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Abstract: Boundary value problems having fractional derivative in space are used in several fields,
like biology, mechanical engineering, control theory, just to cite a few. In this paper we present a new
numerical method for the solution of boundary value problems having Caputo derivative in space.
We approximate the solution by the Schoenberg-Bernstein operator, which is a spline positive operator
having shape-preserving properties. The unknown coefficients of the approximating operator are
determined by a collocation method whose collocation matrices can be constructed efficiently by
explicit formulas. The numerical experiments we conducted show that the proposed method is
efficient and accurate.

Keywords: fractional differential problem; Caputo fractional derivative; B-spline; quasi-interpolant
operator; collocation method

1. Introduction

Boundary value problems having fractional derivative in space are used to describe physical
phenomena in which nonlocality effect are peculiar. For instance, they are used to model anomalous
diffusion in biological tissues, viscoplastic materials in mechanical engineering or control of dynamical
systems (see References [1–5] and references therein).

In particular, in this paper we are concerned with the Caputo fractional derivative [6].
The theoretical analysis of fractional boundary value problems (FBVPs) having Caputo derivative
in space was addressed, for instance, in References [6–11]. We refer also to References [4,6,12,13] for
the foundations of fractional calculus and details on fractional derivatives. We want to mention that
in recent years other types of fractional derivatives were introduced, like the He’s derivative [14]
or the Fabrizio-Caputo derivative [15]. These derivatives are used to model physical phenomena
characterized by the presence of structures with different scales.

In the literature several analytical and numerical methods were proposed for the solution of
FBVPs. Analytical methods based on the homotopy perturbation technique [16] and the variational
iteration method [17] were used, for instance, in References [18–20]. As for the numerical methods,
several methods were proposed in the literature. In Reference [21] the authors proposed a Galerkin
finite element approach to solve the one-dimensional steady state fractional advection dispersion
equation. In Reference [22] the authors used finite difference methods to solve a nonlinear FBVP
while in Reference [10] a collocation method based on spline functions was proposed to solve
linear FBVPs. Spectral methods based on generalized Jacobi polynomials were used, for instance,
in References [23,24]. In Reference [11] a Gegenbauer-based Nyström method was proposed to solve
one-dimensional fractional-Laplacian boundary-value problems. In Reference [25] the authors solved

Axioms 2020, 9, 61; doi:10.3390/axioms9020061 www.mdpi.com/journal/axioms

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/326232579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0002-7159-0533
http://www.mdpi.com/2075-1680/9/2/61?type=check_update&version=1
http://dx.doi.org/10.3390/axioms9020061
http://www.mdpi.com/journal/axioms


Axioms 2020, 9, 61 2 of 12

linear and nonlinear FBVPs by a wavelet method. For an overview on numerical methods to solve
fractional differential problems see, for instance, References [18,20,26–30] and references therein.

In this paper we present a collocation method, based on a spline quasi-interpolant operator,
for the solution of boundary value problems having Caputo derivative in space. Quasi-interpolant
operators are approximating operators that reproduce polynomials up to a given degree. They have a
greater flexibility with respect to interpolation operator. This freedom can be used to preserve special
properties of the function to be approximated, like the sign, the shape or the area of its graph [31–35].
In particular, in this paper we propose a numerical method based on the Schoenberg-Bernstein
operator [36], which is a positive operator having shape preserving properties. We determine
the unknown coefficients of the approximating operator by a collocation method derived from
References [37,38] and show through some numerical experiments that the method is efficient
and accurate.

The paper is organized as follows. In Section 2 we describe the FBVPs we are interested in
and the spline basis we use to construct approximating functions in this space. The main properties of
the Schoenberg-Bernstein operator are also recalled. The details on the numerical method we propose
are described in Section 3. The results of the numerical experiments are shown in Section 4 while some
conclusions are given in Section 5.

2. Materials and Methods

In this section we describe the differential problem we are interested in (Section 2.1), the B-spline
basis (Sections 2.2–2.4) used to construct the approximating function, and the main properties of
the Schoenberg-Bernstein operator (Section 2.5).

