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Artificial intelligence and machine learning (ML) models are rapidly being applied to the analysis of cardiac computed tomography (CT). We
sought to provide an overview of the contemporary advances brought about by the combination of ML and cardiac CT. Six searches were per-
formed in Medline, Embase, and the Cochrane Library up to November 2021 for (i) CT-fractional flow reserve (CT-FFR), (ii) atrial fibrillation
(AF), (iii) aortic stenosis, (iv) plaque characterization, (v) fat quantification, and (vi) coronary artery calcium score. We included 57 studies per-
taining to the aforementioned topics. Non-invasive CT-FFR can accurately be estimated using ML algorithms and has the potential to reduce the
requirement for invasive angiography. Coronary artery calcification and non-calcified coronary lesions can now be automatically and accurately
calculated. Epicardial adipose tissue can also be automatically, accurately, and rapidly quantified. Effective ML algorithms have been developed to
streamline and optimize the safety of aortic annular measurements to facilitate pre-transcatheter aortic valve replacement valve selection.Within
electrophysiology, the left atrium (LA) can be segmented and resultant LA volumes have contributed to accurate predictions of post-ablation
recurrence of AF. In this review, we discuss the latest studies and evolving techniques of ML and cardiac CT.
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Introduction
Recent advancements in computed tomography (CT) and data sci-
ence have fostered the development of machine learning models
across several domains within cardiology. Clinical implementation
of dual-energy CT systems has improved diagnostic accuracy, re-
duced calcium blooming artefact, enabled identification of athero-
sclerotic plaque composition, and decreased the radiation and
contrast required for scans, while also paving the way for the identi-
fication of novel imaging biomarkers and radiomic profiles.1 New
256- and 320-slice CT systems significantly reduce radiation doses
by achieving a full volume acquisition in one to two cardiac cycles.
This reduces cardiac motion artefact, improves image quality and
diagnostic accuracy, and enables better quantitative analysis.2

These newer systems are relatively expensive and further research
is needed into their full potential. In this review, we provide an
up-to-date summary of the evolving machine learning (ML) techni-
ques used in conjunction with cardiac CTs, including: (i) coronary

artery imaging [fractional flow reserve (FFR), coronary artery calcium
(CAC), and plaque characterization], (ii) epicardial adiposity quanti-
fication, (iii) aortic stenosis (AS), and (iv) atrial fibrillation (AF).

Terminology
A paucity of universally accepted terms and the relationships be-
tween ML and other aspects of artificial intelligence (AI) can lead
to misunderstanding. Artificial intelligence is an umbrella term given
to any algorithm mimicking a human being’s method of
problem-solving. Machine learning falls under this category by using
probability and statistics to make predictions based on data.
Table 1 shows examples of specific tools used. The process of ML
starts with patient data and finishes with a final prediction as follows:
(i) data collection, (ii) pre-processing, (iii) application of the ML algo-
rithm, and (iv) optimization of the aforementioned steps. Machine
learning algorithms can be further classified based on whether they
require input ‘training data’ that comprises the original patient data
and a corresponding data class ‘label’. The volume and quality of
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‘training data’, in combination with the appropriateness of the statis-
tical algorithm applied, correlates with the utility of an ML model.
Algorithms that require ‘training data’ are termed ‘supervised learn-
ing’ algorithms and are discussed in this review; in contrast to ‘un-
supervised learning’ that do not require ‘training data’.

Methods
We performed six searches of Medline, Embase, and the Cochrane
Library up to November 2021 for original articles containing human sub-
jects pertaining to the use of ML in (i) CT-fractional flow reserve
(CT-FFR), (ii) AF, (iii) AS, (iv) plaque characterization, (v) fat quantifica-
tion, and (vi) CAC score (Figure 1). The following terms were used, in-
cluding MeSH terms, synonyms, and abbreviations (CAC score/
fractional flow reserve/ atrial fibrillation/ aortic stenosis/ coronary pla-
que/ fat quantification) AND (machine learning OR neural network
OR k-nearest neighbour OR random forest) AND (computer tomog-
raphy). Studies utilizing deep learning algorithms other
than convolutional neural network (CNN) were excluded. Duplicates
were removed from each search, before titles and abstracts were
screened by two authors for each search. Studies were selected if they
were original articles describing the use of ML and cardiac CT in each to-
pic. Articles identified are summarized in Tables 2–7.

Applications of machine learning
in cardiac computed tomography

CT-fractional flow reserve
The degree of stenosis on coronary CT angiography (CCTA) does
not always correlate with functional flow restriction. For stable cor-
onary artery disease (CAD) invasive physiological assessment using
FFR or instantaneous wave-free ratio (iFR) remains the invasive
gold standard in assessing flow-limiting lesions, with an FFR ≤ 0.8
or iFR ≤ 0.89 suggesting the need for follow on percutaneous cor-
onary intervention. Advancements in computational fluid dynamics
have allowed for the estimation of FFR from CCTA imaging data, re-
sulting in the development of CT-FFR protocols.

