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Abstract

This thesis discusses the wave energy potential of the Indian Ocean on the south
coast of Central Java Island, where no previous known similar study has been
conducted. A control technique that involves a dynamic electrical model was
established. The following objectives were achieved. The first was to determine the
ideal location to implement wave energy conversion (WEC), and the second
objective was to simulate the significant wave height by using the novel control

method.

To achieve these goals, the following steps and procedures were implemented. Wave
energy assessment was conducted for the Indian Ocean on the south coast of Central
Java Island, Indonesia. Results are analyzed with MIKE 21 Spectral Wave by
adopting a 10-year hindcast spectral wave model. The model was developed by
incorporating wind data from the European Centre for Medium-Range Weather
Forecasts with a 0.125° spatial interval and an hourly time resolution. The model was
validated with buoy observation data provided by Badan Pengkajian dan Penerapan
Teknologi or Agency for the Assessment and Application of Technology, Indonesia.
The buoy is located at a longitude of 110.547° and a latitude of —8.1364° and
provides monthly data on significant wave height and wave period at an hourly data
interval (June 2014). Validation showed that the model result matches the data, and
the average error is approximately 0.042%. Time domain monthly analysis revealed
that the minimum mean wave power appeared in December, January, and February,
whereas the maximum mean wave power occurred in July, August, and September
with a value of more than 10 kW/m during the dry season in Indonesia. The
dominant significant wave height was between 1 and 2 m. The spatial analysis
provided six coordinate points in Penyu Bay and Yogyakarta Coast as candidates for
WEC location; the 10-year mean wave power was approximately 13-16 kW/m, and
the distance from the coast was less than 350 m.

Furthermore, modeling and a control strategy for WECs were discussed. The heaving
point absorber from Uppsala University was adopted. The control objective of the
proposed method was to maximize the captured mechanical power under the

constraint of the maximum control force. The proposed method comprised high-level
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and low-level controllers. The high-level controller produced the optimum reference
in terms of reference velocity to satisfy the control objective. The low-level
controller tracked the reference and provided robustness against model uncertainties.
The low-level controller was designed before the high-level controller. The main
controller in the low-level controller is a proportional-integral-derivative controller.
This controller was designed with H,, theory, and the genetic algorithm was utilized
to solve the infinity norm of the robustness problem. The high-level controller was
designed by using the obtained dynamic of the feedback control system in the low-
level controller with the mechanical model of WECs. Simulation studies were also
conducted. Results of nominal and perturbation cases and those of monochromatic

and polychromatic sea states were compared.

Keywords: Renewable energy, Wave energy converter, Wave energy assessment,

Hindcast, Java Island, Indonesia, MIKE 21 Spectral Wave
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Chapter 1: Introduction

1.1 Capability of Wave Energy

Sustainable advancement has become a fundamental topic in many countries.
Challenges, such as global warming and energy shortage, have motivated the
governments of these countries to implement serious actions to increase further the
renewable energy allocated to their local energy markets. According to the Energy
Information Administration, the worldwide renewable energy utilization in the power
business sector would develop at an average yearly rate of 2.6% from 2007 to 2035.
Therefore, the relative growth of renewable energy utilization in the power business
sector would increase at an average yearly rate of 5%, thereby prompting a
utilization rate of 23% by 2035 [1]. Further dependence on fossil fuel sources, which
account for the largest portion of the current global energy utilization, is inevitable
because naturally extracted oil is expected to increase by 2030. Notably, 74% of the
total CO, emissions are produced from fossil fuel sources [2].

The most encouraging renewable energy resource is marine energy because
of the lack of current exploitation and the size of resources with a large power
potential. The worldwide marine energy potential is predicted to be around 32 TW.
The European Union (EU) is planning to increase the marine energy split in the EU
to more than 3% by 2020 [3]. The existing marine energy market is a combination of
wave energy, tidal energy, and energy produced from ocean salinity and temperature
differences [4].

Wave energy has an expected worldwide potential of 2 TW, which is almost

comparable to the world’s power consumption. With the challenges encountered in
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exploiting this asset, only 25% of the accessible potential can be exploited (i.e., 0.5

TW) [5].

1.2 Source of Wave Energy

Wave energy can be regarded as a dense shape of solar energy. Wind is
generated due to distinctions in atmospheric pressure and solar energy distribution.
As a consequence, wind is created and blown over the surface of vast ocean waves.
The average power flow intensity of ocean waves is roughly 2-3 kW /m? compared
with only 0.5 kW /m? for wind, which has significantly less intensity than solar
energy (i.e., 0.1-0.3 kW /m?) [6]. The high average power intensity is mostly due to

the higher density of water compared with air.

Normally, the wave potential in a specific area is assessed with wave energy
transport J measured in KW /m, which is characterized as the wave power per meter
width of the wave front. The global wave energy is concentrated in the center to
high-latitude zones on both sides of the equator, especially from 40° to 60° latitude
[5]. Figure 1 presents the worldwide average yearly wave energy transport. As
shown in the map, regions near the center have a humble wave energy potential (i.e.,
< 20 kW/m). The southern side of the equator has the most energetic areas because
less seasonal wave diversity is present in this part of the world than in the northern

half.
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Figure 1: Worldwide Annual Average Wave Power Level in kW/m Created by the
ECMWEF (European Center for Medium-Range Weather Forecasts) using WAM
Model [5]

In sea building, ocean waves are typically characterized by an arrangement of
measurable measurements using records of wave heights and wave periods. With
regard to wave height, the most widely recognized metric is significant wave height
H; or, from another perspective, one-third wave height H, /3, which is characterized
as the average height of 33% of the collective number of waves that are mostly seen
in the wave spectral distribution [7]. By utilizing spectral moments, critical wave
height H, can be computed as

Hg = 4,/m,, (1)

where m,, is the zeroth moment and is known as



my = [ S(w) dw, (2)

where S(w) is the wave spectral density. The greatest wave period T,, or peak
frequency w, is used to express how quickly or slowly the waves propagate [8].
For a monochromatic ocean state in deep waters, wave energy transport J in

W /m can be computed as

J=22rH, 3)
where p is the water density in kg/m3, g is gravitational acceleration in m/s?, T is
the wave period in s, and H is the wave height in m [9]. J is calculated in W /m.
Thus, the episode wave power can be predicted by multiplying J with the meter
width of the body capturing the wave. For polychromatic waves that exist in
actuality, wave power transport J can be computed as [10]

J = 2L 25 g, (4)
Numerous wave spectral models have been developed in marine engineering
literature. Examples include Pierson—Moskowitz spectra and JONSWAP spectra [7].

These spectra are utilized to produce unpredictable wave profiles that can be

promptly utilized in processor simulations to energize wave energy converters.

1.3 Wave Energy Conversion

The mechanical energy transmitted by water waves is captured with devices
known as wave energy converters (WECs). Various WEC topologies have been
recommended, but almost none has been used for the business sector. WECs depend
on the level of flexibility for movement, such as heave and surge. For example, a
force take-off instrument regulates drive, hydraulic, and mechanical power, and its

purpose is to determine responses, such as those of the seabed and submerged body;



the device is placed near the shore or offshore [5].

Initial efforts to create WECs date back to the late 1940s and were headed by
the Japanese maritime authority Yoshio Masuda, who imagined a wave energy-
powered route [11]. Subsequent efforts were exerted by Stephen Salter (UK),
Johannes Falnes (Norway), Kjell Budal (Norway), and McCormick (USA) in the

1970s [6].

Research and development of WECs have advanced significantly in terms of
the illustration of the aftereffect of serious governmental diversions in engineering.
Pelamis stands out among WECSs. The majority of fruitful WECs contain cylindrical
joints that move comparatively to one another when the devices are stimulated by
waves. The movement of the joints is resistant to water-powered rams that pump oil
on water-powered motors, which drive rotating generators. Pelamis is the first

popularized grid-connected WEC in the world [12].

Another example is Uppsala University’s single-body purpose absorber
introduced in the Lysekil Project (capacity of 40 kW) located off the western
coastlines from Sweden. The Uppsala University point absorber oscillates in heaves
and uses an immediate drive rule to excite a linear generator located on the seabed
(Figure 1.2) [11, 13]. Presently, the sea-based industry is conducting 10 MW

proofing wave energy development off the coastline of Stones, Sweden.



Figure 2: Graphical Drawing of the Uppsala University Point Absorber Organized in
a Farm of WECs [14]

After completion, this project will become the world’s largest grid-connected
wave energy farm [14]. Other remarkable examples of point absorbers include the L-
10 WEC created by Oregon State University (USA) [11] and the Archimedes Wave
Swing established by Atlantic Wind Connection Ocean Energy (UK) [5]. Heaving
WEC, as a suitable wave absorber, is also a suitable wave generator. It can produce
waves that destructively overlap with future approaching waves [9]. This
phenomenon can captured by applying control in the WEC. Hence, a well-controlled
WEC boosts the captured power, which is characterized as P;,; = P., — B., Where
P,,. is the wave excitation power and PB. is the wave radiation power. The intercepted
power, P, is then captured through the power take-off device. Useful electrical
power, P.,.., is produced from the converted captured mechanical power [15]. Wave
energy conversion mainly involves two types of control strategies: passive and
active. Passive control strategies include electric circuits adjusted at the maximum
possible wave significant height and peak frequency of the location through an
analytical study. The models use resistive loading and resonance circuits [16].

Passive control strategies are easy to implement and cost effective. However, passive
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control strategies do not offer sufficient flexibility to react in the case of continuously
fluctuating sea climate, thus causing a narrow absorption bandwidth. On the
contrary, active control strategies are online control management techniques that can
adjust the WEC dynamics quickly. Despite the effectiveness of active control
strategies, these methods are more complicated and expensive than passive methods.
Furthermore, to implement rapid control (wave-to-wave control), precise prediction

algorithms are required [17].

1.4 Research Problem Statement

To improve the study on WECs, wave energy assessment was carefully
selected as the topic of this research. Various studies have focused on marine energy
in general and wave energy in particular. However, only a few studies have been
implemented in reality. Each research differs in terms of objectives, methodology,
strategic control methods used, and final results. The geographic territory of the
project is a significant factor in WEC studies. Therefore, wave energy assessment is

a highly important topic in marine research.

The purpose of this study is to determine the best location to implement WEC
in terms of seabed geography, wind power, and remoteness of the area from the

beach to generate the largest amount of electricity.

The location and landscape of the place help define the principal parameters
in the study on WECs (wave height and wave period). Depending on these

parameters, the following can be selected.

=  The most appropriate control method

= Critical devices related to the system specifications
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Southern Java Island was selected as the location for this research because no
previous study has been conducted in this area. Considering that real data (wave
parameters H; and T) can be obtained, the simulation result was validated against
actual data in the final stage, and the designed simulation system was tuned

appropriately.

1.5 Wave Energy Assessment Literature Review

This chapter includes a brief previous research work regarding WEC
assessments, which contains two sections. The first section is a list of studies done
based on the geographical location. The second section shows a different type of

program used for WEC simulation.

1.5.1 Studies Conducted Based on Geographical Location

Menorca (Spain) Case

This study was performed to analyze the wave energy resources in Menorca
Island by using forecast series data of 17 years. The spatial conveyance of wave
power was examined by utilizing information from 12 points around the island. The
obtained resources (average wave power of about 8.9 kW/m and average annual wave
energy of around 78 MWh/m) were generally modest but were the largest among the
Mediterranean Sea region. The most productive areas were the northeast and east
locations of the island. Extensive occasional inconstancy was observed, with winters
being harsh and summers being mellow. The power matrices of three WECs were
considered to evaluate the average power yield at all points. Four spots were

identified as the ideal candidates for WEC deployment.

