
IEEE TRANSACTIONS OF FUZZY SYSTEMS, 10.1109/TFUZZ.2019.2949769 1

Scalable approximate FRNN-OWA classification
Oliver Urs Lenz, Daniel Peralta, and Chris Cornelis

Abstract—Fuzzy Rough Nearest Neighbour classification with
Ordered Weighted Averaging operators (FRNN-OWA) is an
algorithm that classifies unseen instances according to their
membership in the fuzzy upper and lower approximations of
the decision classes. Previous research has shown that the use of
OWA operators increases the robustness of this model. However,
calculating membership in an approximation requires a nearest
neighbour search. In practice, the query time complexity of exact
nearest neighbour search algorithms in more than a handful
of dimensions is near-linear, which limits the scalability of
FRNN-OWA. Therefore, we propose approximate FRNN-OWA, a
modified model that calculates upper and lower approximations
of decision classes using the approximate nearest neighbours
returned by Hierarchical Navigable Small Worlds (HNSW), a
recent approximative nearest neighbour search algorithm with
logarithmic query time complexity at constant near-100% ac-
curacy. We demonstrate that approximate FRNN-OWA is suffi-
ciently robust to match the classification accuracy of exact FRNN-
OWA while scaling much more efficiently. We test four parameter
configurations of HNSW, and evaluate their performance by
measuring classification accuracy and construction and query
times for samples of various sizes from three large datasets. We
find that with two of the parameter configurations, approximate
FRNN-OWA achieves near-identical accuracy to exact FRNN-
OWA for most sample sizes within query times that are up to
several orders of magnitude faster.

Index Terms—Big data applications, classification algorithms,
fuzzy rough sets, nearest neighbor searches, scalability.

I. INTRODUCTION

OVER the course of the last few decades, an ever increas-
ing amount of data has become available for machine

learning. This compels us to scrutinise the scalability of
existing algorithms, and where necessary to develop variants
or alternatives that scale better. For machine learning problems
where run time is a greater impediment to performance than
the amount of available data, approximative algorithms with
a slightly lower accuracy but a higher capacity may offer a
worthwhile trade-off. If the computational complexity of an
algorithm is superlinear, computation time may blow up as
dataset size grows. But even if it is strictly linear, processing
orders of magnitude more data requires orders of magnitude
more computing time. Ideally, then, we would like to have ac-
cess to algorithms with logarithmic computational complexity.

Fuzzy rough sets [1] generalise rough sets [2], [3] to infor-
mation systems with a fuzzy indiscernibility relation. Fuzzy
Rough Nearest Neighbour (FRNN) classification [4] uses this
fuzzy indiscernibility relation to predict the class membership
of unseen instances. FRNN has been made more flexible and

O. U. Lenz, D. Peralta and C. Cornelis are with the Department of Applied
Mathematics, Computer Science and Statistics, Ghent University, e-mail:
{oliver.lenz,chris.cornelis}@ugent.be.

D. Peralta is with the Data Mining and Modelling for Biomedicine
group, VIB Center for Inflammation Research, Ghent University, e-mail:
daniel.peralta@irc.vib-ugent.be

robust through the addition of Ordered Weighted Averaging
(OWA) operators [5], [6]. The resulting combination (FRNN-
OWA) has been shown to be particularly effective for various
types of imbalanced classification [6]–[8].

Computing FRNN-OWA classification requires the identifi-
cation, in each decision class, of those training instances that
are least discernible from a given test instance. This task is
equivalent to a nearest neighbour search, and consequently,
a straightforward implementation without preprocessing has a
time complexity that is linear with respect to the number of
training instances. This restricts the applicability of FRNN-
OWA to large datasets.

In previous work, we have presented an implementation of
FRNN-OWA in Apache Spark that reduces its run time through
parallellisation accross a cluster of computers [9]. While this
provides a method to perform classification with large datasets,
it cannot speed up FRNN-OWA by a factor larger than the
number of processor cores available, and it would be more
effective if we could reduce the time complexity of FRNN-
OWA itself.

There is a rich literature of nearest neighbour search algo-
rithms [10]–[14]. One of the most popular exact approaches
uses a so-called KD-tree [15]. It has a theoretical query time
complexity that is logarithmic, but in practice this is hard
to achieve, and its query time complexity for real datasets
with more than a handful of attributes is much closer to
linear [16]. A recent approximate nearest neighbour proposal,
Hierarchical Navigable Small World (HNSW) [17], promises
to achieve actual logarithmic query time complexity at a very
low constant error rate.

In this article, we propose approximate FRNN-OWA, which
we obtain by incorporating HNSW nearest neighbour iden-
tification into FRNN-OWA. We hypothesise that this is a
particularly fortuitous combination because the use of OWA
operators has been shown to make FRNN-OWA robust against
noise [18], and this should translate into a certain amount of
tolerance for the nearest neighbour misidentifications intro-
duced by HNSW.

To test the performance of approximate FRNN-OWA, we
explore four different parameter settings of HNSW, and show
that it is possible to achieve logarithmic query time complexity
while sacrificing a minimal amount of accuracy with respect to
exact FRNN-OWA. This means that approximate FRNN-OWA
can be applied to very large datasets, and we demonstrate this
by performing cross-validation on three of the largest datasets
of the UCI Machine Learning Repository [19].

We start by providing the necessary background information
on FRNN-OWA (Section II) and HNSW (Section III). We then
present approximate FRNN-OWA (Section IV), describe the
experiments by which we evaluate its performance (Section
V) and present and discuss the results (Section VI). Finally,

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/237011583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS OF FUZZY SYSTEMS 2

we summarise the article and discuss possible future research
(Section VII).

II. FUZZY ROUGH NEAREST NEIGHBOUR CLASSIFICATION
WITH OWA WEIGHTS

Rough sets [2], [3] approximate sets of instances by way
of some attributes defined over those instances. A formal
definition is given in Definition 1.

