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Introduction
In the Big Data Era [1], a huge Volume of information is generated at very high speed. 
In most cases, such data are collected from different sources, may have different formats 
(Variety) and need to be elaborated in almost real time (Velocity) [2]. This is the so-called 
three-V’s model of Big Data and it has been used for the first time by Douglas Laney in 
2001 [3], to describe the data management in three-dimensions. This original three-V 
paradigm is still valid, but it has been recently enriched by additional Vs. In fact, Big 
Data may be poorly accurate or truthful (Veracity). Moreover, the added-Value that the 
analysis of Big Data may offer is already exploited in several contexts such as industrial 
applications [4], marketing strategies [5], Cloud Computing and Internet of Things [6, 7], 
and health care [8].
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Dealing with Big Data to extract useful knowledge and value is not a trivial task. This 
is mainly due to volume, diversity, noisiness, redundancy and complexity features, which 
characterize this kind of data. In particular, due to their huge volume, it is impossible 
to load all the data into the memory of a single machine. This prevents the execution of 
classical sequential algorithms, including data mining and machine learning procedures 
[9].

To this aim, novel distributed implementations of data mining and machine learning 
algorithms for Big Data have been proposed, mainly based on the MapReduce paradigm 
[10]. For example, Ludwig in [11] and Kim et al. in [12] discuss the design, the imple-
mentation and the experimentation of distributed clustering algorithms. As regards clas-
sification algorithms, very interesting results, in terms of accuracy and scalability, have 
been discussed by Bechini et al. in [13] and by Maillo et al. in [14]. Highlights on the 
recent advances, challenges and objectives in designing, developing and using data min-
ing and machine learning algorithms for Big Data can be found in the work of Zhou et al. 
discussed in [15].

As stated before, the classical data storage and elaboration paradigms are not suitable 
for handling Big Data. Thus, in the last years practitioners and researchers have experi-
mented new distributed frameworks, specifically developed for large-scale data storage 
and processing over a large number of computers, called nodes, which communicate 
over a network. Nodes interact in order to achieve a common goal, i.e. to solve a prob-
lem or give insights on a set of data. Each node is an independent unit, with its own CPU 
cores, memory and network interface. In distributed computing the components are 
located on these networked computers and communicate and coordinate their actions 
through messages. Some important characteristics of distributed systems are concur-
rency of components, lack of a global clock and independent failure of components [16]. 
The most popular distributed frameworks to manage Big Data are Apache Hadoop [17] 
and Apache Spark [18], which are described in detail in "The MapReduce paradigm and 
distributed computing frameworks" section.

The strategies presented so far are useful to address the Big Data issues connected with 
Volume, Velocity and Value. On the other hand, other issues arise due to data Variety 
and Veracity, as already mentioned above. To deal with these additional problems, Fer-
nandez et al. in [19] and Hariri et al. in [20] highlighted that fuzzy models are particularly 
suitable for handling the variety and veracity of Big Data. Indeed, fuzzy models are based 
on the concept of fuzzy logic, which is a many-valued logic in which the truth value of a 
variable may assume any real number between 0 and 1. Fuzzy logic is often exploited to 
express the concept of partial truth, in contrast with the Boolean logic, which assumes 
that the truth values of a variable may only be 0 and 1. Thus, fuzzy models have the 
ability to deal with data and information that are vague, uncertain and imprecise. These 
characteristics are often typical of Big Data.

Since 2014, a number of contributions on fuzzy models for Big Data have been pro-
posed in the literature, focusing on different application fields. Most of them regard the 
design, implementation and experimentation of fuzzy models for classification [21–30]. 
There also exist some contributions regarding regression tasks [31–33] and descriptive 
models, such as fuzzy clustering [34–36], subgroup discovery [37] and the generation of 
fuzzy association rules [38].
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In this paper, we aim to give an overview of distributed algorithms for learning 
fuzzy models from Big Data, focusing in particular on classification applications. We 
describe and discuss the most relevant algorithms designed and implemented for 
generating fuzzy classification models, specifically Fuzzy Rule-Based Classifiers and 
Fuzzy Decision Trees. We focus on the works in which actual big datasets were used 
in the experiments. As expected, only distributed versions of algorithms for generat-
ing fuzzy models were actually able to deal efficiently with dataset sizes larger than at 
least 0.5 GB. Thus, in our analysis we considered the distributed versions of the fol-
lowing algorithms:

•	 The Chi et al. algorithm for generating Fuzzy Rule-Based Classifiers (FRBCs) [21–
24].

•	 Fuzzy Associative Classifiers (FACs) [26].
•	 Evolutionary Fuzzy Classifiers (EFCs) [27–29].
•	 Fuzzy Decision Trees (FDTs) [25, 30].

In order to evaluate the performance of the aforementioned algorithms, we selected 
four popular Big Data classification datasets, whose sizes span up to 8 GB, and ran the 
algorithms on these datasets in a computer cluster located at the University of Pisa. 
We compared the achieved results considering not only the accuracy of the models, 
but also their interpretability. Indeed, although most of the discussed fuzzy classifiers 
are very accurate, their complexity, in terms of number of rules or number of nodes 
of the fuzzy trees, is very high. As discussed by Gacto et al. in [39], the greater the 
complexity, the lower the interpretability. Interpretability is a very important feature 
that characterizes fuzzy models, and assumes a special significance in the context of 
Big Data, as stated by Fernandez et al. in [19] and by Wang et al. in [40]. Finally, we 
discuss some scalability properties of the different distributed learning algorithms.

In conclusion, the main objectives and motivations which support this overview are:

•	 To describe and discuss the most relevant algorithms designed and implemented 
for generating fuzzy classification models, specifically Fuzzy Rule-Based Classifi-
ers and Fuzzy Decision Trees;

•	 To highlight both the strengths and the weaknesses of the discussed algorithms;
•	 To allow the reader to appreciate the fast evolution of theses algorithms, in terms 

of both their design schemes and frameworks used for implementing and experi-
menting them in classification tasks for big data;

•	 To compare these algorithms in terms of the performance obtained on a set of 
selected real big datasets;

•	 To give the opportunity to future works of exploiting the discussed approaches 
in specific engineering and technological applications, by focusing on the most 
promising ones;

•	 To suggest possible improvements of the discussed algorithms.

The paper is organized as follows. First, we present the MapReduce paradigm and 
some recent distributed computing frameworks for handling Big Data. Then, we 
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describe preliminary concepts about fuzzy systems and we introduce the different 
fuzzy classification models considered in this paper. Moreover, we briefly analyze the 
most relevant state-of-the-art sequential algorithms for learning fuzzy classification 
models. The central sections of the manuscript describe the details of the distributed 
fuzzy versions of these classification models. The last part of the manuscript includes 
three sections: in the first section, we discuss the experimental results in terms of 
accuracy and interpretability. In the second section we point out an in-depth analytic 
discussion and give some envisions on future research directions. Finally, in the last 
section, we draw some conclusions.

