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Abstract- Similarity and dissimilarity are widely used con- 
cepts. One of the most studied matters k their combination or 
aggregation. However, transitivity property is often ignored when 
aggregating despite being a highly important property, studied by 
many authors but from different points of view. We collect here 
the most recent results in preserving transitivity when aggregat- 
ing, intending to clarify the relationship between aggregation and 
transitivity and making it useful to design aggregation operators 
that keep transitivity property. Some examples of the utility of 
the results are also shown. 

I. INTRODUCTION 
Similarity and dissimilarity relations are commonly used 

in many fields of Artificial Intelligence. Nevertheless, it is a 
hard concept to establish as illustrated by the several different 
definitions present in the literature [ll,  [21, [31, [41. Many 
of their properties are under discussion and one of them is 
transitivity. 

Also, one of the fundamental aspects of these relations is 
aggregation and how it keeps their properties. Many authors 
have studied the effects of aggregation on transitivity [ 5 ] ,  [6], 
[71, [ll, [81, [9], [lo]. This important field is studied by many 
authors but from different points of view. We collect here some 
of their most relevant results, trying to put them in a format 
that could be useful to design or choose aggregation operators 
that keep any transitivity. These results are a generalization of 
those achieved with metrics, since metrics are a particular case 
of dissimilarity relations. We present some practical examples 
that can help to show the importance of this matter. 

The paper is structured as follows. In the next section, we 
introduce briefly a definition for similarity and dissimilarity 
relations. In section I11 we introduce the aggregation, its 
definition, properties and the different types of aggregation 
operators. Next, in section IV we explain the relationship 
between aggregation and transitivity and we present the results 
in this field. In section V some examples are introduced to 
show the effects of the theorems. Finally, in section VI some 
conclusions about this issue are expressed. 

11. SIMILARITY AND DISSIMILARITY RELATIONS 
Although they are widely used concepts, there are several 

definitions of similarity and dissimilarity relations [ 2 ] ,  [4], 
[ I  I]. In general, all authors agree that similarity and dissimi- 
larity relations measure the differences between two objects. 
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However, their definition, properties and even their application 
domain differs. Let us define a similarity and a dissimilarity 
as generalizations of a fuzzy equivalence relation (or unequi- 
valence, in case of dissimilarity). Besides, we consider that a 
dissimilarity complements the definition of similarity because 
both are dud concepts. Next we define both similarity and 
dissimilarity and we introduce their properties. 

Let X be a non-empty set where there is defined an equality 
relation 5. Let s be a function 

s : x x x - I C R  (1) 

Assume that s is upper bounded, exhaustive and total. This 
implies that I is upper bounded and also that sup I exists'. 

Analogously, a dissimilarity function is defined as follows: 
Let 6 be a function 

R 

6 : X x X - I C R  ( 2 )  

Also assume that 6 is lower bounded, exhaustive and total. In 
this case, I is lower bounded and inf I exists. 

sup I and define b,,, = inf I .  Without loss 
R R 

of generality, consider smaz 2 0 and b,,, _> 0. In any other 
case, a non-negative maximum or minimum can be obtained 
applying some transformation (e.g. s -t Is,,, I). 

Functions s and b can satisfy the following axioms, for any 
5 .  y, z E x: 

Reflexivity. 

R 
Define s,,,, 

- s(z,z) = s,,,. This implies sup1  E I .  

- 6(z, z) = b,,,,. This implies inf I E I .  
R 

R 
Strong reflexivity. 

- s(z, Y) = Smax * z Y. 
- 6(z,y)  = a,,, * z = y. 

- .s(z, Y) = S(Yi .I. 
- b(z, Y) = S(Y, .I. 

Symmetry. 

Transitivity. 

'In this document we will only focus on similarities and dissimilarities 
whose images are subsets of R. For a more general view see [12]. 
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- For all three elements z,y,z E X, there is a 
similarity transitivity operator TX such that fulfills 
the following inequality: 

(3) 4x7 U) 2 TS(4zl z ) ,  4 2 ,  Y)) 
- For all three elements ic,y,z E X, there is a 

dissimilarity transitivity operator TA such that fulfills 
the following inequality: 

d(z, Y) 5 TA(S(zc, z ) ,  d (z ,  Y)) (4) 

Note that there are no definitions of both transitivity ope- 
rators. Further on, we will see that they are a special type of 
aggregation operators. 

