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Abstract—The emergence of the Big Data as a disruptive
technology for next generation of intelligent systems, has
brought many issues of how to extract and make use of
the knowledge obtained from the data within short times,
limited budget and under high rates of data generation. The
foremost challenge identified here is the data processing, and
especially, mining and analysis for knowledge extraction. As
the old data mining frameworks were designed without Big
Data requirements, a new generation of such frameworks is
being developed fully implemented in Cloud platforms. One
such frameworks is Apache Mahout aimed to leverage fast
processing and analysis of Big Data. The performance of
such new data mining frameworks is yet to be evaluated
and potential limitations are to be revealed. In this paper we
analyse the performance of Apache Mahout using large real
data sets from the Twitter stream. We exemplify the analysis
for the case of two clustering algorithms, namely, k−Means
and Fuzzy k−Means, using a Hadoop cluster infrastructure
for the experimental study.
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I. INTRODUCTION

Big Data is considered as a game changer for many

application domains. It is based on the premise that gen-

erating Big Data is cheap and feasible for enterprises, insti-

tutions and organizations widely. However, data processing

and knowledge extractions are computationally challenging,

especially for small and medium size enterprises, which in

most cases cannot cope with the data storage, processing

and mining due to high data generation rates, short time

frames and high costs. Indeed, Big Data hinders obstacles,

which if not overcome, can impede extracting the knowledge

in the data and its use in business processing, decision-

making, etc. Obviously, existing data mining techniques

and frameworks are the premier source for processing and

analysing the data, finding (structured, frequent, approxi-

mate, etc.) patterns in data [3], [5], discovering association

rules [1], [2], [10], grouping/clustering/bi-clustering data

according to one or more criteria, etc. Most such data mining

frameworks (DMFs) are moving to Cloud to alleviate the

user from the burden of installing, configuring and running

∗SmartLearn Group, Universitat Oberta de Catalunya, Spain

such frameworks locally. We can distinguish here Cloud

based versions of existing DMFs like Weka and R and

new DMFs properly designed for Cloud platforms such as

Mahout, in either case running on Hadoop clusters. The later

frameworks aim at overcoming limitations and failure of

existing DMF frameworks to cope with more demanding

requirements of data mining techniques for efficiency and

scalability [2], [3], [6], [10], [11].

As the old data mining frameworks were designed without

Big Data requirements, a new generation of such frameworks

is being developed fully implemented in Cloud platforms.

One such frameworks is Apache Mahout aimed to leverage

fast processing and analysis of Big Data. The performance

of such new data mining frameworks is yet to be evaluated

and potential limitations are to be revealed. In this paper

we analyse the performance of Apache Mahout using large

real data sets from the Twitter stream. We exemplify the

analysis for the case of two clustering algorithms, namely,

k−Means and Fuzzy k−Means, using a Hadoop cluster

infrastructure for the experimental study. The study of such

new implementations is interesting not only for processing

time and scalability but also for in-memory usage, given that

for large data sets it is not possible to load into memory the

whole data set.

The rest of the paper is organized as follows. In Section II

we briefly describe Apache Mahout data mining framework.

The high performance computing needs arising from data

pre-processing are presented in Section III. The performance

analysis of two clustering algorithms, namely, k−Means and

Fuzzy k−Means using real big data sets from Twitter stream

is addressed in Section IV. We end the paper in Section V

with some conclusions and remarks for future work.

II. APACHE MAHOUT AND CLUSTERING ALGORITHMS

The Apache Mahout project is an open source project

under the Apache umbrella, which provides a framework

for building scalable algorithms and also offers built-in

algorithms that can be run on top of Hadoop MapReduce

as well as on top of Apache Spark, H2O or Flink. The main

focus in this paper is on using the MapReduce algorithms

that are implemented in Mahout, which can be run in-

memory, but for large datasets they need to be executed in



a Hadoop environment.