Two accessible datasets for Menorca were used. The first was a hindcast
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wave climate database (1996-2013) for 17 years. This wave statistics set was
obtained by utilizing the WAM model under the constraint of the wind production of
the HIRLAM territorial atmospheric model. The second information source was a
wave buoy placed near the island at a depth of 300 m. The recorded data were used
to validate the numerical wave data. Calculations were performed for significant

wave characteristics by using the relative mean absolute error [18].

Portuguese Case

This assessment was performed along the Portuguese coast to analyze the
near-shore wave energy resource. The assessment focused on identifying applicable
locations for the analysis and development of WEC for commercial application. The
study covered the complete west seaside by dividing the region into seven areas
parallel to the coast at 50 m depths. The accessible wave energy in each area was
calculated from near-shore wave parameters by utilizing 15-year ocean wind-wave

model simulation data.

This work shows that autonomous wave energy of the measured criteria can
be utilized, and the investigation indicates that the part from Peniche to Nazaré with
an annual wave energy of approximately 200 MWh/m is a reasonable area for near-
shore wave energy exploitation, followed by the neighboring area from Nazaré to

Figueira da Foz.

The main differences between offshore and near-shore wave energy resources
are as follows: the energy resource decreases to under 7% from offshore to near the
shore. On the off chance, the exploitable idea can be regarded as a resource measure.
The energy resource could surpass 14% if the standard non-constrained basis of

assessing accessible energy is utilized.
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Two primary conclusions were obtained from this work.

= Establishing a near-shore energy assessment construct with respect to
offshore wave conditions only is insufficient and incorrect. A major reduction
in wave power is predictable when the coastline does not confront the mean
wave path, thus turning a promising offshore district into an uninteresting

near-shore range for energy conversion.

= Exposed near-shore areas confronting the leading offshore wave path with a
small wave height in the background diminish by refraction. As a result, an
unimportant wave control reduction is likely to occur as waves move
shoreward. Several near-shore territories can possess a comparable wave

energy potential as the corresponding offshore areas [19].

Australia Case

Another study was performed along the Australian shelf (<300 m) waters.
The AusWAM model for wave direction hindcast from 1997 to 2008 was used. In
addition to the available significant wave height and period, wave energy and power

were considered.

The important results are summarized as follows:

e Wave power is the most noteworthy on the 3000 km long southern Australian
rack (southern Western Australia, South Australia, and Tasmania/Victoria),
where it produces a time-average value of 25-35 kW/m and conveys an

average of 800-1100 GJ/m of energy in a year.

e New South Wales and southern Queensland racks, with direct time-average

wave power of 10-20 kW/m, are potential locales for power because they
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have a comparative unwavering quality in resource conveyance toward the

southern edge.

e The time-average wave power for the large part of the northern Australian

rack is <10 kW/m [20].

Korean Peninsula Case

In this study, wave assessment was performed for the territory around the
Korean peninsula. Offshore wave power was acquired from significant peak periods,
wave heights, and wave directions hindcasted for the period of 24 years (1979-

2003).

The maximum monthly averaged wave power, which was around 25 kW/m,
was detected on the southwestern side of the peninsula in winter. To acquire the
wave power value around Hongdo, numerical simulations were executed by
observing the averaged monthly waves. The relationship between the significant
wave height and energy period was measured to adjust the near-shore wave power
acquired from the simulation. Then, wave buoy data were compared with the

simulated data validated through the adjustment procedure.

Basically, this work obtained offshore and near-shore wave energies by using
different methodology approaches. In offshore wave energy, the hindcast data were
used and wind data were re-analyzed as guided by the European Centre for Medium-
Range Weather Forecasts (ECMWF); the data were then introduced to the grid-
focused points and time steps of the wave simulation model. In the near-shore wave
energy, the Simulating WAves Nearshore (SWAN) coastal wave model was utilized

in the assessment. SWAN determines the evolution of wave action density by



12
utilizing the action balance equation. Two motivations were used to investigate the
near-shore wave energy around Hongdo. First, a definite database was used to
determine the capacity of the wave energy converter, and second, the methodology
was verified to evaluate near-shore wave energy resources involving the correction

factor [21].

Mediterranean Case

A high-resolution assessment of the wave energy resources in the
Mediterranean was performed. The energy resources were assessed through a
numerical simulation using a third-generation ocean wave model for the period

2001-2010.

The model outcomes were in line with a large portion of the accessible wave
buoy and satellite altimeter data. Starting with the model outcomes, a point-by-point
investigation of wave energy availability in the Mediterranean Sea was completed.
The western Sardinia coast and the Sicilian Channel are considered to be among the
most profitable territories in the entire Mediterranean. The simulation outcomes
revealed the presence of major spatial variations in wave power availability even on
small spatial measures along these coastlines. For various selected areas in these two
ranges, an in-depth investigation of the dispersion of wave energy, including wave
heights, periods, and directions, was presented. Moreover, the regular and inter-

annual variations in wave energy potential were analyzed and discussed [22].

1.5.2 Wave Resource Assessment Programs

This section shows different wave simulation commercial programs that are

commonly used in wave energy study for modeling and simulation purposes. A
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number of programs are available on the market, and these programs vary with
regard to the way they work, data type, type of waves, the depth at which the study is
applied, and accuracy of the results. Several of them are available for free, and others

must be purchased.

SWAN program

SWAN is a third-generation wave model that computes random, short-
crested, wind-generated waves in coastal regions and inland waters [23]. The model
is used to obtain realistic estimations of wave parameters in coastal areas, lakes, and

estuaries from given wind, bottom, and current situations.

SWAN can also be used on any scale identified with wind-created surface
gravity waves. The model depends on the wave activity-adjusted condition with

sources and sinks [24].

SWAN was developed at Delft University of Technology and is available for
free at http://www.swan.tudelft.nl. SWAN is used by many government authorities,

research institutes, and consultants worldwide [25].

Grids are of two types: structured and unstructured. Structured grids can be
rectilinear and uniform or wavy. They generally comprise quadrilaterals in which the
number of framework cells that meet one another in an inside lattice point is 4. In
unstructured grids, this number can be self-imposed (often between 4 and 10). Thus,
the level of adaptability regarding the framework point dissemination of unstructured

matrices is much more ideal than that of structured grids.

Unstructured grids can have triangles or a combination of triangles and

quadrilaterals (hybrid grids). In the updated SWAN version, only triangular meshes
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can be employed.

SWAN has several limitations. The DIA approximation for quadruplet wave—
wave interactions relies on the width of the directional appropriation of the wave
spectrum. SWAN works reasonably in many cases but demonstrates poor

approximation for long-crested waves (narrow directional distribution).

Additionally, SWAN depends on frequency resolution. It works reasonably in
many cases but demonstrates poor approximation for frequency resolutions with
proportions far different from 10%. This is an essential issue in SWAN compared

with other third-generation wave models, such as WAM and Wave Watch Il1.

LTA approximation for triad wave—wave associations relies on the width of
the directional circulation of the wave spectrum. The present tuning in SWAN (for
default settings, see command triad) works sensibly as a rule but has been acquired

from perceptions in a narrow wave flume (long-crested waves).

As an alternative SWAN process wave-induced setup, in 1D cases, the
calculations depend on exact equations. In 2D cases, the calculations depend on
approximate equations. This estimation in SWAN can only be applied to open coasts
(boundless supply of water from outside the domain, such as near-shore coasts and
estuaries) and cannot be applied to closed basins, such as lakes. The effects of wave-
induced currents are constantly ignored. SWAN does not compute wave-induced

currents. Such currents must be provided as an input to SWAN.

Diffraction must be utilized in regions where variations in wave height are
large within a horizontal scale of a couple of wavelengths. The calculation of

diffraction in arbitrary geophysical conditions is complicated and requires significant
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processing. To avoid this inconvenience, a phase-decoupled approach is utilized in
SWAN so that the same subjective conduct of spatial redistribution and changes in
wave direction are obtained. However, this approach cannot effectively handle
diffraction in harbors or before reflecting obstacles. SWAN is particularly intended

for coastal applications that do not require such flexibility in scale [24].

TOMAWAC program

TOMAWAC is a logical and scientific program that models progressions in
time and spatial domains of the power range of wind-driven waves and wave tumult
for applications in the oceanic field and intercontinental seas in addition to coastal
areas. The model uses limited components of formalism in discretizing an ocean area
and is built “based on the computational subroutines of the TELEMAC system as
developed by the EDF R&D’s Laboratoire National d'Hydraulique et
Environnement.” The acronym TOMAWAC used to name the program was acquired
from the corresponding English translation “TELEMAC-based Operational Model

Addressing Wave Action Computation.”

TOMAWAC is one of the models that make up the TELEMAC system; it
addresses different issues that are identified with free surface sea type and river,
underground flows, and the associated physical processes of water quality and bed-

load transport [26].

TOMAWAC can consider any of the following physical phenomena.

= Refraction by currents
= Dissipation through bathymetric wave breaking

= Dissipation through counter-current wave breaking
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= Wind-generated waves
= Refraction on the bottom

In each purpose of the computational mesh, TOMAWAC obtains the

following information.

= Significant wave height
* Mean wave direction

= Wave-induced currents
= Mean wave frequency
= Peak wave frequency

= Radiation stresses [27]

TOMAWAC has various applications but possesses several limitations.
TOMAWAC is intended to be applied from the ocean field up to the coastal territory.
The limits of the application scope can be controlled by the estimation of relative
profundity d/L, where d represents the water height (in meters) and L represents the
wave length (in meters) corresponding to the peak spectral frequency for

unpredictable waves.

The TOMAWAC application domain involves the following:

= QOceanic field described by vast water depths (above 0.5 m). The predominant
physical processes are non-linear quadruplet interactions, wind driven waves,
and white-capping dissipation.

= Continental seas and medium depths described by a relative water depth
ranging between 0.05 and 0.5 m. Bottom friction, shoaling (wave

development because of a base ascent), and impacts of refraction caused by
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the bathymetry and/or currents are also considered.

= Coastal domain, including shoals or near-shore regions (water depth lower
than 0.05 m). For these shallow water zones, such physical processes as
bottom friction, bathymetric breaking, and non-linear triad interactions
among waves should be considered. In addition, considering the impacts of
unsteady sea level and currents could be valuable because of the tide and
weather-dependent surges. Through a limited component spatial
discretization, one computational grid may incorporate mesh cells, among
which the proportion of the largest sizes to the smallest ones may reach or

even exceed 100.

These reasons make TOMAWAC applicable to an ocean domain that has
highly variable relative water depths. Specifically, coastal zones can be finely

represented.

The application space of TOMAWAC excludes harbor regions and, in
general, every case in which the impacts of reflection on structures and diffraction

may not be ignored.

The initial version of a diffraction model is accessible in TOMAWAC and
can represent several diffraction effects. However, the model still presents
limitations. The use of phase-resolving models is highly recommended when a

detailed simulation of diffraction effects is required [26].

MIKE 21 Spectral Wave

MIKE 21 Spectral Wave (SW) is a state-of-the-art third-generation spectral

wind-wave model established by the Danish Hydraulic Institute (DHI). This model
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can simulate the growth, decay, and wind-generated wave transformation and swells

in offshore and coastal zones.

MIKE 21 SW has two different formulations.

= Fully spectral formulation
= Directional decoupled parametric formulation

The first formulation (fully spectral formulation) is constructed based on the
wave action conservation equation. The second formulation (directional decoupled
parametric formulation) is constructed based on a parameterization of the wave
action conservation equation. Parameterization is achieved in the frequency domain
by presenting the zeroth and first moments of the wave action spectrum.
Fundamental conservation equations are formulated in either Cartesian coordinate

small-scale applications or polar circular coordinates for extensive applications.

The following physical phenomena are included in the fully spectral model.

