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Abstract: A novel image similarity index based on the greatest and smallest fuzzy set solutions of the
max–min and min–max compositions of fuzzy relations, respectively, is proposed. The greatest and
smallest fuzzy sets are found symmetrically as the min–max and max–min solutions, respectively, to
a fuzzy relation equation. The original image is partitioned into squared blocks and the pixels in each
block are normalized to [0, 1] in order to have a fuzzy relation. The greatest and smallest fuzzy sets,
found for each block, are used to measure the similarity between the original image and the image
reconstructed by joining the squared blocks. Comparison tests with other well-known image metrics
are then carried out where source images are noised by applying Gaussian filters. The results show
that the proposed image similarity measure is more effective and robust to noise than the PSNR and
SSIM-based measures.

Keywords: image similarity; IQA; GEFS; SEFS; fuzzy relation

1. Introduction

One of the main computer vision goals is to check the similarities between images to
detect if images have been copied, altered, or degraded.

There are numerous types of image degradation and manipulation processes produc-
ing variations in a grey or color image. Simple manipulations occur by re-encoding or
resizing the image and generating near-exact copies, while more complex changes include
cropping, color variations, and collages with other images. Similarity measures can be used
to analyze the degree of similarity between images and evaluate how much an image has
been modified or degraded.

A first class of similarity measures between images used in Image Quality Assessment
(IQA) is given from comparisons of the corresponding pixel intensities. The Mean Square
Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) [1] are applied as the pixel intensity
measuring the similarity between two grey-level images. Two images are identical if the
corresponding MSE is null.

To include the spatial correlations with neighboring pixels, in [2], the Structural Simi-
larity Index Measure (SSIM) is introduced. The SSIM compares two images by evaluating
the brightness and contrast in the windows around each pixel.

Some variations of SSIM are used to improve the image quality assessment. The
Multiscale Structural Similarity Index Measure (MS-SSIM) is proposed in [3] to consider
details with different resolutions. In [4], a three-component weighted SSIM method, called
3-SSIM, is proposed, consisting of the distinction between three categories of regions in the
original image: edges, textures, and smooth. Then, a weighted SSIM measure is computed
in which weights are assigned to each category of region.

Some authors propose image similarity measures based on features. In [5], an index
based on the Phase Congruency (PC) [6], an invariant property of image features, is proposed
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as well. It is able to detect both intensity variations in the image and the presence of outliers
or noise. The image Gradient Magnitude (GM) [7], a contrast information measure sensitive
to noise, has also been used as a feature-based IQA similarity index [8–10]. In [9], the
authors show that the GM similarity index is more efficient and more robust than the PSNR
and SSIM.

In [11], a new feature-based IQA measure was proposed called the Feature-based
Structural Similarity Index Measure (FSIM) which combines both the PC and GM indices
(the contrast and the gradient have independent roles in the characterization of the image
quality). The experiments showed that the FSIM is more efficient than the PSNR and SSIM.
However, it is necessary to fix some parameters which depend particularly on the image
resolution and the viewing distance. A wavelet-based SIM measure, called the Complex
Wavelet Structural Similarity (CW-SSIM), is proposed in [12] to capture the phase changes
in the image. The CW-SSIM is robust to small rotations and translations, but it strongly
depends on many parameters, such as the size of the window and the robustness of the
similarity measure in the case of a low local signal-to-noise ratio.

In order to increase IQA performances, some researchers have recently proposed
image similarity measures based on the Convolutional Neural Network (CNN) since it
provides a complete description of the visual content of the image. A deep CNN model is
applied in [13] for image retrieval. In [14,15], a Siamese CNN model is proposed in which
the two images are represented as neural network-based feature vectors and the Euclidean
distance is used to assess the similarity between them. To match images having any size
without necessarily scaling, [16] proposed a hybrid image similarity measure combining
a triplet deep CNN with spatial pyramid pooling. A new deep CNN image similarity
measure combining spatial and feature characteristics is proposed in [17]. Lastly, a review
of the deep learning techniques applied to image similarity is given in [18].