2.1. Fractional Boundary Value Problems

We consider the one-dimensional boundary value problem
Dγ

x y(x) + f (x) y(x) = g(x) , x ∈ (0, L) ,

ρr0 y(0) + ρr1 y′(0) + ζr0 y(L) + ζr1 y′(L) = cr , 1 ≤ r ≤ dγe ,
(1)

where γ is a real positive number such that 0 < bγc < γ < dγe < 2, f and g are continuous known
functions, and ρr0, ρr1, ζr0, ζr1, cr are known parameters.

Here, Dγ
x y denotes the Caputo fractional derivative in space defined as [6]

Dγ
x y(x) :=

1
Γ(dγe − γ)

∫ x

0

y(dγe)(τ)
(x− τ)γ+1−dγe dτ , bγc < γ < dγe , (2)

where Γ is the Euler’s gamma function

Γ(γ) :=
∫ ∞

0
τγ−1 e−τ dτ .

We assume y is a sufficient smooth function and the boundary conditions are linearly independent
so that the differential problem has a unique solution [6,39,40].

2.2. The Cardinal B-Splines through the Truncated Power Function

The cardinal B-splines are compactly supported piecewise polynomials having breakpoints at
the integers. They can be used to construct a function basis for the spline spaces. For details on spline
functions see [41,42].
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In this context it is convenient to define the cardinal B-splines by applying the divided difference
operator to the truncated power function xn

+ := max(0, x)n on the sequence of simple integer knots
I = {0, 1, . . . , n + 1}. Thus, the cardinal B-spline Bn of integer degree n ≥ 0 has expression

Bn(x) := (n + 1)[0, 1, . . . , n + 1](y− x)n
+ = (n + 1)

∣∣∣∣∣M
(

1, y, y2, . . . , yn, (y− x)n
+

0, 1, 2, . . . , n, n + 1

)∣∣∣∣∣∣∣∣∣∣M
(

1, y, y2, . . . , yn, yn+1

0, 1, 2, . . . , n, n + 1

)∣∣∣∣∣
, (3)

where M

(
f1(y), . . . , fn(y)

y1, . . . , yn

)
is the collocation matrix of the function system { f1, . . . , fn}

evaluated on the knots {y1, . . . , yn}. We notice that the cardinal B-spline Bn is compactly supported on
[0, n + 1] and positive in (0, n + 1).

The system of the integer translates {Bn(x− k), k ∈ Z} forms a basis for the n-degree spline space
on the real line. Moreover, it reproduces polynomials up to degree n, has approximation order n + 1,
and is a partition of unity, that is,

∑
k∈Z

Bn(x− k) = 1 , for all x ∈ R .

2.3. B-Spline Bases on the Finite Interval

On the finite interval [0, L] a suitable basis for the spline space is the optimal basis, which is
constructed using knots of multiplicity n + 1 at the endpoints of the interval [41,42].

For the sake of simplicity, we assume L is an integer greater than n. Thus, on the finite interval
[0, L] we consider the sequence of integer knots I0 = {x0, x1, . . . , xN}, where N = L + 2n + 1, and

x0 = x1 = · · · = xn = 0 ,

xj = j− n , n + 1 ≤ j ≤ N − n− 1 ,

xN−n = xN−n+1 = · · · = xN = L .

The optimal basis on the interval [0, L] is formed by L + n basis functions, that is,

Bn =
{

Bk,n(x), 0 ≤ k ≤ L + n− 1
}

,

where the functions Bk,n and BL+n−1−k,n, 0 ≤ k ≤ n − 1, are left and right boundary functions,
respectively, while the functions Bk,n, n ≤ k ≤ L− 1, are internal functions.