= Wave growth by the action of wind

= Dissipation due to bottom friction

= Dissipation due to depth-induced wave breaking
= Dissipation due to white capping

» Non-linear wave—wave interaction

= Effect of ice coverage on the wave field

= Effect of time-varying water depth

= Refraction and shoaling due to depth variations
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=  Wave—current interaction

An unstructured mesh procedure is utilized in the geographical domain. A
fractional step approach is used for time integration, and a multi-sequence explicit

technique is applied for the propagation of wave action.

MIKE 21 SW has several features, which are presented below.

* The two decoupled parametric formulations are available (fully spectral and
directional)

= Source capacities based on state-of-the-art third-generation formulations
= Stationary and semi-stationary solutions

= Optimal level of flexibility in defining bathymetry and ambient flow

conditions

= Coupling with hydrodynamic flow for the modeling of wave current
interaction and time-varying water depth

» Flooding and drying regarding time-varying water depths
= Cell-centered finite volume method
= Extensive model output parameters

MIKE 21 SW has various application areas and limitations. MIKE 21 SW is
utilized for the assessment of wave environments in offshore and coastal territories in
hindcast and forecast modes. A main application zone is the design of offshore,
coastal, and port structures in which exact assessment of wave loads is of extreme

significance to the safe and cost-effective design of these structures.

Measured data are often unavailable from periods that are sufficiently long to
consider the establishment of sufficiently precise estimates of extreme sea states. For

this situation, the measured data can be complemented with hindcast data through the
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simulation of wave conditions through historical storms by using MIKE 21 SW.

MIKE 21 SW is particularly appropriate for simultaneous wave forecast and
analysis on regional and local scales. Coarse spatial and transient determinations are
utilized for the regional part of the mesh with a high-resolution boundary, and the

shallow water environment at the coastline is defined by a depth-adaptive mesh.

MIKE 21 SW can be utilized to analyze wave conditions and the related
radiation stresses. Long-shore currents and sediment transport are then computed by
utilizing the flow. Sediment transport models are accessible in the MIKE 21 package.
For particular uses, the directional decoupled parametric formulation of MIKE 21
SW is an excellent combination of computational effort and accuracy [28]. Further

explanations on MIKE 21 SW and its functions are presented in Section 2.1.

1.5.3 Review of Control Techniques

Many reviews have been conducted on the utilization of control techniques to
enhance the execution of heaving point absorbers (HPAs). Basically, the movement
of an HPA buoy is controlled in such a manner that a reverberation state is reached
between the buoy and incoming waves [9]. This state is commonly realized by
controlling the force applied on the buoy by utilizing a power take-off (PTO) device,
such as linear generators and related power converters. The proposed control
techniques for HPAs can generally be classified into two: reference-based and non-

reference-based control techniques.

In the reference-based control strategy, an ideal or imperfect velocity
reference for the buoy is created. Then, the buoy’s actual velocity is adjusted to

follow the velocity reference by utilizing a servo feedback control system regardless
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of the presence of modelling uncertainties. A case of this type of control procedure
can be found in [41]. In this strategy, the created reference velocity and servo
feedback control system use radiation impedance and model predictive control

(MPC).

However, the proposed clarification has several disadvantages, such as the
way the reference is tuned at a single-peak wave frequency, the standard MPC is
computationally costly, and the robustness of the MPC is not adopted. An additional
reference-based approach for irregular sea states was proposed in [42, 10], in which a
look-up table was built based on the radiation resistance and features of irregular sea

states with a maximum control force constraint.

The servo feedback control system is executed by utilizing an internal model control.
A sliding model control was used for the controller in the servo feedback control
system in [43, 44]. A comparative approach was proposed in [45], in which the
reference was produced by utilizing a linear quadratic problem constrained by the
buoy’s excursion, and the servo feedback control system used a model-free

controller.

In the non-reference-based control strategy, the least difficult type of these
controllers uses passive control strategies. Examples include the resistive and
reactive loading techniques mentioned in [46]. Intelligent control is likewise
conceivable and applied using either fuzzy controllers or a combination of a fuzzy
controller and online optimization algorithms, such as what was considered in [47,
48]. A maximum power point tracking (MPPT) method has been recommended and
was tried numerically and experimentally in [49]. The MPPT method did not

generate an optimum reference, and conventional “observe and perturb” was
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executed by using power electronic components. A constrained linear MPC strategy
was used in [38]. Although MPPT is easy to formulate, this procedure suffers from
model uncertainties. A nonlinear MPC procedure was proposed in [39], in which
improved robustness abilities were achieved at the expense of an expanded

computational burden.

1.6 Thesis Structure

This thesis is organized into seven chapters. Chapter 1 presents the
introduction and literature review. Chapter 2 contains the methodology of the wave
energy converter assessment. Chapter 3 presents the mechanical and electrical
modeling. Chapter 4 explains the servo feedback control system and presents the
reference generation method. The proposed control technique is also compared with
various existing reference-based and non-reference-based WEC control techniques.
Chapter 5 presents the most important assessment results. Chapter 6 displays the
control result. Chapter 7 summarizes the primary discoveries and conclusions
obtained from this study and describes future research work that will be completed

by UAE University’s wave energy research team.
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Chapter 2: WEC Assessment Methodology

2.1 MIKE 21 SW program
The model in this study was developed with a powerful program called
MIKE 21 SW from DHI. MIKE 21 SW is one of the packages in the MIKE Zero
program. DHI, previously known as DHI Institute for Water and Environment, is an
international company that develops programs and engineering solutions with
specialization in hydrological modeling. DHI has dedicated more than 50 years to
researching and developing solutions for real-life challenges in water environments,
including rivers, coastlines, oceans, and urban water systems. Furthermore, DHI has
implemented solutions to actual problems in more than 140 countries.
The MIKE Zero program powered by DHI contains various packages (shown
below).
= MIKE Hydro
MIKE Hydro includes Basin Module and River Module. MIKE Hydro Basin
Module is a versatile and highly flexible model framework for various applications
concerning management and planning aspects of water resources within a river basin.
MIKE Hydro River Module is the modeling framework used for defining and
executing 1D river models for various river-related project applications. Figure 3

shows a picture of Pacitan River in East Java Indonesia.
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Figure 3: Pacitan River in East Java Indonesia

= MIKE 11
MIKE 11 is mostly used for river modeling. It can handle various projects,
such as river navigation, flooding, water quality, forecasting, sediment transport, and
a combination of these projects.
» MIKE 21
MIKE 21 is mostly used for modeling coasts and seas. It can handle physical,
chemical, and biological processes in coastal or marine areas.
= MIKE3
MIKE 3 handles the simulation for 3D modeling free surface flows and water
quality processes. It is mostly used as a standard program for environmental and
ecological studies.
» MIKE FLOOD
MIKE FLOOD is a package for modeling flooding phenomena. It is a
comprehensive module for understanding the flooding process and for the analysis
and even testing of mitigation measures. It integrates flood plains, rivers, streets,

weather, and buildings into one package.
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= MIKE SHE
MIKE SHE is a unique program for coupled and integrated surface water and
groundwater modeling. It can handle process models for unsaturated and overland

flows, vegetation-based evapotranspiration, groundwater flow, and water quality.

2.2 Study Domain (Indonesia)

Indonesia is the world’s largest archipelagic country. It is located mainly in
Southeast Asia. Figure 4 shows the map of Indonesia and its more than 15000
islands, including the five largest islands, namely, Sumatera, Kalimantan (Borneo),
Sulawesi, Irian Jaya, and Java. Indonesia lies between the Indian Ocean and Pacific
Ocean. This condition makes Indonesia the most strategic route in oceanic trading.
Furthermore, Indonesia might have the largest amount of potential wave energy

resources.
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Figure 4: Map of Indonesia

The domain in this work is in the Indian Ocean on the Java Island coastline
because the demand for electricity in Java Island is tremendously high. In fact, Java
Island is the most populated island in Indonesia; its population accounts for around

58% of the total population of Indonesia (>237 million) [40]. Additionally, Java
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Island is the center of the economic process in Indonesia and houses major
industries. Furthermore, the domain is squished to be the central part of Java Island,
Central Java Province, and Daerah Istimewa Yogyakarta (DI1Y)/Special Region of
Yogyakarta Province. Figure 5 shows the area of study and observation buoy
position, which is close to the office of Badan Pengkajian dan Penerapan Teknologi
(BPPT) or Agency for the Assessment and Application of Technology located in
Baron Beach. The buoy is located precisely at a longitude of 110.547° and a latitude

of —8.1364°.
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Figure 5: Indian Ocean of Central Java and DIY, Java Island, Indonesia

2.2.1 Simulation Domain

To determine the domain, coastline digital data were extracted. Table 1 shows

the resources used to download or digitalize coastline data.

Table 1: Coastline Digital Data Resources

Source Details
National Oceanic and Atmospheric Administration World Geodetic System
(NOAA), U.S. Department of Commerce (WGS84) datum
Digitization from Map/Chart Program dependent
Sea zone Coarse data (unfree)
Ordnance Survey (OS) Master map British National Grid datum




27

Owing to its resolution, data details, and free access, National Oceanic and
Atmospheric Administration (NOAA) is known as the finest source and was used in

this work. The details of the process are listed below.

Download the Coastline Data from NOAA

The download link is https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html.
The site shows the database of global self-consistent, hierarchical, and high-
resolution geography (GSHHG) data. The five available resolutions acquired from

the website are shown in Table 2.

Table 2: Five Resolution Types of GSHHG Coastline Data

Resolution Type Symbol Resolution Details
Full Resolution f Original resolution
High Resolution h ~80% reduction from f in quality and size
Intermediate Resolution i ~80% reduction from h
Low Resolution I ~80% reduction from i
Crude Resolution C ~80% reduction from |

Full resolution was utilized to achieve a good result. However, the format of
GSHHG data is SHAPE data type, which does not match the MIKE program. The
MIKE program can process XYZ files, which can be converted from the SHAPE
format. Prior to this conversion, the file provided by GSHHG is fully world coastline
data, which make up a huge file and cost much in terms of processing and editing

time. To reduce the cost, a calculation domain of interest was selected.
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Area Selection

In this step, geographic information system (GIS) software is required to
select a particular area. The QGIS software, which was previously known as the
Quantum-GIS (QGIS) software, was used to extract the area around Java Island.
Figure 6 shows the world coastline data shown in QGIS software, and Figure 7

shows the area after selection (dark blue region).
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Figure 7: Selected Coastline Data above Real World Map
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Convert Shape to XYZ Data Type
To convert a SHAPE file to the XYZ format, the Geophysical Data System-—
Next Generation (GEODAS-NG) software in Coastline Extractor provided by the
National Centers for Environmental Information and NOAA was utilized. The
software is free and can be downloaded from the website

https://www.ngdc.noaa.gov/mgg/geodas/.

Figures 8 and 9 show the GEODAS-NG software and SHAPE file of the

selected area, respectively.

alir Geodas Smart Start Center = =
GEODAS Hydro-Plot #
GEODAS-NG

Hydro-Plot is a GEODAS application developed to display and edit geographical plots

I HydroPlot of data. Data sources include downloaded data from NGDC's website and other sites
[y Shapefie Maker Hydro-Plot works with MGD77/MGD77T, MAG88T, XYZ-type data files, ASCIl and
e Binary grids, and ESRI shapefiles for data, contours and coastlines. Hydro-Plot
: displays maps of data directly on the screen, coloring the data according to their
} [Th Coastine Extractor value. Also use Hydro-Plot for viewing histograms and profiles of the data, and for
editing data, including deleting records, changing record fields, and creating new
[ rid Transiator records. as well as for automated Qualtiv Control of data files.
=P Data Reformatter
GeoPlot

GEODAS Utilities
= Reformat77

= Reformat8s
Q Merge MGD77T Files
{5} Merge MAGSST Files

{5 Concatinate Files

Figure 8: GEODAS-NG Software


https://www.ngdc.noaa.gov/mgg/geodas/
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Figure 9: SHAPE File of Selected Area Shown in Coastline Extractor

The XYZ file from GEODAS-NG software is a three-column text file that
consists of longitude, latitude, and zero values, as shown in Figure 10. This file was

edited in the MIKE program for the final simulation geometry.