Deep CNN-based image similarity measures are more efficient and noise-robust than
PSNR and SSIM-based measures but they require massive learning image datasets, as well
as high CPU time.

The main limitation of the feature-based image similarity measures is their computa-
tional efficiency; in addition, CNN-based measures require many parameters to be set, and,
furthermore, a long time is spent in the training phase.

Fuzzy-based methods are presented by some authors in order to find the similarities
between images. In [19], each image was coded as a fuzzy set and a similarity measure
between two images based on the fuzzy inclusion between the corresponding fuzzy sets
was proposed. A set of fuzzy similarity indices applied in color image retrieval was
proposed in [20]. A new fuzzy image similarity index based on the solutions of bilinear
fuzzy relation equations was also proposed in [21]; this image similarity measure improves
other fuzzy-based image similarity indices but its implementation is unsuccessful for huge
images due to the algorithm’s requirement for non-negligible execution times.

In this paper, we propose a new image similarity measure based on the definitions
of the Greatest Eigen Fuzzy Set (for short, GEFS) and Smallest Eigen Fuzzy Set (for short,
SEFS) of fuzzy relations [22–24].

Let X be a set and R be a fuzzy relation defined on X × X. The GEFS and SEFS are
fuzzy sets of X that represent the greatest and the smallest solutions of the fuzzy relation
equations: R ◦A = A and R•A = A, respectively, where A is a fuzzy set of X and the
operators ◦ and • are the max–min and min–max compositions, respectively. The greatest
and smallest fuzzy sets are found symmetrically as the solutions of these fuzzy relation
equations with respect to the max–min and min–max composition, respectively.

The GEFS and SEFS have been applied in image retrieval [25–27], in image reconstruc-
tion [28,29], and in decision problems [30,31]. In [32], an image retrieval method based
on the fuzzy-transform image compression technique was applied to image retrieval and
compared with the GEFS and SEFS image retrieval methods. It was found that this method
provides good performances for image retrieval, but it cannot be used for image similarity
because the reduced quality of compressed images can affect the similarity measure.
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The idea of this research is to compare two normalized images by treating them as
fuzzy relations. The two images are compared by measuring their Euclidean distance from
the differences between their GEFS and SEFS.

The results of image similarity tests performed in [25–27] showed that the GEFS and
SEFS image similarity measures are more efficient and robust to noise than pixel intensity
measures, though their use is limited to square images because the calculation of GEFS and
SEFS is performed only for square fuzzy relations.

To apply the GEFS and SEFS image similarity measure to any image, we partition the
image into square blocks (sub-images). The N ×M original image is partitioned in n × n
blocks where n < N and n < M.

Each block is normalized and transformed in an n × n fuzzy relation; then, the GEFS
and SEFS of each block are calculated. The image similarity between two N ×M images is
measured by calculating the mean Euclidean distance between the GEFS and SEFS of the
corresponding sub-images.

The main benefits of the proposed GEFS and SEFS approach are the following:

- It is computationally faster to calculate the iterative algorithm to compute SEFS and
GEFS as it converges quickly;

- It provides a very efficient image similarity measure as it improves the image similarity
of PSNR and SSIM-based indices; moreover, it is more robust to image noise than
PSNR and SSIM-based similarity measures;

- Unlike other image quality measures, it does not depend on specific parameters that
must be set beforehand and does not need massive learning image datasets to run.

The remainder of the paper is organized as follows: in Section 2, the concepts of
the GEFS and SEFS of a fuzzy relation are recalled as well as the algorithm to find the
GEFS and SEFS in a fuzzy relation; in Section 3, we present our image similarity measure;
in Section 4, the experimental results are shown and discussed; and the conclusions are
reported in Section 5.