Definition 1 (Rough set). Let X be a finite set of instances
and A a finite set of attributes a : X −→ Va. Then (X,A) is
called an information system. The indiscernibility relation R
in (X,A) is the equivalence relation {(x, y) ∈ X ×X|∀a ∈
A : a(x) = a(y))}. The upper and lower approximations C
and C of a subset C ⊆ X are the subsets defined by:

C(y) = max
x∈X

(R(y, x) ∧ C(x))

C(y) = min
x∈X

(R(y, x) =⇒ C(x))
(1)

A rough set in (X,A) is a pair (C,C) for some C ⊆ X .

The equivalence classes of R consist of all instances that
have the same values for all attributes. The upper approxima-
tion of C contains all instances equivalent under R to some
instance of C, while the lower approximation of C contains
only those instances whose entire equivalent class is contained
in C. They are the closure and interior of the quasi-discrete
topology generated by R.

Fuzzy rough sets [1] represent a fuzzification of rough set
theory. In order to be able to extend the definitions of lower
and upper approximations to fuzzy sets, we have to replace the
crisp indiscernibility relation R with a fuzzy tolerance relation,
and the conjunction and implication with a t-norm T : [0, 1]×
[0, 1] −→ [0, 1] and a fuzzy implication I : [0, 1]× [0, 1] −→
[0, 1] (Definition 2).

Definition 2 (Fuzzy rough set). Let (X,A) be an information
system. A fuzzy indiscernibility relation in (X,A) is a fuzzy
tolerance relation R : X ×X −→ [0, 1] such that (∀a ∈ A :
a(x) = a(y)) =⇒ R(x, y) = 1. For a choice of such a fuzzy
indiscernibility relation R, a t-norm T and a fuzzy implication
I , the upper and lower approximations C and C of a fuzzy
subset C of X are defined by:

C(y) = max
x∈X

(T (R(y, x), C(x))

C(y) = min
x∈X

(I(R(y, x), C(x))
(2)

A fuzzy rough set in (X,A) is a pair (C,C) for some fuzzy
subset C of X .

For any z ∈ [0, 1], since T is a t-norm, T (z, 0) = 0 and
T (z, 1) = z, and since I is an implication, I(z, 1) = 1 and
I(z, 0) = NI(z), where NI is the negation induced by I .
Therefore, if C is crisp, (2) reduces to (3).

C(y) = max
x∈C

(R(y, x))

C(y) = min
x∈X\C

(NI(R(y, x)))
(3)

In correspondence with previous work [4], [6], [20], we will
assume in the rest of this article that N is the standard negation
z 7−→ 1− z.

Fuzzy Rough Nearest Neighbour (FRNN) classification [4]
uses the membership of a test instance y in the upper and
lower approximation of a crisp decision class C as a measure
of the extent that y possibly and necessarily belongs to C, and
predicts that y belongs to the class for which these measures
are highest.

In practice, FRNN classifies a test element y as the class
of the single element of X least discernible from y. This
means that FRNN makes the same predictions as traditional
1NN classification (with a dissimilarity corresponding to R),
and that it is similarly sensitive to noise. In the case of
kNN this can be remedied by choosing k ≥ 3. For FRNN,
the solution has been to soften max and min by replacing
them with Ordered Weighted Averaging (OWA) operators
([21], Definition 3) that also depend on the the next-largest
indiscernibility values [5], [6]. The resulting model, FRNN-
OWA has a greater tolerance for noise than strict FRNN and
generally produces better results than a number of alternative
proposals [18].

Definition 3 (OWA operator). Let V be an m-dimensional
vector space, and w an m-dimensional weight vector with
values in [0, 1] that sum to 1. The OWA operator Fw cor-
responding to w acts on any vector v ∈ V by sorting its
coefficients in descending order and taking the inner product
with w. We say that two weight vectors are dual if they have
inversely ordered matching coefficients.

The upper and lower approximations in FRNN-OWA are
defined by (4), for some choice of weight vectors w and w.
Note that in order to apply the corresponding OWA operator,
we create a vector in Rm through an implicit but arbitrary
ordering of values.

C(y) = Fw(〈R(y, x)|x ∈ C〉)
C(y) = Fw(〈1−R(y, x)|x ∈ X \ C〉)

(4)

As we noted in previous work [9], in practice it is desirable
to work with weight vectors w and w of length k � m.
Formally, these can be interpreted as full weight vectors where
the last or first m− k values are equal to 0. The first benefit
is presentational, since this restricts the range of possible
OWA operators to precisely those we are interested in: OWA
operators that approximate max and min by emphasising
the largest and smallest elements, respectively. And secondly,
it fundamentally reduces the computational complexity of
FRNN-OWA by replacing the sorting of the decision classes
with nearest neighbour searches.

Some possible dual choices for w and w are listed in
Table I. Strict weights represent the trivial choice, for which
we recover Fw = max and Fw = min. Trimmed and mean
weights correspond, respectively, to the k-trimmed and k-mean
maxima and minima of [22]. Additive and exponential weights
are the two weight types presented in [6].

There has been a limited number of attempts to apply fuzzy
rough sets in the context of Big Data. For a current overview,

IEEE TRANSACTIONS OF FUZZY SYSTEMS 3

TABLE I
EXAMPLES OF DUAL UPPER (w) AND LOWER (w) WEIGHT VECTORS OF

LENGTH k USED WITH FRNN-OWA

Name w w

Strict 〈1, 0, . . . , 0〉 〈0, . . . , 0, 1〉

Trimmed 〈0, . . . , 0, 1〉 〈1, 0, . . . , 0〉

Mean
〈
1

k
, . . . ,

1

k

〉 〈
1

k
, . . . ,

1

k

〉
Additive

〈
2(k + 1− i)

k(k + 1)

〉
1≤i≤k

〈
2i

k(k + 1)