108.882917 -7.752500 0.00
108.88330e -7.752111 0.00
108.88413% -7.752111 0.00
108.884972 -7.752111 0.00
108.885417 -7.752528 0.00
108.884972 -7.752817 0.00
108.88413% -7.752517 0.00
108.88330e -7.752817 0.00
108.8829%17 -7.752500 0.00
114.023750 -B.60665%4 0.00
114.024361 -6.6060659 0.00

Figure 10: Sample of XYZ File Extracted from GEODAS-NG Software
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Finalizing Simulation Domain
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<
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Figure 11: Mesh Generator Feature under MIKE Zero Package

Determining the simulation domain is important because it is related to the
number of meshes and nodes, which affects the simulation time. The domain from
the generated XYZ file was edited with the mesh generator feature in the MIKE Zero

program, as shown in Figure 11.

The final simulation domain of the Central Java and DIY region was set to a

minimum 5 km ocean region, as depicted in Figure 12.
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Figure 12: Final Simulation Region for Central Java and DIY Regions



2.3 Model Setup

coastal and offshore areas. Hindcasting or backtesting, also known as historical re-
forecasting, is a method that utilizes known or closely estimated past data to test the

quality of a mathematical model in comparison with current observed information.

MIKE 21 SW can hindcast or forecast the assessment of wave climates in

Figure 13 shows a time block diagram of the hindcast method.

Furthermore, MIKE 21 SW covers several physical phenomena, such as the

following:

Wave growth by wind

Nonlinear wave-to-wave interaction

White capping dissipation

Bottom friction dissipation

Depth-induced wave breaking dissipation
Refraction and shoaling due to depth variations
Current and wave interaction

Effect of time-varying water depth, flooding, and drying
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e Hindcast Diagram Observation or
Specific time in the past .
Current time

v

Past Time of-=-- n

«==p Future Time

o— Known or well estimated data

Feed it into
mathematical model simulator

Compare output simulator
to observation or current infomation

Correction to the model
if needed

Figure 13: Hindcast block diagram

2.3.1 Data Collection

Several types of data, such as wind velocities, wave periods, significant wave
height, mean wave direction, and bathymetry, are required to complete the model.
The first four types of data are available in the ECMWEF official website, namely,
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. Figures 14 and 15
show the appearance of the user-friendly menu from the website, where the date,

time step, and parameters can be selected.


http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/

Select date
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Figure 14: Date, Time and Step Selection Menu from ECMWF Website

Select parameter
D 2 metre dewpoint temperature
D 2 metre temperature
[ 10 metre U wind component
[ 10 metre v wind component
[ 10 metre wind gust since previous post-processing
[ atbedo
O Boundary layer dissipation
O Boundary layer height
[ charnock

[ clear sky surface photosynthetically active radiati

[ convective available potential energy
[ convective precipitation

[ convective snowfall

] Downward UV radiation at the surface
D Eastward gravity wave surface stress
D Eastward turbulent surface stress

O Evaporation

D Forecast albedo

D Forecast logarithm of surface roughness for heat
D Forecast surface roughness

O Gravity wave dissipation

O High cloud cover

Figure 15: Parameter Selection Menu from ECMWF Website
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a. Wind Velocities Profile
Wind forcing is a crucial parameter in building a spectral wave model
because most ocean waves are constructed by wind. We utilized wind velocities (u
and v components) with variations in time and space. The u and v wind components
can be extracted manually from wind speed and wind direction data, as shown in
Figure 16. The data bank provides raw data on wind velocity for u and v
components. Figures 17 to 20 show the profiles of wind velocity on June 1, 2014 at

12:00 AM and 03:00 AM for u and v components, respectively.

A

<l

V is wind speed
o is wind direction

Vv

>
u

Positive vwind is | Positive u wind is
from the South From the West

Figure 16: Wind Speed, Wind Direction and Wind Velocity u and v Components
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Figure 17: Wind Velocity u Profile in June 1% 2014 at 12:00 AM
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Figure 18: Wind Velocity u Profile in June 1% 2014 at 03:00 AM
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Figure 19: Wind Velocity v Profile in June 1% 2014 at 12:00 AM
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Figure 20: Wind Velocity v Profile in June 1% 2014 at 03:00 AM
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b. Significant Wave Height Profile

Significant wave height was formulated using Equation (1). As mentioned in
Section 1.2, H, is the significant wave height, and m, is the initial moment of the
spectral function. Hy is also defined as the average height of the highest one-third
waves in a wave spectrum. Notably, the control simulation in this thesis was linked
with the assessment result using the significant wave height. The profiles of Hg on
June 1, 2014 at 12:00 AM and 03:00 AM is shown in Figures 21 and 22,

respectively.

3 Significant wave height
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Figure 21: Significant Wave Height Profile in June 1% 2014 at 12:00 AM
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3 Significant wave height
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Figure 22: Significant Wave Height Profile in June 1% 2014 at 03:00 AM

¢. Mean Wave Direction Profile

Wave direction shows the path of ocean waves. The direction does not need
to be similar to the wind direction because of other parameters that affect the waves.
The degree is measured with true north as the starting point and increases clockwise,

as shown in Figure 23.

00

270°

<

90° |

180°

Figure 23: Wave Direction Regulation
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The mean value was used in this work because it is required in the spectral wave
model. Figures 24 and 25 show the profiles of mean wave direction on June 1, 2014
at 12:00 AM and 03:00 AM, respectively.
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Figure 24: Mean Wave Direction Profile in June 1% 2014 at 12:00 AM
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Figure 25: Mean Wave Direction Profile in June 1% 2014 at 03:00 AM



d. Wave Period Profile
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Wave period is the time interval between the arrivals of consecutive peaks at

a stationary point. Various types of waves according to wave period are shown in

Figure 26.
Disturbing
Force Gravity Seismic Wind
Type of
Wave Tide Tsunami Seiche Wind wave Capillary wave
&
: /\—/
I
]
100,000 10,000 1,000 100 10 0.1 0.01
Wave Period (s)

Figure 26: Wave Types Based on Wave Period

The profiles of the wave period on June 1, 2014 at 12:00 AM and 03:00 AM

are shown in Figures 27 and 28.
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Figure 27: Wave Period Profile in June 1% 2014 at 12:00 AM
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Figure 28: Wave Period Profile in June 1% 2014 (a) at 03:00 AM

e. Bathymetry Profile

Bathymetry was originally the study of the floors of water bodies (oceans,
lakes, streams, or rivers). The term bathymetry is interpreted as the ocean
topography, depth, or shape of the ocean terrain. One of the trusted sources of
bathymetry data is the General Bathymetric Chart of the Oceans (GEBCO). The data
are available on GEBCO’s official website, namely,
http://www.gebco.net/data_and_products/gridded_bathymetry data/. The data have a
spatial interval of 30 arcseconds or approximately equal to 0.008333 degrees or 1

km. Figure 29 shows the scattered bathymetry data around Java Island.


http://www.gebco.net/data_and_products/gridded_bathymetry_data/
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Figure 29: Scattered Bathymetry Data

2.3.2 Boundary Conditions

For computation, boundary conditions need to be determined appropriately
and well posed. Boundary conditions should be set on the boundary of the simulation
domain. In this work, three out of nine types of boundary conditions were used as

shown below.

a. Closed Boundary
The closed boundary is used for the boundary where no water flows, such as
the coastline. In Figure 30, the closed boundary is denoted by code 1 (dark
green color).

b. Lateral Boundary
The lateral boundary is used for the side boundary that is parallel to the
direction of wave propagation. In Figure 30, the lateral boundary is denoted

by codes 2 and 8 (maroon and light green colors).
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c. Wave Parameters 2

This type of boundary condition requires four data items, which are
significant wave height, wave period, mean wave direction, and directional
standard deviation. These data were downloaded in the previous section,

except for directional standard deviation, which was set to a constant value.
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Figure 30: Boundary Condition Codes

2.3.3 Mesh Generation

The purpose of mesh generation is to discretize a computation domain with
particular polygonal elements (triangular, rectangular, or another shape), in which

each element is inter-connected at discrete nodes, as shown in Figure 31.

N:= Node
N2 E:= Element
N1
N5
N3 N4

Figure 31: Triangular Meshes with Nodes and Elements
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In this work, Mesh Generator MIKE Zero using the finite element method
(FEM) with a triangular mesh was used to generate a mesh. The generated mesh
contained 4,982 nodes and 7,539 elements. Figure 32 depicts the mesh generated by

MIKE Zero.
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Figure 32: Generated Mesh

2.3.4 Bathymetry Interpolation

Bathymetry data collected from GEBCO have an interval of around 1 km,
which is too large. Additionally, the elements of the mesh do not fit with the
coordinate point of scattered bathymetry data. However, MIKE Zero has an
interpolation function to provide the best estimation value for each of element in the

mesh. Figure 33 shows the bathymetry profile after the interpolation process.
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Figure 33: Interpolated Bathymetry Profile
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2.4 Model Validation

Model validation or verification has to be conducted by comparing the
simulation data with the measured data to achieve good system representation. The
data observed from the buoy station in Baron Beach, Indonesia, are time series data
on significant wave height and wave period in June 2014 with an hourly interval.
Various variables affect the model to a certain degree. These parameters were
examined to obtain a simulation result that fit the measured data as much as possible.

After several calibration processes, the final parameters were as follows.

a. Basic Equation
Spectral formulation has two options, which are fully spectral (FS) and
directionally decoupled parametric (DDP) formulations. In this work, FS
formulation was selected due to its completeness. The wind—wave model in
MIKE 21 SW was formulated in the form of wave action density spectrum N.

Equation (2) shows the wave action equation in Cartesian coordinates.

L +v.oN) =3 (5)

g

where N(x,o0,0,t) is the action density with x containing two Cartesian
coordinate axes (x,y), o is the relative angular frequency, 6 is the wave
propagation direction, t is a time parameter, and v is the propagation velocity of
a wave group in 4D space (x, o, and ). Instationary formulation was selected
over quasi-stationary as the time formulation.
b. Spectral Discretization

Two types of discretization are used in MIKE 21 SW; these two are frequency
and directional. For frequency discretization, the logarithmic discretization

technique is used over equidistant technique for effectiveness. The parameters are
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as follows: the frequency is 25 (minimum of 0.05 Hz) and the frequency factor is
1.1. For directional discretization, circular with 360° rose discretization was
selected, and the number of directions was 16.

Solution Technique

A low-order and fast algorithm technique was selected for geographical space
discretization to reduce the simulation time. The maximum number of levels in
transport calculation was set to 32, and the number of steps in source calculation
was 1 (minimum and maximum time steps of 0.01 and 30 s, respectively).

. Wind Forcing

As a forcing parameter, the u and v components of wind velocity with time-
domain varying data were imported to the model. The data were selected from
the previous data collection. Air and sea were coupled, and the background
Charnock constant was set to 0.01.

Wave Breaking

The wave breaking dissipation parameter must be set to accommodate wave-
breaking phenomena that occur in shallow water. Wave breaking dissipation
occurs due to the wave amplitude reaching the extreme value at which the wave
peak actually overturns. The gamma parameter was set to 0.8.