Using numerous iterations of CNN algorithms, CT-FFR has con-
sistently been demonstrated to be superior to CCTA in assessing
flow-limiting lesions with an average area under the curve (AUC)

of 0.89 (Table 2).6,8,11–15 Early work demonstrated that this tech-
nique can reduce processing durations by 80-fold compared with
physics-based computations,5 in addition to being less computation-
ally demanding.6 Nevertheless, Itu et al.5 was trained on synthetic
phantoms and thus lack certain physiological traits that may detri-
mentally affect clinical accuracy.5 Moreover, the study by Xu et al.8

demonstrated the effect of poor image quality and tachycardia on
the performance of the algorithm. Indeed, performance was substan-
tially decreased in low-quality images vs. high-quality images, subject-
ively determined by expert readers (AUC: 0.80 vs. 0.93,
respectively).8 Moreover, in a multicentre study by Tesche et al.14,
performance was also impacted by the CAC burden. Performance
of CT-FFR, per vessel, was significantly affected at higher Agatston
scores. This appeared to be due to a negative dose–response effect
on specificity with higher CAC scores.14 In 2021, The National
Institute for Health and Care Excellence updated its guidance recom-
mending the use of CT-FFRML, provided by companies such as
HeartFlow, as it is non-invasive, considered to deliver high diagnostic
accuracy, whilst having the potential to be cost-effective.63 In con-
junction, contemporary American and European guidelines also sup-
port the use of CT-FFRML.

64,65

Calcium scoring
Coronary artery calcium predicts cardiovascular events.66 Low dose
electrocardiogram-gated non-contrast CT imaging (CCT) is an ef-
fective and non-invasive way for quantifying CAC, having a high sen-
sitivity and negative predictive value for obstructive CAD.67

Coronary artery calcium is traditionally measured in Agatston scores,
which grade calcium severity by multiplying the area of calcification
by CT attenuation in Hounsfield units yielding an estimated total
CAC burden.67 Agatston scores correspond to calcification burden,
as so: 1–100 mild; 101–400 moderate; and .400 severe.68

Machine learning has been used for the automation of CAC iden-
tification and scoring with subsequent risk categorization of CAD or
future cardiac events; easing the burden on reporting clinicians there-
by saving both time and resources (Table 3). The use of gradient
boosting algorithms has had success in predicting prognosis for pa-
tients with suspected cardiovascular disease. In a large retrospective
cohort by Nakanishi et al.,20 ML-derived predictions with combined
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Table 1 An overview of algorithms used in machine learning with summary definitions and benefits

Algorithm Overview

Logistic regression Determines the probability of a particular class for a discrete variable. A simple algorithm with extensive applications.

Support vector machines Uses ‘kernel mapping’ to set boundaries of data classes. Can be used for hand-written characters and text categorization

but is limited in larger datasets.

k-nearest neighbour Classifies data based on the classes of the k closest data points (where k is a positive, whole number). Simple and easy to

implement.

Random forest A collection of decision trees that iteratively split data based on binary criteria. The output is a combination of the results

of each single decision tree. Amajor advantage is its ability to prioritize more important characteristics of the dataset. A

highly versatile classifier that works well with small datasets.

Convolutional neural networks

(U-Net)

A convolutional neural network (CNN) is a deep learning algorithm that captures the essence of data using a filter based

on convolution. This is used extensively in image processing applications. U-net is a specific form of CNN architecture

that utilizes fewer training images to provide more accurate segmentation.3
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data were superior to (i) clinical data, (ii) CAC score, and (iii) CT vari-
ables alone. This was consistent with Commandeur et al.23, who per-
formed prospective analysis of 1912 individuals and found
ML-derived predictions to be superior to traditional atherosclerotic
cardiovascular disease risk algorithm and CAC score. These predict-
ive ML algorithms also predict obstructive CADwith a high degree of
accuracy (AUC: 0.77;24 sensitivity: 100+ 0.0% and specificity 69.8+
3.6%25). Automated identification of CAC score has been performed
using k-nearest neighbour, CNN and gradient boosting ML with rea-
sonably good accuracies (sensitivity: 73.8% and false positive rate: 0.1
errors per scan;16 sensitivity: up to 72% and false positive rate: as low
as 0.48 errors per scan;18 and AUC: 0.67–0.85,19 respectively). It has
also been proposed that CAC score can be predicted from clinical
variables.26

CCT-based, whole heart and vessel-specific CAC scoring algo-
rithms have been developed to include Agatston, mass, and volume
scores.17 They use a k-nearest number classifier with forward feature
selection on vessels identified from an atlas-based approach with
relatively high degrees of sensitivity and low false-positive rates.17

Similar vessel-specific volume-based CAC scores were achieved in
another study using random forest algorithms with fuzzy spatial fea-
tures to achieve total intraclass correlation coefficients of 0.99 and an
accuracy of 1.0 κ in risk class assignment, at a 10 s run time.21 Lossau
et al.22 have developed CNN trained on simulated cardiac motion
images, aimed to automate the estimation and correction of coron-
ary motion in coronary computed tomographic angiography (CCTA)

scans, with small degrees of error. This approach may be useful in the
CCTA calculation of CAC; however, the results were based on a
small dataset of 12 clinical cases.