〉
1≤i≤k

Exponential
〈

2k−i

2k − 1

〉
1≤i≤k

〈
2i−1

2k − 1

〉
1≤i≤k

TABLE II
EXISTING WORK USING FUZZY ROUGH SETS IN A BIG DATA CONTEXT —
USE WITH PROTOTYPE SELECTION (PS), FEATURE SELECTION (FS) OR

CLASSIFICATION (C) AND LARGEST GENERATED AND REAL DATASET
SIZES

Article Use Generated Real

[23] Asfoor et al. 2014 — 10 000 000 —
[24] Vluymans et al. 2015 PS 10 000 000 320 395
[25] Asfoor 2015 PS 10 000 000 320 395
[26] Jensen & Mac Parthaláin 2015 FS — 832
[27] Qian et al. 2015 FS — 2310
[28] Zeng et al. 2015 FS — 2800
[29] Zeng et al. 2017 FS — 2800
[30] Hu et al. 2018 FS — 4 898 431
[9] Lenz et al. 2019 C 16 777 216 11 000 000

see [9] (summarised in Table II). All previous studies only
used fuzzy rough sets for feature or prototype selection, and
only one tested their implementations on real datasets with
more than a million instances [30]. In [9], we presented an
implementation of FRNN-OWA in Apache Spark that could
in principle be used to distribute computation time over as
many computing nodes as desired. While this is a useful
tool, which enabled us to use training sets of more than
10 million instances to classify unseen instances, it requires
a considerable amount of computational infrastructure. In
particular, performing cross-validation on these large datasets
proved to be impractical.

III. APPROXIMATE NEAREST NEIGHBOURS WITH
HIERARCHICAL NAVIGABLE SMALL WORLD GRAPHS

Finding the nearest neighbours of an instance in a dataset
is a classical computational problem. A brute force approach
that compares the distances of a query instance to all training
instances scales linearly with training set size, which makes
nearest neighbour searches with large training sets impractical.
It is possible to achieve better performance by using the
distribution of the training set over the attribute space to
limit explicit comparison with the query instance to certain
training instances. This requires preprocessing the training
set to abstract its spatial structure into some data structure.

Since this abstraction is independent of any query instances,
this introduces a construction stage, and with it, a trade-
off between the fixed, one-time construction time and the
reduction in the query time per query instance. It also blurs the
traditional distinction between lazy and eager learners, since
we are no longer comparing query instances directly to the
training instances, and this construction stage can be seen as
a training stage.

There is a distinction to be made between exact spatial
representations of the training set that can faithfully identify
the nearest neighbours of a query instance, and approximative
representations, which offer a second trade-off between a
limited number of incorrect predictions in exchange for even
further reduced query times.

A classical example of an exact representation is the binary
KD-tree [15], which iteratively divides the training set in
two with a series of hyperplanes. The theoretical asymptotic
average query time complexity of KD-trees is O(log n) [31],
but KD-trees suffer from the “curse of dimensionality”, in the
sense that with datasets with more than a handful of attributes,
the time complexity in practice is much closer to linear [16].

One class of approximative approaches uses a search graph,
whose nodes correspond to the training instances and the
edges encode the spatial structure of the dataset (by connecting
certain instances that are not necessarily nearest neighbours in
the attribute space). To identify the k nearest neighbours of a
query instance y, this graph is traversed iteratively by passing
to the node that is nearest to y (in the attribute space) from
among the neighbours of the current node. This requires the
inspection of all neighbouring nodes of the current node, and
a record is kept of the k training instances closest to y that
have been inspected.

Both query time and the correctness of the result depend
on the edges between the nodes. Everything else being equal,
query time is reduced if there are fewer neighbours per node
and if the graph can be traversed in fewer steps, whereas
more edges generally improve the reachability of the actual
k nearest neighbours of y. The Navigable Small Worlds
(NSW) model [32] strives to strike a good balance between
these tendencies through a mix of short and long distance
connections. It adds training instances to the graph in random
order, and inserts edges to the M nearest instances already
present, for some value of M . As a consequence, connections
that are established early generally cover larger distances than
connections that are established later. By starting the nearest
neighbour search at an instance that was inserted early, we gain
immediate access to these long-distance connections and can
traverse the dataset with large steps until we reach the general
neighbourhood of our query instance. The search stops when
the list of nearest neighbours is no longer updated between
steps. It is possible to increase the accuracy to any desired
level by repeating the search from different training instances.
By keeping a record of instances that have been inspected
across searches and excluding them from future consideration,
unnecessary repetition is avoided.

The query time complexity of NSW is O(log2 n) for a
constant accuracy of 0.999. In order to improve query time
complexity further, the authors recently introduced a modified

IEEE TRANSACTIONS OF FUZZY SYSTEMS 4

a h

Layer 2

c

a b e h

Layer 1

c f

a b e h

d g

Layer 0

Fig. 1. Schematic depiction of a nearest neighbour search in HNSW. The
search begins in the highest layer, and continues in each lower layer from
the element that was previously found. The size of the layers follows an
exponential distribution.

version of NSW called Hierarchical Navigable Small Worlds
(HNSW) [17]. The main conceit of HNSW is that it employs a
hierarchy of mL search layers that can be viewed as a vertical
stack. The bottom layer consists of a search graph of the whole
training set, and each subsequent layer consists of a search
graph of a subset of the subset below it.

To identify the k nearest neighbours of a query instance
y, we start in the top layer and run a greedy search to
select one nearest neighbour, like in NSW. This process is
repeated in the lower layers, in each case using the previously
selected neighbour as the new entry point. In the bottom
layer, the greedy search is expanded to identify efq candidate
neighbours. From these, the k instances nearest to y are
returned. This process is depicted in Fig. 1.

A very similar algorithm is used to iteratively construct the
hierarchy of search layers. Each new training instance x is
assigned its highest layer lx at random, following an exponen-
tial distribution. We then traverse the existing hierarchy from
top to bottom by running a greedy search in each existing
layer. In all layers higher than lx, the search is restricted to
identifying a single neighbour, which we use as the starting
point in the next layer. In lx and all lower layers, we expand the
search to greedily identify efc candidate neighbours. We insert
x as a new node, and connect it to up to M neighbours by
repeatedly adding an edge to the closest remaining candidate
neighbour that is closer to x than to any of the already selected
neighbours. We then use the selected neighbours as multiple
starting points in the next layer.