The MapReduce paradigm and distributed computing frameworks
In this section, we provide a snapshot of the MapReduce paradigm and the main frame-
works employed in distributed data mining.

The issues related to Big Data require the adoption of new strategies for elaborating 
such data. To this aim, the MapReduce programming paradigm [10, 41] was introduced 
and adopted by Google in 2004, becoming the de facto standard for dealing with Big 
Data analysis. The MapReduce paradigm has been proposed to process huge volumes 
of data in a scalable way, according to a divide and conquer strategy, that consists in 
breaking down a problem into simpler sub-problems of the same type. The solutions to 
the sub-problems are then combined in some way to provide a solution to the original 
problem.

At high level, the paradigm divides the computational flow into two main phases, 
namely Map and Reduce, organized around 〈key, value〉 pairs.

When the MapReduce execution environment runs a user program, it automatically 
partitions the data into a set of independent chunks that can be processed in parallel by 
different nodes. In the Map phase, each task is fed by one chunk of data and, for each 
〈key, value〉 pair as input, it generates a list of intermediate 〈key, value〉 pairs as output. 
In the Reduce phase, all the intermediate results are grouped together according to a 
key-partitioning scheme, so that each Reduce task processes a list of values associated 
with a specific key as input for generating a new list of values as output. Developers are 
able to implement parallel algorithms by simply defining Map and Reduce functions. The 
result of the whole MapReduce process is a set of 〈key, value〉 pairs produced by all the 
executed Reduce tasks.

In the last years, several projects have been developed to deal with distributed data 
storage and elaboration. The most popular is Apache Hadoop [17],1 which is an open 
source project created in 2005 and currently maintained by a global community of con-
tributors. The Hadoop framework consists of several modules, among which the most 
important ones are:

•	 A distributed storage system, called Hadoop Distributed File System (HDFS), which 
supports the storage of large datasets on distributed nodes in a cluster;

1  Apache Hadoop, https​://hadoo​p.apach​e.org/, accessed: December 2019.

https://hadoop.apache.org/
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•	 A parallel processing engine, called Hadoop MapReduce, which was originally 
intended to implement the MapReduce paradigm, whereas currently it supports 
multiple processing schemes;

•	 A set of libraries and utilities, included in Hadoop Common and used by other 
Hadoop modules;

•	 A resource-management platform, called Hadoop Yet Another Resource Negotiator 
(YARN), developed to manage computer resources in clusters and to use them for 
scheduling users’ applications.

As regards data mining tools for Big Data, the library Apache Mahout [42] can be con-
sidered as the main contribution based on Apache Hadoop. Mahaout has been the first 
attempt of producing free implementations of distributed and/or scalable machine 
learning algorithms for Big Data. It includes many algorithms for machine learning 
tasks, such as classification, clustering and pattern discovery.

Although Hadoop is widely spread, it suffers from various limitations that make it not 
suitable for certain types of applications. In particular, it supports batch processing only 
and employs a two-stage disk-based MapReduce computation engine, which makes it very 
inefficient in managing real-time data processing and iterative algorithms. In the recent 
years, to overcome these limitations, Apache Spark and Apache Flink have been proposed.

Apache Spark has been developed to overcome the limitations of Hadoop. It is an 
open-source distributed general-purpose cluster computing framework with mostly in-
memory data processing engine. This key feature allows running most of the computa-
tions in memory. Thus, Zaharia et  al. in [18, 43] proved that Apache Spark performs 
faster than Hadoop at least in some specific applications, where the use of iterative algo-
rithms or interactive data mining is required. The core of Spark is the Resilient Distrib-
uted Dataset (RDD). RDD is an immutable distributed collection of objects, partitioned 
across nodes in the cluster, that can be operated in parallel.

Spark is based on a master/slave architecture. A Spark application runs a set of inde-
pendent processes that use as input the RDD: it consists of a coordinator, the Driver, that 
communicates with multiple distributed workers, the Executors. The Driver is in charge 
of processing the user’s main function and activates the tasks, which are distributed to 
the Executors. Executors run the individual tasks in parallel and send the results back to 
the Driver.

The most popular machine learning library running on Spark is the MLlib library [44],2 
which implements several machine learning and data mining algorithms for clustering, 
classification, regression, recommendation systems, pattern mining, etc.

Spark is not real-time, but near real-time. This is one of its main limitations, together 
with problems in dealing with small files, the lack of a dedicated file management system 
and high memory consumption to run in-memory.

Apache Flink [45]3 tries to overcome these issues. It reduces the complexity, which 
has been faced by other distributed data-driven frameworks, by integrating query 
optimization, concepts from database systems and efficient parallel in-memory and 
out-of-core algorithms, with the MapReduce paradigm.

2  Apache MLlib, http://spark​.apach​e.org/mllib​/, (accessed: December 2019).
3  Apache Flink, https​://flink​.apach​e.org/, accessed: September 2019.

http://spark.apache.org/mllib/
https://flink.apache.org/
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Fuzzy classification models: preliminary concepts, architectures and classical 
learning algorithms
In this section, we briefly introduce some preliminary concepts regarding fuzzy parti-
tions and the classification model structure of Fuzzy Rule-Based Classifiers (FRBCs), 
Fuzzy Associative Classifiers (FACs) and  Fuzzy Decision Trees (FDTs). Moreover, 
we also provide an overview of the classical sequential model learning methods. Let 
X = {X1, . . . ,XF } be the set of attributes and XF+1 be the output of a fuzzy classifi-
cation model. The output XF+1 is a categorical variable assuming values in the set 
Ŵ = {C1, . . . ,Ck , . . . ,CK } of K possible classes Ck . Let Uf  , with f = 1, ..., F  , be the uni-
verse of the fth attribute Xf  . In the following, we assume to have available a training 
set TS = {(x1, xF+1,1), . . . , (xN , xF+1,N )} composed of N input-output pairs..

Fuzzy partitions

Most of the approaches discussed in the next sections employ fuzzy partitions. Let 
Pf = {Af ,1, . . . ,Af ,j , . . . ,Af ,Tf

} be a partition of Xf  consisting of Tf  fuzzy sets Af ,j . 
Although there exist several types of fuzzy partitions, strong fuzzy partitions [46] are 
widely used, because they require few parameters for their definition, thus simplifying 
the modeling process. A strong fuzzy partition is an ordered collection of fuzzy sets, 
such that:

In Fig. 1, we show an example of a strong fuzzy partition composed of three triangular 
fuzzy sets Af ,j , whose membership function is defined by the tuples ( af ,j , bf ,j , cf ,j ), where 
af ,j and cf ,j correspond to the left and right extremes of the support of Af ,j , and bf ,j to the 
core.

The approaches described in the following adopt strong fuzzy partitions of the 
attributes.

