4,451 research outputs found

    MODELING, OPTIMISATION AND ANALYSIS OF RE-ENTRANT FLOWSHOP JOB SCHEDULING WITH FUZZY PROCESSING TIMES

    Get PDF
    This paper presents a makespan minimization of -jobs -machines re-entrant flow shop scheduling problem (RFSP) under fuzzy uncertainties using Genetic Algorithm. The RFSP objective is formulated as a mathematical programme constrained by number of jobs and resources availability with traditional scheduling policies of First Come First Serve (FCFS) and the First Buffer First Serve (FBFS). Jobs processing times were specified by fuzzy numbers and modelled using triangular membership function representations. The modified centroid defuzzification technique was used at different alpha-cuts to obtain fuzzy processing times (FPT) of jobs to explore the importance of uncertainty. The traditional GA schemes and operators were used together with roulette wheel algorithm without elitism in the selection process based on job fuzzy completion times. A test problem of five jobs with specified Job Processing and Transit Times between service centres, Job Start Times and Job Due times was posed. Results obtained using the deterministic and fuzzy processing times were compared for the two different scheduling policies, FCFS and FBFS. The deterministic optimal makespan for FBFS schedule was 61.2% in excess of the FCFS policy schedule.  The results also show that schedules with fuzzy uncertainty processing times provides shorter makespans than those for deterministic processing times and those under FCFS performing better than those under FBFS policy for early jobs while on the long run the FBFS policy performs better. The results underscore the need to take account of comprehensive fuzzy uncertainties in job processing times as a trade-off between time and costs influenced by production makespan. http://dx.doi.org/10.4314/njt.v36i3.2

    An economic lot and delivery scheduling problem with the fuzzy shelf life in a flexible job shop with unrelated parallel machines

    Get PDF
    This paper considers an economic lot and delivery scheduling problem (ELDSP) in a fuzzy environment with the fuzzy shelf life for each product. This problem is formulated in a flexible job shop with unrelated parallel machines, when the planning horizon is finite and it determines lot sizing, scheduling and sequencing, simultaneously. The proposed model of this paper is based on the basic period (BP) approach. In this paper, a mixed-integer nonlinear programming (MINLP) model is presented and then it is changed into two models in the fuzzy shelf life. The main model is dependent to the multiple basic periods and it is difficult to solve the resulted proposed model for large-scale problems in reasonable amount of time; thus, an efficient heuristic method is proposed to solve the problem. The performance of the proposed model is demonstrated using some numerical examples

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    Comparative simulation study of production scheduling in the hybrid and the parallel flow

    Get PDF
    Scheduling is one of the most important decisions in production control. An approach is proposed for supporting users to solve scheduling problems, by choosing the combination of physical manufacturing system configuration and the material handling system settings. The approach considers two alternative manufacturing scheduling configurations in a two stage product oriented manufacturing system, exploring the hybrid flow shop (HFS) and the parallel flow shop (PFS) environments. For illustrating the application of the proposed approach an industrial case from the automotive components industry is studied. The main aim of this research to compare results of study of production scheduling in the hybrid and the parallel flow, taking into account the makespan minimization criterion. Thus the HFS and the PFS performance is compared and analyzed, mainly in terms of the makespan, as the transportation times vary. The study shows that the performance HFS is clearly better when the work stations' processing times are unbalanced, either in nature or as a consequence of the addition of transport times just to one of the work station processing time but loses advantage, becoming worse than the performance of the PFS configuration when the work stations' processing times are balanced, either in nature or as a consequence of the addition of transport times added on the work stations' processing times. This means that physical layout configurations along with the way transport time are including the work stations' processing times should be carefully taken into consideration due to its influence on the performance reached by both HFS and PFS configurations.This work was supported by National Funds through FCT "Fundacao para a Ciencia e a Tecnologia" under the program: PEst2015-2020, ref. UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Analysis of a collaborative scheduling model applied in a job shop manufacturing environment