Bottom Friction

Bottom friction is an important dissipation parameter that depends on wave and
sediment properties. The model is formulated by using the Johnson and Kofoed—

Hansen approach. The parameter was set to 0.04.
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g. White Capping
White capping is a wave-breaking phenomenon that occurs in deep oceans when
the wavelength is far less than the wave height. The model of this dissipation is
formulated based on theory of Hasselman (1974) and Jansenn (1989). Two
dissipation coefficients, C,;; and 6,45, must be selected. These parameters were set

to 4.5 and 0.5, respectively.

Based on these parameter settings, the validation process was statistically
successful. Figure 34 shows the comparison of simulation and observation data on
significant wave height. These data are close to each other with only a minor error
(Figure 35). The maximum error was only 0.15%, and the average was 0.042%. This

result indicates that the model is suitable and ready to use in assessment simulation.
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Chapter 3: Mechanical and Electrical Modeling

In this study, the sea-based WEC proposed by Uppsala University (Figure 36)
was adopted. The WEC consists of a buoy, connecting rod, and permanent magnet
linear generator (PMLG). The mechanical and electrical models of the WES were

considered.

Permanent
magnet

Steel plate

- Stator
winding

— Stator

Stator

Non-magnetic

Seabed

Figure 36: Configuration of the proposed control system for WEC systems [41]

The mechanical model describes the forces acting on the buoy. Control force,
which is one of the forces acting on the buoy, was calculated with the proposed
control strategy by using the mechanical model. Control force was implemented by
controlling the current in the stator of the PMLG. The power converter module

generates the current by controlling the switches.

The electrical model of the PMLG calculates the controlling current and other

electrical quantities. In this research, the mathematical model of the power converter
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was not considered because this study does not consider implementing the control

system using power electronics in the converter.

3.1 The Mechanical Model
The mechanical model describes the mechanical forces acting on the buoy.
Within its linear region, the buoy’s elevation, z (t), is described using the following

equation.

fe@®) = £(®) = fo(O) = fi(8) = £s(O) + fu(8) = mZ (¢), (6)

where Z (t) is the heaving acceleration of the buoy and £, (t), f,(t), f,0(t), f;(¢t),
fs(t), and f,,(t) are the excitation force, radiation force, buoyancy force, losses force,
spring force, and control force, respectively [11]. Constant m is the total mass of
power take-off (PTO), which comprises the buoy, the rod, and the translator of the

PMLG. The connector is considered rigid.

Excitation force f,(t) is the force applied by incident waves on the floating
body when it is held motionless. The force consists of diffraction and Froude—Krylov
terms. The diffraction term can be lost because the size of the buoy is significantly
smaller than the wavelength [42]. In the frequency domain, excitation force is

formulated as

Fe(s) = @(s)H(s), (7)

where F.(s) and H (s) are the Laplace transform of F,(t) and wave elevation 7 (2).
The transfer function of &(s) can be determined by implementing an identification

technique for the simulated data. The data are generated with a hydrodynamic
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program (such as WAMIT [43]) according to the buoy geometry and sea parameters.

Radiation force f,.(t) is modeled as

£(6) = me 2(0) + [ ke (t — Dz(H)dr | (8)

where m,, and k, are the body-added mass in infinite frequency and the radiation
convolution kernel, respectively. By using the procedure in [42], the radiation

convolution kernel was modeled with the following fourth-order state-space equation

[ ke (t = Dz(t)dr ~ C,q, (D),

Gr(t) = Arq,(t) + B2(),

where q,.(t)is the fictitious radiation state vector and A,, B,,and C, are the state,

input, and output of the radiation force matrix, respectively.

Buoyancy force f;(t) is an opposite upward force as the buoy is immersed in the

seawater. For a spherical buoy, the force is formulated as

fo(©) = pgAw ()z(t), (9)

where p, g,4, (t),and z(t) are seawater density, gravitational acceleration, water

plane area, and heaving position of the body, respectively. The water plane area is

A, =mr? (1 — M)

3r2

In this research, the conservative movement of the buoy was considered. Therefore,

the seawater plane can be approximated as

— 2
A, =mre.
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Spring force £;(t) is obtained from the restoring and end-stop springs. Spring force is

modeled as

fs(t) = Ssz(1), (10)

where S is the spring coefficient. Losses force f;(t) includes viscous losses
introduced to test the controlled systems against unknown or poorly known forces,
which can decrease the captured power. For this purpose, the losses force is added to
the mathematical model, but the control force is designed without involving this

force. The force is modeled as

fl(t) = Rlossz(t)i (11)

where R, IS the losses resistance. By using Equations (7)—(11), Equation (6) can be
written as the following state-space equation.

X(@®) = Ax(®) + B(f,(®) + f(©)
(12)

z(t) = Cx(¢t),

where x(t) = [z (£)z(t)q,(£)T]T € R®*1 is the overall system state vector. The

state-space matrices, A € R®*%, B € R%*!,and C € R'*®, are

0 1 0
_ -(pgAw+Ss)  —Ryoss —Cr
A= Mm+meo M+Mee MM |’
04><1 Br Ar
0 0
1 1

m+me, m+ Mg
04><1 04)(1

C=[0 1 0]
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3.2 The Electrical Model
The calculated f,(t) was implemented by controlling the current in the
PMLG. To calculate the controlling current, PMLG was modeled using its d—q
equivalent circuit, which represents the synchronous-frame direct and quadrature
components, as shown in Figure 37. Park transformation was used to transform the
three phase voltages and currents into synchronous-frame components [32]. The d—q
components of stator voltage vg(t) at the terminal were formulated with the

following equations.

Vsa(t) = Reisa(t) = 0e()Asq(t) + 5 (Loaisa(t) + Apur),

d
vsq(t) = Rsisq(t) - we(t)lsd(t) + a (quisq(t));

Asa() = Lsqisa(t) + Apm,
Asq(t) = quisq(t);

where i (t), Apm, As, Rs, and Lg are the stator current, permanent magnet flux, stator
flux linkage, machine synchronous resistance, and inductor, respectively. The
variable w,(t) is the electrical angular frequency, which is provided by the following

equation.

0u(t) = 2mz(t) ,

w

where p,, is the pole width of the PMLG. In this study, a surface-mounted PMLG
was used; the stator inductance quantities on the d-axis and g-axis were almost

identical or Lgq = Lgq [44].
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The converted (electrical) power, P,(t), is provided by

Po(t) = = PApm@e (£)isq (1), (13)
where p is the number of magnetic pole pairs. The mechanical power, P, (t), is

expressed by

Pn(t) = fu(t)z(t)- (14)
By using Equations (8) and (9) and under the assumption that no loss exists in the

conversion between B, (t) and P,(t), the following is obtained.

£ (D2(8) = 3pAPMw‘;(t)isq ©

Therefore, controlling current igq (t) is obtained as

, _ 2fu@®z()
fsq(t) = 3pApMwe(t)’ (15)
i.s'([
_/\/\/\_fWY\_(_.
R, Lsq +

We(Lsdisa + Apm) C_

+

®
i Ysd
'R.s' L.wl +
(*"(‘L.s(,isr[ <1—> Usd
®

Figure 37: Corresponding circuit of the PMLG
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Chapter 4: Proposed Control Strategy

This thesis presents a novel reference-based HPA control method. The
novelty lies in the generation of the velocity reference and in the design of the
controller for the servo feedback control system. Common control strategies utilize
radiation resistance as a damping factor in excitation force to produce the reference
velocity, such as in [29]. Nevertheless, this strategy presents a main disadvantage:
the reference velocity is tuned based on a single frequency of radiation resistance.
This approach is inadequate due to the nature of unpredictable sea waves.
Additionally, the reference velocity generation does not consider the limits of control
force and allows the required control force to exceed its acceptable value. In active
sea states, this condition can create reversed power absorption, in which the PTO
consumes power instead of producing it. With a specific end goal to address these
issues, a new technique was proposed to produce the reference velocity; the goal was
to expand the power transformation from mechanical to electrical power. Unlike in
[30, 10, 31, 33], the velocity reference was generated by utilizing the forces acting on
the oscillating body and the electrical model of the PTO. In addition, the technique
combines limitations for control force and use index. The use index is the ratio
between the peak and mean values of electrical power. With the goal to utilize this
index as a part of irregular (polychromatic) sea states, the reference velocity was
differed based on the value of the peak angular frequency and significant height of
the waves. Moreover, a straightforward proportional—integral-derivative (PID)
controller was utilized in the servo feedback control system. The PID controller is
expected to demonstrate tracking capability and robustness despite the modelling

uncertainties.
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4.1 Servo Feedback Control System
The servo feedback control system involves two transfer functions, namely,
the mechanical models of the WEC and PID controller, which are denoted as P(s)
and K(s), respectively. In this study, P(s) comprises a nominal plant model P(s)
with input multiplicative uncertainty and receives three input forces. Force f,(t) is a
manipulable force, whereas f,(t) and disturbance force f,;(t) are non-manipulable
forces. f;(t) is an example of unmodeled force. Without f,,(t) and f;(t) (freely
oscillating system), the transfer function P(s) = V(s)/F,(s) = Np(s)/Dp(s) P(s) is
formulated using Equation (12), where V(s) is the Laplace transform of z(t) and
Np(s) and Dp(s) are the numerator and denominator of P(s), respectively.
Furthermore, A(s) is a stable and proper transfer function with ||All, < 1. The
transfer functions Wr(s) = Nt(s)/Dr(s) and Ws(s) = Ng(s)/Ds(s) are weighting
functions that represent the model uncertainty and nominal performance
specification, respectively. The transfer function of the PID controller is formulated

as

ki +kPS+deZ

K(s) = ky + ki + kqs = (16)

The objectives of the PID controller in the servo feedback control system are as

follows:

= To stabilize the nominal feedback control system
= To follow the reference velocity despite the existence of uncertainties in the

model

The first objective can be satisfied by placing the closed-loop poles of the nominal

feedback control system in the left-half plane of the complex plane, or equivalently,
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a(s,kp, ki, kq) 2 sDp(s) + (kas? + kps + ki)Np(s) (17)

is Hurwitz. The second objective is solved by using the H, design technique

framework [45]. We defined the complementary sensitivity function as

__ K(9)P(s)
T(s) = 1+K(s)P(s)’

fe(t) falt) .
- . ' 1
n(t)__ 4 () v(f),_lf,,(ﬂtfdfr. E@* o
(@ = T—O—[E—0 PO
Reference generation Servo feedback controlled system

Figure 38: Proposed control system configuration for WEC Systems [41]

The system demonstrates robustness stability if the following equation is satisfied.

Wr ()Tl <1 (18)

Tracking performance can be measured by defining the sensitivity function as the

following transfer function, which relates the reference with the error.

1

S6) = T RGPE)

By using H,, theory, the nominal tracking performance for minimizing the tracking

error can be formulated as
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Ws()S(leo < 1. (19)

The robust performance for solving the second objective is obtained by combining

Equations (18) and (19) as follows:

IWs(s)S() + [Wr()T(S)lleo < 1. (20)

The complex polynomial stabilization method was used to determine the parameters
of the PID controller that satisfy Equations (17) and (20) [46]. We selected this
method because the transfer function of the obtained controller has the same
structure/transfer function as in Equation (16), and the method provides all (not just
one) admissible PID controller gains for a selected k,, gain. The method requires the
control problems to be written as a polynomial stabilization. Although Equation (17)
is evidently a polynomial stabilization problem, Equation (20) needs the following

lemma to be converted into a polynomial stabilization problem.
Lemma 1 [46]. Let

L(s)  ly+lLs+-+1s”
M(s) my+mys+ -+ m,s*

and

Y(s) _Yotyis+oo 4 yysY
Z(s) zo+z;S+- + z,8Y

be stable and proper rational functions with m, # 0 and z,, # 0. Then,

7l <

e

M(s) M |

if and only if
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a) M(s)Z(s) +el®L(s)Z(s) + e/®Y(s)M(s)Is Hurwitz for all § and ¢ €
[0,27),

b) |L/my| + |yy/Zy| <L

By using Lemma 1, the robust performance condition in Equation (20) can be

converted into the following polynomial stabilization.