The internal functions are the integer translates Bn(x − k) having support all contained in
the interval [0, L], that is,

Bk,n(x) = Bn(x− k + n) , n ≤ k ≤ L− 1 . (4)

The analytical expression of the left boundary functions is (cf. [43])

Bk,n(x) = (k + 1)
|Tk,n(x)|
|Pk,n|

, 0 ≤ k ≤ n− 1 , (5)

where Tkn is the (k + 1) order collocation matrix

Tk,n(x) = M

(
yn−k+1, yn−k+2, · · · yn, (y− x)n

+

1, 2, · · · k, k + 1

)
,
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and Pkn is the (k + 1) order collocation matrix

Pk,n = M

(
yn−k+1, yn−k+2, · · · yn, yn+1

1, 2, · · · k, k + 1

)
.

The analytical expression of the right boundary functions can be obtained using the central
symmetry property, that is,

BL+n−1−k,n(x) = Bk,n(L− x) , 0 ≤ k ≤ n− 1 . (6)

We notice that by construction the following endpoint conditions hold

Bk,n(0) = δk0 , BL+n−1−k,n(L) = δk0 , (7)

where δk0 denotes the Kronecker symbol.
The optimal basis Bn can be refined by using any sequence of equidistant knots on the interval

[0, L] [41,42]. Denoting by h the refinement step, that is, the distance between the refined knot sequence,
the refined basis is

Nh,n = {Nk,h,n(x), 0 ≤ k ≤ Nh} , x ∈ [0, L] ,

where Nh = L/h + n. Once again, the basis Nh,n has boundary and internal functions.
Nk,h,n(x) = Nk,n (x/h) and NNh−k,j,n(x) = Nk,h,n (L− x), 0 ≤ k ≤ n − 1, are the right and left
boundary functions, respectively, and Nk,h,n(x) = Bn (x/h− (k− n)), n ≤ k ≤ Nh − n, are the internal
functions. We notice that the refinement of the knots increases just the number of the internal functions
while the number of the boundary functions remains the same.

The optimal basisNh,3 for the cubic spline space on the interval [0, 1] with refinement step h = 1/8
is displayed in Figure 1.

Figure 1. The optimal basis Nh,3 on the interval [0, 1] with refinement step h = 1/8.

2.4. Fractional Derivatives of Cardinal B-Splines

Since the internal functions are the basis functions having support all contained in the interval
[0, L], their fractional derivatives can be easily evaluated by the differentiation rule

Dγ
x Bn(x) =

∆n+1 xn−γ
+

Γ(n− γ + 1)
, x ≥ 0 , 0 < γ < n , (8)

where

∆n f (x) =
n

∑
k=0

(−1)k
(

n
k

)
f (x− k)

is the backward finite difference operator [37,44]. We notice that the fractional derivatives of
the classical polynomial B-splines are fractional splines, that is, splines having noninteger degree (cf.
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Reference [44]). The fractional derivative Dγ
x B3 of the cubic B-spline, evaluated for different values of

γ, is shown in Figure 2. The plots show that the shape of the fractional derivative varies continuously
with γ so that the order of the derivative acts as a tension parameter.
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γ=2

Figure 2. The fractional derivative Dγ
x B3 of the cubic B-spline for different values of the fractional order

γ. The cubic B-spline B3, its first (γ = 1) and second (γ = 2) derivatives are plotted as dashed lines.

The explicit expression of the fractional derivative of the left boundary functions can be obtained
by applying the fractional differentiation operator to their analytical expression (5) (cf. Reference [43]),
that is,

Dγ
x Bk,n(x) =

(k + 1)
|Pkn|

k+1

∑
r=1

(−1)r+k+1 Dγ
x (r− x)n

+ |Tr
kn| , 0 ≤ k ≤ n− 1 , (9)

where

Tr
kn =



1 1 . . . 1
2n−k+1 2n−k+2 . . . 2n

. . . . . . . . . . . .
(r− 1)n−k+1 (r− 1)n−k+2 . . . (r− 1)n

(r + 1)n−k+1 (r + 1)n−k+2 . . . (r + 1)n

. . . . . . . . . . . .
(k + 1)n−k+1 (k + 1)n−k+2 . . . (k + 1)n


.

