
Comptes Rendus

Mathématique

Kamran, Amjad Ali and José Francisco Gómez-Aguilar

A transform based local RBF method for 2D linear PDE with
Caputo–Fabrizio derivative

Volume 358, issue 7 (2020), p. 831-842

Published online: 16 November 2020

https://doi.org/10.5802/crmath.98

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.98
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2020, 358, n 7, p. 831-842
https://doi.org/10.5802/crmath.98

Numerical Analysis / Analyse numérique

A transform based local RBF method for 2D

linear PDE with Caputo–Fabrizio derivative

Kamran ∗, a, Amjad Alib and José Francisco Gómez-Aguilarc

a Department of Mathematics, Islamia College Peshawar, Khyber Pakhtoon Khwa,
Pakistan.

b Department of Basic Sciences and Islamiat, University of Engineering and
Technology Peshawar,Khyber Pakhtoon Khwa, Pakistan.

c CONACyT-Tecnológico Nacional de México/CENIDET.Interior Internado Palmira
S/N, Col. Palmira, C.P.62490, Cuernavaca, Morelos, México.

E-mails: kamran.maths@uetpeshawar.edu.pk, amjad_puet@yahoo.com,
jgomez@cenidet.edu.mx

Abstract. The present work aims to approximate the solution of linear time fractional PDE with Caputo
Fabrizio derivative. For the said purpose Laplace transform with local radial basis functions is used. The
Laplace transform is applied to obtain the corresponding time independent equation in Laplace space and
then the local RBFs are employed for spatial discretization. The solution is then represented as a contour
integral in the complex space, which is approximated by trapezoidal rule with high accuracy. The application
of Laplace transform avoids the time stepping procedure which commonly encounters the time instability
issues. The convergence of the method is discussed also we have derived the bounds for the stability
constant of the differentiation matrix of our proposed numerical scheme. The efficiency of the method is
demonstrated with the help of numerical examples. For our numerical experiments we have selected three
different domains, in the first test case the square domain is selected, for the second test the circular domain
is considered, while for third case the L-shape domain is selected.

Manuscript received 13th August 2019, revised and accepted 20th July 2020.

1. Introduction

Fractional calculus is the branch of mathematics in which the differential or integral operators
with arbitrary orders are studied. Fractional calculus offers new features in describing complex
dynamics of realistic systems having memory effect. Fractional order differential equations can
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be used to model various processes related to complicated system of several areas of engineer-
ing and sciences. In literature a lot of valuable work is available in which the authors have stud-
ied various fractional derivatives and their applications. The investigation of numerous phenom-
ena like electrodynamics, elasticity, diffusion process, fluid flow, signal and image processing, hy-
drology and many others can be done with the help of fractional PDEs [4, 17]. In [22] Samko et
al. studied various types of fractional derivatives such as Grünwald–Letnikov, Caputo, Marchaud,
Riemann–Liouville and many more. More work on fractional derivatives and their applications
can be found in [7, 13, 14, 18, 21, 24] and the references therein. However these classical fractional
derivatives have a singular kernel, and hence they may face difficulties in describing the non lo-
cality of real world dynamics.

In order to handle the non local systems in a better way, recently a new fractional derivative
is introduced in [6] called Caputo–Fabrizio(CF) fractional derivative which has attracted the
attention of researchers and has become much popular among the researchers. Because of
the smooth kernel the CF derivative has numerous applications. The CF derivative has been
successfully applied to model groundwater flowing within a confine and unconfined aquifer
[4, 10], ground water pollution [5], salute transport and non Darcian flow [25], mass-spring
damper system [11], HIV model [2], Mathematical biological model [12] and their references.

