32,390 research outputs found

    The application of the fuzzy aggregation norms to technical staff tasks delegation

    Get PDF
    The methods for calculating professional competence levels of technicians based on fuzzy relations and the optimistic fuzzy aggregation norm has been proposed. Since it is difficult to estimate levels of professional competence of all tasks by all members of a team of technicians, the proposed method depends on a sequence of fuzzy relations which values are relatively easy to estimate and which the S-T-compositions produces the fuzzy relation of professional competence of all technicians. The proposed method is compared with the application of Minkowski metrics which is one of the objective methods of searching the best object in multi-criteria decision systems. Based on these two methods, the ranking of technicians can be prepared. Moreover, the method of results visualization is proposed

    A Novel Image Similarity Measure Based on Greatest and Smallest Eigen Fuzzy Sets

    Get PDF
    A novel image similarity index based on the greatest and smallest fuzzy set solutions of the max–min and min–max compositions of fuzzy relations, respectively, is proposed. The greatest and smallest fuzzy sets are found symmetrically as the min–max and max–min solutions, respectively, to a fuzzy relation equation. The original image is partitioned into squared blocks and the pixels in each block are normalized to [0, 1] in order to have a fuzzy relation. The greatest and smallest fuzzy sets, found for each block, are used to measure the similarity between the original image and the image reconstructed by joining the squared blocks. Comparison tests with other well-known image metrics are then carried out where source images are noised by applying Gaussian filters. The results show that the proposed image similarity measure is more effective and robust to noise than the PSNR and SSIM-based measures

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    On aggregation operators of transitive similarity and dissimilarity relations

    Get PDF
    Similarity and dissimilarity are widely used concepts. One of the most studied matters is their combination or aggregation. However, transitivity property is often ignored when aggregating despite being a highly important property, studied by many authors but from different points of view. We collect here some results in preserving transitivity when aggregating, intending to clarify the relationship between aggregation and transitivity and making it useful to design aggregation operators that keep transitivity property. Some examples of the utility of the results are also shown.Peer ReviewedPostprint (published version

    Relations among Security Metrics for Template Protection Algorithms

    Full text link
    Many biometric template protection algorithms have been proposed mainly in two approaches: biometric feature transformation and biometric cryptosystem. Security evaluation of the proposed algorithms are often conducted in various inconsistent manner. Thus, it is strongly demanded to establish the common evaluation metrics for easier comparison among many algorithms. Simoens et al. and Nagar et al. proposed good metrics covering nearly all aspect of requirements expected for biometric template protection algorithms. One drawback of the two papers is that they are biased to experimental evaluation of security of biometric template protection algorithms. Therefore, it was still difficult mainly for algorithms in biometric cryptosystem to prove their security according to the proposed metrics. This paper will give a formal definitions for security metrics proposed by Simoens et al. and Nagar et al. so that it can be used for the evaluation of both of the two approaches. Further, this paper will discuss the relations among several notions of security metrics

    Visual analysis of sensor logs in smart spaces: Activities vs. situations

    Get PDF
    Models of human habits in smart spaces can be expressed by using a multitude of representations whose readability influences the possibility of being validated by human experts. Our research is focused on developing a visual analysis pipeline (service) that allows, starting from the sensor log of a smart space, to graphically visualize human habits. The basic assumption is to apply techniques borrowed from the area of business process automation and mining on a version of the sensor log preprocessed in order to translate raw sensor measurements into human actions. The proposed pipeline is employed to automatically extract models to be reused for ambient intelligence. In this paper, we present an user evaluation aimed at demonstrating the effectiveness of the approach, by comparing it wrt. a relevant state-of-the-art visual tool, namely SITUVIS

    (Quantum) Space-Time as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces

    Get PDF
    We develop a kind of pregeometry consisting of a web of overlapping fuzzy lumps which interact with each other. The individual lumps are understood as certain closely entangled subgraphs (cliques) in a dynamically evolving network which, in a certain approximation, can be visualized as a time-dependent random graph. This strand of ideas is merged with another one, deriving from ideas, developed some time ago by Menger et al, that is, the concept of probabilistic- or random metric spaces, representing a natural extension of the metrical continuum into a more microscopic regime. It is our general goal to find a better adapted geometric environment for the description of microphysics. In this sense one may it also view as a dynamical randomisation of the causal-set framework developed by e.g. Sorkin et al. In doing this we incorporate, as a perhaps new aspect, various concepts from fuzzy set theory.Comment: 25 pages, Latex, no figures, some references added, some minor changes added relating to previous wor
    • …
    corecore