653 research outputs found

    Recent Technologies and Control Methods for Electric Power Systems in More Electric Aircrafts: A Review

    Get PDF
    This paper is aimed at discussing the current trends in the design of Electric Power Systems (EPS) architectures which are intended to be implemented in More Electric Aircrafts (MEAs). Various EPS architectures such as HVAC, HVDC, hybrid HVAC/HVDC etc are studied and compared. Various control techniques which are implemented in order to control the EPS are also reviewed and they are compared on the basis of power quality, ease of installation and maintenance, possibility of future expansion of EPS, need of active power filters and so on. On the basis of the evaluation of various EPS architectures, the need of fuel cell installation in the EPS to be used for MEAs is explained and various ways to incorporate the fuel cell in the said EPS are discussed. Further the need of DC to DC converters in the power grid of a MEA is discussed and various possible choices for the topologies of DC to DC converters are compared on the basis of the parameters such as efficiency, transient response, reliability, electromagnetic emissions, size, weight and so on. Moreover, various controllers such as PI controller, PID controller, Sliding Mode Controller etc which can be used for a closed loop control of DC to DC converters are discussed

    A Novel Type-2 Fuzzy Logic for Improved Risk Analysis of Proton Exchange Membrane Fuel Cells in Marine Power Systems Application

    Get PDF
    A marine energy system, which is fundamentally not paired with electric grids, should work for an extended period with high reliability. To put it in another way, by employing electrical utilities on a ship, the electrical power demand has been increasing in recent years. Besides, fuel cells in marine power generation may reduce the loss of energy and weight in long cables and provide a platform such that each piece of marine equipment is supplied with its own isolated wire connection. Hence, fuel cells can be promising power generation equipment in the marine industry. Besides, failure modes and effects analysis (FMEA) is widely accepted throughout the industry as a valuable tool for identifying, ranking, and mitigating risks. The FMEA process can help to design safe hydrogen fueling stations. In this paper, a robust FMEA has been developed to identify the potentially hazardous conditions of the marine propulsion system by considering a general type-2 fuzzy logic set. The general type-2 fuzzy system is decomposed of several interval type-2 fuzzy logic systems to reduce the inherent highly computational burden of the general type-2 fuzzy systems. Linguistic rules are directly incorporated into the fuzzy system. Finally, the results demonstrate the success and effectiveness of the proposed approach in computing the risk priority number as compared to state-of-the-art methods

    Synergetic Control of a Hybrid Battery-Ultracapacitor Energy Storage System

    Get PDF
    This chapter presents a synergy-based cascade control scheme for a hybrid battery-ultracapacitor (UC) energy storage system. The purpose is to improve the dynamic response of the battery-based energy storage system using an ultracapacitor module as an auxiliary energy storage unit. A bidirectional DC-DC converter is designed to interface between the ultracapacitor module and the main DC-bus. The control scheme is based on a fast inner current control loop using sliding mode control and an outer loop for DC-bus voltage regulation using synergy-based control. The improvement in performance is demonstrated through simulation and experiments. The results show that the DC-bus voltage is well regulated under external load disturbances with fast dynamic transients. The ultracapacitor module is able to absorb the sudden load variations and limit the battery power requirements by maintaining an optimal power balance between the two embedded storage units. The performance of the proposed synergy-based controller is compared with the standard PI controller, and its ability to achieve optimal transient performance is verified

    A state-of-the-art review on torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains

    Get PDF
    © 2019, Levrotto and Bella. All rights reserved. Electric vehicles are the future of private passenger transportation. However, there are still several technological barriers that hinder the large scale adoption of electric vehicles. In particular, their limited autonomy motivates studies on methods for improving the energy efficiency of electric vehicles so as to make them more attractive to the market. This paper provides a concise review on the current state-of-the-art of torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains (FEVIADs). Starting from the operating principles, which include the "control allocation" problem, the peculiarities of each proposed solution are illustrated. All the existing techniques are categorized based on a selection of parameters deemed relevant to provide a comprehensive overview and understanding of the topic. Finally, future concerns and research perspectives for FEVIAD are discussed

    Power management and control stategies of renewable energy resources for micro-grid application

    Get PDF
    Microgrids (MGs) have become an increasingly familiar power sector feature in recent years and goes through the increase of renewable energies penetration. MG is defined as a group of interconnected loads and multiple distributed generators that is able to operate in grid-connected or islanding mode. Recent reports claim dramatic growth in projects planned for hundreds of GWs worldwide. Notably, following to many natural disasters, the concept of MG and its perceived benefits shifted beyond economic and environmental goals towards resilience. Consequently, MGs have begun to find a natural place in the regulatory and policy arena. Remote areas, facilities with low-quality local energy resources and critical infrastructure are all potential need the MGs solution. However, MGs have some disadvantages as the complexity of control and integration to keep the power quality to acceptable standards. The energy storage system requires more space and maintenance. Finally, protection is one of the important challenges facing the implementation of MGs. The present doctoral research is based on the philosophy of MGs for optimal integration and power management in an effective and efficient way to provide a sustainable and reliable power supply to consumers while reducing the overall cost. This work proposes a novel control strategies and design approaches of micro-grids for remote areas and grid connected system in which both the reliability of continuous power supply and power quality issues are treated. Moreover, this thesis also introduces the concept of Net Zero Energy House in which the system is designed in such a way that the house produces as much energy as it consumes over the year. Many controls algorithms have been investigated in order to find the best way to reduce the sensors’ number and the degree of control complexity while keeping better power quality as well as the system reliability. The developed concept is successfully validated through simulation as well as extensive experimental investigations. Particular attention is paid to the optimal integration of MGs based on the climate data of Central African States
    corecore