Plaque characterization
Nine studies were identified pertaining to plaque characterization by
cardiac CT and the use of ML (Table 4). Earlier studies demonstrated
that non-calcified plaques could be identified using ML, with extreme
gradient boosting algorithms29 proving superior to topological soft-
gradient detection methods27 (AUC 0.92 vs. 0.87, respectively).
Masuda et al.29 also showed that their algorithmic approach per-
formed better than the median CT number. Validated methods of
ascertaining morphological characteristics of plaques using ensemble
methods and multi-task CNNs have been produced.6,28 Using similar
boosted ensemble algorithms, studies have managed to identify cul-
prit stenotic lesions, predict individuals at risk of rapid coronary pla-
que progression, and retrospectively predict individuals at risk of
major adverse cardiovascular events (MACE), with high degrees of
accuracy (AUC: 0.77; 0.83; and 0.96, respectively).29,31,32 The CAD
reporting and data system is designed to classify severely obstructed
coronary lesions on CCTA. Muscogiuri et al.33 have demonstrated
that a deep learning CNN algorithm can classify over 5 times faster
than expert readers, although with an accuracy of between 60% and
86%. It has also been demonstrated that analysis of plaque character-
istics can predict MACE34 and other clinically relevant composite

Figure 1 Flow diagram based on PRISMA (preferred reporting items for systematic reviews and meta-analyses) checklist4 showing resulting ar-
ticles found and reasons for exclusion.

4 J.J.H. Bray et al.
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Table 2 Summary of articles investigating the use of CT-fractional flow reserve using machine learning (CT-FFRML)

Study Design and aim Algorithm
used

Participants Outcome

Itu 20165 In vitro-validated, in vivo-tested, diagnostic accuracy comparison of

CT-FFRML vs. invasive FFR and CT-FFRCFD

CNN 87 AUC: 0.90

Accuracy: 83.2%

Sensitivity: 81.6%

Specificity: 83.9%

PPV: 68.9%

NPV: 91.2%

Time: 2.4 s

Coenen

20186
Multicentre, retrospective, diagnostic accuracy comparison of

CT-FFRML vs. invasive CCTA and CT-FFRCFD

CNN 351 AUC: 0.84

Accuracy: 85%

Sensitivity: 77%

Specificity: 89%

PPV: 76%

NPV: 89%

Tesche

20187
Single-centre, retrospective, diagnostic accuracy comparison of

CT-FFRML vs. CT-FFRCFD and QCA

CNN 85 AUC: 0.91

Sensitivity: 90%

Specificity: 95%

PPV: 90%

NPV: 95%

Time: 40.5 min

Xu 20208 Investigation of the impact of image quality, BMI, sex, HR, and

calcium on CT-FFRML diagnostic accuracy vs. CCTA and invasive

FFR

- 437 AUC, LQ: 0.80 HQ: 0.93

Accuracy, LQ: 83% HQ: 94%

Sensitivity, LQ: 78% HQ: 84%

Specificity, LQ: 86% HQ: 98%

PPV, LQ: 82% HQ: 95%

NPV, LQ: 83% HQ: 93%

Zreik 20209 Retrospective study investigating automatic calculation of CT-FFR

(FFR cut off ,0.9)

CNN 187 AUC: 0.87

Accuracy: 80%

Baumann

202010
Single-centre, retrospective, diagnostic accuracy comparison of

CT-FFRML vs. iFR

CNN 40 AUC: 0.96

Accuracy: 95%

Sensitivity: 92%

Specificity: 96%

PPV: 92%

NPV: 96%

Time: 11 min

Lossnitzer

202011
Single-centre, retrospective, diagnostic accuracy comparison of

CT-FFRML vs. invasive FFR and CCTA

CNN 88 AUC: 0.96

Sensitivity: 93%

Specificity: 94%

PPV: 93%

NPV: 94%

Time: 23.9 min

Li 202112 Single-centre, retrospective, diagnostic accuracy comparison of

CT-FFRML vs. invasive FFR and CCTA

CNN 73 CT-FFR vs. CCTA vessel-level

AUC: 0.957 vs. 0.599, P,

0.0001

Accuracy: 90.4%

Sensitivity: 93.6%

Specificity: 88.1%

PPV: 85.3%

NPV: 94.9%

Morais

202113
Single-centre, retrospective, diagnostic accuracy comparison of

CT-FFRML vs. invasive FFR

CNN 93 AUC: 0.93

Sensitivity: 87%

Continued
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outcomes35 with high degrees of accuracy (AUC: 0.96 and 0.797,
respectively).