2. Preliminaries

Let X be a finite set, let R be a fuzzy relation defined on X × X, and let F(X) be the
family of all fuzzy sets defined on X. We searched the fuzzy sets A ∈ F(X) that are solutions
of the fuzzy equation:

R ◦A = A (1)

where the symbol ◦ denotes the max–min composition.
Fuzzy set A, the solution of (1), is called an eigen fuzzy set of R with respect to the

max–min composition. The GEFS of R with respect to the max–min composition is the
greatest fuzzy set, the solution of Equation (1).

Equation (1) can be written explicitly as:

A(y) = max
xεX
{min(A(x), R(x, y))}, x, y ∈ X (2)

Where A1(y) = max
xεX
{R(x, y)}. Indeed, it is easy to prove that A1 is the solution to (1).

We now iteratively construct the following fuzzy sets: A2 = R ◦ A1, A3 = R ◦ A2, . . . ,
An = R ◦ An−1, . . . We enunciate the following theorem proved in [22–24]:

Theorem 1. There exists p ∈ { 1,2, ..., card(X)} such that Ap is the GEFS of R with respect to the
max–min composition; moreover Ap ⊆ . . . ⊆ A2 ⊆A1.

Ap is obtained by finding iteratively the smallest index p for which holds:

Ap+1(y) = max
xεX

{
min

(
Ap(x), R(x, y)

)}
= Ap(y) ∀y ∈ X, (3)
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The steps to find the GEFS of R with respect to the max–min composition (1) are
described Algorithm 1:

Algorithm 1: Find the GEFS of R with respect to the max–min composition

1. Calculate Ap(y) = max
x∈ X
{R(x, y)}yX. Ap is initialized to A1

2. A = R ◦Ap
3. While A 6= Ap
4. Ap = A
5. A = R ◦Ap
6. End while

7. Return Ap

To show an applicational example, we consider the following fuzzy relation:

R =


0.7 0.9 0.3 0.4 0.6
0.5 0.7 0.5 0.7 0.7
0.4 0.6 0.4 0.8 0.5
0.5 0.4 0.2 1.0 0.4
0.6 0.6 0.1 0.7 0.2


We obtain:
A1 = (0.7 0.9 0.5 1.0 0.7)−1

A2 = (0.7 0.7 0.5 1.0 0.7)−1

A3 = (0.7 0.7 0.5 1.0 0.7)−1 = A2
Then, A2 is the GEFS of R with respect to the max–min composition. The symmetric

equation to (1), with respect to the min–max composition, is the following:

R•B = B (4)

where the symbol • denotes the min–max composition.
Fuzzy set B, the solution of (4), is called an eigen fuzzy set of R with respect to the

min–max composition. The SEFS of R with respect to the min–max composition is the least
fuzzy set solution of Equation (4).

In an explicit form, Equation (4) becomes:

B(y) = min
xεX
{max(B(x), R(x, y))} x, y ∈ X (5)

Where B1(y) = min
xεX
{R(x, y)}. B1 is easily seen to be the solution of (4). We can

construct iteratively the following fuzzy sets of R: B2 = R • B1, . . . , Bn+1 = R • Bn, . . .
The following theorem then holds [23]:

Theorem 2. There exists q ∈ { 1,2, ..., card(X)} such that Bq is the SEFS of R with respect to the
min–max composition; moreover B0 ⊇ . . . Bq ⊇ . . . ⊇ B2 ⊇B1.

Bq is obtained by finding iteratively the smallest index q for which holds:

Bq+1(y) = min
xεX

{
max

(
Bq(x), R(x, y)

)}
= Bq(y) ∀y ∈ X, (6)

The steps to find the SEFS of R are described below:
Now, we apply Algorithm 2 to the fuzzy relation in the previous example to find the

SEFS of R with respect to the min–max composition:
B1 = (0.4 0.4 0.1 0.4 0.2)−1

B2 = (0.4 0.4 0.2 0.4 0.2)−1

B3 = (0.4 0.4 0.2 0.4 0.2)−1 = B2
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Then, B2 is the SEFS of R with respect to the min–max composition.