In latest releases of Apache Mahout there is a clear

shift in focus from Hadoop MapReduce implementations

to more comprehensive platforms. From version 0.12.0 the

MapReduce clustering algorithms became deprecated and

the project seems to be oriented towards Apache Flink,

which is a streaming dataflow engine that provides data dis-

tribution, communication and fault tolerance for distributed

computations over data streams. Apache Flink project inte-

grates stream processing and batch processing, which makes

it an important choice for both batch and stream data mining.

Evaluating the performance of Mahout’s implementation

over the MapReduce framework can provide valuable in-

sights for the great number of projects that already have

the necessary infrastructure in place, given the popularity of

Hadoop MapReduce.

Apache Mahout provides multiple types of algorithms:

recommendations, clustering, classifications and others. The

algorithms that are of interest for the purpose of this

study are the clustering ones, namely, k−Means and Fuzzy

k−Means. We briefly describe them next.

A. Mahout k−Means

The k−Means algorithm is one of the most commonly

used clustering algorithms because of its simplicity. Most

implementations of k−Means take as input the following:

• A set of points that are to be distributed into clusters.

• A set of initial centroids for the clusters or expected

number of clusters (depending on the implementation).

• A distance measure method.

• A maximum number of iterations to be performed.

• A convergence delta parameter, which is an indicator

that the clusters have been identified and no more

iterations are needed.

The algorithm consists of two steps that are executed

multiple times, until the clusters have converged (based

on the convergence delta parameter) or until the maximum

number of iterations has been reached. It starts by using the

initial centroids received as input or randomly chooses n
centroids. The two steps that are performed repeatedly are:

1) Assign all points to the cluster with the nearest cen-

troid.

2) Recompute the centroid for each cluster.

The complexity of this algorithm is O(nktd), where n
is the number of items in the dataset, k is the number of

clusters, d is the number of dimensions for each item and t
the number of iterations.

The main advantage for using k−Means is that it is easy to

understand and implement. It also leads to accurate results

when the data points can be grouped into well separated

clusters. A disadvantage would be that if the clusters cannot

be well defined over the dataset, then the results might

not be very accurate, since it allows a point to be part of

only one cluster. Another disadvantage is that it requires

previous knowledge about the number of clusters that are to

be identified, which on large datasets is difficult to estimate

and usually these are identified via other faster algorithms

(like Canopy). k−Means is also unable to identify noisy data

or outliers, precisely because it is based on a static number

of clusters.

B. Mahout Fuzzy k−Means

The Fuzzy k−Means algorithm is an enhancement of

k−Means. The main difference is that it allows a data

point to be part of multiple clusters. It assigns to each

point probability values for being part of every cluster and

then the centroids of the clusters are computed based on

the positions and the probabilities of each point. Assum-

ing that each point is defined as a vector of coordinates

vi = (a1; a2; a3; . . . ; an) and that the probability values for

that point belonging to each cluster are expressed in a matrix

U where uij is the probability of the point vi to belong to

cluster cj , the centroid of each cluster is computed based on

the following formulae:

cj =

∑n
i=1 u

m
ij · vi∑m

i=1 uij

where m represents the accepted level of fuzziness, m > 1,
and n represents the number of points in the cluster.

After computing new centroids for each cluster, the prob-

abilities matrix is recomputed based on the new centroids.

uij =
1

∑c
k=1

( |xi−cj |
|xi−ck|

) 2
m−1

where c represents the total number of clusters.

C. Centroid Generation

The k−Means and Fuzzy k−Means algorithms take as

input an initial set of centroids for the clusters. These can be

computed using another clustering algorithm implemented

in Mahout, namely Canopy [7]. This is often used as

a pre-processing step for k−Means algorithms on large

datasets. Datasets can be considered large based on several

features: large number of entries in the data, large number

of dimensions of the data and large number of clusters that

can be derived. The canopy algorithm is proven to reduce

the clustering computation time in each of these cases by

an order of magnitude with no impact on the accuracy of

the results. In our experiments, the dataset, namely the data

sets of tweets from Twitter stream (see Sect. IV) can be

considered to be large from all these three viewpoints, since

there is a large number of tweets retrieved, the number of

dimensions is considered infinite since we are dealing with

text documents and there is a large number of clusters that

can be derived since there are many topics that are being

discussed on the Twitter platform.



