77 research outputs found

    The fractional Boussinesq equation of groundwater flow and its applications

    Get PDF
    This paper presents a set of fractional Boussinesq equations (fBEs) for groundwater flow in confined and unconfined aquifers and demonstrates the application of one of the fBEs for groundwater discharges known as recession curves. The fBEs are formulated with two-term distributed fractional orders in time and symmetrical fractional derivatives (SFD) in space applicable to both confined and unconfined aquifers. The SFD in theory consists of the forward fractional derivative (FFD) and the backward fractional derivative (BFD). The FFD represents the forward movement of water along the direction of mainstream flow while the BFD accounts for the backward motion of water in the direction opposite to the mainstream flow. The backward flow at the pore level can be referred to as the micro-scale backwater effect. The analogue of the backwater effect on a micro-scale using the BFD coincides with the wandering processes based on the continuous-time random walk (CTRW) theory which results in the fractional governing equation. With the analytical solutions of the fBE for given initial and boundary conditions of the first type for a finite depth, a set of formulae for groundwater recession has been derived using approximate solutions of the fBE. The examples of the applications of the recession curves are graphically illustrated and the effects of the orders of fractional derivatives on the geometry of the flow curves examined

    A semi–analytical study of diffusion type multi–term time fractional partial differential equation

    Get PDF
    This work suggested algorithm for the solution of multi–term time fractional partial differential equation by the application of homotopy analysis fractional Sumudu transform method based on iterative process. The method is cumulation of Sumudu transform and homotopy analysis method. Also, the multi-term time fractional partial differential equation represented in the form of system of fractional partial differential equations as per certain conditions of fractional derivatives. The Caputo fractional order derivatives are taken for the multi–term time fractional partial differential equations. Numerical examples are discussed for the support of theory and the approximate solution compared with exact solutions at the integer value of derivatives.Emerging Sources Citation Index (ESCI)MathScinetScopu

    On the numerical solution of fractional boundary value problems by a spline quasi-interpolant operator

    Get PDF
    Boundary value problems having fractional derivative in space are used in several fields, like biology, mechanical engineering, control theory, just to cite a few. In this paper we present a new numerical method for the solution of boundary value problems having Caputo derivative in space. We approximate the solution by the Schoenberg-Bernstein operator, which is a spline positive operator having shape-preserving properties. The unknown coefficients of the approximating operator are determined by a collocation method whose collocation matrices can be constructed efficiently by explicit formulas. The numerical experiments we conducted show that the proposed method is efficient and accurate

    A transform based local RBF method for 2D linear PDE with Caputo–Fabrizio derivative

    Get PDF
    The present work aims to approximate the solution of linear time fractional PDE with Caputo Fabrizio derivative. For the said purpose Laplace transform with local radial basis functions is used. The Laplace transform is applied to obtain the corresponding time independent equation in Laplace space and then the local RBFs are employed for spatial discretization. The solution is then represented as a contour integral in the complex space, which is approximated by trapezoidal rule with high accuracy. The application of Laplace transform avoids the time stepping procedure which commonly encounters the time instability issues. The convergence of the method is discussed also we have derived the bounds for the stability constant of the differentiation matrix of our proposed numerical scheme. The efficiency of the method is demonstrated with the help of numerical examples. For our numerical experiments we have selected three different domains, in the first test case the square domain is selected, for the second test the circular domain is considered, while for third case the L-shape domain is selected

    A transform based local RBF method for 2D linear PDE with Caputo–Fabrizio derivative

    Get PDF
    The present work aims to approximate the solution of linear time fractional PDE with Caputo Fabrizio derivative. For the said purpose Laplace transform with local radial basis functions is used. The Laplace transform is applied to obtain the corresponding time independent equation in Laplace space and then the local RBFs are employed for spatial discretization. The solution is then represented as a contour integral in the complex space, which is approximated by trapezoidal rule with high accuracy. The application of Laplace transform avoids the time stepping procedure which commonly encounters the time instability issues. The convergence of the method is discussed also we have derived the bounds for the stability constant of the differentiation matrix of our proposed numerical scheme. The efficiency of the method is demonstrated with the help of numerical examples. For our numerical experiments we have selected three different domains, in the first test case the square domain is selected, for the second test the circular domain is considered, while for third case the L-shape domain is selected