Algorithm 2: Find the SEFS of R with respect to the min–max composition

1. Calculate Bq(y) = min
x∈ X
{R(x, y)} y ∈ X. Bq is initialized to B1

2. B = R•Bq
3. While B 6= Bq
4. Bq = B
5. B = R•Bq
6. End while
7. Return Bq

3. The GEFS–SEFS Image Similarity Measure

We apply the two algorithms to find the GEFS and SEFS of a fuzzy relation described
previously to measure the similarity between two images.

Let I1 and I2 be two N ×M images with L gray levels. We partition each of the two
images into n × n square blocks, where n < N and n < M.

If the number N of rows or (and) the number M columns are not divisible by n, in
the blocks intersecting the image boundary, the values of the pixels in the rows outside
the image are assigned as equal to the values of the corresponding pixels belonging to the
last row.

This procedure is highlighted in Figure 1, where the image consists of 6 rows and
8 columns and each block has a size n = 4.
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Figure 1. Example of a 6 × 8 image partitioned into 4 × 4 blocks.

The image in the example is partitioned into four 4 × 4 blocks. Since the number of
rows, which is 4, in the blocks does not exactly divide the number of rows in the image,
6, the two blocks below have two rows that do not cover the image; in these blocks,
the last two rows replicate the previous two rows and are assigned the values of the
corresponding pixels.

Formally, let σN be the integer obtained by dividing N by n and let ρN = 0 if N is
divisible by n, otherwise ρN = 1. Furthermore, let σM be the integer obtained by dividing
M by n and let ρM= 0 if M is divisible by n, otherwise ρM = 1. The number of blocks, nB, is
given by the formula:

nB = σN·σM+ρN·σN + ρM·σM + ρN·ρM (7)

In the example in Figure 1, we have that σN = 1, ρN = 1, σM = 2, and ρM = 0; then
nB = 4.

The pixel values in each block are normalized as [0, 1]; if ih,k is the pixel value in the
cell (h,k) of the block, it is normalized by the formula:

xh,k =
ih,k

L− 1
h, k = 1, . . . , n (8)

Let R1,i and R2,i be the ith blocks of the images I1 and I2. R1,i and R2,i can be treated as
two fuzzy relations, and Algorithms 1 and 2 can be executed to find their GEFS and SEFS.
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Let GEFS1,i and SEFS1,i be the GEFS and SEFS of R1,i, and let GEFS2,i and SEFS2,i be the
GEFS and SEFS of R2,i.

For example, the fuzzy relation R in the previous example is obtained by normalizing
the 5 × 5 image block in Figure 2 and having 256 grey levels.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 12 
 

 

𝑥ℎ,𝑘 =
𝑖ℎ,𝑘
𝐿 − 1

   h, k = 1,… , n (8) 

Let R1,i and R2,i be the ith blocks of the images I1 and I2. R1,i and R2,i can be treated as 

two fuzzy relations, and Algorithms 1 and 2 can be executed to find their GEFS and SEFS. 

Let GEFS1,i and SEFS1,i be the GEFS and SEFS of R1,i, and let GEFS2,i and SEFS2,i be the GEFS 

and SEFS of R2,i. 

For example, the fuzzy relation R in the previous example is obtained by normalizing 

the 5 × 5 image block in Figure 2 and having 256 grey levels. 

 

=  

(

 
 

179 230 77 102 153
128 179 128 179 179
102 153 102 204 128
128 102 51 255 102
153 153 26 179 51 )

 
 

 

Figure 2. The 5 × 5 image block normalized in the fuzzy relation R in the previous example. 

Following (8), the fuzzy relation R is given by dividing the pixel values in the image 

block by the value 255. 

We measure the distance Di between the two blocks R1,i and R2,i using the Euclidean 

metric: 

Di =
√∑ ∑ (x1,i(h, k) − x2,i(h, k))

2n
k=1

n
h=1

n2
   

(9) 

The similarity Si between the two ith blocks R1,i and R2,i is given by the following 

formula: 

Si = 1 −
Di
n2
   (10) 

where the term 
𝐷𝑖

𝑛2
 is the mean distance between two corresponding cells of blocks R1 and 

R2. 