The Canopy algorithm can use an approximate distance

measure method for quickly distributing data across approx-

imate canopies. A canopy is a collection of items that are

relatively similar to one another. It is important to note that

one item from the dataset can be part of multiple generated

canopies. There are two threshold values used within this

algorithm, T1 and T2, where T1 > T2. If the distance

between a canopy (which can be viewed as the center of a

cluster) and an uncategorized point is smaller than T1, it is

probably that point is part of the canopy, but it might be part

of others too. If the same distance is smaller than T2, then

the point is definitely part of the canopy and there is no need

to try to place it in other canopies too. The recommendation

is to use an approximate and cheap distance measure to

evaluate if the points are at distance smaller than T1 from

the canopy and then use a more advanced one to evaluate if

that distance is actually smaller than T2. By doing this, most

of the distance computations will be done using the cheaper

distance measure and then the accuracy of the results can be

improved by using a more advanced distance measure for

the second part.

There are multiple distance measures that could be used,

including Euclidean distance, Squared Euclidean distance,

Manhattan distance and Cosine distance, among others. As

these are standard similarity measures in the literature, we

have omitted their definitions here.

III. PRE-PROCESSING

Data preprocessing is a necessary step for all data mining

methods and it consists of multiple actions of data cleaning

and structuring/formatting in order to prepare it for applying

the actual algorithms. The k−Means and Fuzzy k−Means

algorithms implemented in Mahout take as input a list of

TF-IDF vectors and vectorizing the text content is a pre-

processing step for the data mining algorithms. We recall

here that TF-IDF stands for Term Frequency – Inverse

Document Frequency, and is defined as a numerical statistics

that is intended to reflect how important a word is to a

document in a collection. It is often used as a weighting

factor in information retrieval and text mining. The TF-IDF

value increases proportionally to the number of times a word

appears in the document, but is offset by the frequency of

the word in the corpus, which helps to adjust for the fact

that some words appear more frequently in general.

In our case the data set entries are tweets –we refer here

to as document indistinctly–therefore, in order to convert

the raw text content to TF-IDF vectors, which can be

considered overall as a data transformation step, there are

multiple actions that need to be performed. The first one

is generating the dataset dictionary, with the Document

Processor implemented in Mahout and using the Lucene

Standard Analyzer. A Lucene Analyzer is used in order to

extract indexable tokens (or words) from texts. There are

multiple analyzers provided by the Lucene library: Standard,

Whitespace, Stop or Snowball. The Lucene Standard Ana-

lyzer is capable of handling names, email addresses, special

characters like punctuation marks. It also contains a default

list of stopwords and eliminates them if encountered in the

document that is being analyzed.

The Document Processor from Mahout launches MapRe-

duce jobs over Hadoop. A document tokenization job in-

volves only map actions and at the end it generates the

tokenized content (each tweet is associated with a set of

tokens or words which are part of that tweet).

After the tokenized documents are obtained, the term-

frequency (TF) vectors need to be generated. Term-

frequency vectors can be viewed as a map in which the

key is a word found in the document and the value is

the number of occurrences of that word in the document.

The DictionaryVectorizer from the Mahout library takes

as arguments the maximum size of ngrams, which in our

case will be one, since we want to take into consideration

independent words only.

The Document Frequency Convertor from Mahout also

launches MapReduce jobs over Hadoop and generates the

dictionary of the dataset and the Document-Frequency (DF)

Vector. The document frequency vector contains for each

word the number of documents in which the word is present.