The HNSW model has a query time complexity of O(log n)
and a construction time complexity of O(n log n) if accuracy
is kept constant. The principal parameters that can be used to
tune performance are summarised in Table III. Higher values
for efc, M and efq increase accuracy in return for longer
run times. However, the authors recommend to experimentally
identify values for efc and M that produce reasonable results
and then increase efq to attain the desired level of accuracy. In

TABLE III
PARAMETRES OF HNSW

Name1 Description Min Default2

Construction parameters
efc Number of candidate neighbours to identify M 200
M Maximum number of edges to insert be-

tween candidate neighbours and a newly
added training instance

5 16

Query parameters
efq Number of candidate neighbours to identify k 20
k Number of neighbours to return 1 —

1 The parameters efc and efq are called efConstruction and ef respec-
tively in [17], they have been relabelled here for the sake of readability.

2 These are the default values in the Non-Metric Space Library (NMSLIB)
[34], the implementation used in this article.

a recent empirical comparison of approximate nearest neigh-
bour search algorithms, HNSW achieved the highest speed at
all accuracy levels on all four datasets that were considered
[33]. While the scope of this experiment was limited and its
results are only indicative, it allows us to select HNSW as
representative of the state of the art in approximate nearest
neighbour search algorithms.

IV. FRNN-OWA WITH APPROXIMATE NEAREST
NEIGHBOUR SELECTION

To adapt FRNN-OWA for use with Big Data, we propose
to loosen the strict ordering of training instances required by
OWA operators and apply the weights to the approximate
nearest neighbours of a test instance as returned by the HNSW
model. Since this is the only step of the query phase of FRNN-
OWA that is dependent on the training set size, our proposal
will result in query times that scale logarithmically.

To facilitate the formal definition of approximate FRNN-
OWA classification, we employ a slightly different but essen-
tially equivalent formulation of fuzzy rough set theory. Under
the traditional approach represented in Definitions 1 and 2, an
information system revolves around the set of instances X .
The set of attributes A consists of maps from X to various
feature spaces, and the indiscernibility relation R and the upper
and lower approximations C and C) are also defined in X .
However, this means that the membership of a test instance y
in C and C is only formally defined if y ∈ X . But we want
to exclude y from X for the purpose of calculating C and
C. Conceptually, y cannot be in X because we don’t know
whether y ∈ C. This cannot be resolved by simply stipulating
y /∈ C, because that implies C(y) = 0 (using the strict min
operator).

To solve this, we recentre fuzzy rough set theory around A,
which is now a single (potentially multi-dimensional) feature
space, and define X , R, C, C and y within A (Definitions
4 and 5). This is arguably more elegant even if classification
is not a concern, since it makes it clear that instances with
identical attribute values are functionally equivalent in an
information system, and it removes the need to stipulate that
R respect attribute values. This construction also corresponds

IEEE TRANSACTIONS OF FUZZY SYSTEMS 5

to the familiar perspective of vectors as elements of a vector
space.

Definition 4 (Fuzzy information system). A fuzzy information
system is a triple (A,X,R), consisting of a set A (the attribute
space), a finite multisubset X of A (the dataset) and a fuzzy
tolerance relation R in A (the fuzzy indiscernibility relation).

For the purpose of this article, we assume that attributes
are real-valued, i.e. A = Rm for some m ∈ N and elements
x ∈ X are real vectors 〈x1, x2, . . . , xm〉. We follow previous
work [6], [18], [20] and use the fuzzy indiscernibility relation
corresponding to a scaled version of the Manhattan distance.
Denote ri(X) = maxx∈X(xi)−minx∈X(xi). Then we define
R by (5).

R(y, x) = 1−
∑
i≤m

|yi − xi|
m · ri(X)

(5)

Since our present concern is the upper and lower approxi-
mations of crisp decision classes, we restrict C to be crisp in
Definition 5.

Definition 5 (Fuzzy rough set). Let (A,X,R) be a fuzzy
information system, w and w a choice of weight vectors of
some length length k (the upper and lower weight vectors)
and N a (not necessarily deterministic) process that takes an
integer k, a multiset C in A, and an element y of A and returns
a submultiset of C of size k (the neighbour selector). Then for
any submultiset C of X , the upper and lower approximations
C and C are the fuzzy subsets of A defined by:

C(y) = Fw(N(k,C, y))

C(y) = Fw({1− r|r ∈ N(k,X \ C, y})
(6)

The fuzzy rough set generated by C is the pair (C,C).

Definition 6 (Fuzzy classification system). A fuzzy classifica-
tion system is a quadruple (A,X,R, C) such that (A,X,R) is
a fuzzy information system and C is a partition of X into
decision classes. A classifier in (A,X,R, C) is a partition
A −→ C.

Definition 7 (Approximate FRNN-OWA classification). Let
(A,X,R, C) be a classification system, w and w a choice of
upper and lower weight vectors and N a neighbour selector.
Then the upper and lower approximation classifiers are the
classifiers defined by y 7−→ argmaxC∈C(C(y)) and y 7−→
argmaxC∈C(C(y)) respectively.

As has been pointed out in [6], if there are just two
decision classes C1 and C2 and w and w are dual, then
C1(y) = 1 − C2(y) (up to consistency of N), and so the
upper and lower approximation classifiers are identical. During
initial experimentation on datasets with two classes, we found
that choosing dual additive weights of length k = 40 produces
close to optimal results in terms of accuracy across our range
of sample sizes, so we fix this choice to obtain a clear
comparison, and use the upper approximation classifier.