Fuzzy Rule‑Based Classifiers

An FRBC includes a Rule Base (RB), a Data Base (DB) containing the definition of the 
fuzzy sets used in the RB, and a reasoning method. An RB is composed of M rules 
expressed as:

(1)∀x ∈ Xf :

Tf∑

j=1

Af ,j(x) = 1

(2)
Rm:IF X1 is A1,jm,1 AND . . .AND XF is AF ,jm,F

THEN XF+1 is Cjmwith RWm

Fig. 1  An example of a strong fuzzy partition
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where Cjm is the class label associated with the mth rule, and RWm is the rule weight, i.e., 
a certainty degree of the classification in the class Cjm for a pattern belonging to the sub-
space delimited by the antecedent of rule Rm.

Given an input pattern x̂ ∈ R
F , being RF an F-dimensional real space, the strength of 

activation (matching degree of the rule with the input) of the rule Rm is usually computed 
as:

where Af ,jm,f
(x̂f ) is the membership value of x̂f  associated with the fuzzy set Af ,jm,f

 . In 
this case, we have considered the product as t-norm for implementing the logical con-
junction in the antecedent of the rule expression in (2).

Two different definitions of rule weight RWm are commonly found in the literature 
[47]: 

1.	 The certainty factor: 

2.	 The penalized certainty factor: 

As regards the algorithms discussed in the following, we highlight that the different ver-
sions of the distributed Chi et al. algorithm adopt the penalized certainty factor, while 
the Distributed Fuzzy Associative Classifiers adopt the certainty factor. Finally, the dis-
tributed multi-objective evolutionary classifiers adopt no weights. A specific reasoning 
method uses the information from the RB and DB to determine the class label for a given 
input pattern. Details on different types of rule weights and reasoning methods used in 
the literature can be found in the contribution of Cordon et al. in [47].

The RB and the DB of an FRBC can be generated adopting different algorithms, such 
as the Chi et al. algorithm [48] and the Antonelli et al. evolutionary-based algorithms 
[49].

Specifically, the RB design process aims to determine the optimal set of rules for man-
aging the classification problem. The DB design process consists of finding the appropri-
ate number of fuzzy sets for each attribute and their parameters. The objective of the 
design process is to concurrently maximize the classification accuracy and, possibly, the 
model interpretability.

As regards the Chi et  al. algorithm [48], it is one of the first heuristics adopted for 
generating the RB of an FRBC: given a pre-defined DB describing the fuzzy partitions of 
each attribute, the algorithm generates a rule for each training pattern. The antecedent 
of a rule is generated considering the list of fuzzy sets, which have been activated by a 
certain training input pattern with the highest membership degree. The consequent is 

(3)wm(x̂) =

F∏

f=1

Af ,jm,f
(x̂f ),

(4)CFm =

∑
xt∈Cjm

wm(xt)
∑N

t=1 wm(xt)
.

(5)PCFm = CFm −

∑
xt /∈Cjm

wm(xt)
∑N

t=1 wm(xt)
.
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directly specified by the class of the training pattern. Duplicated rules are removed and 
appropriate strategies have been defined for handling rules with the same antecedent 
and different consequents and for associating a weight with each rule.

As discussed by Fernandez et al. in [50], Evolutionary Fuzzy Systems (EFSs) are well 
known hybrid models, which exploit evolutionary algorithms (EAs) for learning the 
parameters of fuzzy models. EAs are able to solve optimization tasks by imitating some 
aspects of natural evolution [51]. Learning the RB and the DB of an FRBC can be con-
sidered as an optimization process, where the accuracy of the final model is usually the 
fitness function to be optimized. However, in the last decades, interpretability of the 
fuzzy models has been often taken into account concurrently with the accuracy, leading 
to the so-called Multi-Objective Evolutionary Fuzzy Systems (MOEFSs): more details on 
MOEFSs can be found in the works of Ducange et  al. and of Fazzolari et  al. [52, 53]. 
MOEFSs adopt multi-objective evolutionary algorithms [54], which aim to concurrently 
maximize both the accuracy and the interpretability during the evolutionary learning 
process of fuzzy models. In the last decade, several MOEFSs have been successfully 
experimented for selecting (Ishibuchi et al. in [55]) or learning (Cococcioni et al. in [56]) 
the set of rules, for optimizing the fuzzy partitions (Botta et al. in [57]) and for concur-
rently learning the RB and the DB of FRBCs (Antonelli et al. in [49] and Fazzolari et al. in 
[58]). We recall that MOEFSs return a set of solutions characterized by different trade-
offs between accuracy and interpretability.

Interpretability regards the capability of explaining how decisions have been taken, 
using terms understandable to humans. Thus, the simplicity of the fuzzy reasoning 
method, adopted to deduce conclusions from facts and rules, assumes a special impor-
tance. Moreover, the intepretability is strictly related to the transparency of the model, 
namely to the capability of understanding the structure of the model itself. Fuzzy mod-
els, especially FRBCs, can be characterized by a high transparency level, whenever the 
linguistic RB is composed of a reduced number of rules and conditions and the fuzzy 
partitions have a good integrity. The integrity of fuzzy partitions depends on some 
properties, such as coverage, distinguishability and normality [59]. Several measures 
have been proposed in the specialized literature for evaluating the interpretability of an 
FRBC, taking into consideration semantic and complexity aspects of both the RB and 
the DB (check the contribution of Gacto et al. in [39]).

Fuzzy Associative Classifiers

As discussed by Baralis et al. in [60] and by Abdelhamid et al. in [61], Associative Classi-
fiers (ACs) integrate a frequent pattern mining algorithm and a rule-based classifier into 
a single system. Specifically, first, frequent patterns are extracted from the dataset using 
an appropriate mining algorithm. In the classification context, a pattern consists of set 
of items, where one item is a class. Thereafter, classification rules are generated from the 
frequent patterns, and pruned according to their support, confidence, and redundancy. 
In the fuzzy context, for each fuzzy partition Pf  of an attribute Xf  , the single item is 
defined as the couple (Xf ,Af ,j) , where Af ,j is the j-th fuzzy set defined in Pf .

The mth Fuzzy Classification Association Rule ( FCARm ) out of the Rule Base 
RB = {FCAR1, . . . , FCARM} is expressed as
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where the consequent Cjm is the class label selected for the rule, the antecedent FAntm 
is equal to the antecedent of the rule expression in (2) and RWm is the weight of the 
rule. Thus, the FCARs that can be generated by using a fuzzy association rule mining 
approach are the same as the ones of classical FRBCs. Examples of classification mod-
els based on FCARs can be found in [62, 63]. In [62], Alcala et al. discuss the use of a 
fuzzy version of the Apriori algorithm [64] for generating an initial set of FCARs. Then, a 
single-objective genetic algorithm is adopted for selecting the most relevant rules along 
with the optimization of the fuzzy set parameters. In [63], Segatori et  al. introduce a 
fuzzy extension of the well known FP-Growth [65], which allows them to quickly mine a 
set of FCARs characterized by a high confidence level. In order to reduce the number of 
rules in the final RB, an FCARs pruning process, based on redundancy and training set 
coverage, is also applied after the first mining step.