Obviously, there are more properties that can be included 
in the previous list but they are not relevant for this paper. 
Usually similarity and dissimilarity properties are source of 
discussion, specially transitivity property [13], [ 141, [15]. We 
hold that transitivity is a fundamental property and a very 
interesting matter of research. 

111. AGGREGATION OPERATORS 

Although we have started with similarity and dissimilarity 
relations, the main matter of this paper is aggregation and how 
it must keep the foregoing properties. Firstly, we must define 
a similarity or dissimilarity aggregation operator. Again, there 
is no unique definition and many authors point out different 
properties [8], [ 161. 

Let us define an aggregation operator as a function 
8 : I" - I ,  where n E N, and I is a set of similarity 
or a set of dissimilarity values. Using that both similarity and 
dissimilarity are functions from X 2  to I ,  we can consider an 
aggregation operator as a similarity or a dissimilarity defined 
from the Cartesian product of n sets (i.e. X t  x . . . x X;)  to 
I .  From here on, O[si(z i ,  .yi)]i is the abbreviated notation for 

Some properties that an aggregation operator can fulfill are 

Idempotency. If, Vzi, yi E X i ,  si(xi, yi) = IC, an aggre- 
gation operator is idempotent when O[si(zi,yi)]i = k. 
Symmetry. 0 is symmetric if, Vzi,yi E X i ,  
O[si(z.j, yi)]i = O[a(si(zi ,  yi))], for all the permutations 

Monotonicity. 8 is monotonic if Q[si(zi,yi)] 5 

Associativity. When, for any p E {l,. . . , n}, 

@(sl(zl,Yl),.~ .,Sn(zn,Yn)). 

the following, where i E { 1,. . . , T L } : ~  

cr = {a(l), . . . :a(n)}  of {l,. . . ,n}. 

O[sb(zi, yi)], whenever si(zi, yi) 5 s:(zi, yi). 

o[si(zi,Yi)].i = @(O[sj(zj,~~)lj,O[st(zk,yYk)lk) 

with j E { 1, . . . , p } ,  k E { p  + 1, . . . , n}. 
Neutral element. 0 has neutral element if, for a certain 
value e, when sj(zj, yj) = e (with j E (1,. . . , n}) then 

@(SI,. . . , S " )  = O(S1,. . . , S j - I , S j + l , .  . . , S " )  

We choose here similarity functions to represent aggregation properties. 
Obviously, dissimilarity case is analogous. 

Recall that we did not introduce a definition of transitivity 
operators. Now, we can define them as a special type of 
aggregation operators. 

DeJnition 3.1 (Transitive operator): A transitive operator 
7 : I x I is a binary aggregation operator that fulfills 
symmetry, associativity, monotonicity and neutral element. If 
r is a similarity transitive operator, the monotonicity is non- 
decreasing and the neutral element is s,,,. In this case 7 

is denoted TX. If 7 is a dissimilarity transitivity operator, 
the monotonicity is non-increasing and the neutral element 
is d,,,. In this case T is denoted TA. 

When T is defined in the interval [0,1] it is known as a 
triangdar norm [17]. Thus, any TX defined on [0,1] is a t- 
norm, and any TA defined on [O,l] is a t-conorm. These norms 
are particular cases of aggregation operators. 

If an aggregation of similarities is a similarity and the same 
for dissimilarities, the original properties of similarities or dis- 
similarities must be present on the aggregated one. Reflexivity 
or symmetry are trivial, but transitivity is the most controversial 
one: For a set of 7-transitive similarities or dissimilarities, 
not any aggregation operator keeps the 7-transitivity. Actually, 
what happens then is that the transitivity of the aggregated 
similarity or dissimilarity is weaker than the transitivity of the 
original similarities or dissimilarities. 

