6,991 research outputs found

    An Efficient Fuzzy Clustering-Based Approach for Intrusion Detection

    Full text link
    The need to increase accuracy in detecting sophisticated cyber attacks poses a great challenge not only to the research community but also to corporations. So far, many approaches have been proposed to cope with this threat. Among them, data mining has brought on remarkable contributions to the intrusion detection problem. However, the generalization ability of data mining-based methods remains limited, and hence detecting sophisticated attacks remains a tough task. In this thread, we present a novel method based on both clustering and classification for developing an efficient intrusion detection system (IDS). The key idea is to take useful information exploited from fuzzy clustering into account for the process of building an IDS. To this aim, we first present cornerstones to construct additional cluster features for a training set. Then, we come up with an algorithm to generate an IDS based on such cluster features and the original input features. Finally, we experimentally prove that our method outperforms several well-known methods.Comment: 15th East-European Conference on Advances and Databases and Information Systems (ADBIS 11), Vienna : Austria (2011

    Modeling and Recognition of Smart Grid Faults by a Combined Approach of Dissimilarity Learning and One-Class Classification

    Full text link
    Detecting faults in electrical power grids is of paramount importance, either from the electricity operator and consumer viewpoints. Modern electric power grids (smart grids) are equipped with smart sensors that allow to gather real-time information regarding the physical status of all the component elements belonging to the whole infrastructure (e.g., cables and related insulation, transformers, breakers and so on). In real-world smart grid systems, usually, additional information that are related to the operational status of the grid itself are collected such as meteorological information. Designing a suitable recognition (discrimination) model of faults in a real-world smart grid system is hence a challenging task. This follows from the heterogeneity of the information that actually determine a typical fault condition. The second point is that, for synthesizing a recognition model, in practice only the conditions of observed faults are usually meaningful. Therefore, a suitable recognition model should be synthesized by making use of the observed fault conditions only. In this paper, we deal with the problem of modeling and recognizing faults in a real-world smart grid system, which supplies the entire city of Rome, Italy. Recognition of faults is addressed by following a combined approach of multiple dissimilarity measures customization and one-class classification techniques. We provide here an in-depth study related to the available data and to the models synthesized by the proposed one-class classifier. We offer also a comprehensive analysis of the fault recognition results by exploiting a fuzzy set based reliability decision rule

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    Exploration of Subjective Color Perceptual-Ability by EEG-Induced Type-2 Fuzzy Classifiers

    Get PDF
    Perceptual-ability informally refers to the ability of a person to recognize a stimulus. This paper deals with color perceptual-ability measurement of subjects using brain response to basic color (red, green and blue) stimuli. It also attempts to determine subjective ability to recognize the base colors in presence of noise tolerance of the base colors, referred to as recognition tolerance. Because of intra- and inter-session variations in subjective brain signal features for a given color stimulus, there exists uncertainty in perceptual-ability. In addition, small variations in the color stimulus result in wide variations in brain signal features, introducing uncertainty in perceptual-ability of the subject. Type-2 fuzzy logic has been employed to handle the uncertainty in color perceptual-ability measurements due to a) variations in brain signal features for a given color, and b) the presence of colored noise on the base colors. Because of limited power of uncertainty management of interval type-2 fuzzy sets and high computational overhead of its general type-2 counterpart, we developed a semi-general type-2 fuzzy classifier to recognize the base color. It is important to note that the proposed technique transforms a vertical slice based general type-2 fuzzy set into an equivalent interval type-2 counterpart to reduce the computational overhead, without losing the contributions of the secondary memberships. The proposed semi-general type-2 fuzzy sets induced classifier yields superior performance in classification accuracy with respect to existing type-1, type-2 and other well-known classifiers. The brain-understanding of a perceived base or noisy base colors is also obtained by exact low resolution electromagnetic topographic analysis (e-LORETA) software. This is used as the reference for our experimental results of the semi-general type-2 classifier in color perceptual-ability detection. Statistical tests undertaken confirm the superiority of the proposed classifier over its competitors. The proposed technique is expected to have interesting applications in identifying people with excellent color perceptual-ability for chemical, pharmaceutical and textile industries

    Scalable approximate FRNN-OWA classification

    Get PDF
    Fuzzy Rough Nearest Neighbour classification with Ordered Weighted Averaging operators (FRNN-OWA) is an algorithm that classifies unseen instances according to their membership in the fuzzy upper and lower approximations of the decision classes. Previous research has shown that the use of OWA operators increases the robustness of this model. However, calculating membership in an approximation requires a nearest neighbour search. In practice, the query time complexity of exact nearest neighbour search algorithms in more than a handful of dimensions is near-linear, which limits the scalability of FRNN-OWA. Therefore, we propose approximate FRNN-OWA, a modified model that calculates upper and lower approximations of decision classes using the approximate nearest neighbours returned by Hierarchical Navigable Small Worlds (HNSW), a recent approximative nearest neighbour search algorithm with logarithmic query time complexity at constant near-100% accuracy. We demonstrate that approximate FRNN-OWA is sufficiently robust to match the classification accuracy of exact FRNN-OWA while scaling much more efficiently. We test four parameter configurations of HNSW, and evaluate their performance by measuring classification accuracy and construction and query times for samples of various sizes from three large datasets. We find that with two of the parameter configurations, approximate FRNN-OWA achieves near-identical accuracy to exact FRNN-OWA for most sample sizes within query times that are up to several orders of magnitude faster
    corecore