Fuzzy Decision Trees

A decision tree is a directed acyclic graph, where each internal (non-leaf ) node denotes 
a test on an attribute, each branch represents the outcome of the test, and each leaf (or 
terminal) node holds one or more class labels. The topmost node is the root node. In 
general, each leaf node is labeled with one or more classes Ck ∈ Ŵ with an associated 
weight wk : weight wk determines the strength of class Ck in the leaf node [66]. Given a 
training set TS, the structure of a decision tree, in terms of nodes, branches and leaves, 
is usually generated using a recursive scheme. First of all, one of the attributes is selected 
in the decision node corresponding to the root, taking the overall TS into considera-
tion. The attribute selection algorithm returns also a set of branches and corresponding 
nodes. For each node, a new attribute is selected from the set of the attributes, consider-
ing only the instances of the TS, which satisfy the test associated with the branch. When 
no attribute can be selected, the node is denoted as a leaf node. The attribute selection 
algorithm is usually based on a specific metric, such as Gini Index and Information Gain. 
More details regarding decision trees can be found in the contribution of Quinlan in 
[66].

In [67], Altay et al. discuss some fuzzy extensions of the classical ID3 and SLIQ algo-
rithms [68]. Recently, an incremental algorithm for learning FDT, based on the concept 
of Fuzzy Hoeffding Bound and Fuzzy Information Gain, was presented by Pecori et al. in 
[69]. Some preliminary experiments have been discussed by the authors: very promising 
results in the context of data streams classification have been achieved.

In this paper, we adopt the distributed implementation proposed by Segatori et al. in 
[25] of an algorithm for learning a decision tree based on fuzzy information gain: each 
attribute is preliminarily partitioned by using strong fuzzy partitions. Figure 2 shows an 
example of multi-way FDT, in which we consider two attributes. Each attribute is parti-
tioned with three fuzzy sets. A test branch is always generated for each fuzzy set of the 
input variable involved in a test node.

Once the tree has been generated, a given unlabeled instance x̂ is assigned to a class 
Ck ∈ Ŵ by following the activation of nodes from the root to one or more leaves. In 
classical decision trees, each node represents a crisp set and each leaf is labeled with a 

(6)FCARm:FAntm → Cjm with RWm
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unique class label. It follows that x̂ activates a unique path and is assigned to a unique 
class. In FDT, each node represents a fuzzy set. Thus, x̂ can activate multiple paths in the 
tree, reaching more than one leaf with different strengths of activation, called matching 
degrees. Details on how determine the output class label of a given unlabeled instance, 
using an FDT, can be found in the work of Segatori et al. [25].

Local and global implementations of the distributed Chi et al. algorithm
Lopez et  al. discussed in [22] the first attempt of extending an algorithm for generat-
ing FRBCs for Big Data to a distributed computing venue. Here, the authors discuss the 
design and the implementation of a distributed version of the well-known Chi et al. algo-
rithm [48]. This algorithm has been developed adopting the MapReduce programming 
paradigm under the Hadoop framework. Figure 3 gives a snapshot of the implementa-
tion scheme: according to the MapReduce paradigm, the training dataset is split into 
chunks which feed the mappers. Each mapper generates an RB from the specific chunk 
of the training data, using the classical procedure of the Chi et  al. algorithm. Then, a 
single reducer combines these RBs for generating the final RB. Two strategies have 
been proposed for solving the problem of conflicting rules: both strategies search for 
rules with the same antecedent. For each set of rules with the same antecedent, the first 

Fig. 2  An example of multi-way Fuzzy Decision Tree

Fig. 3  MapReduce scheme of the Chi-FRBCS-BigData algorithm



Page 11 of 29Ducange et al. J Big Data            (2020) 7:19 	

approach retains the rule with the highest weight. The second one calculates the aver-
age weight of the rules that have the same consequent. Finally, the rule with the high-
est average weight is kept in the final RB. The algorithm discussed above is labeled as 
Chi-FRBCS-BigData and represents a local distributed implementation of the Chi et al. 
algorithm. Indeed, each mapper generates an RB using only the subset of instances pro-
cessed by that specific mapper. Thus, the rule weights widely depend on the proportion 
and distribution of the classes in the specific subset of training instances. Different RBs 
can be generated considering different training dataset partitions and different number 
of mappers. Lopez et  al. and Fernandez et  al., also experimented the Chi-FRBCS-Big-
Data considering imbalanced classification datasets and analyzing the effects of different 
granularities of the fuzzy partitions, respectively, in [23, 70].

Recently, an optimized version of the distributed Chi et al. algorithm, denoted as CHI_
BD, has been proposed by Elkano et al. in [24]. The optimization regards both the gen-
eration of the rules and the architecture of the distributed execution scheme. Figures 4 
and 5 resume the MapReduce stages adopted for the improved implementation of the 
distributed Chi et al. algorithm.

In Stage 1, an initial RB, which can contain rules with the same antecedent and dif-
ferent consequents, is generated without rule weights. Each mapper generates a pair 
< antecedent, consequent > ( < ant, cons > in Fig.  4) for each pattern included in its 
own TS chunk. The pairs generated by all the mappers feed the reducers, which group 
together all the pairs for generating the initial RB without weights.

Stage 2 generates the final RB, composed of weighted classification rules. To this aim, 
each mapper loads its training data chunk and also the initial RB generated in Stage 1. 
Each mapper calculates the matching degree of each training pattern of the chunk. In 
the reduce phase, for each rule, a reducer sums up the matching degrees generated for 
the specific rule by the different mappers. Thereafter, the weights for each consequent 
are calculated, ensuring that the overall TS contributes to their values. Only the conse-
quent associated with the highest weight is retained in the final RB.

CHI_BD represents the global counterpart of the local implementation discussed by 
Lopez et al. in [22]. Indeed, as stated before, the CHI_BD algorithm ensures that the rule 

Fig. 4  MapReduce scheme of the CHI_BD Algorithm: Stage 1
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weights are calculated considering the overall TS and that their values do not depend on 
the data partitions and on the number of adopted mappers. Also the CHI_BD algorithm 
has been developed under the Hadoop framework.

Distributed Fuzzy Associative Classifiers
The recent contribution discussed by Segatori et al. in [26] introduces a novel distributed 
algorithm for generating FRBCs based on ACs. The algorithm discussed in the follow-
ing, labeled as Distributed Fuzzy Associative Classifier based on Fuzzy Frequent Pattern 
(DFAC-FFP) mining, adopts the fuzzy definition of support and confidence to determine 
the strength of a classification rule. For a generic FCARm , fuzzy support and confidence 
are defined as:

where TSjm = {xn | (xn, yn) ∈ TS, yn = Cjm} is the set of TS instances labelled with 
class Cjm , wm(xn) is the matching degree, as defined in formula (3), of rule FCARm , and 
wFAntm(xn) is the matching degree of all the rules whose antecedent is equal to FAntm.