Dejnition 3.2: Let TX be the set of all the similarity 
transitivity operators and TA be the set of all dissimilarity 
transitivity operators. The relation to be as strong as is defined 
as follows: 

Given TZ,  T& E Tc, operator TX is stronger than T& if 
for all a ,b  E I C R, 

T X ( U , ~ )  2 T&(u,~) where TX # T; 

This relation is denoted as T X  2 T&. Oppositely, it is said 
that operator T& is weaker than TZ. 

Given TA,TA E TA, TA is stronger than TA if for all 
a , b  E I C R, 

This relation is denoted as TA 7 TA. Oppositely, it is said 
that operator TA is weaker than TA. 

Therefore, a weak transitivity is less informative than a 
strong one. The objective is to keep the strongest transitivity 
possible when aggregating. In the following section we will 
collect the results of the studies made so far in order to keep 
transitivity in aggregation operators. 

Before that, we introduce briefly a little proposition about 
transitive operators that we will use further. 

Proposition 3.3: Any 7x-transitive similarity is also T&- 

transitive, where T& 5 TZ.  Any TA-transitive dissimilarity is 
also TA-transitive, where TA & TA. 

Proof: Using that if 7; T X  then, for all a,b, 

&(a, b)  5 Tz(% b) 
Trivially, for any z, y, z E X,the following holds: 

.s(z, Y) 2 m ( s ( 5 ,  z ) ,  4 2 ,  I/) 2 T & ( S ( X ,  2 ) :  4 2 ,  Y)) 

The proof is analogous for dissimilarities. 
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Iv .  TRANSITIVITY IN AGGREGATION 

Consider a set of n -rc-transitive similarities s i ,  where 
~ . i ,  yi, zi E X i  and i E { 1, . . . , n}. 

S i ( Z i , Y i )  2 7C(Si(%r 4, S i ( Z i ,  Yi)) 

And let 0 be an operator that aggregates the similarities. Thus, 

@[si(~,~i)]i 2 Q [ 7 ~ ( s i ( ~ i ,  zi),~i(zi,~i))]i 

However we cannot assure that, for all E , Y , Z  in X ,  the 
following is fulfilled: 

@[Si(% dl 2 - r C ( Q [ S i ( Z i ,  Zi)li, @ [ S i ( %  Yi) l i )  

In [18], the concept of domination is introduced. We res- 
trict here the definition for the specific case of dominating 
transitivity operators. 

Dejinition 4.1 (domination): Consider an aggregation ope- 
rator 0 and a transitive operator r. We say that 0 dominates 
r if the following property holds: 

If r is a similarity transitivity operator, for all ai,  bi E I 
w i t h i E ( 1 ,  ..., n}: 

Q [ ~ ( a i ,  h)]i 2 T ( @ [ a i ] i ,  Q[bi]i) 

If r is a dissimilarity transitivity operator, for all ai ,  bi E 
I with i E (1,. . . ,n}: 

 ai, bi)]i I T(@[ai]i ,  @ [ b i ] i )  
Therefore, using this definition, the following Theorem is 

introduced: 
Theorem 4.2 ([18, Theorem 91): An aggregation operator 

0 preserves r-transitivity if and only if 0 dominutes r. 
The question is: given a set of 7-transitive similarities 

or dissimilarities, which aggregation operators do keep the 
transitivity? Another question: given a set of different ri- 
transitivity similarities or dissimilarities, which will be the 
final aggregated transitivity? Let us answer the second question 
first. 

Corollary 4.3: Given a set of n similarity or n dissimilarity 
functions, each one Ti-transitive (i E (1,. . . ,TI}), denote r m  
the weakest transitivity operator (see Expression 3.2). For any 
aggregation operator 0, the following is true: 

0 dominates r, 0 is T,-transitive. 
V i  E (1, . . . , n} 0 dominates ri ==+ 0 is r,-transitive. 
0 not dominates r, e+ 0 is not ri-transitive, Vi E 

Proof The first and the third are direct consequences of 
Theorem 4.2. To prove the second one, use Proposition 3.3. 

This result is very pessimistic because we cannot guarantee 
a stronger transitivity than the weakest of any similarity or 
dissimilarity aggregated. However, for the first question there 
are more interesting results for certain choices of r and 0 
(See [9], [5] ) ,  although not a general formula. Despite this, 
a general result for continuous transitivity operators can be 
collected in the following two theorems. Before, let us recall 

(1,. . . , n}. 

the definition of an Archimedean n o m  from Fuzzy Theory, 
because it is useful in this context. 

