613 research outputs found

    An overview of recent distributed algorithms for learning fuzzy models in Big Data classification

    Get PDF
    AbstractNowadays, a huge amount of data are generated, often in very short time intervals and in various formats, by a number of different heterogeneous sources such as social networks and media, mobile devices, internet transactions, networked devices and sensors. These data, identified as Big Data in the literature, are characterized by the popular Vs features, such as Value, Veracity, Variety, Velocity and Volume. In particular, Value focuses on the useful knowledge that may be mined from data. Thus, in the last years, a number of data mining and machine learning algorithms have been proposed to extract knowledge from Big Data. These algorithms have been generally implemented by using ad-hoc programming paradigms, such as MapReduce, on specific distributed computing frameworks, such as Apache Hadoop and Apache Spark. In the context of Big Data, fuzzy models are currently playing a significant role, thanks to their capability of handling vague and imprecise data and their innate characteristic to be interpretable. In this work, we give an overview of the most recent distributed learning algorithms for generating fuzzy classification models for Big Data. In particular, we first show some design and implementation details of these learning algorithms. Thereafter, we compare them in terms of accuracy and interpretability. Finally, we argue about their scalability

    Scalable Teacher Forcing Network for Semi-Supervised Large Scale Data Streams

    Full text link
    The large-scale data stream problem refers to high-speed information flow which cannot be processed in scalable manner under a traditional computing platform. This problem also imposes expensive labelling cost making the deployment of fully supervised algorithms unfeasible. On the other hand, the problem of semi-supervised large-scale data streams is little explored in the literature because most works are designed in the traditional single-node computing environments while also being fully supervised approaches. This paper offers Weakly Supervised Scalable Teacher Forcing Network (WeScatterNet) to cope with the scarcity of labelled samples and the large-scale data streams simultaneously. WeScatterNet is crafted under distributed computing platform of Apache Spark with a data-free model fusion strategy for model compression after parallel computing stage. It features an open network structure to address the global and local drift problems while integrating a data augmentation, annotation and auto-correction (DA3DA^3) method for handling partially labelled data streams. The performance of WeScatterNet is numerically evaluated in the six large-scale data stream problems with only 25%25\% label proportions. It shows highly competitive performance even if compared with fully supervised learners with 100%100\% label proportions.Comment: This paper has been accepted for publication in Information Science

    Apache Mahout’s k-Means vs. fuzzy k-Means performance evaluation

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The emergence of the Big Data as a disruptive technology for next generation of intelligent systems, has brought many issues of how to extract and make use of the knowledge obtained from the data within short times, limited budget and under high rates of data generation. The foremost challenge identified here is the data processing, and especially, mining and analysis for knowledge extraction. As the 'old' data mining frameworks were designed without Big Data requirements, a new generation of such frameworks is being developed fully implemented in Cloud platforms. One such frameworks is Apache Mahout aimed to leverage fast processing and analysis of Big Data. The performance of such new data mining frameworks is yet to be evaluated and potential limitations are to be revealed. In this paper we analyse the performance of Apache Mahout using large real data sets from the Twitter stream. We exemplify the analysis for the case of two clustering algorithms, namely, k-Means and Fuzzy k-Means, using a Hadoop cluster infrastructure for the experimental study.Peer ReviewedPostprint (author's final draft

    On the usage of the probability integral transform to reduce the complexity of multi-way fuzzy decision trees in Big Data classification problems

    Full text link
    We present a new distributed fuzzy partitioning method to reduce the complexity of multi-way fuzzy decision trees in Big Data classification problems. The proposed algorithm builds a fixed number of fuzzy sets for all variables and adjusts their shape and position to the real distribution of training data. A two-step process is applied : 1) transformation of the original distribution into a standard uniform distribution by means of the probability integral transform. Since the original distribution is generally unknown, the cumulative distribution function is approximated by computing the q-quantiles of the training set; 2) construction of a Ruspini strong fuzzy partition in the transformed attribute space using a fixed number of equally distributed triangular membership functions. Despite the aforementioned transformation, the definition of every fuzzy set in the original space can be recovered by applying the inverse cumulative distribution function (also known as quantile function). The experimental results reveal that the proposed methodology allows the state-of-the-art multi-way fuzzy decision tree (FMDT) induction algorithm to maintain classification accuracy with up to 6 million fewer leaves.Comment: Appeared in 2018 IEEE International Congress on Big Data (BigData Congress). arXiv admin note: text overlap with arXiv:1902.0935

    Real-time big data processing for anomaly detection : a survey

    Get PDF
    The advent of connected devices and omnipresence of Internet have paved way for intruders to attack networks, which leads to cyber-attack, financial loss, information theft in healthcare, and cyber war. Hence, network security analytics has become an important area of concern and has gained intensive attention among researchers, off late, specifically in the domain of anomaly detection in network, which is considered crucial for network security. However, preliminary investigations have revealed that the existing approaches to detect anomalies in network are not effective enough, particularly to detect them in real time. The reason for the inefficacy of current approaches is mainly due the amassment of massive volumes of data though the connected devices. Therefore, it is crucial to propose a framework that effectively handles real time big data processing and detect anomalies in networks. In this regard, this paper attempts to address the issue of detecting anomalies in real time. Respectively, this paper has surveyed the state-of-the-art real-time big data processing technologies related to anomaly detection and the vital characteristics of associated machine learning algorithms. This paper begins with the explanation of essential contexts and taxonomy of real-time big data processing, anomalous detection, and machine learning algorithms, followed by the review of big data processing technologies. Finally, the identified research challenges of real-time big data processing in anomaly detection are discussed. © 2018 Elsevier Lt

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    corecore