Definition 7 allows us to equip FRNN-OWA classification
with alternative nearest neighbour search algorithms N . In this

TABLE IV
APPROXIMATE FRNN-OWA, PARAMETER CONFIGURATIONS OF HNSW

Name efc M

A1 200 16
A2 40 16
A3 16 16
A4 40 5

article we will compare an exact KD-tree search (exact FRNN-
OWA) with four different parameter configurations of HNSW
(Table IV). The goal is to identify a combination of efc and
M that produces a good baseline in terms of accuracy. For
this purpose, we fix efq = k. Combination A1 represents the
default values efc = 200 and M = 16 (cf. Table III). For
combinations A2–4, we lower efc to efq = 40 and to its
minimum value M = 16 and M to its minimum value of
5.

Approximative models like HNSW may misidentify near-
est neighbours, which will lower the general accuracy of
approximate FRNN-OWA. Nonetheless, we hypothesise that
approximate FRNN-OWA can still rival exact FRNN-OWA
in terms of accuracy for two reasons. First, the authors of
HNSW have demonstrated that it can operate at close to
100% accuracy. And second, the misidentification of a nearest
neighbour of a test instance need not automatically lead to
its misclassification. This ought to be true in particular for
FRNN-OWA due to its high noise tolerance.

We will measure the accuracy deficits of FRNN-OWA-A1–
4 experimentally, but we can already predict that since lower
parameter values necessarily induce lower accuracy in HNSW,
configurations A1, A2 and A3 will be decreasingly accurate,
and A4 will be less accurate than A2, leaving only the relative
order between A3 and A4 uncertain.

V. EXPERIMENTAL SETUP

The goal of our experiments is to compare the accuracy and
run times of approximate and exact FRNN-OWA. In particular,
we want to test whether the approximate variants FRNN-
OWA-A1–4 can match the accuracy of exact FRNN-OWA
within logarithmically scaling query times.

All experiments are carried out on a single laptop computer
equipped with a 4-core i7-8550U (Kaby Lake Refresh @ 1.8
GHz) processor and 16 GB of memory. We use our own
Python implementation of FRNN-OWA, which incorporates
the Cython implementation of the Scikit-Learn library [35] for
KD-Tree nearest neighbour searches (which is compiled to C)
and the implementation in C++ provided by the Non-Metric
Space Library (NMSLIB) [34] for HNSW nearest neighbour
searches. To ensure a fair comparison, all experiments are
single-threaded.

We have selected three of the largest datasets from the UCI
Machine Learning Repository [19]: SUSY [36], HIGGS [36]
and HEPMASS [37] (Table V). These are sufficiently large
that performing cross-validation with exact FRNN-OWA is
not practical. To measure time complexity and to detect the

IEEE TRANSACTIONS OF FUZZY SYSTEMS 6

TABLE V
DATASETS USED IN THE PRESENT STUDY, PROPERTIES

Name Number of
instances

Attribute
type

Number of
attributes

Number of
classes

SUSY 5 000 000 real 18 2
HIGGS 11 000 000 real 28 2
HEPMASS 10 500 000 real 28 2

TABLE VI
ACCURACY DEFICIT OF APPROXIMATE FRNN-OWA FOR 5-FOLD

CROSS-VALIDATION ON SAMPLES OF 220 INSTANCES

Method SUSY HIGGS HEPMASS

A1 -0.01% -0.09% -0.20%
A2 -0.09% -0.14% -1.55%
A3 -0.48% -0.51% -3.87%
A4 -0.72% -2.06% -6.54%

TABLE VII
5-FOLD CROSS-VALIDATION ACCURACY OF APPROXIMATE FRNN-OWA

Method SUSY HIGGS HEPMASS

A1 78.5% 67.9% 84.4%
A2 78.3% 67.6% 83.4%
A3 77.6% 65.4% 81.3%
A4 77.5% 63.7% 78.4%

effect of dataset size on accuracy, we take random samples
of different sizes. This setup allows us to evaluate run time
and accuracy on real data, while ensuring that the datasets
of different sizes are in all other respects comparable to each
other.

We perform two separate series of experiments. First, to
see whether approximate FRNN-OWA is able to match the
accuracy of exact FRNN-OWA, we perform 5-fold cross val-
idation, starting with samples of 210 instances and increasing
in powers of 2 up to the full dataset size. In the case of exact
FRNN-OWA, we stop at 220 instances. Second, in order to get
a clear picture of query time complexity, we perform simple
holdout testing using test sets with a fixed size of 25 instances
and training sets with 210–220 instances. To limit the effect
of chance, both series of experiments are repeated for five
different samples per sample size and the average results are
reported.

VI. RESULTS

Fig. 2 shows the accuracy obtained with 5-fold cross-
validation on samples of the SUSY, HIGGS and HEPMASS
datasets. As discussed in Section III, the accuracy of HNSW
decreases with sample size for a given parameter config-
uration. This is reflected in the approximate FRNN-OWA
implementations — which incorporate HNSW — in the form
of an accuracy deficit with respect to exact FRNN-OWA that
eventually opens up as sample size grows large enough. The
final accuracy deficits at sample sizes of 220 instances —

210 212 214 216 218 220 222

Sample size

0.74

0.75

0.76

0.77

0.78

Ac
cu

ra
cy

E
A1
A2

A3
A4

(a) SUSY

210 212 214 216 218 220 222 224

Sample size

0.58

0.60

0.62

0.64

0.66

0.68

Ac
cu

ra
cy

E

A1
A2

A3

A4

(b) HIGGS

210 212 214 216 218 220 222 224

Sample size

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Ac
cu

ra
cy

E A1

A2

A3

A4

(c) HEPMASS

Fig. 2. 5-fold cross-validation accuracy of exact (E) and approximate (A1–4)
FRNN-OWA on samples of SUSY, HIGGS and HEPMASS

IEEE TRANSACTIONS OF FUZZY SYSTEMS 7

210 212 214 216 218 220

Sample size

0.001

0.01

0.1

1

10

100

Co
ns

tru
ct

io
n

tim
e

(s
)

E

A1

A2
A3
A4

(a) SUSY

210 212 214 216 218 220

Sample size

0.01

0.1

1

10

100

1000

Co
ns

tru
ct

io
n

tim
e

(s
)E

A1

A2
A3
A4

(b) HIGGS

210 212 214 216 218 220

Sample size

0.01

0.1

1

10

100

1000

Co
ns

tru
ct

io
n

tim
e

(s
)

E
A1

A2
A3
A4

(c) HEPMASS

Fig. 3. Construction times of exact (E) and approximate (A1–4) FRNN-OWA
on samples of SUSY, HIGGS and HEPMASS.

