575 research outputs found

    A Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach in an evolving environment

    Get PDF
    Fault diagnostic methods are challenged by their applications to industrial components operating in evolving environments of their working conditions. To overcome this problem, we propose a Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach (4SFD), which allows dynamically selecting the features to be used for performing the diagnosis, detecting the necessity of updating the diagnostic model and automatically updating it. Within the proposed approach, the main novelty is the semi-supervised feature selection method developed to dynamically select the set of features in response to the evolving environment. An artificial Gaussian and a real world bearing dataset are considered for the verification of the proposed approach

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    Review of prognostic problem in condition-based maintenance.

    No full text
    International audienceprognostic is nowadays recognized as a key feature in maintenance strategies as it should allow avoiding inopportune maintenance spending. Real prognostic systems are however scarce in industry. That can be explained from different aspects, on of them being the difficulty of choosing an efficient technology ; many approaches to support the prognostic process exist, whose applicability is highly dependent on industrial constraints. Thus, the general purpose of the paper is to explore the way of performing failure prognostics so that manager can act consequently. Diffent aspects of prognostic are discussed. The prognostic process is (re)defined and an overview of prognostic metrics is given. Following that, the "prognostic approaches" are described. The whole aims at giving an overview of the prognostic area, both from the academic and industrial points of views

    A randomized neural network for data streams

    Get PDF
    © 2017 IEEE. Randomized neural network (RNN) is a highly feasible solution in the era of big data because it offers a simple and fast working principle in processing dynamic and evolving data streams. This paper proposes a novel RNN, namely recurrent type-2 random vector functional link network (RT2McRVFLN), which provides a highly scalable solution for data streams in a strictly online and integrated framework. It is built upon the psychologically inspired concept of metacognitive learning, which covers three basic components of human learning: what-to-learn, how-to-learn, and when-to-learn. The what-to-learn selects important samples on the fly with the use of online active learning scenario, which renders our algorithm an online semi-supervised algorithm. The how-to-learn process combines an open structure of evolving concept and a randomized learning algorithm of random vector functional link network (RVFLN). The efficacy of the RT2McRVFLN has been numerically validated through two real-world case studies and comparisons with its counterparts, which arrive at a conclusive finding that our algorithm delivers a tradeoff between accuracy and simplicity

    On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks.

    Get PDF
    Anomaly detection in todays industrial environments is an ambitious challenge to detect possible faults/problems which may turn into severe waste during production, defects, or systems components damage, at an early stage. Data-driven anomaly detection in multi-sensor networks rely on models which are extracted from multi-sensor measurements and which characterize the anomaly-free reference situation. Therefore, significant deviations to these models indicate potential anomalies. In this paper, we propose a new approach which is based on causal relation networks (CRNs) that represent the inner causes and effects between sensor channels (or sensor nodes) in form of partial sub-relations, and evaluate its functionality and performance on two distinct production phases within a micro-fluidic chip manufacturing scenario. The partial relations are modeled by non-linear (fuzzy) regression models for characterizing the (local) degree of influences of the single causes on the effects. An advanced analysis of the multi-variate residual signals, obtained from the partial relations in the CRNs, is conducted. It employs independent component analysis (ICA) to characterize hidden structures in the fused residuals through independent components (latent variables) as obtained through the demixing matrix. A significant change in the energy content of latent variables, detected through automated control limits, indicates an anomaly. Suppression of possible noise content in residuals—to decrease the likelihood of false alarms—is achieved by performing the residual analysis solely on the dominant parts of the demixing matrix. Our approach could detect anomalies in the process which caused bad quality chips (with the occurrence of malfunctions) with negligible delay based on the process data recorded by multiple sensors in two production phases: injection molding and bonding, which are independently carried out with completely different process parameter settings and on different machines (hence, can be seen as two distinct use cases). Our approach furthermore i.) produced lower false alarm rates than several related and well-known state-of-the-art methods for (unsupervised) anomaly detection, and ii.) also caused much lower parametrization efforts (in fact, none at all). Both aspects are essential for the useability of an anomaly detection approach

    Health assessment of rotary machinery based on integrated feature selection and Gaussian mixed model

    Get PDF
    Bearing failure is the most common failure mode of all rotary machinery failures, and can interrupt the production in a plant causing unscheduled downtime and production losses. A bearing failure also has the potential to damage machinery causing soaring machinery repair and/or replacement costs. In order to prevent unexpected bearing failure, a health assessment method is proposed in this paper. It employs an integrated feature selection approach and Gaussian mixture model (GMM). Firstly, the integrated feature selection approach, which combines empirical mode decomposition (EMD), singular value decomposition (SVD) and Principal Component Analysis (PCA), processes nonlinear and non-stationary vibration signals of a bearing and extracts features for health assessment. Then, GMM is utilized to evaluate and track the health degradation of the bearing in terms of confidence values (CV). This method, which is notable for bearing health tracking and detect the defect at its incipient stage, can be used without the need for failure datasets in applications. Finally, the feasibility and efficiency of this method was validated by two datasets of different bearing experiments

    Leak localization in water distribution networks using a mixed model-based/data-driven approach

    Get PDF
    “The final publication is available at Springer via http://dx.doi.org/10.1016/j.conengprac.2016.07.006”This paper proposes a new method for leak localization in water distribution networks (WDNs). In a first stage, residuals are obtained by comparing pressure measurements with the estimations provided by a WDN model. In a second stage, a classifier is applied to the residuals with the aim of determining the leak location. The classifier is trained with data generated by simulation of the WDN under different leak scenarios and uncertainty conditions. The proposed method is tested both by using synthetic and experimental data with real WDNs of different sizes. The comparison with the current existing approaches shows a performance improvement.Peer ReviewedPostprint (author's final draft
    • …
    corecore