Epicardial adipose tissue quantification
The epicardial adipose tissue (EAT), being the fat contained be-
tween the pericardium and surface of the myocardium, is involved
in a complex interplay with the coronary arteries. It is thought that
dysfunctional pro-inflammatory adipokines mediate the develop-
ment of an elevated risk of CAD and MACE.69 Another effective
use of ML in the analysis of cardiac CT output is in the
fully-automated identification and quantification of EAT. Studies
have done this using numerous algorithmic approaches (Table 5),
achieving accuracies up to 98.5%,36 with excellent correlation
with expert readers (Pearson’s correlation, r. 0.924),37–40,42 and
almost identical intra-study dice similarity coefficients
(DSCs).36,39,43,44 A similar technique has been used in combination
with a fat radiomic profile (FRP) derived from biopsy and CCTA
data of perivascular adipose tissue in a retrospective study by
Oikonomou et al.41 to predict MACE at a 5-year follow-up superior
to traditional risk stratification tools with an AUC of 0.880 with
FRP and an AUC of 0.754 without FRP.

Aortic stenosis
Transcatheter aortic valve replacement (TAVR) is a successful percu-
taneous intervention for the treatment of severe AS, that is increas-
ingly being used in lower surgical-risk patients.70 For successful
deployment of a TAVR device, pre-operative CT imaging is used
to derive various anatomical features of the aortic valve to guide op-
timal device size selection in order to limit paravalvular regurgitation,
coronary obstruction, and conduction disturbance.47,71 Automated
segmentation of the aortic annulus perimeter has been reported
using several methods (Table 6). Elattar et al.47 developed a method
using thresholding, morphological operators, and fuzzy classification
to achieve identical DSC coefficients (0.95 vs. 0.95) at over 13-times
faster-processing speeds vs. expert reader. This method, however,
did not perform segmentation of the valve leaflets themselves. Al
et al.49 developed a bespoke regression tree-based algorithm to

localize all eight aortic valve landmarks required for pre-operative as-
sessment of TAVR procedures, yielding a mean localization error of
2.04 mm and a run time of 12 ms compared with an inter-observer
variability of 2.38 mm. To enable segmentation of aortic valve land-
marks, Al Abdullah et al.49 developed a regression tree-based algo-
rithm, yielding high accuracies (mean localization error: 2.38 mm),
fast run times (12 ms), and close comparability to expert readers
(inter-observer variability: 2.38 mm). Moreover, this model was
trained on a generalizable population of patients with variable valvu-
lar calcification.49 To address the computational modelling of valve
biomechanics, Liang et al.48 developed a novel method utilizing CT
imaging for the reconstruction of 3D valve geometries with built in
mesh correspondence. This approach used linear coding and shape
dictionary learning based on k-nearest number algorithms to achieve
patient-specific reconstructions with mean discrepancies of
1.57 mm. A limitation of this study was the lack of patients with se-
vere AS, and thus it lacks the impact of valvular calcification on valvu-
lar biomechanics.48 More recently, in a small number of patients with
hypertrophic obstructive cardiomyopathy undergoing surgery, CNN
models have been used to automatically segment the cardiac struc-
ture.55 This cut time required down from 3 h manually segmenting
to 5 min, although one of the two cases did require some manual
adjustment.55

As mortality following TAVR can vary widely, ML can also be used
to predict post-procedural survival and thus identify individuals who
are likely to benefit from the intervention. Using Gradient boosting
ML and Cox proportional hazard regression models, it has been pos-
sible to predict survival to an AUC of 0.72–0.79,52,54 is superior to
manual scoring systems (TAVI2-SCORE: 0.56 and CoreValve
Score: 0.53),52 and the predictive capacity appears to persist up to
5 years.54

Atrial fibrillation
Computed tomography imaging is used in pre-operative mapping
prior to ablation for AF to assess left atrium (LA) chamber size
and pulmonary vein (PV) anatomy. However, the task of isolating
the LA and deriving volumes manually is time-consuming. Studies

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Continued

Study Design and aim Algorithm
used

Participants Outcome

Specificity: 86%

PPV: 73%

NPV: 94%

Renker

202114, 15
Multicentre, retrospective post hoc per-vessel diagnostic accuracy

analysis of MACHINE registry comparing of CT-FFRML vs.

invasive FFR and CCTA

CNN 330 Overall average (LAD, LCx and

RCA)

AUC: 0.784

Sensitivity: 78.4%

Specificity: 77.2%

PPV: 64.7%

NPV: 86.6%

Time is reported as an approximation of total time required for analysis. Statistics are per patient (per vessel).
AUC, area under the curve; CFD, computational fluid dynamics; CNN, convolutional neural networks; HR, heart rate; HQ, high-quality images; LQ, low-quality images; low Agatston
score, .0 to ,100; high Agatston score, .400; QCA, quantitative coronary angiography; iFR, instantaneous wave-free ratio.
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Table 3 Summary of studies investigating the use of ML, cardiac CT, and CAC score

Study Design and aim Algorithm used Participants Outcome

Išgum 200716 Accurate, automated identification of

CAC scores

k-nearest neighbour

and feature

selection scheme

76 female participants Sensitivity 73.8%

False-positive rate: 0.1 errors per

scan

Shahzad 201317 Automatic detection of whole heart

calcium lesions, at 1.5 and 3.0 mm

slice spacing

k-nearest neighbour 366 patients (training 57%,

testing 43%)