B(s, 0,0,k ki, k)

£ sDs(s)Dr(s)Dp(s) + e/ sNg(s)Dr(s)Dp(s)

+ (kp + Kis + kqs2)[Ds(s)Dr(s)Np(s) (21)
+ ejQDs(S)NT(S)NP(S)]
This equation is Hurwitz, and
[Ws(0)S(0)| + [Wr(00)T(o0)| < 1. (22)

Therefore, the PID controller needs to satisfy the objectives of the servo feedback
control system for WECs to be obtained by solving the following equations

simultaneously [41].
(C1) a(s, kyp, ki, kq) is Hurwitz.
(C2) B(s,6, 0, kyp, ki, kq) is Hurwitz for all 6 and @€ [0,27).
(C3) [Ws(0)S ()| + [Wrp ()T ()| < 1.

Solving Equation (C3) is easy when an admissible PID controller that satisfies
Equations (C1) and (C2) exists. Equations (C1) and (C2) can be solved by using the

complex polynomial algorithm shown in Figure 39 [46]. This algorithm converts the



61
stabilization problem into a set of linear equations. Equations (C1), (C2), and (C3)
are denoted as R¢q, Rc, and Rc3, respectively. Therefore, the admissible gains of

the PID controller satisfying Equation (17) are Rc; N Rgz N Res [41].



START

L

Arrange the equations of @ and £ as:
c(s.kp. ki kg) = E(s) + (kas? + kps + k;)M(s).
where for a:

E(s) = sDp(s)

M(s) = Np(s)
and for 5:
E(s) = sDs(s)Dr(s)Dp(s) + e/®sNs(s)Dr(s)Dp(s)
E(s) = sDs(s)Dr(s)Np(s) + e/ sDs(s)Ng(s)Np(s)

For fixed allowable k,, solve the real. distinet finite zeros

|

Define Er(s), E;(s), Mgp(s) and M;(s) as real-imaginary
decompositions of E (s) and M (s) respectively.

Define M*(s) = Mg(s) — M;(s)
and v(s) = C‘(S, ky, kg, kd)M" (s)
and denote & as leading coefficient of v(s)
4
Let n. m be the degrees of
I c(s, kp, k;, kg4) and M (s) respectively.
3
Find real and imaginary decompositions of
v(jw) as follows:
v(w) = p(w, ki, kg) + jq((u,k.p)
plw, ki kg) = pr(w) + (ki — kgaw®)pz(w)
q(w, kp) = q1(w) + kagz(w)
pi(w) = ERUw)Mp(w) — Ef(Gw)M(Gw)

of g(w, k) with odd multiplicities and denote them by

Wy < Wy < - < wy_4 and let wy = —oo and w; = oo.
Construct the sequences ig, iy, , i, where t € {I,I —

1}.in a way that iy = 0 if M"(jw,) = O and i, € {—1,1}
otherwise. And define A(kp) as the set of all sequences

|

Determine the admissible strings I € A(kp) such that:
n— (M) —rM(s))) =
Slio. (—0 4222 i (— D =i ) sgn[q (e, kp)]
if m + nis even and ¢ is purely real,
or m + n is odd and & is purely imaginary

L2Eit i~ sgnlg (e, k)]
if m + nis even and ¢ is not purely real,
or m + n is odd and &is not purely imaginary
where I(M(s)) and r(M(s)) denote the numbers of roots
of M(s) in the open left-half plane and open right-half
plane respectively.

pa(w) = 1;‘-4;22(1'60) — M2(w)
g1(w) = FIEIUU))MRO(’)) — Egr(a)M;(w)]
q2(w) = w[Mg?(w) — M;?(w)]

Construct the imnequalities corresponding to the
admissible strings I as follows:

P1(we) + (k; — kqwo®)p2(wi1-1) < or =0

Pi(@isi—1) + (ki — kgw %1511 )p2(@i/1—q) < or > 0

4

Solve the inequalities to obtain the admissible regions for k; and k4.

END

Figure 39: Flow Chart for Complex Polynomial Stabilization [41]

29
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4.2 Reference Generation

The objective of reference generation is to provide reference velocity Z.(t),
which maximizes the conversion from mechanical to electrical power. Velocity
reference tracking is commonly used as a control strategy to achieve resonance, as
mentioned in [9]. Reference generation includes two transfer functions: &(s) and
Y (s). ®(s) is the transfer function between the excitation force and elevation of
waves, as shown in Equation (7). Transfer function Y (s) relates reference velocity
Z(t) to the excitation force and is formulated as

_ B _1
v = 22=1 (23)

where V,.(s) is the Laplace transform of Z.(t) and R is a constant that represents
intrinsic resistance. The objective of reference generation can be achieved by
designing the value of R using the following procedure. The energy conversion

between mechanical power B, (t) and electrical power P,(t) is formulated as

Pt = Pr8) = Pross () = fu((t) - 2210 (24)

where P;,¢,(t) denotes the power losses in the PMLG. The mechanical model of the

PMLG is related to its mechanical model using the following equation

fulty = TR0 (25)

Substituting Equation (25) into Equation (24) results in

3mApmisq(t)Z(t) _ 3RsiZq(t)

Pe(t) = 2D >

(26)
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In the resonance condition, z(t) becomes equal to zZ.(t) by deploying the servo
feedback control system. Maximizing P,(t) by taking partial derivative P,(t) over
I5q(t) equal to zero in Equation (26) and evaluating it in the resonance condition, the

following is obtained [41].

ok, 3 Apmisq(£)Z-(0)
disg 2D,

— 3Rigq(t) = 0 (27)

Variable i, (t) can be fixed by fixing f,(t) to be equal to its maximum designed

value £/ in Equation (25) as follows:

3mApym ig’},

== (28)

2pw

where g7 is the maximum rated value of i, (t). By substituting Equations (7), (23),

and (28) into (27), the following equation can be derived.

_ 3udpyH(s)P(s)
R() == R, i (29)

For regular (monochromatic) sea states, 1 (t) is a sinusoidal waveform with specific
significant height Hy and peak frequency w,. Therefore, for regular sea states, R can

be obtained using the Bode magnitude of the following equation.

3nApMNp®(s)
6PwRsisy

R(wp) = (30)

where n,, is equal to half of Hg, e.g., n, = 0.5 for H; =1 m. A look-up table can be

constructed using the resulting Bode magnitude plot.

Constant R in Equation (30) gives the maximum power conversion efficiency for

various w,, without exceeding the values of £;™. However, this does not mean that we
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obtain the maximum P, (t). The maximum power conversion tends to result in a large
value of R and hence reduces the value of P, (t). To improve the captured power,
Equation (30) can be modified by adding weighting constant y to P, (t) in
Equation (24). The value of P;,4(t) will be large if the value of y is greater than 1.
Although a large value of P, .(t) decreases the power conversion efficiency, the
value of R is reduced and the value of P,,(t) and P,(t) can be improved. Therefore,

Equation (30) can be written as

3nApMNp P (s)
Y6PwRsisy

R(wp) = (31)

Apart from reducing the power conversion between B, (t) and P,(t), a large value of
y can increase the peak value of f,(t) and the utilization index in the electrical
power, which is formulated as P/*(t)/P,, where P/ (t) and P, are the peak and mean
values of electrical power, respectively. A low utilization index value indicates
efficient usage of the PTO, whereas a high number indicates a high content of
reactive power in the PTO. Excessively large values of the utilization index can lead
to power reversion. The following shows the procedure to tune y in Equation (31)

and satisfy other constraints in £,;* and the utilization index.

1. Select the value of H; and operating region of w,. Set y = 1. As mentioned
earlier, this represents the maximum power conversion between B, (t) and
P (0).

2. Find the value of R using Equation (31).

3. For a specific value of H,, simulate the system using the monochromatic sea
state for two values of w,, i.e., the highest and lowest values, which represent

the most and least energetic sea states, respectively.
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4. Check the values of £;"(t) in the most energetic sea state and the utilization
index in the least energetic sea state.

5. If the values of f£*(t) and the utilization index are below their designed

values, increase the value of y and return to step 2. Otherwise, stop the

procedure.

This algorithm is a fast procedure for finding the value of R that satisfies the
design constraints. A look-up table can be generated using the Bode magnitude plot.
This table gives the value of R based on the information on H; and w,,. In irregular or
polychromatic sea states, this information can be obtained by performing a fast
Fourier transform over future sea states. This involves a prediction method, which is
beyond the scope of this study. Changing the value of R over a rapid sampling
instant is unnecessary because the sea state will not change its profile (i.e., Hg and

wy) for a duration of 20-30 min [47].

The proposed control technique was compared with the existing resistive

loading (RL) method. The control force for the RL method is formulated as

fu® = = (Rr(@))? + (0?m + w2M, (@) = Sp = Sy5).

The RL method is well known for its high conversion efficiency between mechanical

and electrical powers.
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Chapter 5: WEC Assessment Simulation Results and Discussion

Simulations were conducted on a computation machine with 2.60 GHz CPU
and 8 GB of RAM. The simulation lasted for 95 hours for one-year duration and
around 40 days for 10-year duration. For easy data analysis, the simulations were
divided into 10 steps based on the year. The simulation results and analysis are

separated into two parts, which are time domain analysis and spatial analysis.

5.1 Time Domain Analysis

Analysis in the time domain is necessary because it provides the evolution of
wave parameters over time and the ability to determine the time range of optimum
wave power. Considering a comprehensive mean value analysis as well as partial

analysis is important. Thus, time domain analysis was divided into two portions.

5.1.1 10-Year Mean Analysis

This comprehensive analysis was performed by taking the average value of
the entire duration (10 years) for three parameters, namely, H, P, and T. Figure 40
shows the 10-year mean wave period with a maximum value of 10.1240 seconds.
Figure 41 shows the histogram of the mean wave period, in which most of the

elements (places) have a mean wave period of around 7.5-9.5 seconds.
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Figure 41: Histogram of 10-year mean Wave Period

Figure 42 shows the contour of the mean significant wave height for the 10-year
duration. The maximum value is 2.2679 m. The distribution is prevalent, as shown in
Figure 43. The histogram shows that most of the elements have a mean significant

wave height of around 1.75 m, which shows a potential for wave energy conversion.
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The main parameter to examine is mean wave power. Figure 44 shows the contour of
10-year mean wave power. Most of the elements have a mean wave power of around

12.5 kW/m, which is high as shown in Figure 45.
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5.1.2 Monthly Analysis

This part is also significant to the time domain analysis. Figures 46-57 show
the distribution of mean wave power for each month for the 10-year duration.
The colors change from green to red and back to green again, thus revealing the
quality of the mean wave power. Figure 58 shows the total mean wave power for
each month. The maximum mean wave power appears in July, August, and

September.
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Figure 55: Distribution of 10-year Mean Wave Power of October
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Figure 57: Distribution of 10-year Mean Wave Power of December
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Figure 58: Monthly Mean Wave Power Potential Based on 10-year Assessment Data

5.2 Spatial Analysis

Analysis in the space domain is also important to determine a specific area to
be a candidate for WEC location. Several parameters can determine the suitable
candidate. For example, the area should be close to populated regions and/or
industrial areas with high mean wave power and close to land. In this work, two large
areas were selected and analyzed. These two areas are Penyu Bay and beaches along
Daerah Istimewa Yogyakarta (DIY) or Special Region of Yogyakarta Coastline.
5.2.1 Penyu Bay

Penyu Bay is located next to Cilacap Regency, Central Java Province.
According to the Population Density Report of the Indonesia Statistic Center
Department, Cilacap was the most populated regency in Central Java Province in

2014 and has the largest area in the province. The total population is about 1,685,573
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with a population density of about 788 people/km?. Additionally, Cilacap is home to
various industries, such as PT. Pertamina UP IV Cilacap (oil company), PT. Holcim
Tbk (cement), PT. Panganmas Inti Persada (flour), PT. Juifa International Foods (fish
canning), PT. Sinar Mas (cooking oil distributor), PT. Aspal Mitra Utama (asphalt
distributor), PT. Lautan Murti (fish freezing), and many others. These indicate that
the demand for electricity is relatively high in the area.