In order to generate a set of FCARs, the following procedures are sequentially exe-
cuted during the DFAC-FFP learning process:

•	 Distributed fuzzy partitioning: A strong fuzzy partition is directly generated on each 
continuous attribute using a distributed approach based on fuzzy entropy;

•	 Distributed Fuzzy Classification Association Rule (FCAR) Mining: A distributed 
fuzzy frequent pattern mining algorithm extracts frequent FCARs with confidence 
and support higher than a given threshold;

•	 Distributed FCAR pruning: The mined FCARs are pruned by means of two dis-
tributed rule pruning phases based on redundancy and training set coverage.

(7)fuzzySupp (FAntm → Cjm) =

∑
xn

∈ TSjmwm(xn)

N

(8)fuzzyConf (FAntm → Cjm) =

∑
xn

∈ TSjmwm(xn)∑
xn

∈ TS wFAntm(xn)

Fig. 5  MapReduce scheme of the CHI_BD Algorithm: Stage 2
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For the sake of brevity, in this work we omit the description of the implementation of 
the distributed fuzzy partitioning algorithm. Details on this algorithm can be found in 
[26]. However, the distributed FCAR mining and pruning procedures may be applied 
whenever an initial partition Pf  for each attribute Xf  has been previously defined.

Each stage of the DFAC-FFP has been implemented using the MapReduce paradigm 
on the Apache Spark framework.

Figure  6 shows the three MapReduce stages of distributed FCAR mining, namely 
distributed fuzzy counting, distributed fuzzy FP-growth and distributed rule selection 
stages.

The first MapReduce stage takes as inputs the fuzzy partitions and the TS chunks, and 
outputs a list of fuzzy sets Af ,j whose fuzzy support is larger than threshold minSupp. In 
detail, each mapper produces, for each fuzzy set Af ,j of each fuzzy partition Pf  , the list 
of membership degrees µf ,j(xr,f ) calculated for each rth input pattern of the specific TS 
chunk. Each reducer receives in input a fuzzy set Af ,j and the corresponding list of mem-
bership degrees, calculated by each mapper, and calculates the fuzzy support as follows:

where N is the total number of instances of the TS. Only the fuzzy sets whose fuzzy sup-
port is higher than minSupp are retained and included in the list of frequent fuzzy items.

The second MapReduce stage is based on a distributed version of the Fuzzy FP-growth 
algorithm. FP-growth is a well known frequent pattern mining algorithm, introduced 
by Han et al. in [65], which allows handling high dimensional datasets. Indeed, it first 
extracts the frequent items, and sorts them by descending frequencies. Thereafter, such 
a dataset of frequent items is compressed into a frequent pattern tree, called FP-tree. 
Finally, frequent patterns are recursively mined by extracting from the FP-tree a set of 
projected datasets, each one associated with a frequent item or a pattern fragment. In 
the work discussed in [26], Segatori et al. proposed a distributed implementation of the 
Fuzzy FP-growth algorithm introduced by the same authors in [63]. Each mapper takes 
in input a chunk of the training set and the list of frequent fuzzy items Af ,j and outputs 
item-projected objects. These objects feed reducers, which first build the item-projected 
datasets, and then generate local conditional FP-trees. From the local conditional FP-
trees, FCARs are mined, retaining only the ones whose support, confidence and χ2 val-
ues exceed the relative thresholds.

The last MapReduce stage is in charge of selecting, from the set of very specialized 
FCARs mined by the Fuzzy FP-growth algorithm, the top H non-redundant FCARs per 
class. To this aim, each mapper is fed by a block of FCARs previously generated and 
outputs pairs containing the rule and the consequent class. Each reducer processes all 
the rules with the same class label, outputting the most relevant ones. Details on item-
projected objects and datasets and on the FCAR relevance measures can be found in the 
work of Segatori et al. in [63].

Figure 7 shows the two MapReduce stages of the distributed FCAR pruning.
In the first stage, the pruning of the set of FCARs is carried out on the basis of fuzzy 

support and fuzzy confidence thresholds. Each mapper is fed by a TS chunk and by the 
list of FCARs generated during the distributed FCAR mining approach. For each FCARm 

(9)fuzzySupp (Af ,j) =

∑N
t=1 µf ,j(xt,f )

N
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and for each input pattern xr in the TS chunk, the matching degree wm(xr) is calculated 
and produced as output of each mapper. Each reducer calculates the actual fuzzy sup-
port and confidence of a specific FCARm , given the list of the wm(xr) computed by the 
different mappers. Only the rules, whose values of fuzzy support and confidence are 
higher than specific thresholds, are retained and taken into consideration for the next 
stage. In the second MapReduce stage, only the rules characterized by a training cover-
age higher than a threshold are inserted into the final RB. Each mapper is fed by a train-
ing data chunk and by the set of rules previously generated: it calculates the training set 
coverage and returns the most covered rules (see [26] for more details). The reducers 
generate the final RB considering only the rules, identified by the mappers, which satisfy 
the coverage criteria.

Distributed Evolutionary Fuzzy Systems
To the best of our knowledge, the first distributed version of an EFS can be found in 
[28], where Fernandez et al. discuss a distributed evolutionary rule selection approach. 
Specifically, this approach is carried out inside each mapper of the Chi-FRBCS-BigData, 
previously introduced by the authors and discussed in "Local and global implementa-
tions of the distributed Chi et al. algorithm" section. Indeed, in each mapper, after the 
generation of rules by means of the classical Chi et al. algorithm, a single objective evo-
lutionary algorithm selects the most relevant rules. The optimized fitness function is a 
linear combination of the accuracy and the measure of complexity of the RB. The algo-
rithm is implemented under the Apache Spark framework and experimented consider-
ing imbalanced classification datasets.