This is useful in order to select the words that appear in a

larger number of documents and to assign them a smaller

weight when it comes to clustering, because their meaning

doesn’t bring many insights to the topic of each document.

The number of times a word appears in a document is

not taken into consideration when computing the document

frequency value. After the DF value is computed for each

word, the Inverse Document Frequency (IDF) value is

generated, according to the following formula:

IDF = log

(
N

DF

)

where N represents the number of documents in the col-

lection and DF represents the Document-Frequency value

previously described.

The multiplication with N is used for normalizing the

values. This IDF value is used in order to assign smaller

weights to more frequent words across the collection. It will

not influence however the frequent words inside the same

document.

The TF − IDF processor simply computes the TF −
IDF values starting with the TF and IDF values, based on

the following formula:

TD − IDF = TF ∗ IDF = TF ∗ log
(

N

DF

)

The preprocessing steps discussed herewith can be ob-

served in the Fig. 1. On top of the sequence of steps there

is the Apache Yahoo! S4 [8] (denoted S4 processor in the



Figure 1: Data pre-processing steps.

figure), which is the stream processing used for building the

dataset of tweets via the Twitter Streaming API.

IV. PERFORMANCE EVALUATION

A. The HPC Infrastructure

We used RDLab as distributed infrastructure1 for pro-

cessing and analyzing the data. The RDLab infrastructure

aggregates hardware resources for research and project de-

velopment:

• Over 160 physical servers.

• Over 1000 CPU cores and more than 3 TBytes of RAM

memory.

• Over 130 TBytes of disk space.

• High speed network at 10Gbit.

The RDLab High Performance Cluster (HPC) offers sev-

eral software packages such as Lustre High Performance

Parallel file system, Hadoop support, SMP and MPI parallel

computation, etc. We have used up to 32 nodes in the cluster

during the experimental study.

B. Performance evaluation criteria

Several tests were conducted in order to extract quantifi-

able metrics. For the performance evaluation for the Mahout

library, we have considered three main indicators:

1http://rdlab.cs.upc.edu/index.php/en/

• Processing time

• In-memory usage

Other questions aimed to answer regarding the perfor-

mance of Mahout throughout these experiments are if Ma-

hout scales well with large datasets and if the required

processing time increases linearly with the data set size.

Throughout the experiments, we were able to evaluate

several steps from the process of clustering data, namely:

1) Data preprocessing –converting raw text to TF-IDF

vectors;

2) Centroid generation – using the Canopy algorithm in

order to generate some centroids from the data set to

be used by other algorithms, and

3) k−Means and Fuzzy k−Means data mining clustering

algorithms, which were considered suitable for the

evaluation due to unstructured data format.

C. Data sets, structure and size

The dataset is constructed based on tweets received via

the Twitter Streaming API, which is further transformed

to suitable formatting in order to be used later on by the

Mahout data mining algorithms.

Data structure: The tweets received via the Twitter

Streaming API contain, besides the text content, a lot of

meta-data that can provide additional information about the

popularity of the tweet or the context in which it was

published. Examples of meta-data for a tweet are, among

others:

• language – described in a BCP 47 format or equal to

“und" if the language could not be detected.

• coordinates – the geo-location from which the tweet

was published.

• creation date.

• entities – special entities, which are extracted from the

tweet content: urls, hashtags, user mentions.

• re-tweeted – true/false, indicates if the tweet has been

re-tweeted or not.

• re-tweet counter – the number of times this tweet has

been re-tweeted.

• user – the profile of the author of the tweet, which con-

tains: id, creation time for the user account, description.

• followers counter – indicates the number of followers

the user has.

• friends counter – indicates the number of friends the

user has (which is equivalent to the number of accounts

the user is following).

• profile image.

• status – the most recent tweet that the user has pub-

lished.

• statuses count – the total number of tweets that the user

has published over time.