210 212 214 216 218 220

Sample size

0.1

1

10

Qu
er

y
tim

e
(m

s)

E

A1

A2
A3
A4

(a) SUSY

210 212 214 216 218 220

Sample size

0.1

1

10

Qu
er

y
tim

e
(m

s)

E

A1

A2
A3
A4

(b) HIGGS

210 212 214 216 218 220

Sample size

0.1

1

10

100

Qu
er

y
tim

e
(m

s)

E

A1

A2
A3
A4

(c) HEPMASS

Fig. 4. Query times per test instance of exact (E) and approximate (A1–4)
FRNN-OWA on samples of SUSY, HIGGS and HEPMASS.

IEEE TRANSACTIONS OF FUZZY SYSTEMS 8

210 212 214 216 218 220

Sample size

0

10

20

30

40

50

60

70

Qu
er

y
tim

e
(m

s)

HEPMASS

HIGGS

SUSY

(a) FRNN-OWA-E

210 212 214 216 218 220

Sample size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Qu

er
y

tim
e

(m
s)

HEPMASS

HIGGS

SUSY

(b) FRNN-OWA-A1

Fig. 5. Query times per test instance of FRNN-OWA-E and -A1 on samples
of SUSY, HIGGS and HEPMASS.

the largest sample size for which cross-validation with exact
FRNN-OWA proved feasible — are listed in Table VI. The
final accuracy figures for approximate FRNN-OWA over the
whole datasets are listed in Table VII.

The results bear out our prediction that configurations A1,
A2 and A3 produce decreasing levels of accuracy. They also
show that A4 produces lower accuracy than A3 across the
board. On SUSY and HIGGS, A1 and A2 perform extremely
close to exact FRNN-OWA. A3 and A4 drop off as sample
size grows, with A4 performing relatively worse on HIGGS.
Despite having an identical number of attributes, HEPMASS
poses a much greater challenge than HIGGS, with A2 perform-
ing markedly worse than exact FRNN-OWA. A1 stays close to
exact FRNN-OWA up to 220 instances, but its accuracy doesn’t
increase further for larger sample sizes. It is possible that this
is due to a certain amount of saturation of HEPMASS and
that the accuracy of exact FRNN-OWA levels off in a similar
manner. However, if this is not the case, it would be possible
to match the accuracy of exact FRNN-OWA by increasing efq .

0.0 0.1 0.2 0.3 0.4 0.5
Query time (ms)

0.74

0.75

0.76

0.77

0.78

Ac
cu

ra
cy

A1A2

A3A4

(a) SUSY

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Query time (ms)

0.56

0.58

0.60

0.62

0.64

Ac
cu

ra
cy

A1
A2A3

A4

(b) HIGGS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Query time (ms)

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Ac
cu

ra
cy

A1

A2

A3

A4

(c) HEPMASS

Fig. 6. Holdout accuracy as a function of query time per test instance
of approximate (A1–4) FRNN-OWA with training sets of various sizes, on
samples of SUSY, HIGGS and HEPMASS.

IEEE TRANSACTIONS OF FUZZY SYSTEMS 9

Fig. 3 shows the construction times of FRNN-OWA with
various training set sizes. The construction time of approx-
imate FRNN-OWA starts out by being longer than the con-
struction time of exact FRNN-OWA, but with HIGGS and
HEPMASS the difference becomes less pronounced as training
set size grows. The observed time complexity of approximate
FRNN-OWA is linear, supporting the claimed O(n log n)
construction time complexity of HNSW.

The log-log graphs in Fig. 4 show that the query time
per test instance of approximate FRNN-OWA scales much
better with training set size than the query time of exact
FRNN-OWA. Fig. 5 displays the same query times in lin-
log graphs for exact FRNN-OWA and FRNN-OWA-A1 (the
graphs for FRNN-OWA-A2–4 are very similar). It appears
that with SUSY, exact FRNN-OWA possibly achieves its
theoretically predicted logarithmic time complexity as training
set size grows beyond 216, but that with the higher dimensional
HIGGS and HEPMASS, this does not happen within the
range of the tested training set sizes. The query times of
FRNN-OWA-A1 scale more unevenly, but seemingly better
than logarithmically as sample size grows beyond 215

Finally, the query times of approximate FRNN-OWA are
repeated in Fig. 6 together with the corresponding holdout
test accuracy. These graphs illustrate the trade-off between
accuracy and query time which FRNN-OWA-A1–4 offer when
the quantity of available data is not a significant limiting factor.
It can be seen that for the datasets tested, most levels of
accuracy can be reached with A2 in less time than A1, while
A3 and A4 offer no clear advantage. However, to achieve the
highest levels of accuracy with HEPMASS we do need A1.

From these results we can conclude that approximate
FRNN-OWA can produce accuracy figures that are extremely
close to exact FRNN-OWA, while achieving a query time
reduction that grows to several orders of magnitude for large
sample sizes. For most sample sizes considered, this comes at a
cost of a somewhat longer construction time. The construction
and query times of the various configurations of approximate
FRNN-OWA differ by a constant factor and scale equally well.
The different accuracy results for HIGGS and HEPMASS
show that it is difficult to generalise across different datasets
and that achieving an optimal trade-off between accuracy and
query time requires dataset-specific tuning. However, based
on this limited overview, it seems that the default parameter
values of HNSW, combination A1, are also a safe default
choice for approximate FRNN-OWA. A2 may also be good
enough if query time is a particular concern, whereas the
relatively limited additional query time reduction of A3 and A4
does not seem to warrant the more significant loss in accuracy.

