227 research outputs found

    On Stabilization of Cart-Inverted Pendulum System: An Experimental Study

    Get PDF
    The Cart-Inverted Pendulum System (CIPS) is a classical benchmark control problem. Its dynamics resembles with that of many real world systems of interest like missile launchers, pendubots, human walking and segways and many more. The control of this system is challenging as it is highly unstable, highly non-linear, non-minimum phase system and underactuated. Further, the physical constraints on the track position control voltage etc. also pose complexity in its control design. The thesis begins with the description of the CIPS together with hardware setup used for research, its dynamics in state space and transfer function models. In the past, a lot of research work has been directed to develop control strategies for CIPS. But, very little work has been done to validate the developed design through experiments. Also robustness margins of the developed methods have not been analysed. Thus, there lies an ample opportunity to develop controllers and study the cart-inverted pendulum controlled system in real-time. The objective of this present work is to stabilize the unstable CIPS within the different physical constraints such as in track length and control voltage. Also, simultaneously ensure good robustness. A systematic iterative method for the state feedback design by choosing weighting matrices key to the Linear Quadratic Regulator (LQR) design is presented. But, this yields oscillations in cart position. The Two-Loop-PID controller yields good robustness, and superior cart responses. A sub-optimal LQR based state feedback subjected to H∞ constraints through Linear Matrix Inequalities (LMIs) is solved and it is observed from the obtained results that a good stabilization result is achieved. Non-linear cart friction is identified using an exponential cart friction and is modeled as a plant matrix uncertainty. It has been observed that modeling the cart friction as above has led to improved cart response. Subsequently an integral sliding mode controller has been designed for the CIPS. From the obtained simulation and experiments it is seen that the ISM yields good robustness towards the output channel gain perturbations. The efficacies of the developed techniques are tested both in simulation and experimentation. It has been also observed that the Two-Loop PID Controller yields overall satisfactory response in terms of superior cart position and robustness. In the event of sensor fault the ISM yields best performance out of all the techniques

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Dual Mode Control of an Inverted Pendulum: Design, Analysis and Experimental Evaluation

    Get PDF
    We present an inverted pendulum design using readily available V-slot rail components and 3D printing to construct custom parts. To enable the examination of different pendulum characteristics, we constructed three pendulum poles of different lengths. We implemented a brake mechanism to modify sliding friction resistance and built a paddle that can be attached to the ends of the pendulum poles. A testing rig was also developed to consistently apply disturbances by tapping the pendulum pole, characterizing balancing performance. We perform a comprehensive analysis of the behavior and control of the pendulum. This begins by considering its dynamics, including the nonlinear differential equation that describes the system, its linearization, and its representation in the s-domain. The primary focus of this work is the development of two distinct control modes for the pendulum: a velocity control mode, designed to balance the pendulum while the cart is in motion, and a position control mode, aimed at maintaining the pendulum cart at a specific location. For this, we derived two different state space models: one for implementing the velocity control mode and another for the position control mode. In the position control mode, integral action applied to the cart position ensures that the inverted pendulum remains balanced and maintains its desired position on the rail. For both models, linear observer-based state feedback controllers were implemented. The control laws are designed as linear quadratic regulators (LQR), and the systems are simulated in MATLAB. To actuate the physical pendulum system, a stepper motor was used, and its controller was assembled in a DIN rail panel to simplify the integration of all necessary components. We examined how the optimized performance, achieved with the medium-length pendulum pole, translates to poles of other lengths. Our findings reveal distinct behavioral differences between the control modes

    Bio-inspired robotic control in underactuation: principles for energy efficacy, dynamic compliance interactions and adaptability.