As discussed by Fernandez et al. in [19] and by Wang et al. in [40], in the context of Big 
Data, the interpretability of fuzzy models assumes a special relevance. If an interpret-
able and transparent model can be derived from a big dataset, the model itself may be 
considered as a sort of “visualization tool”, which may allow us to understand the phe-
nomena hidden behind the data. Thus, in 2017, the first distributed MOEFS for Big Data 
classification was discussed by Ferranti et al. in [27]. The algorithm, denoted as Distrib-
uted Pareto Archived Evolution Strategy with Rule and Condition Selection (DPAES-
RCS) is a distributed implementation on the Apache Spark environment of the Pareto 
Archived Evolution Strategy with Rule and Condition Selection (PAES-RCS), introduced 
by Antonelli et al. in [49]. PAES-RCS learns the RB of a set of FRBCs through a Rule and 
Condition Selection (RCS) strategy: an initial set of rules is generated by means of heu-
ristics, such as the Chi et al. algorithm or a decision tree, and the most relevant rules and 
conditions are selected during the evolutionary learning process. In DPAES-RCS the ini-
tial set of rules is generated exploiting a distributed version of the C4.5 algorithm [66], 
available in the MLib of Spark, which is a well known algorithm for the generation of 
classical decision trees. The parameters of the fuzzy sets are learnt concurrently with the 
RB. Recently, a novel version of DPAES-RCS, called DPAES-FDT-GL has been presented 
by Barsacchi et al. in [29]. Here, the initial rule set is generated adopting the distributed 
FDT discussed in "Distributed Fuzzy Decision Trees" section and introduced by Segatori 
et al. in [26]. Moreover, during the evolutionary learning process also the granularity of 
the fuzzy partitions is concurrently learnt with the RB and the parameters of the fuzzy 
sets.
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Figure 8 shows the scheme of the distributed learning process by means of PAES-RCS. 
Once the initial set of rules has been learned, for instance using a distributed FDT learn-
ing algorithm as discussed in "Distributed Fuzzy Decision Trees" section, two solutions 
are randomly generated and inserted into an archive of non-dominated solutions. The 
RBs of the two initial solutions contain a random number of rules. Moreover, for each 
rule, a random number of conditions is selected. The fuzzy partitions are strong fuzzy 
partitions composed of a random number of fuzzy sets (between a minimum and a max-
imum value) and a random distribution of the cores along the universe of definition. At 
each iteration, two solutions are randomly selected from the archive and mating opera-
tors, namely crossover and mutation operators, are applied for generating two offspring 
solutions. A two dimensional fitness function is calculated for each offspring, consider-
ing the interpretability, in terms of total number of conditions in the RB, and the accu-
racy of the FRBCs associated with each solution. All the previously discussed steps of the 
algorithm and the calculation of the interpretability can be easily executed by a sequen-
tial driver program. On the other hand, the accuracy needs to be calculated by using a 
distributed approach, when the amount of data is very huge. Indeed, the overall TS must 
be scanned for computing the accuracy. Thus, the TS is divided into chunks and a num-
ber of Computing Units (CUs) are in charge of calculating the output of the classifier, 
associated with each offspring, and return the number of patterns correctly classified. 
A driver program collects the results provided by each CU and calculates the accuracy. 
Finally, the driver program updates the archive of non-dominated solutions consider-
ing the two offspring solutions. The multi-objective evolutionary learning scheme ter-
minates when a stopping condition is reached (usually, a maximum number of fitness 
evaluations is fixed and adopted as stopping condition). The final archive contains a set 
of non-dominated FRBC characterized by different trade-offs between accuracy and 
interpretability.

More details regarding the chromosome coding, the mating operators and the PAES-
RCS learning scheme can be found in the contributions of Ferranti et al. in [27] and of 
Barsacchi et al. in [29].

Distributed Fuzzy Decision Trees
As discussed in "Fuzzy classification models: preliminary concepts, architectures and 
classical learning algorithms" section , an FDT can be recursively generated consid-
ering an initial partition Pf  for each input variable Xf  . In the work of Segatori et al. 
in [25], authors discuss a distributed implementation of an FDT learning scheme, 
considering the MapReduce paradigm under the Apache Spark framework. Similar 
to DFAC-FFP, the proposed algorithm includes an initial distributed fuzzy discre-
tization step for each input variable, based on fuzzy entropy. Also in this case, we 
skip the description of the initial fuzzy discretization. On the other hand, the dis-
tributed FDT learning scheme discussed in the following can be applied whenever an 
initial strong fuzzy partition is available for each input variable.

Two types of FDTs are considered by the authors, namely multi-way and binary 
decision trees. As regards multi-way decision trees (see Fig. 2), the splitting points 
are generated considering a branch for each fuzzy set of the selected attribute. On 
the other hand, binary trees consider just a two-way splitting point for the specific 
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selected variable. In this case, as shown in Fig. 9, for the selected attribute the split-
ting point is identified considering two fuzzy sets created by applying the union 
operator among the fuzzy sets of the specific partition. The best splitting point 
is directly generated by the attribute selection algorithm. Both for multi-way and 
binary decision trees, the attribute selection algorithm is based on the fuzzy infor-
mation gain. More details on fuzzy entropy, fuzzy information gain and the distrib-
uted fuzzy discretization can be found in the paper of Segatori et al. [25].

Figure 10 shows the scheme of the MapReduce implementation of the FDT learn-
ing approach. The scheme is valid both for multi-way and binary decision trees. A 
MapReduce stage is re-iterated for the identification of the attributes to be selected 
and of their splitting points (in the case of binary splitting). At each iteration the 
set of nodes identified at the previous iteration is taken into consideration (set R 
of nodes) and, for each of them, the selected attribute and the splitting points are 
returned. Each mapper is fed by a TS chunk and by the list of nodes to be split. For 
each node, each mapper calculates a vector of statistics, considering the contribu-
tion of the handled TS chunk. The statistics calculated by the mappers are then used 
by the reducers for calculating the fuzzy information gain, selecting the new input 
variables and determining the splitting points. The algorithm stops when the set R 
of current nodes is composed only by leaves. A node is identified as a leaf if the fol-
lowing conditions are satisfied [25]: (i) the node contains only instances of the same 
class, (ii) the node contains a number of instances lower than a fixed threshold, (iii) 
the tree has reached a maximum fixed depth and (iv) the fuzzy information gain is 
lower than a fixed threshold. Recently, an improved fuzzy partitioning algorithm, 
which exploit the probability integral transform, has been introduced in [30]. This 
new partitioning algorithm allows reducing the complexity of the multi-way decision 
trees generated using the distributed FDT learning scheme discussed above. This 
approach has been labeled as FMDTl , where l is the number of partitions considered 
for each attribute.

Fig. 9  An example of fuzzy binary splitting
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Experimental results: some discussions
The distributed implementations of the fuzzy classification models discussed in the pre-
vious sections have been experimented by their authors on a number of public bench-
mark datasets. Most of these datasets can be retrieved from the UCI4 and the LIBSVM5 
repositories.

In order to compare the results achieved by the different distributed learning algo-
rithms discussed so far, we performed a number of experiments, adopting the source 
codes publicly available and the ones developed at the University of Pisa. Table 1 sum-
marizes the algorithms analyzed in this work, specifying their names, their acronyms 
and the reference papers. We skipped the single-objective EFS because it was designed 
for imbalanced binary datasets. As regards the values of the parameters of each specific 
algorithm, we adopted the best setup suggested in the paper in which each algorithm 
was introduced and experimented.

We executed all the algorithms on the same cluster located at the University of Pisa. 
The cluster consists of one master equipped with a 4-core CPU (Intel Core i5 CPU 750 × 
2.67 GHz), 8 GB of RAM and a 500 GB Hard Drive, and four slave nodes equipped with 
a 4-core CPU with Hyperthreading (Intel Core i7-2600K CPU × 3.40 GHz, 8 threads), 
16 GB of RAM and a 1 TB Hard Drive. All nodes are connected by a Gigabit Ethernet (1 

Fig. 10  MapReduce scheme of the distributed FDT learning approach

4  Available at https​://archi​ve.ics.uci.edu/ml/datas​ets.php.
5  Available at www.csie.ntu.edu.tw/~cjlin​/libsv​mtool​s/datas​ets/.

https://archive.ics.uci.edu/ml/datasets.php
http://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/
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Gbps) and run Ubuntu 12.04. The training sets were stored in the HDFS (Hadoop Dis-
tributed File System).