Si varies in the range [0, 1]. It is equal to 1 if and only if the two blocks are equal. 

The similarity between the two images is given by the average of the similarity be-

tween the corresponding blocks. 

𝑆 =
∑ s𝑖
𝑛𝐵
𝑖=1

n𝐵
   (11) 

Below, in Algorithm 3, the pseudocode of our algorithm used to measure the simi-

larity between the two N × M in images I1 and I2 is shown. 

Algorithm 3: GEFS–SEFS image similarities 

Input: N × M images I1 and I2 

       Sizes of the blocks n 

Output: Similarity S between the two images I1 and I2 

1. Partition the two images in nB nxn blocks 

2. S:= 0  // 

Figure 2. The 5 × 5 image block normalized in the fuzzy relation R in the previous example.

Following (8), the fuzzy relation R is given by dividing the pixel values in the image
block by the value 255.

We measure the distance Di between the two blocks R1,i and R2,i using the Euclidean metric:

Di =

√
∑n

h=1 ∑n
k=1(x1,i(h, k)− x2,i(h, k))2

n2 (9)

The similarity Si between the two ith blocks R1,i and R2,i is given by the following formula:

Si = 1− Di

n2 (10)

where the term Di
n2 is the mean distance between two corresponding cells of blocks R1

and R2.
Si varies in the range [0, 1]. It is equal to 1 if and only if the two blocks are equal.
The similarity between the two images is given by the average of the similarity between

the corresponding blocks.

S =
∑nB

i=1 si

nB
(11)

Below, in Algorithm 3, the pseudocode of our algorithm used to measure the similarity
between the two N ×M in images I1 and I2 is shown.

Algorithm 3: GEFS–SEFS image similarities
Input: N ×M images I1 and I2

Sizes of the blocks n
Output: Similarity S between the two images I1 and I2

1. Partition the two images in nB nxn blocks
2. S:= 0 //
3. For i = 1 to nB
4. Normalize Ri,1 by (8)
5. Normalize Ri,2 by (8)
6. Execute Algorithm 1 to find the GEFS of Ri,1
7. Execute Algorithm 2 to find the SEFS of Ri,1
8. Execute Algorithm 1 to find the GEFS of Ri,2
9. Execute Algorithm 2 to find the SEFS of Ri,2
10. Compute Si by (10)
11. S:= S + Si
12. Next i
13. S:= S/nB
14. Return S
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4. Discussion and Results

To compare the performances of our method with other IQA similarity measures, an
image dataset of over 100 images from the Signal Image Processing Institute (SIPI) image
database (https://sipi.usc.edu/database (accessed on 1 February 2023)) was used.

The source image was blurred using a Gaussian filter; the standard deviation σ in the
Gaussian distribution increased as the noise increased. We applied our method to measure
the similarity between the original and the blurred images by setting n = 5 and afterward
n = 7. In addition, we compared our index with the PSNR, SSIM, MS-SSIM, and FSIM
indices. For brevity, we show the results obtained for two images: the 256 × 256 image
5.1.09 and the 512 × 512 image 7.1.07.

In Figure 3, the original image 5.01.09 and the blurred images using σ = 0.3, 0.5, 1.0,
1.5, 2.0, 3.0, 4.0, and 5.0, are shown.
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Figure 3. Image 5.1.09 blurred using Gaussian filters with different values of the parameter σ.

Table 1 shows the similarity indices between the original and the blurred images
obtained for image 5.1.09. The PSNR is normalized by dividing its value by the PSNR
obtained for σ = 0.3.
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Table 1. Image similarity measures for the grey image 5.1.09.