VII. CONCLUSION

The scalability of FRNN-OWA classification is restricted by
the nearest neighbour searches that it requires. Existing exact
nearest neighbour search algorithms struggle to achieve better
than linear query time complexity in practice. In contrast,
HNSW, a state of the art approximative algorithm, is able
to identify nearest neighbours with near-100% accuracy and
logarithmic query time complexity. In this article, we have

presented approximate FRNN-OWA, a variant of FRNN-OWA
that incorporates HNSW.

To compare the performance of exact and approximate
FRNN-OWA, we defined four parameter configurations (A1–
4) of HNSW and selected three very large datasets with
up to 11 million instances (SUSY, HIGGS and HEPMASS).
These datasets were then used to draw a series of random
samples of different sizes. To evaluate classification accuracy,
we performed cross-validation on these samples as well as
the full datasets. Finally, we measured construction and query
times through simple hold-out testing on the samples.

As a result of these experiments, we found that on SUSY
and HIGGS, the parameter configurations A1 and A2 achieve
near-identical accuracy as exact FRNN-OWA for all sample
sizes, without any need for further tuning. For HEPMASS, this
was still true for A1 up to the largest sample size for which
cross-validation with exact FRNN-OWA was feasible. Cru-
cially, the experimental query time complexity of all parameter
configurations was sub-logarithmic, resulting in a speed-up
with respect to exact FRNN-OWA that grew to several orders
of magnitude as sample size increased.

Now that the usefulness of using HNSW as part of FRNN-
OWA has been demonstrated, we propose that it is possible to
achieve further improvements through deeper integration. At
present, the HNSW algorithm concludes when it has identified
the nearest neighbours of a test instance within a decision
class, and this is repeated for each decision class. It may be
possible to terminate this search early, as soon as a decision
on the classification of the test instance can be reached.

It will also be necessary to modify HNSW if we want to
extend its use to regression, since this will involve calculating
the upper and lower approximations of a fuzzy rather than a
crisp set, which does not fully reduce to identifying nearest
neighbours within a crisp subset.

Finally, fuzzy rough sets have been applied successfully
for prototype selection, and it may be possible to adapt this
approach to improve the quality of the hierarchical search
graph used by HNSW. An important challenge here will be to
limit the resulting increase in construction time.

ACKNOWLEDGMENT

The research reported in this paper was conducted with
the financial support of the Odysseus programme of the
Research Foundation – Flanders (FWO). D. Peralta is a
Postdoctoral Fellow of the Research Foundation – Flanders
(FWO, 170303/12X1619N).

REFERENCES

[1] D. Dubois and H. Prade, “Rough fuzzy sets and fuzzy rough sets,” Int.
J. Gen. Syst., vol. 17, no. 2-3, pp. 191–209, 1990.

[2] Z. Pawlak, “Rough sets,” ICS PAS, Rep. 431, 1981.
[3] ——, “Rough sets,” Int. J. Comput. Inf. Sci., vol. 11, no. 5, pp. 341–356,

1982.
[4] R. Jensen and C. Cornelis, “A new approach to fuzzy-rough nearest

neighbour classification,” in Proc. Int. Conf. Rough Sets and Current
Trends Computing, 2008, pp. 310–319.

[5] C. Cornelis, N. Verbiest, and R. Jensen, “Ordered weighted average
based fuzzy rough sets,” in Proc. Int. Conf. Rough Sets and Knowledge
Technology, 2010, pp. 78–85.

IEEE TRANSACTIONS OF FUZZY SYSTEMS 10

[6] E. Ramentol, S. Vluymans, N. Verbiest, Y. Caballero, R. Bello, C. Cor-
nelis, and F. Herrera, “IFROWANN: imbalanced fuzzy-rough ordered
weighted average nearest neighbor classification,” IEEE Trans. Fuzzy
Syst., vol. 23, no. 5, pp. 1622–1637, 2015.

[7] S. Vluymans, D. Sánchez Tarragó, Y. Saeys, C. Cornelis, and F. Herrera,
“Fuzzy rough classifiers for class imbalanced multi-instance data,”
Pattern Recognit., vol. 53, pp. 36–45, 2016.

[8] S. Vluymans, A. Fernández, Y. Saeys, C. Cornelis, and F. Herrera,
“Dynamic affinity-based classification of multi-class imbalanced data
with one-versus-one decomposition: a fuzzy rough set approach,” Knowl.
Inf. Syst., vol. 56, no. 1, pp. 55–84, 2018.

[9] O. U. Lenz, D. Peralta, and C. Cornelis, “A scalable approach to fuzzy
rough nearest neighbour classification with ordered weighted averaging
operators,” in Proc. Int. Joint Conf. Rough Sets (IJCRS) 2019, Debrecen,
Hungary, Jun. 17–21 2019, pp. 197–209.

[10] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proc. 30th Annu. ACM Symp.
Theory Computing, 1998, pp. 604–613.

[11] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, 2011.

[12] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 11, pp. 2227–2240, 2014.

[13] C. D. Yu, J. Huang, W. Austin, B. Xiao, and G. Biros, “Performance
optimization for the k-nearest neighbors kernel on x86 architectures,”
in SC’15: Proc. Int. Conf. High Performance Computing, Networking,
Storage and Analysis, Austin, TX, Nov. 15–20 2015.

[14] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Trans. Big Data, to be published, doi: 10.1109/TB-
DATA.2019.2921572.

[15] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[16] A. Andoni and P. Indyk, “Nearest neighbors in high-dimensional
spaces,” in Handbook of discrete and computational geometry, 3rd ed.,
J. E. Goodman, J. O’Rourke, and C. D. Tóth, Eds. Boca Raton:
Chapman and Hall/CRC, 2017, ch. 43, pp. 1135–1155.