A continuous and not idempotent norm is called 
Archimedean in fuzzy theory [19]. Following this nomencla- 
ture with transitive operators, we state that any Archimedean 
transitive operator can be defined using a function (called 
generator). 

Definition 4.4 (Archimedean transitive operator): Let r be 
a transitive operator defined on an interval I ,  7 is Archimedean 
only if there exists a function f such that: 

7 ( a ,  b) = f-l(f(a) + fP)) 
If r is a similarity transitive operator, then f has to be 
a mapping from I to R, strictly decreasing, such that 

If 7 is a dissimilarity transitive operator, then f has to 
be a mapping from I to R, strictly increasing, such that 

The only continuous and not Archimedean transitivity ope- 
rators are min and max. They are a particular case that is 
covered with the following theorem: 

Theorem 4.5: The only aggregation operator that dominates 
the transitivity operator min (and also it is dominated by) 
is min. The only aggregation operator that dominates the 
transitivity operator max (and also it is dominated by ) is 
inax. 

The following result can be applied to any Archimedean 
transitive operator. 

Theorem 4.6 ([18, Theorem 141): Given an Archimedean 
transitive operator T with a generator f .  An aggregation 
operator 0 dominates r if and only if 

f(%”) = %”. 

f(&” = &”. 

f(@[f-l(az + bt)Iz) 5 f(@(f-l(az)]z) + f(@[f-1(b2)12) 
This theorem is a generalization of that in [lo, Theorem 3.31. 
With this theorem we can test if our aggregation operator 
preserves a certain transitivity. 

For example, if f (z)  = z then r ~ ( u , b )  = a + b. Using 
Theorem 4.6 any subadditive aggregation operator preserves 
transitivity. 

@[a, + bz12 I @ [ a 2 1 2  + @[bZlZ 
For certain families of aggregation operators, some results 
can be inferred. Let us introduce the following family of 
aggregation operators: 

n 
where g is a monotonic function and C w i  = 1. 

Next we introduce a pair of theorems that can be useful 
used in combination of this family. The following theorem is 
a generalization of the one in [9], extended for any aggregation 
operator: 
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Theorem 4.7: Given some aggregation operator 0 and a 
transitivity operator T ,  for a strictly increasing function g: 

S’(Z3 = 9 (@[g-’(4lz) (6) 
T’(%b)  = 9(.(g-1(.),9-1(b)N (7) 

the following holds: 

8 dominates T 0’ dominates T’ 

Pro03 Given some aggregation operator 8 and a simi- 
larity transitivity operator TZ,  suppose that 0 dominates TZ.  
This means that Vu, b E Dom(Tz), the following is true: 

0 [Tc (ai, WIZ 2 rc (0 [ail* , 8 [bli) 

0 [TC (9-1 (4) ,g-l ( b 9 ) ] 2  
TZ (Q [9-1(4)] ,  ,e [e @:)Ii) 

Substitute U’, = g(a i )  and b: = g ( b i )  

L 

Applying 9-l o g in some strategic places 

0 [g-l 0 9 0 7x (9-1 (a$> ,g- l  @ : > ) I i  2 
TZ (9-l o g 0 0 [g-l (U: ) ]  ,g- l  0 g 0 8 [g-l (bb)] i) 

Applying to both sides g, 

g 0 Q [g-l 0 g 0 TC (9-l (a:) ,g- l  ( b l ) ) ]  2 
g 0 TZ (9-l o g o 0 [g-l (ai)]i, 9-l 0 g 0 8 [g-l @:)Ii) 
Therefore, defining 

Q’ (3 = 9 (8 (.illi) (8) 
7;: (a’> 6’) = 9 (7c (9-1 (a’), 9-l ( b ’ ) ) )  (9) 

We get that 0’ dominates TL. 
If we initially suppose that 0 does not dominate 7, making 

the same substitutions the result is the 0’ does not dominates 

The result in 9 is possible using [19, Theorem 3.131. This 

Theorem 4.8: Let 0 be an aggregation operator and T 

a transitivity operator. Given that 0 dominates T ,  for any 
transitivity operator T’ such that 7’ T ,  it is true that 0 
dominates 7’. 