Figure 59 shows the discrete study area, which includes Penyu Bay with 2.5
km distance from the farthest coastal point and a 40 km span. The distribution of
mean wave power for the 10-year duration is depicted in Figure 60. The histogram in
Figure 61 shows that the distribution is prevalent for mean wave power in the range

of 2.5-15 kW/m.

40 km

Figure 59: Penyu Bay Area
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Figure 60: Distribution of 10-year Mean Wave Power in Penyu Bay Area and Pin
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Figure 61: Histogram of 10-year Mean Wave Power in Penyu Bay

Based on observation and consideration of mean wave power and distance

from the coastline, three points were considered suitable candidates for WEC

location (pinned points in Figure 60). These three points are tabulated in Table 3,

including the mean wave power, mean significant wave height, mean wave period,

and distance from the coastline.
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Table 3: Point Candidates for WEC Location in Penyu Bay

Point | Latitude Longitude Distance | P (kW/m) | H, (m) T (s)

1 -7.699648 | 109.229929 | <325m ~15 1.8114 8.8790
2 -7.714494 | 109.344889 | <300 m ~14 1.7056 8.8046
3 -7.788433 | 109.043550 | <350 m ~13 1.5237 8.7978

5.2.1 DIY Coastline

Another potential area is along the beaches on the DIY coastline. According
to the Indonesia Statistic Center Department, the total population of DIY in 2015 was
around 3.7 million with a population density of more than 1000 people/km2; the
value increases annually. In terms of industry, in 2012, DIY had 391 industries in
various sectors, such as manufacturers of computers and electronic products, foods
and beverages, textiles, leather products, wood products, chemicals, pharmacies, and
refined oil products. DIY is known as a progressive region with high economic
growth. In 2015, DIY achieved around 5% economic growth. This shows that the

demand for electricity in this region is high.
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Figure 63: Distribution of 10-year Mean Wave Power along DIY Coastline and Pin
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Table 4: Point Candidates for WEC Location in DIY Coastline
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Point | Latitude Longitude | Distance | P (kW/m) | H, (m) T (s)
1 -71.974645 | 110.186874 | <250 m ~16 1.8421 8.5709
2 -8.189942 | 110.693915 | <200 m ~13 1.8534 8.8502
3 -8.139225 | 110.569732 | <225m ~13 1.8963 8.150

Figure 62 shows the beach along >96 km DIY coastline with a width of

around 2.5 km. The distribution of mean wave power for the 10-year duration is

shown in Figure 63. Table 4 shows the point candidates for WEC location along the

DIY coastline.
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Chapter 6: Control Simulation Results and Discussion

This chapter presents the simulation results and analysis of the control part.
The simulation setup and controller design are presented in Section 6.1. The
strategies used for the control simulation are in Section 6.2. Section 6.3 shows the
results and analysis for each controller to determine the performance in nominal
conditions and at various sea states. An analysis of the system under perturbations
and external disturbances is also presented. The simulation was performed using

MATLAB Simulink.

6.1 Simulation Setup and Controller Design

Table 5: Electrical and Mechanical Parameters of the WEC

Parameter (symbol) Value unit
Buoy’s Radius (r) 5m
Buoy and translator mass (my,) 2.68x10° kg
Infinite added mass (m.,) 1.34x10° kg
Water plane area (4,,) 78.54 m?
Submerged Volume (V;) 261.80 m®
Sea water density (p) 1025 kg/m?®
Gravitational acceleration (g) 9.81 m/s?
Seabed depth (d) 80m
Resonance angular frequency (wg) 1.56 rad/s
Buoyancy stiffness coefficient (S;) 7.89%105 N/m
Nominal restoring stiffness coefficient (S,o) 2x105 N/m
Nominal losses resistance (R;ss0) 0.4x105 N.s/m
PMLG synchronous resistance (R;) 0.29 Ohm
Permanent magnet flux (Apy) 23 Wb
PMLG pole width (p,,) 0.05m
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Table 5 presents a list of the mechanical and electrical model parameters. A
spherical buoy was used in this study. The transfer function in Equation (7) was
obtained using the parameters in Table 5. WAMIT and a system identification

technique were adopted as follows:

Fe(s) = ®(s)H(s),

(4.3%105)s8+(4x105)s7+(1.1x10°)s®+(7.3x10%)s%+(8.8x10%)s*+
(3.6x105)s3+(2.1x10%)s%+(4x10%)s—(6.1x1077)
5840.857+2.45641.355+1.85%+0.5534+0.452+0.045+0.01

d(s)

By using the same technique used to find ®(s), the radiation force in Equation (12)

was obtained as follows:

—3.4376 —6.3533 —4.9714 -1.7168

_ 1 0 0 0
Ar = 0 1 0 0
0 0 1 0

B.=[1 0 0o o]

C, =1096 x105 3.6x10° 1.57 x 105 0]

To fit the simulated data generated by WAMIT, by using the smallest order satisfying the
numerical solution and estimation for radiation force, the fourth-order equation is sufficient.
In this study, the effective peak frequency of a wave lies between 0.5 and 1 rad/s, and its
significant height lies between 1 and 2 m. A sea state with a significant height greater than
2 m and peak frequency lower than 0.5 rad/s is too energetic, whereas a sea state with a
significant height lower than 1 m and frequency greater than 1 rad/s possesses an

immaterial energy content.

The highest values for control force f,"(t) and the usage index are equivalent to 3

MN and 10, respectively. The tuned estimation values of y for H; =1 mand H;=2 m are y =



94
2 and y = 3, respectively. By using the Bode plot, a look-up table was created and is

presented in Table 6.

Table 6: Look-up Table for R x 10° [Ns/m] for Various Values of Hs [m], op [rad/s]

and y

wp He=1 Hy=2

Y= V=2 V= V=3
0.50 0.60 0.30 1.20 0.40
0.55 0.58 0.29 1.16 0.39
0.60 0.56 0.28 1.12 0.37
0.65 0.54 0.27 1.07 0.36
0.70 0.51 0.25 1.02 0.34
0.75 0.49 0.24 0.98 0.33
0.80 0.47 0.23 0.94 0.31
0.85 0.44 0.22 0.89 0.30
0.90 0.42 0.21 0.83 0.28
0.95 0.40 0.20 0.81 0.27
1.00 0.37 0.19 0.75 0.25

Complex polynomial adjustment was employed to decide the acceptable PID gains
fulfilling the design requirements of the servo feedback control system. By using the
following procedure [48], which is the robust control toolbox in MATLAB, weighting
function W was determined. The main parameter perturbations in the spring and losses
coefficients were considered. The nominal values of S, and R;,ss Were 2 x 10° N/m and 0
Ns/m, respectively. This implies that no loss forces existed in the nominal system. The

perturbed system was simulated with the following equations.

Ss = Sso0 + AsSs0,
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Rioss = Riosso + AiRjoss0

where S, is the nominal value of S, and R, is the initial value of R;,s;. The
highest perturbation is assumed to be equivalent to 50% of S, and R;,ss- In this
manner, the estimations of A; and A; were shifted inside the scope of [0 — 0.5].
Transfer function Ws(s), which is shown below, was obtained by using the system

identification technique.

0.0016s° + 0.2s* + 1.8s3 + 7.6s% + 10.8s + 18.7
s° 4+ 4.5s% 4+ 10.6s3 + 33.452 + 25.55 + 59.2

Ws(s) =

Transfer function Wy (s) was selected to be a low-pass filter that includes all
the operating wave frequencies. Weighting function W,(s) was composed as the

following equation.

100

Wr(s) = 3700

The region examined to obtain the k, gain was dependent on the magnitude
of f,(t) because the magnitude of f,(t) depends on the value of k, gain. The
magnitude of f,,(t) must be higher than f,(t) to produce a sufficient damping force
for the PTO. The value of k, gain was set to 108. Multi-Parametric Toolbox was
utilized to solve the linear programming because locating the acceptable gains of k;
and k, is difficult [49]. All acceptable gains of k; and k, that fulfill the robust
performance requirement for k,, = 10° are specified in the next inequality.

k<1

1.57 x 10™23k; — kg < 32360.7
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—1.658 X 10™2%k; + ky < 10514.6

Within an acceptable region, a set of k; and k; gains was selected. Transfer

function K(s) in Equation (16) is expressed by the following equation.

10052 + 1055 + 6.6 x 107
K(s) = - (32)

Keeping in mind the end goal to evaluate mathematically whether the
obtained PID controller fulfills the robust performance specification, transfer

functions Ws(s), W;(s), and K(s) were substituted into Equation (20).

The proposed strategy was compared with diverse controllers. P1-RB and PT-
RB demonstrate the proposed strategy with y equal to one and y equal to its tuned
value, respectively. SPT-RB is a simplified version of PT-RB, in which estimation of
vy is settled for all sea state conditions. The maximum value in Table 4 was selected
to guarantee that the requirements in £;"(t) and the use index were fulfilled. SPT-RB

is less costly than P1-RB and PT-RB.

The proposed result was verified by utilizing regular (monochromatic) and irregular
(polychromatic) sea states as well as in nominal and perturbation scenarios. Irregular sea
states were generated with the JONSWAP spectrum [50], which is described by its Hg and

wy,. Simulink was utilized to run the simulation with a time sampling of 1 ms.
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6.2 Simulation Strategy

The main simulation steps were as follows:

1. The values listed below were plotted against the specified peak frequency
range (0.5-1 rad/s) of a nominal system in a regular (monochromatic) sea
state with specific wave heights H;=1 mand Hy=2 m.

= Average mechanical power P,

= Average electrical power P,

=  Maximum control force f,;"

=  Maximum electrical power P,

= Maximum electrical power to the average electrical power P /P,
=  Percentage of conversion efficiency between P,and P,

2. The response in the time domain of the nominal system in an irregular
(polychromatic) sea state with wave height Hs= 2 m and peak
frequency w, = 0.7 rad/s was determined. The following measurements were
performed in the time interval 20-140 s.

Mechanical quantities
= Reference z, and out velocities z of excitation force and heaving buoy
= Qutput of heaving buoy n and excitation force position z

=  Excitation force f, and control force f,

=  Mechanical power p,, and its average P,,

Electrical quantities

= d-q components of the stator voltage, vy, and vgq

= g-axis current component that implements control force



98

= EMF voltage of the linear generator
= Electrical converted power p, and its average P,

3. The performance of an irregular (polychromatic) sea state with H;= 2 m and
peak frequency w, = 0.7 rad/s was examined under the presence of a
disturbance force. The results are shown in tables, and these tables are
arranged to contain nine cases of perturbations and a tenth one (the worst
case) where external disturbance force f,;(t) is added. The measurements for
each case were as follows:

. Energy drop percentage based on the energy calculated for the
nominal case,

. Mean square error (MSE).
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Figure 64: Simulation Results Obtained by the RL, P1-RB, PT-RB, and SPT-RB
Methods for Regular (Monochromatic) Waves with H, = 1m

The simulation results obtained by P1-RB, PT-RB, SPT- RB, and RL

methods for regular (monochromatic) waves with H; = 1 m are presented in Figure

64. The PT-RB method demonstrated a performance that is superior to that of the

other methods in terms of P,, and P,, as shown in Figures 64a—64b.