The fractional derivative of the right boundary functions can be obtained by the symmetry
property, that is,

Dγ
x BL+n−1−k,n(x) = Dγ

x Bk,n(L− x) =
(k + 1)
|Pkn|

k+1

∑
r=1

(−1)r+k+1 Dγ
x (r− (L− x))n

+ |Tr
kn| , 0 ≤ k ≤ n− 1 . (10)

Thus, the fractional derivative of the boundary functions is a linear combination of the fractional
derivative of the translates of the truncated power function whose derivative has expression [43]

Dγ
x (r− x)n

+ =
1

Γ(m + 1− γ)

(−1)mn!
(n−m)!

rn−m

xγ−m

n−m

∑
k=0

(−1)k
(

n−m
k

)
(1)k

(m + 1− γ)k

( x
r

)k

+
(−1)n+mn!

Γ(n + 1− γ)
(x− r)n−γ

+ , m− 1 < γ < m ,

where m = dγe, and (p)k denotes the rising Pochhammer symbol.
The fractional derivatives of the boundary functions of the cubic B-spline basis B3, evaluated for

different values of γ, are shown in Figure 3.
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Figure 3. The fractional derivative of the left boundary functions (left panels) and of the right boundary
functions (right panels) of the cubic B-spline basis B3 for different values of the fractional order
γ. The boundary functions and their first (γ = 1) and second (γ = 2) derivatives are plotted as
dashed lines.

2.5. The Schoenberg-Bernstein Operator

A spline quasi-interpolant operator is a spline approximation of a given function that reproduces
polynomials up to a given degree. There are several types of quasi-interpolant operators depending
on which properties of the function to be approximated we require to preserve (see, for instance,
References [31–35]). In this paper we consider the Schoenberg-Bernstein operator [36]

Sn y(x) =
L+n−1

∑
k=0

y(θk) Bk,n(x) , x ∈ [0, L] , (11)

where θk, 0 ≤ k ≤ L + n− 1, are the Greville nodes, that is, the coefficients that guarantee the reproduction
of linear functions. They satisfy the property

x =
L+n−1

∑
k=0

θk Bk,n(x) , x ∈ [0, L] . (12)

Even if the Schoenberg-Bernstein operator reproduces only polynomials of degree not greater
than 1, it has many properties useful in applications. In particular, the operator is a positive operator
and has shape preserving properties, that is, for any linear function Λ(x) it holds

S−(Sn (y−Λ)) ≤ S−(y−Λ) ,

where S−(y) denotes the number of strict sign changes of its argument. Moreover, the operator satisfies
the endpoint conditions, that is,

Sn y(0) = y(0) , Sn y(L) = y(L) .
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The Schoenberg-Bernstein operator is refinable meaning that we can construct a refined version
of the operator using the refined basis Nh,n, that is,

Sh,n y(x) =
Nh

∑
k=0

y(θk,h) Nk,h,n(x) , x ∈ [0, L] , (13)

where θk,h, 0 ≤ k ≤ Nh, are the refined Greville nodes satisfying

x =
Nh

∑
k=0

θk,h Nk,h,n(x).

Finally, the Schoenber-Bernstein operator is convergent with approximation order 1 [45], that is,

‖Sh,ny− y‖∞ → 0 when h
n
→ 0 ,

where ‖y‖∞ = maxx∈[0,L] |y(x)|.
We notice that usually the limit is taken either for h→ 0 and n held fix or for n→ ∞ and h held fix.

3. The Collocation Method

We solve the fractional differential problem (1) by a collocation method based on the refinable
Schoenberg-Bernstein operator (13), that is,

y(x) ≈ yh,n(x) = Sh,ny(x) , x ∈ [0, L] . (14)

To determine the unknown values y(θk,h), 0 ≤ k ≤ Nh, we choose a set of collocation points
and collocate the differential problem in those points. For the sake of simplicity, here we assume
the collocation points are a set of equidistant nodes on the interval [0, L] having space step δ, that is,

Xδ = {xr = δ r, 0 ≤ r ≤ Nδ} , Nδ = δ−1L . (15)

Thus, collocating (1) on the the nodes Xδ and using (13) we get
Dγ

x yh,n(xr) + f (xr) yh,n(xr) = g(xr) , 1 ≤ r ≤ Nδ − 1 ,

ρr0 yh,n(x0) + ρr1 y′h,n(x0) + ζr0 yh,n(xNδ
) + ζr1 y′h,n(xNδ

) = cr , 1 ≤ r ≤ dγe .