σ PSNR PSNR
Normalized SSIM MS-SSIM FSIM GEFS-SEFS

n = 5
GEFS–SEFS

n = 7

0.3 68.85 1.00 1.00 1.00 1.00 1.00 1.00
0.5 40.81 0.59 0.97 0.98 0.98 0.99 0.99
1.0 32.26 0.47 0.82 0.84 0.85 0.89 0.88
1.5 30.45 0.44 0.71 0.75 0.76 0.82 0.80
2.0 29.10 0.42 0.65 0.68 0.68 0.74 0.71
3.0 27.81 0.40 0.55 0.57 0.57 0.68 0.66
4.0 26.85 0.39 0.46 0.47 0.48 0.61 0.60
5.0 26.11 0.38 0.40 0.41 0.41 0.52 0.51

Therefore, Table 1 shows that the GEFS–SEFS-based similarity indices are more robust
to noise than the PSSNR, SSIM, MS-SSIM, and FSIM indices. Indeed, compared to the other
indices, the GEFS–SEFS measures do not decrease as quickly as the standard deviation of
the Gaussian filter increases. Figure 4 shows the related trends.
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Figure 4. Similarity index trends for image 5.1.09.

The PSNR decreases quickly starting at σ = 0.5. The SSIM, MS-SSIM, and FSIM
decrease below the value of 0.60 starting at σ = 3. Instead, both of the GEFS–SEFS mea-
sures obtained for n = 5, 7 slowly decrease and they have no variations, independent of
block sizes.

In Figure 5, we show the original image 7.1.07 and the blurred images using σ = 0.3,
0.5, 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0.

Table 2 shows the similarity indices between the original and the blurred images
obtained for image 7.1.07.

Table 2. Image similarity measures for the grey image 7.1.07.

σ PSNR PSNR
Normalized SSIM MS-SSIM FSIM GEFS-SEFS

n = 5
GEFS–SEFS

n = 7

0.3 68.41 1.00 1.00 1.00 1.00 1.00 1.00
0.5 40.01 0.58 0.98 0.98 0.98 0.99 0.99
1.0 31.89 0.47 0.82 0.83 0.83 0.88 0.88
1.5 29.35 0.43 0.70 0.72 0.73 0.79 0.78
2.0 28.26 0.41 0.58 0.58 0.60 0.69 0.68
3.0 26.67 0.39 0.43 0.45 0.46 0.57 0.56
4.0 25.71 0.38 0.33 0.36 0.37 0.49 0.48
5.0 25.10 0.37 0.26 0.28 0.29 0.41 0.41
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The GEFS–SEFS measures are more robust to noise than the PSSNR, SSIM, MS-SSIM,
and FSIM indices, slowly decreasing with respect to the other image similarity indices.
Figure 6 shows the trends for σ varying between 0.3 and 5.

Symmetry 2023, 15, x FOR PEER REVIEW 9 of 12 
 

 

obtained for n = 5, 7 slowly decrease and they have no variations, independent of block 

sizes. 

In Figure 5, we show the original image 7.1.07 and the blurred images using σ = 0.3, 

0.5, 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0. 

   
(a) Original image  (b) σ = 0.3  (c) σ = 0.5 

   
(d) σ = 1.0  (e) σ = 1.5  (f) σ = 2.0 

   
(g) σ = 3.0 (h) σ = 4.0  (i) σ = 5.0 

Figure 5. Image 7.1.07 blurred using Gaussian filters with different values of the parameter σ. 

Table 2 shows the similarity indices between the original and the blurred images 

obtained for image 7.1.07. 

Table 2. Image similarity measures for the grey image 7.1.07. 