    Get PDF
    Collaborative Manufacturing Scheduling (CMS) is not yet a properly explored decision making practice, although its potential for being currently explored, in the digital era, by combining efforts among a set of entities, either persons or machines, to jointly cooperate for solving some more or less complex scheduling problem, namely occurring in job shop manufacturing environments. In this paper, an interoperable scheduling system integrating a proposed scheduling model, along with varying kinds of solving algorithms, are put forward and analyzed through an industrial case study. The case study was decomposed in three application scenarios, for enabling the evaluation of the proposed scheduling model when envisioning the prioritization of internal–makespan-or external–number of tardy jobs-performance measures, along with a third scenario assigning a same importance or weight to both kinds of performance measures. The results obtained enabled us to realize that the weighted application scenario permitted reaching more balanced, thus a potentially more attractive global solution for the scheduling problem considered through the combination of different kinds of scheduling algorithms for the resolution of each underlying sub problem according to the proposed scheduling model. Besides, the decomposition of a global more complex scheduling problem into simpler sub-problems turns them easier to be solved through the different solving algorithms available, while further enabling to obtain a wider range of alternative schedules to be explored and evaluated. Thus, contributing to enriching the scheduling problem-solving process. A future exploration of the application in other types of manufacturing environments, namely occurring in the context of extended, networked, distributed or virtual production systems, integrating an increased and variable set of collaborating entities or factories, is also suggested.The project is funded by the FCT—Fundação para a Ciência e Tecnologia through the R&D Units Project Scope: UIDB/00319/2020, and EXPL/EME-SIS/1224/2021

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented

    Heuristic Approach to Job Scheduling in a Small Scale Groundnut Oil Processing Firm in Nigeria

    Get PDF
    Groundnut is an important legume cash crop for tropical farmers and its seeds contain high amounts of edible oil (43-55%) and protein (25-28%). This paper developed a framework for the scheduling of activities (jobs) in small scale groundnut oil processing firm in Nigeria. The research problem is addressed using makespan as a measure of performance with CDS, A1 and Usual Serial Order (USO) heuristics solution methods. Findings reveal that A1 and CDS heuristics are preferred to the traditional USO methods. Also, the mean of A1 (27.11) heuristic, followed by CDS (27.22) heuristics, gives the best makespan results while the USO (31.52) gives the worst result. This paper thus presents a framework that could be beneficial to stakeholders in the Groundnut oil processing industry towards improved customer’s satisfaction, less idle time, and profit optimization. Keywords: Groundnut, small enterprises, scheduling of orders, makespans, optimum results

    Lot Streaming in Different Types of Production Processes: A PRISMA Systematic Review

    Get PDF
    At present, any industry that wanted to be considered a vanguard must be willing to improve itself, developing innovative techniques to generate a competitive advantage against its direct competitors. Hence, many methods are employed to optimize production processes, such as Lot Streaming, which consists of partitioning the productive lots into overlapping small batches to reduce the overall operating times known as Makespan, reducing the delivery time to the final customer. This work proposes carrying out a systematic review following the PRISMA methodology to the existing literature in indexed databases that demonstrates the application of Lot Streaming in the different production systems, giving the scientific community a strong consultation tool, useful to validate the different important elements in the definition of the Makespan reduction objectives and their applicability in the industry. Two hundred papers were identified on the subject of this study. After applying a group of eligibility criteria, 63 articles were analyzed, concluding that Lot Streaming can be applied in different types of industrial processes, always keeping the main objective of reducing Makespan, becoming an excellent improvement tool, thanks to the use of different optimization algorithms, attached to the reality of each industry.This work was supported by the Universidad Tecnica de Ambato (UTA) and their Research and Development Department (DIDE) under project CONIN-P-256-2019, and SENESCYT by grants “Convocatoria Abierta 2011” and “Convocatoria Abierta 2013”
    corecore