In Table 2 we show four datasets that have been considered in our experimental analy-
ses and that have been also discussed in most of the papers where the models have been 
proposed. The chosen datasets represent three different categories, namely datasets 
with only real-valued attributes (Susy and Higgs), with both real-valued and categorical 
attributes (KDD) and with only categorical values (Poker Hand). Moreover, these data-
sets are characterized by different numbers of input/output instances (up to 11 millions) 
and input variables (from 10 to 41). Furthermore, for each dataset, the size in terms of 
memory occupancy (up to 8.04 GB) is also reported in Table 2.

Tables 3 and 4 show the results achieved by the classifiers considered in this paper 
on the four selected big datasets. We recall that both SUS and HIG datasets are bal-
anced binary classification datasets. KDD is a slightly imbalanced classification data-
set, where the minority class is distributed in more or less 20% of the instances, thus 
the percentage of correctly classified instances can be considered as a good accuracy 
measure. We also experimentally verified that the minority class instances in the 
training set folds are enough to induce the generation of classifiers able to accurately 
distinguish the two classes. As regards the interpretability measure, we adopt the 
number of rules for the FRBCs, generated by means of Chi-FRBCS-BigData, Chi_BD, 
DFAC-FFP, DPAES-RCS and DPAES-FDT-GL, and the number of leaves for the FDTs 
(we considered just multi-way FDTs).

In the tables, we show the average results of a fivefold stratified cross validation.
As shown in Table 3 and Figure 11, on the KDD dataset all the algorithms perform 

well in terms of accuracy. On the other datasets, the FDTs perform always better than 
the FRBCs. Regarding FRBCs, both the local and global versions of the distributed 
Chi et. al algorithm achieve the worst results. On Sus dataset, the accuracies achieved 

Table 1  Algorithms used in the experimental comparison

Name Acronym References

Local distributed Chi for Big Data Chi-FRBCS-BigData [22, 23, 70]

Global distributed Chi for Big Data CHI_BD [24]

Distributed Fuzzy Associative Classifier based on Fuzzy Frequent Pattern DFAC-FFP [26]

Distributed PAES with Rule and Condition Selection DPAES-RCS [27]

Distributed PAES with Fuzzy Decision Tree and Granularity Learning DPAES-FDT-GL [29]

Multi-way Fuzzy Decison Tree Multi-way FDT [25]

Multi-way Fuzzy Decison Tree with Improved Fuzzy Partitioning FMDTl [30]

Table 2  Datasets used in the experimental comparison

Datasets

Name # Instances # Attributes # Classes # Size

Higgs (HIG) 11,000,000 28 (real: 28) 2 8.04 GB

Kddcup 2 (KDD_2) 4,856,151 41 (real: 26, cat: 15) 2 476 MB

Susy (SUS) 5,000,000 18 (real: 18) 2 2.4 GB

Poker Hand (POK) 10,000,000 10 (cat: 10) 10 24.6 MB
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by the remaining algorithms are similar. On HIG dataset, DFAC-FFP and DPAESs 
achieve accuracies up to 5% lower than the ones achieved by FDTs. On POK dataset, 
DFAC-FFP achieves accuracies similar to FDTs, while the accuracies of the DPAESs 
are considerably lower than the ones obtained by FDTs, although higher than the 
ones achieved by Chi-FRBCS-BigData and CHI_BD algorithms.

As regards the complexities, we have to consider that the high accuracies of the 
FDTs are supported by very complex models, constituted by a huge number of param-
eters (number of leaves). Especially for the multi-way FDT, the generated models are 
up to four orders of magnitude more complex than the one generated by DPAES-
RCS and DPAES-FDT-GL. Even though the complexities associated with the mod-
els generated by FMDT5 are lower than the ones generated by the multi-way FDT, 
DPAES-RCS and DPAES-FDT-GL result to be the most interpretable models for Big 
Data classification tasks. Moreover, DPAES-RCS and DPAES-FDT-GL achieve results 
similar to DFAC-FFP (except for the POK dataset), with a complexity smaller by two 
orders of magnitude. More details on the interpretability of DPAES-RCS and DPAES-
FDT-GL can be found in the works of Ferranti et al. [27] and of Barsacchi et al. [29]. 
In these two papers, some examples of actual interpretable and transparent RBs and 
DBs, regarding real world classification problems, are shown and discussed in depth.

It is worth noticing that, in some of the papers in which the algorithms discussed 
in this paper have been introduced, some comparisons with non-fuzzy classifica-
tion models have been carried out. For instance, Segatori et  al. in [26] demonstrate 
that DFAC-FFP generates models characterized by accuracies similar to the ones 

Table 3  Experimental comparison: average accuracies on the test set

Algorithm Dataset

HIG SUS KDD POK

Chi-FRBCS-BigData 55.89 55.75 99.93 51.78

CHI_BD 57.81 65.36 99.91 52.22

DFAC-FFP 66.00 78.26 99.99 76.65

DPAES-RCS 65.00 78.12 99.94 60.22

DPAES-FDT-GL 65.03 78.60 99.88 61.80

Multi-way FDT 71.25 79.63 99.98 77.17

FMDT5 72.32 78.97 99.98 76.21

Table 4  Experimental comparison: average complexities

Algorithm Dataset

HIG SUS KDD POK

Chi-FRBCS-BigData 24,058 678 1020 813,193

CHI_BD 624,358 9355 5498 52,652

DFAC-FFP 9365 10,970 890 5712

DPAES-RCS 30.2 28 21.8 50

DPAES-FDT-GL 14 14.6 10.8 41.6

Multi-way FDT 920,942 758,064 630 28,561

FMDT5 2987 2865 96 1873
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generated by two distributed non fuzzy ACs, namely MRAC and MRAC+, intro-
duced by Bechini et  al. in [13]. On the other hand, the fuzzy AC models are more 
compact than MRAC and MRAC+. Segatori et al. in [25], compared the distributed 
FDTs with non-fuzzy Distributed Decision Trees (DDTs), available in the Spark Mlib. 
Results show that, in most datasets, the distributed FDTs achieve better accuracies 
than DDTs. As regards the complexities, the binary FDT are comparable with DDTs 
in terms of number of leaves and nodes, while multi-way FDTs are the most com-
plex classification models. As regards DPAES-RCS, Ferranti et al., in [27], show that 
this algorithm achieves performances, in terms of accuracy, comparable with the ones 
achieved by DDTs. Obviously, the interpretabilty of the classification models gener-
ated by DPAES-RCS is much higher than the one of DDTs, both at complexity and 
semantic levels. Indeed, the rules that can be derived from DDTs are not linguistic 
rules, thus they are very hard to read and interpret.