    Get PDF
    Biological systems achieve energy efficient and adaptive behaviours through extensive autologous and exogenous compliant interactions. Active dynamic compliances are created and enhanced from musculoskeletal system (joint-space) to external environment (task-space) amongst the underactuated motions. Underactuated systems with viscoelastic property are similar to these biological systems, in that their self-organisation and overall tasks must be achieved by coordinating the subsystems and dynamically interacting with the environment. One important question to raise is: How can we design control systems to achieve efficient locomotion, while adapt to dynamic conditions as the living systems do? In this thesis, a trajectory planning algorithm is developed for underactuated microrobotic systems with bio-inspired self-propulsion and viscoelastic property to achieve synchronized motion in an energy efficient, adaptive and analysable manner. The geometry of the state space of the systems is explicitly utilized, such that a synchronization of the generalized coordinates is achieved in terms of geometric relations along the desired motion trajectory. As a result, the internal dynamics complexity is sufficiently reduced, the dynamic couplings are explicitly characterised, and then the underactuated dynamics are projected onto a hyper-manifold. Following such a reduction and characterization, we arrive at mappings of system compliance and integrable second-order dynamics with the passive degrees of freedom. As such, the issue of trajectory planning is converted into convenient nonlinear geometric analysis and optimal trajectory parameterization. Solutions of the reduced dynamics and the geometric relations can be obtained through an optimal motion trajectory generator. Theoretical background of the proposed approach is presented with rigorous analysis and developed in detail for a particular example. Experimental studies are conducted to verify the effectiveness of the proposed method. Towards compliance interactions with the environment, accurate modelling or prediction of nonlinear friction forces is a nontrivial whilst challenging task. Frictional instabilities are typically required to be eliminated or compensated through efficiently designed controllers. In this work, a prediction and analysis framework is designed for the self-propelled vibro-driven system, whose locomotion greatly relies on the dynamic interactions with the nonlinear frictions. This thesis proposes a combined physics-based and analytical-based approach, in a manner that non-reversible characteristic for static friction, presliding as well as pure sliding regimes are revealed, and the frictional limit boundaries are identified. Nonlinear dynamic analysis and simulation results demonstrate good captions of experimentally observed frictional characteristics, quenching of friction-induced vibrations and satisfaction of energy requirements. The thesis also performs elaborative studies on trajectory tracking. Control schemes are designed and extended for a class of underactuated systems with concrete considerations on uncertainties and disturbances. They include a collocated partial feedback control scheme, and an adaptive variable structure control scheme with an elaborately designed auxiliary control variable. Generically, adaptive control schemes using neural networks are designed to ensure trajectory tracking. Theoretical background of these methods is presented with rigorous analysis and developed in detail for particular examples. The schemes promote the utilization of linear filters in the control input to improve the system robustness. Asymptotic stability and convergence of time-varying reference trajectories for the system dynamics are shown by means of Lyapunov synthesis

    An experimental study for stabilization of inverted pendulum

    Get PDF
    Stabilization of Inverted Pendulum is defined as a very basic classical control problem in Control System. The Dynamics of Cart Inverted Pendulum is related to many real life applications like missile launching system, balancing systems like human walking, Aircraft landing pad in sea etc. This is a highly Unstable and non-linear system. This system is a under actuated system and also a non-minimum phase system so design a Controller for Inverted Pendulum System is very complex. This thesis includes system and hardware description of Inverted Pendulum System, Dynamics of the system, State space model, Derivation of Transfer Functions. In Past a lot of research work has already been done in Inverted Pendulum for development of Control Strategy. Here in this thesis we have done a very small work to design Control Strategy and also validate them with real-time experiments. In this thesis two-loop PID, PID+PI & LQR control have been implemented for Inverted Pendulum System and this control strategies gives satisfactory respons

    Humanoid robot omnidirectional walking trajectory generation and control

    Get PDF
    Walking humanoid machines, once only seen or read in science fiction, became reality with the intensive research of the last four decades. However, there is a long way to go in the direction of technical achievements before humanoid robots can be used widely as human assistants. The design of a controller which can achieve a steady and stable walk is central in humanoid robotics. This control cannot be achieved if the reference trajectories are not generated suitably. The Zero Moment Point (ZMP) is the most widely used stability criterion for trajectory generation. The Center of Mass (CoM) reference can be obtained from the ZMP reference in a number of ways. A natural ZMP reference trajectory and a Fourier series approximation based method for computing the CoM reference from it, was previously proposed and published for the Sabanci University Robotics ReseArch Laboratory Platform (SURALP), for a straight walk. This thesis improves these techniques by modifying the straight walk reference trajectory into an omnidirectional one. The second contribution of this thesis is controller designs in order to cope with the changing slopes of the walking surface. The proposed controllers employ the trunk link rotational motion to adapt to the ground surface. A virtual pelvis link is introduced for the robots which do not posses roll and pitch axis in pelvis link. The proposed reference generation and control algorithms are tested on the humanoid robot SURALP. The experiments indicate that these methods are successful under various floor conditions