    Approximate Analytical Solutions of Space-Fractional Telegraph Equations by Sumudu Adomian Decomposition Method

    Get PDF
    The main goal in this work is to establish a new and efficient analytical scheme for space fractional telegraph equation (FTE) by means of fractional Sumudu decomposition method (SDM). The fractional SDM gives us an approximate convergent series solution. The stability of the analytical scheme is also studied. The approximate solutions obtained by SDM show that the approach is easy to implement and computationally very much attractive. Further, some numerical examples are presented to illustrate the accuracy and stability for linear and nonlinear cases

    Applied mathematical modelling with new parameters and applications to some real life problems

    Get PDF
    Some Epidemic models with fractional derivatives were proved to be well-defined, well-posed and more accurate [34, 51, 116], compared to models with the conventional derivative. An Ebola epidemic model with non-linear transmission is fully analyzed. The model is expressed with the conventional time derivative with a new parameter included, which happens to be fractional (that derivative is called the derivative). We proved that the model is well-de ned and well-posed. Moreover, conditions for boundedness and dissipativity of the trajectories are established. Exploiting the generalized Routh-Hurwitz Criteria, existence and stability analysis of equilibrium points for the Ebola model are performed to show that they are strongly dependent on the non-linear transmission. In particular, conditions for existence and stability of a unique endemic equilibrium to the Ebola system are given. Numerical simulations are provided for particular expressions of the non-linear transmission, with model's parameters taking di erent values. The resulting simulations are in concordance with the usual threshold behavior. The results obtained here may be signi cant for the ght and prevention against Ebola haemorrhagic fever that has so far exterminated hundreds of families and is still a ecting many people in West-Africa and other parts of the world. The full comprehension and handling of the phenomenon of shattering, sometime happening during the process of polymer chain degradation [129, 142], remains unsolved when using the traditional evolution equations describing the degradation. This traditional model has been proved to be very hard to handle as it involves evolution of two intertwined quantities. Moreover, the explicit form of its solution is, in general, impossible to obtain. We explore the possibility of generalizing evolution equation modeling the polymer chain degradation and analyze the model with the conventional time derivative with a new parameter. We consider the general case where the breakup rate depends on the size of the chain breaking up. In the process, the alternative version of Sumudu integral transform is used to provide an explicit form of the general solution representing the evolution of polymer sizes distribution. In particular, we show that this evolution exhibits existence of complex periodic properties due to the presence of cosine and sine functions governing the solutions. Numerical simulations are performed for some particular cases and prove that the system describing the polymer chain degradation contains complex and simple harmonic poles whose e ects are given by these functions or a combination of them. This result may be crucial in the ongoing research to better handle and explain the phenomenon of shattering. Lastly, it has become a conjecture that power series like Mittag-Le er functions and their variants naturally govern solutions to most of generalized fractional evolution models such as kinetic, di usion or relaxation equations. The question is to say whether or not this is always true! Whence, three generalized evolution equations with an additional fractional parameter are solved analytically with conventional techniques. These are processes related to stationary state system, relaxation and di usion. In the analysis, we exploit the Sumudu transform to show that investigation on the stationary state system leads to results of invariability. However, unlike other models, the generalized di usion and relaxation models are proven not to be governed by Mittag-Le er functions or any of their variants, but rather by a parameterized exponential function, new in the literature, more accurate and easier to handle. Graphical representations are performed and also show how that parameter, called ; can be used to control the stationarity of such generalized models.Mathematical SciencesPh. D. (Applied Mathematics
    • …
    corecore