14,652 research outputs found

    Impacts of Co-Solvent Flushing on Microbial Populations Capable of Degrading Trichloroethylene

    Get PDF
    With increased application of co-solvent flushing technologies for removal of nonaqueous phase liquids from groundwater aquifers, concern over the effects of the solvent on native microorganisms and their ability to degrade residual contaminant has also arisen. This study assessed the impact of ethanol flushing on the numbers and activity potentials of trichloroethylene (TCE)-degrading microbial populations present in aquifer soils taken immediately after and 2 years after ethanol flushing of a former dry cleaners site. Polymerase chain reaction analysis revealed soluble methane monooxygenase genes in methanotrophic enrichments, and 16S rRNA analysis identified Methylocystis parvus with 98% similarity, further indicating the presence of a type II methanotroph. Dissimilatory sulfite reductase genes in sulfate-reducing enrichments prepared were also observed. Ethanol flushing was simulated in columns packed with uncontaminated soils from the dry cleaners site that were dosed with TCE at concentrations observed in the field; after flushing, the columns were subjected to a continuous flow of 500 pore volumes of groundwater per week. Total acridine orange direct cell counts of the flushed and nonflushed soils decreased over the 15-week testing period, but after 5 weeks, the flushed soils maintained higher cell counts than the nonflushed soils. Inhibition of methanogenesis by sulfate reduction was observed in all column soils, as was increasing removal of total methane by soils incubated under methanotrophic conditions. These results showed that impacts of ethanol were not as severe as anticipated and imply that ethanol may mitigate the toxicity of TCE to the microorganisms

    Enzyme activity in terrestrial soil in relation to exploration of the Martian surface Semiannual progress report, 1 Jul. - 31 Dec. 1967

    Get PDF
    Enzyme behavior in nonclassical systems, surface pH estimation in soils, and enzymatic activities in stored and geologically preserved soil

    Topological data analysis of Escherichia coli O157:H7 and non-O157 survival in soils.

    Get PDF
    Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in soils are limited due to the complexity in datasets generated from different environmental variables and bacterial taxa. There is a continuing need to distinguish the various environmental variables and different bacterial groups to understand the relationships among these factors and the pathogen survival. Using an approach called Topological Data Analysis (TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) with a multi-resolution output. In our study, we took a community approach based on total soil microbiome to study community level survival and examining the network of the community as a whole and the relationship between its topology and biological processes. TDA produces a geometric representation of complex data sets. Network analysis showed that Shiga toxin negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli O157:H7 EDL 933, while the survival time of E. coli O157:NM was comparable to that of E. coli O157:H7 EDL 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. We show that there are complex interactions between E. coli strain survival, microbial community structures, and soil parameters

    Controlled Ecological Life Support System. First Principal Investigators Meeting

    Get PDF
    Control problems in autonomous life support systems, CELSS candidate species, maximum grain yield, plant growth, waste management, air pollution, and mineral separation are discussed

    Delayed phytotoxicity syndrome in Louisiana rice caused by the use of thiobencarb herbicide

    Get PDF
    Thiobencarb (TB), widely used for the control of broadleaf weeds, grasses, and sedges in rice fields, is considered safe for rice plants when used at recommended rates. TB\u27s reductive dechlorination product, dechlorinated thiobencarb (DTB), is highly toxic to rice. TB is naturally transformed into DTB in field soils in certain areas in Japan and the United States. The resultant syndrome is called delayed phytotoxicity syndrome (DPS). This research was conducted to characterize DPS in Louisiana, to compare the toxicity of TB and DTB to rice, to determine uptake and retention rates of TB and DTB by rice, to confirm that soil microorganisms convert TB to DTB, to determine factors affecting the dechlorination of TB, and to develop methods for isolating dechlorinating microorganisms. An in vitro bioassay developed in this study showed that seedling heights were reduced as concentrations of TB and DTB in soil increased. The effective dosage for 50% reduction in height, using Lafitte rice, was 6.6 μg/ml for TB and 0.3 μg/ml for DTB. By developing and using a gas chromatography/mass spectrometry (GC/MS) method, it was shown that DTB was not taken up preferentially by rice plants. Rice plants absorbed and accumulated more TB than DTB when exposed at equal concentrations. The toxic effects of TB and DTB to rice seedlings was additive. When rice cultivars were evaluated for sensitivity to DTB, M201 was more tolerant than Bengal, Cocodrie, and Lafitte. The conditions affecting the transformation of TB into DTB in soil were studied using a special apparatus developed to measure the redox potential of soil columns at different depths. Reductive dechlorination of TB peaked after 14 days incubation, at a position in the soil column corresponding to an Eh of -230 mV. TB was converted to DTB in vitro in a conducive soil, but not after the soil was autoclaved. Bacterial and fungal isolates from conducive soil inoculated into sterile soil suspensions, or the soil column, all failed to dechlorinate TB. Repeated attempts to isolate the organisms responsible for dechlorination of TB in Louisiana rice field soils failed

    Environmental factors shaping the ecological niches of ammonia-oxidizing archaea

    Get PDF
    For more than 100 years it was believed that bacteria were the only group responsible for the oxidation of ammonia. However, recently, a new strain of archaea bearing a putative ammonia monooxygenase subunit A (amoA) gene and able to oxidize ammonia was isolated from a marine aquarium tank. Ammonia-oxidizing archaea (AOA) were subsequently discovered in many ecosystems of varied characteristics and even found as the predominant causal organisms in some environments. Here, we summarize the current knowledge on the environmental conditions related to the presence of AOA and discuss the possible site-related properties. Considering these data, we deduct the possible niches of AOA based on pH, sulfide and phosphate levels. It is proposed that the AOA might be important actors within the nitrogen cycle in low-nutrient, low-pH, and sulfide-containing environments

    Exobiology and Future Mars Missions

    Get PDF
    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission

    A Primer for Monitoring Water Funds

    Get PDF
    This document is intended to assist people working on Water Funds to understand their information needs and become familiar with the strengths and weaknesses of various monitoring approaches. This primer is not intended to make people monitoring experts, but rather to help them become familiar with and conversant in the major issues so they can communicate effectively with experts to design a scientifically defensible monitoring program.The document highlights the critical information needs common to Water Fund projects and summarizes issues and steps to address in developing a Water Fund monitoring program. It explains key concepts and challenges; suggests monitoring parameters and an array of sampling designs to consider as a starting-point; and provides suggestions for further reading, links to helpful resources,and an annotated bibliography of studies on the impacts that result from activities commonly implemented in Water Fund projects

    Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life

    Get PDF
    This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI)
    • …
    corecore