Figure 64c shows that the tuning value of y was decided by the utilization

index constraint rather than the maximum value of f,]"*. Figure 64e shows that PT-RB

had the highest value of P/*/P, among all the methods. A high value of P, can be

achieved if the design constraints in £, and the maximum value of the utilization

index are relaxed.
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The RL method obtained the best conversion efficiency in the low-frequency

range, i.e., 0.50-0.65 rad/s, among all the methods. P1-RB and SPT-RB had
efficiencies in the frequency range of above 0.65-1 rad/s, as shown in Figure 64f.
However, this does not mean that the RL method had the highest P,. The P1-RB
method had better conversion efficiency than the PT-RB method because of the

tuning value of vy.

The simulation results obtained by PT-RB, P1-RB, SPT- RB, and RL
methods for regular (monochromatic) waves with Hg = 2 m are shown in Figure 65.

PT-RB, P1-RB, and SPT-RB methods showed the well-designed values of R in

Equation (23). The tuning value of y for PT-RB increased P, to more than twice the
time within the majority of operating frequencies. For Hg; = 2 m, the tuning value of y
was decided by the constraint in the maximum value of f;" rather than the utilization
index. The performance of SPT-RB was improved for H; = 2 m because the selected
single value of its R was designed for H; = 2 m. The RL method had the highest
conversion efficiency, and the conversion efficiency of the SPT-RB and P1-RB

methods was slightly better than that of the PT-RB method.
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Figure 65: Simulation Results Obtained by the RL, P1-RB, PT-RB, and SPT-RB
Methods for Regular (Monochromatic) Waves with Hg = 2m

The selected value of R is the largest value in Table 6, which is designed for
H; = 2 m to ensure that the design constraints are not violated in all operating sea
states. The simulation was conducted using H; = 1 m. The value of P, can be
increased for the SPT-RB method if a low value of R is selected (e.g., the value of

R in the middle of Table 6 or the value of R for dominant sea states).

The simulation results in terms of mechanical quantities obtained using the
PT-RB method for irregular (polychromatic) waves with H; = 2m and w, = 0.7
rad/s are shown in Figure 66. This figure shows the tracking capability of the
obtained PID controller. The PTO almost perfectly tracked the reference velocity. A
very small minimum square error (MSE) of 3.90 x 10~* resulted from the
simulation. The control action did not cause extreme excursions for the buoy (such as
the buoy jumping out of the ocean surface or becoming totally submerged), as shown
in Figure 66b. In this example, the maximum level of £, (t) was below its design

value, as depicted in Figure 66¢. The magnitude of £, (t) is reasonable because it
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should be slightly higher than f,(t). The instantaneous mechanical power, B, (t), is
shown in Figure 66d. An average mechanical power of 158 kW was obtained by the

simulation.

#

%

Velocity {mis)
o
Pasition {m)

%0 & 2 100 120 40 50 80 00 720
Time (z) Tirme (s)
a) (b)

—f — & —Fn _}:’m

L. /\/\W\Mm
\/W\JU \JUVUUUU

40 60 80 100 120 “an 60 80 100 120
Time (s) Tirne (s)
9] (d)

Force (M)
o
Mech. power (W)

Figure 66: Simulation Results in Terms of Mechanical Quantities Obtained using the
PT-RB Methods for Irregular (Polychromatic) Waves with H; = 2m and w,, =
0.7rad/s

The simulation results in terms of electrical quantities obtained using the PT-
RB method for irregular (polychromatic) waves with H; = 2 m and w, = 0.7 rad/s
are shown in Figure 67. Figures 67a—67b show the voltages and currents for the
direct and quadrature components, respectively. The EMF voltage is shown in Figure
67c, and instantaneous electrical power P,(t) is shown in Figure 67d. An average
electrical power of 96 kW was obtained by the simulation. By comparing B,, with P,,

a conversion efficiency of 60.6% was obtained.
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Table 7: Different Perturbation Scenarios in f; and f; using PT-RB Method

Cases A[%] | As[%] | Energy [KWh] | Energy drop [%] MSE

- - 6.6324 - 3.90E-04
Case 1 0 0 5.7035 14.0059 3.77E-04
Case 2 0 25 5.6994 14.0679 3.86E-04
Case 3 0 50 5.6953 14.1297 3.97E-04
Case 4 25 0 5.4712 17.5074 3.73E-04
Case 5 25 25 5.4675 17.5641 3.83E-04
Case 6 25 50 5.4637 17.6208 3.94E-04
Case 7 50 0 5.239 21.0089 3.70E-04
Case 8 50 25 5.2356 21.0604 3.80E-04
Case 9 50 50 5.2322 21.1118 3.90E-04
Worst 50 50 5.2247 21.224 4.27E-04

Table 8: Different Perturbation Scenarios in f; and f; using RL Method

Cases A;[%] Ag[%] | Energy [KWh] | Energy drop [%]
- - 1.1831 -
Case 1 0 0 1.1366 3.9299
Case 2 0 25 1.0605 10.3608
Case 3 0 50 0.9906 16.2696
Case 4 25 0 1.1253 4.8847
Case 5 25 25 1.0506 11.2036
Case 6 25 50 0.9818 17.0159
Case 7 50 0 1.1141 5.8284
Case 8 50 25 1.0407 12.0373
Case 9 50 50 0.973 17.7546
Worst 50 50 0.7662 35.2394
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Further simulations using the PT-RB method were conducted on the parameter
perturbations to test the robustness of the control system. The parameter
perturbations in S; and R, that occur in the scenario described in Section 6.1 were

considered.

The simulations were conducted by using the irregular sea state used in
Figure 67 for the first 140 s only. The generated electrical energy and MSE between
z(t) and z,.(t) were measured. The PT-RB method was compared with the RL
method. The result is depicted in Tables 7 and 8. The PT-RB method maintained a
low MSE value for all the perturbation cases. No MSE value was obtained for the RL
method because RL is not a reference-based control method. PT-RB suffered an
energy drop of 21.1% in case 9, where S¢ and R, deviated by 50% from their
nominal and initial values, respectively. A similar relative drop in energy was
experienced by the RL method. However, PT-RB generated a larger amount of
electrical energy than the RL method. In the PT-RB method, the perturbation in R
had a larger impact on the energy drop than the perturbation in Sg because the losses

force is assumed to be unknown by the mathematical model.

Finally, the PT-RB method was tested by using the worst-case scenario. The
worst-case scenario is defined as the parameter perturbations of case 9 in Tables 7
and 8 with the existence of unmodelled external force f;(t). The external force was

formulated using the following equation.

fa(t) = —Ss0 — Ripsso — aqz(t)|z(t) | sin(wgyt),

where a; = 0.5 x 10* and w, = 0.5 rad/s. Similar to that in the previous test, the
energy drop and MSE were measured. The results were compared with those of the

RL method. The result of the test is shown in the last row of Tables 7 and 8 for each
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method. PT-RB maintained the same energy drop compared with case 9, but the
value of MSE slightly increased. The opposite condition occurred with the RL
method. The method suffered almost twice the energy drop of case 9.and a drop of
35.24% with respect to its nominal case. This result indicates that the PT-RB method
can better cope with the existence of unmodeled f;(t) compared with the RL

method.
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Chapter 7: Conclusion

In this study, hindcast data of 10 years were used to implement wave energy
assessment for the Java Island coastline. MIKE 21 SW was used for the simulation.
The model was developed by combining wind data from ECMWEF. Then, the model
was validated with observation buoy data provided by Badan Pengkajian dan
Penerapan Teknologi (BPPT) or Agency for Assessment and Application of
Technology, Indonesia. The validation result showed that the model results matched

the observation data, and the average error was around 0.042%.

In addition, a modeling and control strategy for WECs was discussed. The
main control objective of the proposed method was to maximize the captured
mechanical power with the limitation of the maximum control force. This study used
two levels of controllers: high-level and low-level controllers. The high-level
controller provided the optimum reference velocity to fulfill the control objective.
The low-level controller tracked the reference and provided robustness against model
uncertainties. Simulation analyses were conducted. The results revealed the nominal

and perturbation cases as well as monochromatic and polychromatic sea states.

7.1 Main Research Outcomes
This section presents a summary of the results of the assessment and control. In the
energy assessment part, the simulation results and analysis were divided into two

parts, which are time domain and spatial analyses.

1. Time domain analysis
Time domain analysis was split into two portions: 10-year mean analysis and

monthly analysis.
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a) For the 10-year mean analysis, the results are as follows:
=  Maximum mean wave period =10.1240 s,
= Maximum mean wave height = 2.2679 m,
= Most of the elements have mean wave power = 12.5 kW/m.
b) For the monthly analysis, the results are as follows:
= The maximum mean wave power appears in July, August, and
September with a value of more than 10 kW/m;
= The minimum mean wave power appears in December, January, and
February.
2. Spatial analysis

a. In the spatial analysis, two large areas were selected and analyzed. These two
areas are Penyu Bay and the beaches along the DIY coastline. Penyu Bay has
a mean wave power between 2.5 and 15 kW/m, and the beaches along the
DIY coastline have a mean wave power of around 12 kW/m.

b. For each area (Penyu Bay and beaches along the DIY coastline), three
different locations were selected. These locations have the most powerful sea
parameters in terms of mean wave power, mean significant wave height,
mean wave period, and distance from the coastline.

In terms of the control result, three scenarios, namely, regular conditions
(monochromatic), irregular conditions (polychromatic), and perturbation situation,
were adopted.

1. Regular conditions (monochromatic) for various sea states and for H, = 1 m and

Hg,=2m.

» The PT-RB method had the highest value of P/*/P, among all the

compared methods.

= The RL method achieved the best conversion efficiency among all the
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methods (but this does not mean that the RL method had the highest P,).
2. Irregular conditions (polychromatic) for H;= 2 m and w, = 0.7 rad/s using the
PT-RB method.
a. Mechanical quantities:
= PTO almost perfectly tracked the reference velocity with a small MSE
= Average mechanical power = 158 kW
b. Electrical quantities:
= Average electrical power = 96 kW
= The conversion efficiency between P,, and P,= 60.6%
3. Perturbation scenario in f; and f; using PT-RB and RL methods.
= The PT-RB method can better handle the existence of unmodelled f,;(t)

compared with the RL method.

7.2 Future Work

Although this work analyzed the wave energy in Central Java and DIY
regions with potency and control techniques for PMLG WECSs, many opportunities
for extending the scope of this study remain. Several directions can be pursued as

follows:

1. Simulation domain enlargement
The simulation domain in this work is limited to Central Java and DIY
regions. Knowing that the program is resourceful and powerful, a study on a
similar topic in other areas is possible. Simulation domain enlargement will
increase the simulation time. In this case, the simulation machine should be
upgraded.

2. Time duration extension
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The 10-year duration used in this study can be extended. ECMWF provides
data from 1979. The result will be more valid with a longer hindcast duration
for wave energy assessment. Considering that this will increase the
simulation time, CPU improvement is necessary.
Experimental test for the Central Java SW model
The SW model for the Central Java region generated in this work can be used
to perform an initial analysis for experimental study. The model can be
applied in the Laboratory Test Linear Generator in the UAEU Laboratory to
study related phenomena, determine the real wave energy potency, and
design effective and optimum control techniques.
Implement this model in different regions around the world
The results and experiences obtained from this research will help in
implementing wave energy assessment in different places around the world.
The results can be applied to the United Arab Emirates due to the similarity
in wave characteristics between the two regions.
Expansion of renewable energy and sustainable
New research on renewable energy and sustainable developments should be
supported. Researchers should be encouraged to develop and conduct
research on wave energy projects to generate clean energy, desalinated

seawater, and cooling devices by passing the seawater (heat exchanger).
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