225 research outputs found

    Wave Energy Assessment in Southern Central Java Island and Control Method for Maximizing the Captured Power in Wave Energy Converters

    Get PDF
    This thesis discusses the wave energy potential of the Indian Ocean on the south coast of Central Java Island, where no previous known similar study has been conducted. A control technique that involves a dynamic electrical model was established. The following objectives were achieved. The first was to determine the ideal location to implement wave energy conversion (WEC), and the second objective was to simulate the significant wave height by using the novel control method. To achieve these goals, the following steps and procedures were implemented. Wave energy assessment was conducted for the Indian Ocean on the south coast of Central Java Island, Indonesia. Results are analyzed with MIKE 21 Spectral Wave by adopting a 10-year hindcast spectral wave model. The model was developed by incorporating wind data from the European Centre for Medium-Range Weather Forecasts with a 0.125° spatial interval and an hourly time resolution. The model was validated with buoy observation data provided by Badan Pengkajian dan Penerapan Teknologi or Agency for the Assessment and Application of Technology, Indonesia. The buoy is located at a longitude of 110.547° and a latitude of −8.1364° and provides monthly data on significant wave height and wave period at an hourly data interval (June 2014). Validation showed that the model result matches the data, and the average error is approximately 0.042%. Time domain monthly analysis revealed that the minimum mean wave power appeared in December, January, and February, whereas the maximum mean wave power occurred in July, August, and September with a value of more than 10 kW/m during the dry season in Indonesia. The dominant significant wave height was between 1 and 2 m. The spatial analysis provided six coordinate points in Penyu Bay and Yogyakarta Coast as candidates for WEC location; the 10-year mean wave power was approximately 13–16 kW/m, and the distance from the coast was less than 350 m. Furthermore, modeling and a control strategy for WECs were discussed. The heaving point absorber from Uppsala University was adopted. The control objective of the proposed method was to maximize the captured mechanical power under the constraint of the maximum control force. The proposed method comprised high-level and low-level controllers. The high-level controller produced the optimum reference in terms of reference velocity to satisfy the control objective. The low-level controller tracked the reference and provided robustness against model uncertainties. The low-level controller was designed before the high-level controller. The main controller in the low-level controller is a proportional–integral–derivative controller. This controller was designed with ∞ theory, and the genetic algorithm was utilized to solve the infinity norm of the robustness problem. The high-level controller was designed by using the obtained dynamic of the feedback control system in the low-level controller with the mechanical model of WECs. Simulation studies were also conducted. Results of nominal and perturbation cases and those of monochromatic and polychromatic sea states were compared

    Modeling and Simulation of Microscale Flows

    Get PDF

    A survey of free software for the design, analysis, modelling, and simulation of an unmanned aerial vehicle

    Get PDF
    The objective of this paper is to analyze free software for the design, analysis, modelling, and simulation of an unmanned aerial vehicle (UAV). Free software is the best choice when the reduction of production costs is necessary; nevertheless, the quality of free software may vary. This paper probably does not include all of the free software, but tries to describe or mention at least the most interesting programs. The first part of this paper summarizes the essential knowledge about UAVs, including the fundamentals of flight mechanics and aerodynamics, and the structure of a UAV system. The second section generally explains the modelling and simulation of a UAV. In the main section, more than 50 free programs for the design, analysis, modelling, and simulation of a UAV are described. Although the selection of the free software has been focused on small subsonic UAVs, the software can also be used for other categories of aircraft in some cases; e.g. for MAVs and large gliders. The applications with an historical importance are also included. Finally, the results of the analysis are evaluated and discussed—a block diagram of the free software is presented, possible connections between the programs are outlined, and future improvements of the free software are suggested. © 2015, CIMNE, Barcelona, Spain.Internal Grant Agency of Tomas Bata University in Zlin [IGA/FAI/2015/001, IGA/FAI/2014/006

    Modeling and Simulation in Engineering

    Get PDF
    The Special Issue Modeling and Simulation in Engineering, belonging to the section Engineering Mathematics of the Journal Mathematics, publishes original research papers dealing with advanced simulation and modeling techniques. The present book, “Modeling and Simulation in Engineering I, 2022”, contains 14 papers accepted after peer review by recognized specialists in the field. The papers address different topics occurring in engineering, such as ferrofluid transport in magnetic fields, non-fractal signal analysis, fractional derivatives, applications of swarm algorithms and evolutionary algorithms (genetic algorithms), inverse methods for inverse problems, numerical analysis of heat and mass transfer, numerical solutions for fractional differential equations, Kriging modelling, theory of the modelling methodology, and artificial neural networks for fault diagnosis in electric circuits. It is hoped that the papers selected for this issue will attract a significant audience in the scientific community and will further stimulate research involving modelling and simulation in mathematical physics and in engineering

    Higher-Order Feature-Preserving Geometric Regularization

    Full text link

    Meshfree and Particle Methods in Biomechanics: Prospects and Challenges

    Get PDF
    The use of meshfree and particle methods in the field of bioengineering and biomechanics has significantly increased. This may be attributed to their unique abilities to overcome most of the inherent limitations of mesh-based methods in dealing with problems involving large deformation and complex geometry that are common in bioengineering and computational biomechanics in particular. This review article is intended to identify, highlight and summarize research works on topics that are of substantial interest in the field of computational biomechanics in which meshfree or particle methods have been employed for analysis, simulation or/and modeling of biological systems such as soft matters, cells, biological soft and hard tissues and organs. We also anticipate that this review will serve as a useful resource and guide to researchers who intend to extend their work into these research areas. This review article includes 333 references

    Computational intelligent impact force modeling and monitoring in HISLO conditions for maximizing surface mining efficiency, safety, and health

    Get PDF
    Shovel-truck systems are the most widely employed excavation and material handling systems for surface mining operations. During this process, a high-impact shovel loading operation (HISLO) produces large forces that cause extreme whole body vibrations (WBV) that can severely affect the safety and health of haul truck operators. Previously developed solutions have failed to produce satisfactory results as the vibrations at the truck operator seat still exceed the “Extremely Uncomfortable Limits”. This study was a novel effort in developing deep learning-based solution to the HISLO problem. This research study developed a rigorous mathematical model and a 3D virtual simulation model to capture the dynamic impact force for a multi-pass shovel loading operation. The research further involved the application of artificial intelligence and machine learning for implementing the impact force detection in real time. Experimental results showed the impact force magnitudes of 571 kN and 422 kN, for the first and second shovel pass, respectively, through an accurate representation of HISLO with continuous flow modelling using FEA-DEM coupled methodology. The novel ‘DeepImpact’ model, showed an exceptional performance, giving an R2, RMSE, and MAE values of 0.9948, 10.750, and 6.33, respectively, during the model validation. This research was a pioneering effort for advancing knowledge and frontiers in addressing the WBV challenges in deploying heavy mining machinery in safe and healthy large surface mining environments. The smart and intelligent real-time monitoring system from this study, along with process optimization, minimizes the impact force on truck surface, which in turn reduces the level of vibration on the operator, thus leading to a safer and healthier working mining environments --Abstract, page iii
    corecore