σ PSNR 

PSNR 

Normaliz

ed 

SSIM MS-SSIM FSIM 

GEFS-

SEFS 

n = 5 

GEFS–
SEFS 

n = 7 

0.3 68.41 1.00 1.00 1.00 1.00 1.00 1.00 

0.5 40.01 0.58 0.98 0.98 0.98 0.99 0.99 

1.0 31.89 0.47 0.82 0.83 0.83 0.88 0.88 

1.5 29.35 0.43 0.70 0.72 0.73 0.79 0.78 

2.0 28.26 0.41 0.58 0.58 0.60 0.69 0.68 

3.0 26.67 0.39 0.43 0.45 0.46 0.57 0.56 

4.0 25.71 0.38 0.33 0.36 0.37 0.49 0.48 

5.0 25.10 0.37 0.26 0.28 0.29 0.41 0.41 

Figure 5. Image 7.1.07 blurred using Gaussian filters with different values of the parameter σ.

Symmetry 2023, 15, x FOR PEER REVIEW 10 of 12 
 

 

The GEFS–SEFS measures are more robust to noise than the PSSNR, SSIM, MS-SSIM, 

and FSIM indices, slowly decreasing with respect to the other image similarity indices. 

Figure 6 shows the trends for σ varying between 0.3 and 5. 

 

Figure 6. Similarity indices trends for image 7.1.07. 

Figure 6 shows that the trend of the two GEFS–SEFS indices slowly decrease with 

respect to the similarity indices; moreover, the two GEFS–SEFS measures have the same 

trend; this confirms that the proposed similarity index is independent of the choice of 

block sizes. Figure 7 shows the trend of the mean values of the similarity indices obtained 

for all the images. 

 

Figure 7. Mean similarity index trends. 

The mean trends show a trend similar to the ones obtained for the two images 5.1.09 

and 7.1.07. The two SEFS–GEFS indices obtained by setting n = 5 and n = 7 slowly decrease 

as soon as the Gaussian noise increases in the image. 

These results show, in general, that the GEFS and SEFS-based image similarity 

measures perform better than the PSNR and SSIM-based measures and that they can be 

used even in the presence of noise in the images, whereas the performance of the PSNR 

and SSIM measures decrease quickly. 

  

Figure 6. Similarity indices trends for image 7.1.07.



Symmetry 2023, 15, 1104 10 of 12

Figure 6 shows that the trend of the two GEFS–SEFS indices slowly decrease with
respect to the similarity indices; moreover, the two GEFS–SEFS measures have the same
trend; this confirms that the proposed similarity index is independent of the choice of block
sizes. Figure 7 shows the trend of the mean values of the similarity indices obtained for all
the images.
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The mean trends show a trend similar to the ones obtained for the two images 5.1.09
and 7.1.07. The two SEFS–GEFS indices obtained by setting n = 5 and n = 7 slowly decrease
as soon as the Gaussian noise increases in the image.

These results show, in general, that the GEFS and SEFS-based image similarity mea-
sures perform better than the PSNR and SSIM-based measures and that they can be used
even in the presence of noise in the images, whereas the performance of the PSNR and
SSIM measures decrease quickly.

5. Conclusions

In this paper, we present new image similarity metrics based on the GEFS and SEFS of
fuzzy relations; each of the two images to be compared is partitioned in squared blocks,
normalized, and treated as squared fuzzy relations. For each block, the GEFS and SEFS
are found and the Euclidean distance between the GEFS and SEFS of the corresponding
blocks is used to compute the similarity index between the two images. This measure
does not require particular parameters to be set beforehand; moreover, the algorithm is
computationally fast due to the rapid convergence of the extraction methods of the SEFS
and GEFS. The results of the comparative tests carried out on a sample of more than
100 images show that the GEFS–SEFS-based image similarity measure is more efficient and
robust to noise than the PSNR and SSIM-based measures.

A critical point of the similarity measure metrics based on the GEFS and SEFS of fuzzy
relations is the choice of the size n of the image blocks. In the tests carried out, it was shown
that similar results were obtained by setting n = 5 and n = 7, but it is necessary to carry out
further tests on a larger sample of images and on different types of problems to analyze if
and how the choice of block size affects the performance of this image similarity measure.

In the future, we intend to apply this image similarity to various problems, such as
image reconstruction and image tamper detection, and to perform comparative tests by
other image similarity measures.
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