Data size: Given the length limitation of a tweet

content, the size of one data entry is very small. Tweets



contain UTF-8 characters which can be represented on 32

bits (i.e. 4 bytes). A maximum length of 140 characters

means a maximum size of 560 bytes. A tweet id can be

represented as a long number, so it requires up to 8 bytes.

Based on this values, the maximum memory space size

required for storing a tweet is around 568 bytes.

Taking into consideration the clean up operations per-

formed over the text content of a tweet before storing it, the

size of a data entry is most likely smaller than this amount.

So we decided to compute the average size of an actual

tweet based on the disk space size the dataset occupies and

the total number of stored tweets:

avg tweet size =
used disk space

total number of stored tweets

Using the above formulae, the average memory size

required for storing a single data entry resulted to be around

91 bytes, which is around 6 times smaller than the worst

case scenario we assumed initially and one of the reasons

that explains this is the fact that the urls and user mentions

in the tweet content can take more than 50% of the entire

text.

D. Computational results

We have summarized some computational results about

CPU processing time in Fig. 2 when using four computing

nodes. In the figure, the x-axis represents the thousands of

entries in the dataset, while the y-axis represents the pro-

cessing time expressed in seconds. Regarding the results, we

can observe that the pre-processing time is doubled when the

data size is doubled, while for the computation of centroids

and the finalization of the algorithms k−Means and Fuzzy

k−Means the processing time grows exponentially with the

data size.

We have summarized some computational results about

in-memory usage in Fig. 3 when using four computing

nodes. In the figure, the x-axis represents the thousands of

entries in the dataset, while the y-axis represents in-memory

usage expressed in GigaBytes. Regarding the results, we can

observe that for the pre-processing in-memory usage is dou-

bled when the data size is doubled, while for the computation

of centroids and the finalization of the algorithms k−Means

and Fuzzy k−Means the in-memory usage grows linearly

with the data size.

We also compared the performance of k−Means and

Fuzzy k−Means algorithms and observed that the k−Means

algorithm has a much faster execution time than Fuzzy

k−Means, whose execution time grows exponentially as

the number of tweets in the data set increases. Similarly,

k−Means algorithm uses less virtual memory than Fuzzy

k−Means, however, in both cases the in-memory usage

is linear with increase of data size (see Fig. 4 for these

differences).

(a) Processing time

(b) In-memory usage

Figure 4: k−Means vs. Fuzzy k−Means processing time and

in-memory usage when using 4 nodes and various data set

sizes.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a study on the per-

formance evaluation of some clustering algorithms imple-

mented in Apache Mahout data mining framework. With the

ever increasing amounts of data, most of old data mining

algorithms and frameworks, such as WEKA, are showing

limitations to cope with such data set sizes increase. As

an alternative, new implementations, such as Mahout, fully

implemented for Cloud deployment and executions, aim to

deal efficiently with Big Data. Yet, the achieved performance

of such new implementations is to be drawn from studies on

various data sets. In our study we have analysed the perfor-

mance of k−Means and Fuzzy k−Means algorithms using

data sets from Tweeter stream and executed in a Hadoop

cluster. The study showed that the processing time of the

algorithms grows fast, especially for the Fuzzy k−Means

algorithms, whose execution time grows exponentially. On

the positive size, the in-memory usage for both algorithms

grows linearly with increase in data sets size.

In our future work we would like to further extend this

study to other algorithms of Mahout framework as well



(a) Data Preprocessing (b) Centroid generation

(c) kMeans (d) fuzzy kMeans

Figure 2: Performance processing metrics when using 4 nodes and various data set sizes.

(a) Data Preprocessing (b) Centroid generation

(c) kMeans (d) fuzzy kMeans

Figure 3: In-memory usage metrics when using 4 nodes and various data set sizes.

as evaluating the accuracy of the algorithms on large data

sets. Likewise, we would like to consider other data sets

from other application domains such as Virtual Campus or

autonomic computing systems [4], [9], [12].
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