• 1.5 mm sensitivity: 81.2%

• 1.5 mm false positive rate: 2.5 errors

per patient

• 3.0 mm sensitivity: 86.6%

• False-positive rate: 2.2 errors per

patient

Wolterink

201618
Accurate, automated identification of

CAC scores

Paired convolutional

neural networks

250 patients (60% training,

40% testing)

Detection by paired convolutional

neural networks identified more

lesions than individual observers:

• Sensitivity: 67–72%

• False-positive rate: 0.48–1.69 errors

per scan

Al’Aref 201719 Accurate, automated identification of

CAC score

Gradient boosting

machine learning

35 281 patients (CONFIRM

registry) (70% training,

30% testing)

AUC

• CAC score 0: 0.84

• CAC score 1–100: 0.67

• CAC score 101–400 : 0.74

• CAC score .400: 0.85

Nakanishi

201720
Retrospective analysis of the capability of

ML-determined CAC, clinical data and

CT variables vs. each individual factor in

predicting coronary heart disease or

cardiovascular death.

- 66 636 participants without

cardiovascular disease from

the Multi-Ethnic Study of

Atherosclerosis (MESA)

AUC

• ML (all variables): 0.85

• Clinical data only: 0.83

• CAC score only: 0.81

• CT variables only: 0.82

Durlak 201721 Automated CAC labelling system vs.

expert reader

Atlas-based feature

approach and

random forest

classifier

40 patients ICC: 0.99

Accuracy: 1.0 κ

Run time: 10 s

Lossau (née

Elss) 201922
Use of ML to improve interpretability

through reducing motion artefact by

predicting motion direction.

CNN 19 clinical datasets Motion direction error: 34.9+ 1.21

Motion magnitude error: 1.86+

0.11 mm

Commandeur

202023
Prospective analysis of the capability of

ML-determined CAC score and other

variables in predicting MI or cardiac

death.

Extreme gradient

boosting

1912 participants without

cardiovascular disease

AUC

• ML: 0.82

• ASCVD: 0.77

• CAC: 0.77

Al’Aref 202024 ML model using CAC and clinical factors

to improve prediction of obstructive

CAD.

Boosted ensemble

algorithm

35 281 patients (CONFIRM

registry) (80% training,

20% testing)

AUC

• ML: 0.77

• CAD consortium clinical score: 0.73

• CAC score: 0.87

• UDF score: 0.68

Głowacki
202025

ML model prediction of obstructive CAD

following CAC score.

Gradient boosting

machine learning

435 patients Sensitivity 100+ 0.0%

Specificity 69.8+ 3.6%

Lee 202026 Retrospective analysis to ascertain best

ML algorithm to predict CAC score

from clinical variables.

Binary logistic

regression,

CatBoost, and

XGBoost

algorithms

2133 participants without

cardiovascular disease

AUC

• XGBoost: 0.82

• Catboost: 0.75

• Binary logistic regression: 0.59

Testing includes validation. Statistics are per patient.
ML, machine learning; CAC score, coronary artery calcium score; CNN, convolutional neural networks; AUC, area under the curve; ASCVD, atherosclerotic cardiovascular disease
risk algorithm; CAD, coronary artery disease; UDF score, updated Diamond–Forrester score; ICC, intraclass correlation coefficient.
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have demonstrated CNN algorithms that can automatically segment
the LAwith 99% accuracy vs. expert reader,58 and compartmentalize
the LA into individual sub-sections using marginal space learning-

based object segmentation with minimal error (Table 7).56

Post-ablation recurrence of AF has a rate of ca. 45%; Firouzina
et al.60 successfully used random forest classifiers to identify

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Summary of articles investigating the use of ML in cardiac CT determined plaque characterization

Study Design and aim Algorithm used Population Outcome

Wei 201427 Retrospective, automated detection of

non-calcified plaques, grouped by vessel

diameter

Topological soft-gradient

detection method

83 patients AUC: 0.87+ 0.01

Sensitivity: 70–90%

False-positive rate:

1.39–3.16 per scan

Dey 201828 Prospective, multicentre trial performing

semi-automated quantification of calcified

and non-calcified plaques, and plaque

length and volume

Ensemble classification

approach with LogitBoost

and single-node decision

trees

80 patients (90% training, 10%

testing)

Information gain ratio

• Low-density

non-calcified plaques:

0.097

• Plaque length: 0.092

• Plaque volume:

,0.001

Masuda

201929
Retrospective comparison of

ML-determined plaque characterization

vs. median CT number

Extreme gradient boosting 78 patients AUC

• ML: 0.92 (95% CI:

0.86–0.92)

• Median CT number:

0.83 (95% CI: 0.75–

0.92)

Zreik 201930 Retrospective, detection, characterization

and assessment of stenosis

Multi-task recurrent

convolutional neural

network

163 patients (60% training, 40%

testing)

Accuracy

• Detection and

characterization: 0.77

• Stenosis: 0.80

Al’Aref

202031
Case-control study identifying culprit lesions

with multiple models

Boosted ensemble algorithm 468 patients at high-risk of ACS

(80% training, 20% testing)

