented and resultant LA volumes have contributed to accurate predictions of post-ablation recurrence of AF. In this review, we discuss the latest studies and evolving techniques of ML and cardiac CT

    Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look

    Get PDF
    Background and motivation: Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along with its bias. Methods: Using a PRISMA model, 145 best UNet-based and non-UNet-based methods for wall segmentation were selected and analyzed for their characteristics and scientific and clinical validation. This study computed the coronary wall thickness by estimating the inner and outer borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework. Findings and conclusions: UNet provides a powerful paradigm for the segmentation of coronary walls in IVUS scans due to its ability to extract automated features at different scales in encoders, reconstruct the segmented image using decoders, and embed the variants in skip connections. Most of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is necessary to move from a paper-to-practice approach
    • …
    corecore