    Intelligent model-based control of complex three-link mechanisms

    Get PDF
    The aim of this study is to understand the complexity and control challenges of the locomotion of a three-link mechanism of a robot system. In order to do this a three-link robot gymnast (Robogymnast) has been built in Cardiff University. The Robogymnast is composed of three links (one arm, one torso, one leg) and is powered by two geared DC motors. Currently the robot has three potentiometers to measure the relative angles between adjacent links and only one tachometer to measure the relative angular position of the first link. A mathematical model for the robot is derived using Lagrange equations. Since the model is inherently nonlinear and multivariate, it presents more challenges when modelling the Robogymnast and dealing with control motion problems. The proposed approach for dealing with the design of the control system is based on a discrete-time linear model around the upright position of the Robogymnast. To study the swinging motion of the Robogymnast, a new technique is proposed to manipulate the frequency and the amplitude of the sinusoidal signals as a means of controlling the motors. Due to the many combinations of the frequency and amplitude, an optimisation method is required to find the optimal set. The Bees Algorithm (BA), a novel swarm-based optimisation technique, is used to enhance the performance of the swinging motion through optimisation of the manipulated parameters of the control actions. The time taken to reach the upright position at its best is 128 seconds. Two different control methods are adopted to study the balancing/stablising of the Robogymnast in both the downward and upright configurations. The first is the optimal control algorithm using the Linear Quadratic Regulator (LQR) technique with integrators to help achieve and maintain the set of reference trajectories. The second is a combination of Local Control (LC) and LQR. Each controller is implemented via reduced order state observer to estimate the unmeasured states in terms of their relative angular velocities. From the identified data in the relative angular positions of the upright balancing control, it is reported that the maximum amplitude of the deviation in the relative angles on average are approximately 7.5° for the first link and 18° for the second link. It is noted that the third link deviated approximately by 2.5° using only the LQR controller, and no significant deviation when using the LQR with LC. To explore the combination between swinging and balancing motions, a switching mechanism between swinging and balancing algorithm is proposed. This is achieved by dividing the controller into three stages. The first stage is the swinging control, the next stage is the transition control which is accomplished using the Independent Joint Control (IJC) technique and finally balancing control is achieved by the LQR. The duration time of the transition controller to track the reference trajectory of the Robogymnast at its best is found to be within 0.4 seconds. An external disturbance is applied to each link of the Robogymnast separately in order to study the controller's ability to overcome the disturbance and to study the controller response. The simulation of the Robogymnast and experimental realization of the controllers are implemented using MATLAB® software and the C++ program environment respectively

    Nonlinear optimal control and its application to a two-wheeled robot

    Get PDF
    This research studies two advanced nonlinear optimal control techniques, i.e., the freezing control and the iteration scheme, and their associated applications, such as a single inverted pendulum (IP) on a cart system and a two-wheeled robot (TWR) system. These techniques are applied to stabilise the highly unstable nonlinear systems in the vertical upright position when facing different initial pitch angles. Different linear optimal controllers (linear quadratic regulator and linear quadratic Gaussian) and nonlinear optimal controllers are designed and applied to the models for concurrent control of all state variables. The controlled systems are tested in simulation and the best performing control design is eventually implemented on a robot prototype built with an educational kit – the LEGO EV3, after practical factors such as motor voltage limitation, gyro sensor drift and model uncertainties have been considered, analysed and dealt with. Simulations and experiments on the TWR robot prototype demonstrate the superiority of the nonlinear freezing optimal control technique, showing larger operation ranges of the robot pitch angle and better response performances (i.e., shorter rise time, less overshoot and reduced settling time) than the linear optimal control methods. In particular, a novel mixing method to create a new nonlinear model (Model AB) from two different models on the same physical prototype with an increased controllable region of the TWR system is introduced, for the first time, for the calculations of optimal feedback gains for the system. Significantly, the utilisation of this mixed model, combined with the nonlinear freezing controller, achieves true global control of the TWR, even from an initial pitch angle of 90° (i.e., the horizontal position), when a motor with a saturated voltage of 48V and nominal torque of 298 mNm is adopted in simulation tests. This is wider than the angle achievable from the primary model (Model A) and any other single feedback control method on TWR reported in the literature. Robustness tests when introducing model uncertainties by adding mass and height on the TWR also illustrate excellent control performances from the nonlinear optimal control in both simulations and hardware implementations

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AωA \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AωA \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AωAOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AωA \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AωAOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201
    corecore