AUC of best model: 0.77

(95% CI: 0.60–0.76)

Han 202032 Retrospective cohort study identification of

individuals at risk of rapid coronary plaque

progression

Boosted ensemble

classification (LogitBoost)

1083 patients who underwent

serial CTs in the PARADIGM

registry (70% training, 30%

testing)

AUC: 0.83 (95% CI:

0.78–0.89)

Muscogiuri

202033
Automated categorization to Coronary

Artery Disease Reporting and Data

System (CAD-RADS) guidance using

three models

CNN 208 patients Sensitivity: 47–82%

Specificity: 58–91%

Negative predictive

value: 74–92%

Positive predictive

value: 46–69%

Accuracy: 60–86%

Classification time

• ML: 104 s per read

• Expert reader: 530 s

per read

Tesche

202134
Retrospective prognostication using clinical

parameters and ML-derived plaque

characteristics at 5-year follow-up

Boosted ensemble algorithm

(RUSBoost)

361 patients with suspected

CAD

AUC 0.96

Sensitivity 0.97

Specificity 0.86

Yang 202135 Retrospective prognostication using clinical

parameters and ML-derived plaque

characteristics at 5-year follow-up

Boruta algorithm and

hierarchical clustering

1013 vessels AUC for low FFR of best

model: 0.797 (P,

0.001)

Testing includes validation. Statistics are per patient.
95% CI, 95% confidence interval; CNN: convolutional neural network; MACE, major adverse cardiovascular events; ML, machine learning; AUC, area under the curve; CAD, coronary
artery disease.
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Table 5 Summary of articles investigating the use of ML in cardiac CT determined EAT

Study Design and aim Algorithm used Population Outcome

Rodrigues

201636
Prospective, automatic segmentation of

mediastinal and epicardial adipose

tissue using several algorithms

compared with manual segmentation

CNN, probabilistic models, and

decision tree algorithms

20 patients Random forest classification was

superior

Accuracy: 98.5%

DSC for mediastinal and EAT: 0.98

Norlén 201637 Automatic pericardial segmentation and

epicardial adipose tissue

quantification vs. expert readers

Multi-atlas technique and

random forest classification

combined into a Markov

random field

30 examinations

(SCAPIS study)

(training 67%, testing

33%)

Pearson’s correlation vs. two

experts: r. 0.998

Segmentation time: 52 s

Rodrigues

201738
Prediction of mediastinal and epicardial

adipose tissue volumes vs. expert

readers

Rotation forest algorithm using

multilayer perceptron

Regressor

50 examination images Pearson’s correlation: 0.988

Relative absolute error: 14.4%

Root relative squared error 15.7%

Commandeur

201839
Fully automated assessment of

mediastinal and epicardial adipose

tissue vs. expert readers

CNN 250 participants (80%

training, 20% testing)

Pearson’s correlation

• EAT: 0.924

• Mediastinal adipose tissue: 0.945

DSC

• EAT: 0.823

• Mediastinal adipose tissue: 0.905

Commandeur

201940
Fully automated quantification and

assessment of progression at

follow-up of mediastinal and

epicardial adipose tissue vs. expert

readers

CNN with TensorFlow

framework

850 participants (80%

training, 20% testing)

Pearson’s correlation vs. expert

reader

• Quantification: r. 0.973

• Progression at follow-up: r= 0.905

Quantification mean time: 1.57 s

Oikonomou

201941
Prediction of cardiac risk by analysis of

radiomic profile of coronary

perivascular adipose tissue (three

studies)

Random forest 312 patients • Radiomic features linked to

expression of inflammatory,

fibrotic and vascularity genes

• Fat radiomic profile provided

superior MACE prediction at

5-year follow-up relative to

traditional risk stratification

• Fat radiomic profile elevated in

patients with MI relative to

matched controls

Chernina

202042
Retrospective, automatic vs.

semi-automatic vs. expert radiologist

for acquisition of EAT volume

3D convolutional network 452 (78% training, 22%

testing)

Pearson’s correlation

• ML vs. semi-automatic: r. 0.95

• ML vs. expert radiologists: r. 0.98

He 2000b43 Retrospective, simultaneous myocardial

and pericardial fat quantification

3D deep attenuation U-Net

(DAU-net)

422 patients with

suspected CVD

(testing)

Median DSC pericardial fat: 0.88

Median DSC myocardium: 0.96

Consistency with contour, ICC:

0.97; P, 0.05

He 2000a44 Retrospective, automatic vs. manual

segmentation of epicardial adipose

tissue

3D deep attenuation U-Net

(DAU-net)

200 patients Sensitivity: 0.91

Specificity: 0.95

ML median DSC pericardial fat:

0.93

Manual control median DSC

pericardial fat: 0.92

Kroll 202145 Retrospective comparison of CAC

scores and pericardial fat in coronary

calcium CT scans

Multi-resolution U-Net 3D

network

1066 patients at

intermediate risk of

CAD (9% training,

91% testing)

Demonstrated automated adipose

tissue analysis.

