27,944 research outputs found

    A Dirichlet Process based type-1 and type-2 fuzzy modeling for systematic confidence bands prediction

    Get PDF
    This paper presents a new methodology for fuzzy logic systems modeling based on the Dirichlet process Gaussian mixture models (DPGMM). The proposed method simultaneously allows for the systematic elicitation of confidence bands as well as the automatic determination of model complexity. This work is new since existing fuzzy model elicitation techniques use ad hoc methods for confidence band estimations, which do not meet the stringent requirements of today's challenging environments where data are sparse, incomplete, and characterized by noise as well as uncertainties. The proposed approach involves an integration of fuzzy and Bayesian topologies and allows for the generation of confidence bands based on both the random and linguistic uncertainties embedded in the data. Additionally, the proposed method provides a “right-first time approach” to fuzzy modeling as it does not require an iterative model complexity determination. In order to see how the proposed framework performs across a variety of challenging data modeling problems, the proposed approach was tested on a nonlinear synthetic dataset as well as two real multidimensional datasets generated by the authors from materials science and bladder cancer studies. Results show that the proposed approach consistently provides better generalization performances than other well-known soft computing modeling frameworks-in some cases, improvements of up to 20% in modeling accuracy were achieved. The proposed method also provides the capability to handle uncertainties via the generation of systematic confidence intervals for informing on model reliability. These results are significant since the generic methodologies developed in this paper should help material scientists as well as clinicians, for example, assess the risks involved in making informed decisions based on model predictions

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin
    corecore