Pro08 Using Theorem 4.2, if 0 dominates T then the 
aggregation is T-transitive. If 7’ T ,  then any similarity or 
dissimilarity r-transitive is also 7’-transitive using Proposi- 
tion 3.3.  Using again Theorem 3.2 we get that necessarily 0 
also dominates 7’. 

The foregoing theorems let us to choose some functions g 
in Expression 6, such that a certain transitivity is kept. Thus, 
for instance, we can define the conditions for g in order to 
keep the metric transitivity. 

In the following section we introduce some examples of 
aggregation operators that dominates transitivity operators 
using the previous theorems. 

r& . 

is analogous for dissimilarities. 

V. EXAMPLES 
Example 5.1: Let 0 be an aggregation operator 

n 

@[.212 = ‘ W Z G  
2 

and TA a dissimilarity transitivity operator. 

T A ( U ,  b) = a + b 

It is easy to see that 8 dominates T A  because 
n n 

Note that it is an strictly equality relation, not lower or 
equal relation. This implies that also TA dominates 8. Using 
Theorem 4.7 and Expression 10, some domination relations 
can be extracted. In Table I some results are shown obtained 
with a few choices of function g for the aggregation operators 
family described on Expression 5. 

Also, it is easy to see that 0 dominates TZ when 

T Z ( U ,  b) = a + b - s,,, 

Proceeding in the same way that with T A  we can get new 
dominance relations. 

The previous example uses the addition as a dissimilarity 
transitivity operator. Dissimilarities that fulfill this transitivity 
(also called triangle inequality) are commonly known as me- 
trics. The following proposition introduces a criterium to know 
if some aggregation operator keeps the triangle inequality. 

Proposition 5.1: Let 8 be an aggregation operator of the 
family defined in Expression 5. If g : I -+ I’ is subadditive 
then 0 preserves the transitive equality. 

wzz2, and T A ( U ,  b)  = a + b, 

we know that 8 dominates TA. Using Theorem 4.7 we know 
that any modified aggregation operator given by Expression 6 
dominates any modified transitive operator given by Expres- 
sion 7. Using Theorem 4.8 we know that if the modified 
transitivity operator is stronger that TA, then the modified 
aggregation operator dominates TA. Thus, 

n 
Proof: Given O[z,] ,  = 

2 

g ( 9 - W  + g-l(b)) i a + b 
g - l ( a )  + g-l(b) i g-ya  + b) 

d a )  + d b )  2 !?(a+ b) 

Proved, g is subadditive and 9-l is superadditive. 
w 

Example 5.2: Given a set of n metric dissimilarities 6,, 
(with n E N and i E (1,. . . , n}), where 1 2 [l, +CO), and an 
aggregation operator 0 given by 

n 

This aggregation keeps metric transitivity. It is easy to see 
that this is an aggregation operator that belongs to the family 
represented in Expression 5 with g(z )  = ln(z). 
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TABLE I 
AGGREGATION OPERATORS THAT DOMINATE TRANSITIVE OPERATORS 

8 

5 waza 
i=l 

fi 2;‘ 
i=l  

a . b  

a+b 
ab - 

VI. CONCLUSIONS 
There are several definitions of similarity, dissimilarity or 

metric, and often these concepts are misused, or mixed. In 
this sense, something similar happens with aggregation and 
transitivity. This is a wide field of study that unifies many 
concepts (e.g. from metrics to fuzzy relations) but has been 
usually ignored and where there is not much research. Results 
in this paper are a general case of the studies made on 
aggregation operators used to keep metric transitivity. This is. 
the similarity and dissimilarity framework has metric distances 
(metric dissimilarities) as a particular case of dissimilarities. 
We think that research in this field can lead to similar results 
with non-metric dissimilarities or similarities. 

In this paper we vied to clarify some concepts and to 
link similarity and dissimilarity functions and their properties 
with the effects of aggregation on transitivity. We also have 
collected the most recent results in transitive aggregation. 
Finally, we made a little contribution with a generalization 
of a theorem. 
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