Median DSC pericardium/muscle:

0.96

Testing includes validation. Statistics are per patient. Accuracy was defined in Rodrigues36 as (true positive+ true negative/total population). CNN, convolutional neural networks;
DSC, dice similarity coefficient; EAT, epicardial adipose tissue; MACE, major adverse cardiovascular events; MI, myocardial infarction; ML, machine learning.
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Table 6 Summary of articles investigating the use of ML, cardiac CT, and AS

Study Design and aim Algorithm used Participants Outcome

Grbic 201346 Retrospective, automated prediction

of aortic annulus perimeter and

area

— 11 Accuracy: 1.30+ 23 mm

Predicted implant size error: 1.75+ 40 mm

Aortic annulus error: 1.32 mm

‘errors in predicted implant deployment were

of 1.74+ 0.4 mm in average and 1.32 mm in

aortic valve annulus region, which is almost

three times lower than the average gap of 3 mm

between consecutive implant sizes.’

Elattar 201447 Automated segmentation of the aortic

root

Connected component

analysis and fuzzy

classification

20 DSC

• ML: 0.95+ 0.03

• Expert reader: 0.95+ 0.03

Mean error

• ML: 0.74+ 0.39 mm

• Expert reader: 0.68+ 0.34 mm

Time

• ML: 90 s

Expert reader: 20 min

Liang 201748 Automated reconstruction of the

aortic valve

Neighbour-constrained

segmentation

10 Mean discrepancy ML vs. expert reader: 1.57 mm

Al Abdullah

201849
Automated identification of aortic

valve landmarks

Randomized regression

tree-based algorithm

(colonial walk)

71 Mean localization error: 2.04 mm

Inter-observer variability: 2.38 mm

Time

• ML: 12 mss

• Expert reader: 4 min

Astudillo 201950 Retrospective, automated prediction

of aortic annulus perimeter and

area

CNN 473 patients

(75% training,

25% testing)

Difference between predicted values and device

size selected:

Area

• ML: 3.3+ 16.8 mm2

• Expert reader: 1.3+ 21.1 mm2

Perimeter

• ML: 0.6+ 1.7 mm

• Expert reader: 0.2+ 2.5 mm

The difference between manually obtained aortic

annulus measurements and those produced by the

automated method were comparable to

intra-operator variability

Theriault-Lauzier

202051
Automated location and orientation of

the aortic valve annular plane

CNN 94 patients with

severe AS

Relative measurement error

• Annular area: 4.73+ 5.32%

Annular perimeter: 2.46+ 2.94%

Agasthi 202152 Retrospective, predictive modelling of

1-year life expectancy of TAVR

candidates

Gradient boosting ML

(caret R package)

1055 AUC

1 year: 0.72

Kang 202153 Predictive modelling to diagnose AS

using CT features of aortic valve

calcium

Least absolute shrinkage

and selection operator

(LASSO), random

forests, and eXtreme

Gradient boosting

(XGBoost)

Retrospective

study of 408

patients (240

with and 168

without

severe AS)

3/9 radiomics prediction models were successful

in showing greater ability to distinguish AS.

Differences for all models were not statistically

significant (P. 0.05)

Maeda 202154 Retrospective, predictive modelling of

life-expectancy of TAVR candidates

Cox proportional hazard

regression

388 (259 AUC

1 year: 0.79

Continued
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morphological traits on 3D fractal features to predict the risk of AF
recurrence from pre-ablation contrast CTs (AUC: 0.87). This is likely
because LA wall thickness and scarring depth that can be detected
pre-procedure, relate to ablation success. Atta-Fosu et al.62 em-
ployed a similar technique using Gradient boosted classifiers
(XGBoost) and found a lower AUC for shape alone (0.67) that
was similar when combined with clinical features (0.78). In addition,

it has been reported that post-ablation AF recurrence secondary to
non-PV triggers can also be predicted with a similarly high degree of
performance (AUC: 0.88).59 Given the utility of LA volumes mea-
surements obtained by cardiac CT, it has been incorporated into a
recently validated ATLAS score to predict AF recurrence after first
PV isolation radiofrequency PV isolation ablation.72 Indeed, the appli-
cation of CNN algorithms to the measurement of LV volume on
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Table 6 Continued

Study Design and aim Algorithm used Participants Outcome

training, 129

testing)

3 years: 0.76

5 years: 0.78

Shirakawa 202155 Proof-of-concept automated precise

segmentation from CT of cardiac

structure in the pre-operative

assessment of patients with HOCM

CNN 2 ML segmentation was ca. 36 faster

Testing includes validation. Statistics are per patient.
ML, machine learning, DSC, dice similarity coefficient; AUC, area under the curve; CNN, convolutional neural network; HOCM, hypertrophic obstructive cardiomyopathy.
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Table 7 Summary of articles investigating the use of ML, cardiac CT, and AF