The researchers have developed various methods for modeling the numerical and the analyt-
ical solutions of time-fractional order PDEs with CF derivative. In [17] the authors have solved
linear PDEs with CF derivative using Laplace homotopy analysis method. The model of ground-
water flow within confined aquifer with CF derivative [4] is solved using Sumudu transform. In [3]
CF derivative is applied to Fisher’s diffusion equation and the solution is presented using some
iterative method. The Allen Cahn model with CF derivative is solved using Crank–Nicholson
scheme [1]. In [5] the author’s studied numerical approximation of space-time CF fractional
derivative and its application to groundwater pollution equation via Crank–Nicholson scheme.
In [16] the authors have obtained the fundamental solution of advection-diffusion problem with
CF derivative using Laplace and Fourier transforms. The authors in [9] have analyzed the rock
fracture process mathematically and applied the CF derivative. Other analytical or numerical
methods that could be of interest are given in [8, 19, 20] and the references therein.

In this article we propose a numerical scheme which is based on the Laplace transform(LT)
and local radial basis functions (RBFs) for the approximation of the solution of linear time
fractional PDEs with CF derivative over complex domians. The purpose of combining the Laplace
transformation and local (RBFs) is to avoid the time stepping procedure. The advantage of using
the Laplace transformation is the less computational cost and no time instability issue.

2. Basic definitions from fractional calculus:

Definition 1. The Laplace transform of a function g (t ) is denoted by L [g (t )] = ĝ (s), and is
defined as

L [g (t )] = ĝ (s) =
∫ ∞

0
estg (t )d t . (1)

Definition 2. The Caputo–Fabrizio (CF) fractional derivative is defined as [3, 17]

C F
0 Dα

t g (t ) = (2−α)M(α)

2(1−α)

∫ t

0
exp

( −α
1−α (t − s)

)
g (n)(s)d s, α ∈ (n −1,n), (2)

where M ∈R satisfying the condition M(0) = M(1) = 1.

Definition 3. If α ∈ (0,1) and n ∈ N, then the Laplace transform of the CF derivative is defined
as [3, 17]

L
[C F

0 Dα+n
t g (t )

]
(s) = sn+1 ĝ (s)− sn g (0)− sn−1g (1)(0)− . . . − g (n)(0)

s +α(1− s)
. (3)
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using n = 0 we get

L
[C F

0 Dα
t g (t )

]
(s) = sĝ (s)− g (0)

s +α(1− s)
, (4)

similarly for n = 1 we get

L
[C F

0 Dα+1
t g (t )

]
(s) = s2 ĝ (s)− sg (0)− g (1)(0)

s +α(1− s)
. (5)

3. Proposed Scheme

To derive our proposed numerical scheme we consider a linear PDE with Caputo–Fabrizio
derivative (m −1 <α+n ≤ m):

C F
0 Dα

t g (x, t )−L g (x, t ) = ρ(x, t ), where x ∈Ω, and t ∈ [0,T ], (6)

with initial and boundary conditions are

∂k
t g (x,0) = gk (x),k = 0,1, . . . , m −1, x ∈Ω,

and

Bg (x, t ) = ε(x, t ), x ∈ ∂Ω. (7)

The application of Laplace transformation to (6) and (7) gives the following equations

L
[C F

0 Dα+n
τ g (x, t )−L g (x, t )

]=L
[
ρ(x, t )

]
(8)

and

B ĝ (x, s) = ε1(x, s). (9)

From Equation (8) we have,

sn+1 ĝ (x, s)− sn g (x,0)− sn−1g (1)(x,0)−·· ·− g (n)(x,0)

s +α(1− s)
−L ĝ (x, s) = ρ̂(x, s) (10)

thus we get the following system,[(
sn+1

s +α(1− s)

)
I −L

]
ĝ (x, s) = ĥ(x, s), x ∈Ω, (11)

B ĝ (x, s) = ε1(x, s), x ∈ ∂Ω, (12)

where I is the identity operator and the value of ĥ(x, s) is

ĥ(x, s) = sn g (x,0)+ sn−1g (1)(x,0)+·· ·+ g (n)(x,0)

s +α(1− s)
+ ρ̂(x, s).