(16)

This is a linear system that can be written in matrix form as
(Dh,δ + Fδ ◦ Ah,δ)Yh,δ = Gδ ,

(
R0 Nh,δ(0) + R1 N

′
h,δ(0) + Z0 Nh,δ(L) + Z1 N

′
h,δ(L)

)
Yh,δ = C ,

(17)

where
Yh,δ =

[
y(θh,`), 0 ≤ k ≤ Nh

]T ,

is the unknown vector,
Ah,δ =

[
N`,h,n(xr), 1 ≤ r ≤ Nδ − 1, 0 ≤ k ≤ Nh

]
and

Dh,δ =
[
Dγ

x Nk,h,,n(xr), 1 ≤ r ≤ Nδ − 1, 0 ≤ k ≤ Nh
]



Axioms 2020, 9, 61 8 of 12

are the collocation matrices of the refinable basis Nh,n and of its fractional derivative, respectively.
We notice that the entries of the matrices Ah,δ and Dh,δ can be efficiently evaluated by the formulas
given in Sections 2.2–2.4. The vectors

Fδ =
[

f (xr), 1 ≤ r ≤ Nδ − 1
]T , Gδ =

[
g(xr), 1 ≤ r ≤ Nδ − 1

]T ,

are the know terms, the vectors

Rk =
[
ρr,k, 1 ≤ r ≤ dγe

]T , k = 0, 1 ,

Zk =
[
ζr,k, 1 ≤ r ≤ dγe

]T , k = 0, 1 ,

C =
[
cr, 1 ≤ r ≤ dγe

]T ,

contain the parameters, and the vectors

Nh,δ(xr) =
[
Nk,h,n(xr), 0 ≤ k ≤ Nh

]
, r = 0, Nδ ,

N′h,δ(xr) =
[
N′k,h,n(xr), 0 ≤ k ≤ Nh

]
, r = 0, Nδ .

contain the boundary values of the basis functions and of their first derivative, respectively. Here,
the symbol F ◦A denotes the entrywise product between matrices. In the case when F is a vector, F has to
be intended as a matrix having as many columns as A, each column being a replica of the vector F itself.

The linear system (17) has Nδ− 1+ dγe equations and Nh + 1 unknowns. To guarantee the existence
of a unique solution the refinement step h, the distance of the collocation points δ and the degree of
the B-spline n have to be chosen such that Nδ − 1 + dγe ≥ Nh + 1. When Nδ − 1 + dγe > Nh + 1 we obtain
an overdetermined linear system that can be solved by the least squares method [38].

Finally, the collocation method described above is convergent [38,46], that is,

lim
h→0
‖y(x)− yh,n(x)‖∞ = 0 .

4. Numerical Results

In this section we show the performance of the proposed method by solving some FBVPs.
In the following tests we approximate the solution of the differential problem by the cubic
Schoenber-Bernstein operator Sh,3y.

4.1. Example 1

In the first example we consider the fractional differential equation
Dγ

x y(x) + f (x) y(x) = g(x) , x ∈ (0, 1) , 0 < γ < 1 ,

y(0) + y(1) = 1 ,

where f (x) = 1 and g(x) =
x1−γ

γ(2− γ)
+ x. The analytical solution is y(x) = x. We approximate the solution

by the Schoenberg-Bernstein operator Sh,3y with h = 1/4. We choose δ = h/2 = 1/8 so that the final linear
system has 9 equations and 7 unknowns. Since the operator Sh,3y reproduces any linear functions,
in this case the approximation is exact. In Table 1 the infinity norm of the approximation error,
evaluated as

‖eh,3‖∞ = max
0≤r≤4Nδ

|y(xr)− yh,3(xr)|, xr =
δ

4
r, 0 ≤ r ≤ 4Nδ ,
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is listed for different values of γ. As expected, the error is in the order of the machine precision.
We notice that when γ = 0 we are solving the approximation problem

y(x) + f (x) y(x) = g(x) , x ∈ (0, 1) ,

y(0) + y(1) = 1 .