[17] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” IEEE Trans. Pattern Anal. Mach. Intell., to be published, doi:
10.1109/TPAMI.2018.2889473.

[18] L. D’eer, N. Verbiest, C. Cornelis, and L. Godo, “A comprehensive
study of implicator–conjunctor-based and noise-tolerant fuzzy rough
sets: definitions, properties and robustness analysis,” Fuzzy Sets Syst.,
vol. 275, pp. 1–38, 2015.

[19] D. Dua and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[20] S. Vluymans, N. Mac Parthaláin, C. Cornelis, and Y. Saeys, “Weight
selection strategies for ordered weighted average based fuzzy rough
sets,” Inf. Sci., 2019.

[21] R. R. Yager, “On ordered weighted averaging aggregation operators in
multicriteria decisionmaking,” IEEE Trans. Syst., Man, Cybern., vol. 18,
no. 1, pp. 183–190, 1988.

[22] Q. Hu, L. Zhang, S. An, D. Zhang, and D. Yu, “On robust fuzzy rough
set models,” IEEE Trans. Fuzzy Syst., vol. 20, no. 4, pp. 636–651, 2012.

[23] H. Asfoor, R. Srinivasan, G. Vasudevan, N. Verbiest, C. Cornelis,
M. Tolentino, A. Teredesai, and M. De Cock, “Computing fuzzy rough
approximations in large scale information systems,” in Proc. 2014 IEEE
Int. Conf. Big Data (Big Data 2014), 2014, pp. 9–16.

[24] S. Vluymans, H. Asfoor, Y. Saeys, C. Cornelis, M. Tolentino, A. Tere-
desai, and M. De Cock, “Distributed fuzzy rough prototype selection
for big data regression,” in Proc. 2015 Annu. Conf. North American
Fuzzy Information Processing Society (NAFIPS) held jointly with 2015
5th World Conf. Soft Computing (WConSC), 2015, pp. 1–6.

[25] H. M. Asfoor, “Fuzzy rough set approximations in large scale informa-
tion systems,” Master’s thesis, University of Washington, 2015.

[26] R. Jensen and N. Mac Parthaláin, “Towards scalable fuzzy–rough feature
selection,” Inf. Sci., vol. 323, pp. 1–15, 2015.

[27] Y. Qian, Q. Wang, H. Cheng, J. Liang, and C. Dang, “Fuzzy-rough
feature selection accelerator,” Fuzzy Sets Syst., vol. 258, pp. 61–78, 2015.

[28] A. Zeng, T. Li, D. Liu, J. Zhang, and H. Chen, “A fuzzy rough
set approach for incremental feature selection on hybrid information
systems,” Fuzzy Sets Syst., vol. 258, pp. 39–60, 2015.

[29] A. Zeng, T. Li, J. Hu, H. Chen, and C. Luo, “Dynamical updating fuzzy
rough approximations for hybrid data under the variation of attribute
values,” Inf. Sci., vol. 378, pp. 363–388, 2017.

[30] Q. Hu, L. Zhang, Y. Zhou, and W. Pedrycz, “Large-scale multimodality
attribute reduction with multi-kernel fuzzy rough sets,” IEEE Trans.
Fuzzy Syst., vol. 26, no. 1, pp. 226–238, 2018.

[31] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding
best matches in logarithmic expected time,” ACM Trans. Math. Softw.,
vol. 3, no. 3, pp. 209–226, Sep. 1977.

[32] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, “Approximate
nearest neighbor algorithm based on navigable small world graphs,” Inf.
Syst., vol. 45, pp. 61–68, 2014.

[33] E. Bernhardsson. (2018, Jun.) New approximate
nearest neighbor benchmarks. Blog post. [Online].
Available: https://erikbern.com/2018/06/17/new-approximate-nearest-
neighbor-benchmarks.html

[34] L. Boytsov and B. Naidan, “Engineering efficient and effective non-
metric space library,” in Proc. Int. Conf. Similarity Search and Applica-
tions, 2013, pp. 280–293.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res.,
vol. 12, pp. 2825–2830, 2011.

[36] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles
in high-energy physics with deep learning,” Nat. Commun., vol. 5, p.
4308, 2014.

[37] P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, and D. Whiteson,
“Parameterized neural networks for high-energy physics,” Eur. Phys. J.
C, vol. 76, no. 5, p. 235, May 2016.

Oliver Urs Lenz holds double MSc degrees in
Mathematics from Leiden University and the Uni-
versity of Padova (2011), as well as an MA degree
in Linguistics from Leiden University (2012). He has
worked as a data scientist for three startups in Am-
sterdam and Oslo, the last of which he co-founded.
He is currently a PhD student at Ghent University,
funded by the Odysseus Programme of the Flemish
Research Foundation (FWO), working mainly on the
application of fuzzy rough sets in machine learning
with large, imbalanced and/or incompletely labelled

datasets.

Daniel Peralta received the M.Sc. and Ph.D. de-
grees in Computer Science from the University of
Granada, Granada, Spain, in 2011 and 2016 re-
spectively. He is currently a post-doctoral researcher
at Ghent University and the Vlaams Instituut voor
Biotechnologie (Ghent, Belgium), within the Data
Mining and Modeling for Biomedicine research
group. He has published 15 papers in international
journals, and received the Foundation BBVA Award
for Young Computer Science Researchers in 2018.
His research interests include data mining, deep

learning, biometrics and large-scale parallel and distributed computing.

Chris Cornelis received the M.Sc. and Ph.D. de-
grees in computer science from Ghent University,
Ghent, Belgium.

He is currently a Postdoctoral Fellow with Ghent
University, Belgium, supported by the Odysseus
programme of the Science Foundation – Flanders.
He has cosupervised nine Ph.D. theses and has
authored more than 160 papers in international jour-
nals, edited volumes, and conference proceedings.
His current research interests include fuzzy sets,
rough sets, and machine learning.