Another important aspect to take into consideration when dealing with distributed 
algorithms is the scalability. To this aim, Chu et al. in [71] suggest to adopt the speedup 
σ as the main metrics for evaluating the scalability in parallel and distributed computing. 
According to the speedup definition, the efficiency of a program using multiple CUs is 
calculated comparing the execution time of the parallel implementation against the cor-
responding sequential version. For most of the distributed fuzzy classification models 
discussed in this work, authors carried out a scalability analysis. Specifically, for CHI_
BD, DFAC-FFP, DPAES-RCS, and the Multi-way FDT, authors calculated different val-
ues of speedups, varying the number of CUs from 4/8 to 24/32. These algorithms have 
shown an almost linear behavior for the speedup of the classification model learning 
process. This means that, whenever needed, additional CUs can be used to effectively 

Fig. 11  Accuracy comparison among the different fuzzy classification models
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reduce the runtimes. As an example, in Fig.  12, we show the speedup trend of the 
DPAES-RCS algorithm, extracted from the paper of Ferranti et al. [27].

Discussion and future directions
After the analysis that we have provided till now, we can state that a set of effective algo-
rithms and tools are available for approaching the problem of generating fuzzy classifi-
cation models from Big Data. In Table 5, for each discussed algorithm, we highlight its 
strengths and its weaknesses.

The analysis of the results has highlighted that FDTs are the most accurate classifica-
tion models. However, these models are characterized by a high complexity level. On 
the other hand, the FRBCs generated by a distributed multi-objective learning scheme, 
based on the DPAES-RCS algorithm, are characterized by an optimal trade-off between 
their interpretability and their accuracy. As counterpart, these interpretable models are 
generated by means of EAs, which are, in general, characterized by a quite long execu-
tion time. Finally, the fuzzy classification models discussed in this work are not able to 
deal with streaming data. Indeed, once a specific fuzzy classification model has been 
generated, it cannot be adapted with new training data, which may reflect some changes 
of the domain context.

We envision that the future directions in the context of fuzzy classification models for 
Big Data will regard: (i) enhancing the interpretability of the rules and of the fuzzy parti-
tions, both at semantic and complexity levels, (ii) handling data streams [72] moving 
towards a more general granular computing framework [73, 74]; and (iii) reducing the 
computation efforts for generating compact and accurate solutions. The three aforemen-
tioned challenges should be conducted in parallel as much as possible. Indeed, inter-
pretable models, able to extract knowledge in almost real-time from huge amount of 
streaming and heterogeneous data, will be the actual added values for future research 
activities on classification tasks for Big Data.

Additional efforts can also be done with respect to the fields of application of fuzzy 
classification models. In fact, recent developments in several fields such as, cyber-phys-
ical systems [75, 76], cyber-security [77], and learning analytics [78], have increased 
the amount of collected data to an enormous scale. These data are inherently uncer-
tain due to noise, incompleteness, and inconsistency, thus they require the adoption of 

Fig. 12  The speedup trend of DPAES-RCS
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appropriate techniques to manage them. With the increase of the amount, variety, and 
speed of data, also the inherent uncertainty increases consequently. Moreover, the inter-
pretability of fuzzy models may accomplish with one of the most recent and relevant 
requirements of Artificial Intelligence (AI)-based applications, namely the explainabil-
ity. Indeed, eXplainable AI (XAI) [79, 80] refers to all methods and techniques in the 
application of AI that allow users to understand how, given specific inputs, AI systems 
produce the corresponding outputs. Several application domains consider model inter-
pretability to be fundamental and require appropriate trade-offs between accuracy and 
interpretability.

Conclusions
In this work, we have briefly discussed the main design and implementation issues 
regarding the most recent fuzzy models for handling classification tasks on Big Data. 
Specifically, we have analyzed different distributed implementations of learning 

Table 5  Algorithms used in the experimental comparison, strengths and weaknesses

Algorithm Strengths Weaknesses

Chi-FRBCS-BigData  The first distributed algorithm proposed in 
the literature for learning a fuzzy model in 
big data classification

 Employs a local search, thus the structure 
of the final model depends on how data 
chunks are generated

 Adopts a single reducer for fusing the rules 
generated by a distributed mapping stage

 Generates a large number of rules

Generally achieves accuracies lower than the 
comparison algorithms

CHI_BD Global search: unlike Chi-FRBCS-BigData, 
employs a global search, thus the struc-
ture of the final model does not depend 
on how data chunks are generated

Generates a large number of rules

Generally achieves accuracies lower than the 
comparison algorithms

DFAC-FFP Includes a fuzzy discretization algorithm Generates a large number of rules

The generated models are very accurate The input variables may be partitioned with 
a large number of fuzzy sets, thus the 
interpretability of the fuzzy partitions may 
be low

DPAES-RCS Optimizes concurrently the rule bases and 
the parameters of the fuzzy sets

Adopts a pre-fixed number of fuzzy set for 
each input variable

Generates solutions characterized by good 
trade-off between accuracy and interpret-
ability

Is very slow with respect to the other 
algorithms (it is based on evolutionary 
optimization)

Even the most accurate solutions are char-
acterized by a reduced number of rules

DPAES-FDT-GL Adds to the strengths of the PAES-RCS algo-
rithm the capability of optimizing also the 
number of fuzzy sets for each attribute

Is very slow with respect to the other 
algorithms (it is based on evolutionary 
optimization)

Multi-way FDT Includes a fuzzy discretization algorithm Is characterised by a low interpretability 
of the final models because of the large 
number of rules generated

Is very fast for generating the models

The fuzzy classification models are very 
accurate

FMDTl Adds to the strengths of the Multi-way FDT 
algorithm the capability of reducing the 
model complexity

The final models are still characterised by a 
low interpretability because of the large 
number of rules
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algorithms for generating the model structure of FRBCs and FDTs. Most of the discussed 
learning algorithms, specifically the ones regarding FRBCs, are extensions to the parallel 
and distributed environment of well-known sequential approaches for generating the RB 
and the fuzzy set parameters from data. In particular, we have discussed the distributed 
versions of the classical Chi algorithm, of an FAC and of some EFCs. As regards FDT, 
we have briefly resumed the steps of a novel distributed learning process, which exploits 
an attribute selection and splitting algorithm based on fuzzy information gain. We have 
drawn a comparison among the discussed distributed fuzzy classification algorithms, by 
considering the results obtained on four popular classification datasets for Big Data, in 
terms of accuracy and scalability. Moreover, for each algorithm, we identified its benefits 
and limitations.

In conclusion, through this work we have provided a clear description of the current 
background in the field of fuzzy models for big data. Moreover, we have carried out an 
accurate analysis on research challenges and gaps. Finally, we have suggested areas for 
further investigation for supporting researchers in positioning their works.
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