Table 1. Example 1: The infinity norm of the approximation error.

γ 0 0.25 0.5 0.75 1

‖eh,3‖∞ 6.46 × 10−16 4.21 × 10−14 1.99 × 10−15 2.10 × 10−15 1.89 × 10−15

The unknown values y(θk,h) ≡ θk,h, 0 ≤ k ≤ 6, are listed in Table 2. For all the values of γ they
coincide at the machine precision with the Greville nodes of the interval [0, 1] [45].

Table 2. Example 1: The unknowns y(θk,h) ≡ θk,h, 0 ≤ k ≤ 6.

k 0 1 2 3 4 5 6

y(θk,h) 0 1
12

1
4

1
2

3
4

11
12 1

4.2. Example 2

In the second example we solve the fractional differential equation
Dγ

x y(x) + f (x) y(x) = g(x) , x ∈ (0, 1) , 1 < γ < 2 ,

y(0) = 0 , y(1) = 1 ,

where f (x) = 1 and g(x) = Γ(ν+1)xν−γ

Γ(ν−γ+1) + xν. The analytical solution is y(x) = xν. We approximate
the solution by the Schoenberg-Bernstein operator Sh,3 using different values of h. In all the tests we set
δ = h/2. The infinity norm of the approximation error when ν = 4 for different values of γ is shown in
Table 3. The analytical solution, the numerical solution and the approximation error eh,3 = y(x)− yh,3(x)
evaluated at the collocation nodes are shown in Figure 4 in the case when h = 1/128.

Table 3. Example 2: The infinity norm of the approximation error.

h γ = 1 γ = 1.25 γ = 1.5 γ = 1.75 γ = 2
1
4 3.18 × 10−4 3.43 × 10−4 5.97 × 10−4 1.84 × 10−3 3.85 × 10−3

1
8 1.75 × 10−5 2.43 × 10−5 8.12 × 10−5 3.38 × 10−4 1.06 × 10−3

1
16 1.02 × 10−6 1.93 × 10−6 1.23 × 10−5 6.64 × 10−5 2.70 × 10−4

1
32 6.18 × 10−8 1.94 × 10−7 1.97 × 10−6 1.34 × 10−5 6.80 × 10−5

1
64 3.79 × 10−9 2.31 × 10−8 3.29 × 10−7 2.75 × 10−6 1.70 × 10−5

1
128 2.36 × 10−10 3.05 × 10−9 5.63 × 10−8 5.70 × 10−7 4.26 × 10−6
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Figure 4. The analytical solution y and the numerical solutions yh,n for different value of γ (left top
panel). The approximation error eh,3 for γ = 1 (right top panel), γ = 1.25 (left middle panel), γ = 1.5
(right middle panel), γ = 1.75 (left bottom panel), γ = 2 (right bottom panel).

5. Conclusions

We have presented a collocation method based on the Schoenberg-Bernstein quasi-interpolant
operator and used the method to efficiently solve boundary value problems having Caputo fractional
derivative. The numerical results shown in Section 4 show that the method is accurate and exact
on linear functions. We notice that we can increase the approximation order using different kind of
quasi-interpolant operators, like the discrete operators introduced in References [32,35]. Some first
results in this direction can be found in Reference [47]. Finally, we notice that even if the B-spline basis
is centrally symmetric in the interval [0, L], its Caputo fractional derivative is not. The symmetry could
be recovered replacing the Caputo derivative with the Riesz derivative defined as [4]

dγ

d|x|γ y(x) = − 1
2 cos(πγ

2 )
(Dγ

0,x + Dγ
x,L)y(x) ,

which is centrally symmetric in the interval [0, L] . The solution of boundary value problems having
Riesz fractional derivative in space will be the subject of a forthcoming paper.
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