Study Design and aim Algorithm used Population Outcome

Zheng

201456
Retrospective subsection segmentation

of the left atrium

Marginal space

learning-based

object segmentation

687 datasets Mean mesh error

• Small volumes: 1.07 mm

• Large volumes: 1.32 mm

Bratt

201957
Retrospective prediction of AF using

left atrial volume vs. expert reader

CNN (U-Net) 1000 patients undergoing

routine CT thoraxes

(50% training, 50%

testing)

AUC: 0.77 (95% CI: 0.71–0.82)

Age-adjusted relative risk: 2.9

Mean DSC

• ML: 0.85

• Expert reader: 0.84

Chen

202058
Retrospective detection and segmentation

of the left atrium vs. expert reader

CNN (U-Net) 518 patients who

underwent pulmonary

vein ablation

Accuracy: 99.0%

Sensitivity 99.3%

Specificity: 98.7%

Liu 202059 Retrospective prediction of post-ablation

AF recurrence due to non-pulmonary

vein triggers

CNN (U-Net)

(ResNet34)

521 patients (73% training,

27% testing)

AUC: 0.88+ 0.07

Accuracy: 88.6% +2.3

Sensitivity 75.0% +5.8

Specificity 95.7% +1.8

Firouznia

202160
Retrospective prediction of post-ablation

AF recurrence using morphological

analysis of the left atrial myocardium and

pulmonary veins

Random forest 203 patients AUC: 0.87 (95% CI: 0.82–0.93)

Deepa

202161
Prospective ML detection of epicardial fat

within the left atrium

CNN 10 patients Accuracy: 89.22%

Sensitivity: 90.18%

Specificity: 88.52%

Atta-Fosu

202162
Retrospective investigation of left atrial

shape differences and prediction of

post-ablation AF recurrence

Gradient boosted

classifier (XGBoost)

68 patients AUC for shape features from the SOI:

0.67

AUC for clinical parameters: 0.71

Testing includes validation. Statistics are per patient.
AUC, area under the curve; AF, atrial fibrillation; CNN, convolutional neural network; DSC, dice similarity coefficient; ML, machine learning; SOI, shape of interest.
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routine non-gated chest CT have been able to effectively predict
AF.59 Given the morbidity andmortality associated with undiagnosed
paroxysmal AF and the increasing use of thoracic CT imaging this
may be a worthwhile add-on.

Discussion and limitations
Given the black-box nature of commercial ML tools, we may not be
able to fully analyse the reasoning behind the outputs of these com-
plex models, and as such may not easily identify implicit biases within
a given dataset or methodology. Algorithms lack context and causal-
ity for their predictions. This may be less of an issue for algorithms
which aim to automate calciummeasurements but would be very sig-
nificant for example in predictive algorithms for AF status or neural
networks to simulate device biomechanics for TAVR.

Candidate selection and accurate labelling for the training of mod-
els are the most crucial steps in the development of ML protocols.
Disparities in these factors between studies may explain variability
in results demonstrated in Tables 2–7. Utilizing large multicentre
studies, such as Nakanishi et al.,73 in predicting coronary heart dis-
ease events from CTs from the Multi-Ethnic Study of
Atherosclerosis cohort, or Coenen et al.,6 for assessing the diagnos-
tic accuracy of CT-FFRML within the MACHINE consortium, is a use-
ful start in the optimization of models for a broader patient
population and may account for labelling issues in training datasets.
Reproducibility can also be hampered by a requirement for specific
CT scanner capabilities, the use of distinct imaging protocols, and
other methodological heterogeneity. Machine learning has already
been applied to automate image quality assessment in CCTA studies
in a reproducible manner, which may provide a tool to stratify clinical
trials to the levels of image quality. Another challenge that is apparent
from the findings of this review is the lack of standardization in
metrics used to analyse outcomes (i.e. AUC, dice coefficients, or
accuracy). Though the chosen metric is matched to the task it is
undertaking, for example, AUC for classification or DC for segmen-
tation, this hampers comparability. Many ML models exist to address
the same task with varying metrics of performance and results, as
evidenced by Tables 2–7. Approaches such as that undertaken by
Lopes et al.,74 who compared several ML models on a single large
standardized dataset, need to increasingly be undertaken to provide
more insights into an optimal methodology for diagnostic and prog-
nostic reliability. With the introduction of a new datasets, the models
will need to be continually retrained and in so doing new features
may need to be accounted for.

Conclusion
Application of ML protocols to cardiac CT output has many benefits
in automating time-consuming calculations, risk stratification and
prognostication, and in pre-operative procedure planning across sev-
eral pathologies including CAD, epicardial adiposity quantification,
AF, and AS. Machine learning provides exciting advances in CCT-
and CCTA-based calcium scoring and in near real-time analysis of
flow-limiting lesions on CT-FFR. ML-CT-derived measurements
and predictive prognostics may assist patient selection for radiofre-
quency ablation in patients with refractory AF. ML-CT may guide

device selection and improve pre-procedural processes for TAVR
candidates. Though far from replacing the bedside physician, efforts
to incorporate these novel models into clinical practice may reduce
time and resources while at the same time improving patient
outcomes.
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