In our method first we represent the solution g (x, t ) of the original problem (6)-(7) as a
contour integral

g (x, t ) = 1

2πi

∫
Γ

e st ĝ (x, s)d s, (13)

where, for Res ≥ ω with ω appropriately large, and Γ is an initially appropriately chosen line Γ0

perpendicular to the real axis in the complex plane, with Ims →±∞. The integral (13) is just the
inverse transform of ĝ (x, t ), with the condition that it must be analytic to the right of Γ0. To make
sure the contour of integration remains in the domain of analyticity of ĝ (x, t ), we select Γ as a
deformed contour in the set Σωφ = {s 6= 0 : |ar g s| <φ}∪ {0}, which behaves as a pair of asymptotes

in the left half plane, with Res → −∞ when Ims → ±∞, which force e st to decay towards both
ends of Γ. In our work we choose Γ as

s(ξ) =ω+λ(1− sin(δ− ιξ)), ξ ∈R, (Γ) (14)

C. R. Mathématique, 2020, 358, n 7, 831-842
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where,
λ> 0, 0 < δ<φ− π

2
, and ω> 0. (15)

By writing s = x + ιy, we notice that (14) is the left branch of the following hyperbola(
x −ω−λ
λsinδ

)2

−
( y

λcosδ

)2
= 1, (16)

the asymptotes for (16) are y = ±(x −ω−λ)cotδ, and x-intercept at s = ω+λ(1 − sinδ). The
condition (15) confirms that Γ lies in the sector Σωφ = ω+Σφ ⊂ Σφ, and grows into the left half
plane. From (14) and (13), we get

g (x, t ) = 1

2πi

∫ ∞

−∞
e s(ξ)t ĝ (x, s(ξ))ś(ξ)dξ. (17)

The trapezoidal rule is used for the approximation of Equation (17) with step k as follows

gk (x, t ) = k

2πi

M∑
j=−M

e s j t ĝ
(
x, s j

)
ś j , ξ j = j k, s j = s

(
ξ j

)
, s′j = s′

(
ξ j

)
. (18)

To obtain the solution gk (x, t ), first we must solve system of 2M+1 equations given in (11)-(12)
for quadrature points s j , | j | ≤ M . For this purpose the local RBF method is used to discretize the
operators L , and B.

3.1. Local RBF approximation

Given a set of points {xi }N
i=1in Rd , where d ≥ 1 the approximate function for ĝ (x) using local RBF

method has the form,
ĝ (xi ) = ∑

x j ∈Ωi

λi
jφ

(∥∥∥xi −xi
j

∥∥∥)
, (19)

where λi = {λi
j }n

j=1 is the expansion coefficients vector, φ(r ) is a kernel function, the distance
between xi and x j is r = ‖xi −x j ‖. Ω, and Ωi are global domain and local domains respectively.
The sub-domain Ωi contains the center xi , and around it, its n neighboring centers. Thus we
obtain n ×n linear systems

ĝ
(
xi

1

)
ĝ

(
xi

2

)
.
.
.

ĝ (xi
n)

=



φ
(∥∥xi

1 −xi
1

∥∥)
φ

(∥∥xi
1 −xi

2

∥∥)
. . . φ

(∥∥xi
1 −xi

n

∥∥)
φ

(∥∥xi
2 −xi

1

∥∥)
φ

(∥∥xi
2 −xi

2

∥∥)
. . . φ

(∥∥xi
2 −xi

n

∥∥)
. . . .
. . . .
. . . .

φ
(∥∥xi

n −xi
1

∥∥)
φ

(∥∥xi
n −xi

2

∥∥)
. . . φ

(∥∥xi
n −xi

n

∥∥)





λi
1

λi
2

.

.

.
λi

n

 , i = 1,2, . . . , N , (20)

which can be written as,
ĝ i =Φiλi , 1 ≤ i ≤ N , (21)

the matrix Φi contains elements in the form bi
k j =φ(‖xi

k −xi
j ‖), where xi

k ,xi
j ∈Ωi , the unknowns

λi = {λi
j : j = 1, . . . , n} are obtained by solving each of the N systems in (21). For the differential

operator L we have the form,

L ĝ (xi ) = ∑
x j ∈Ωi

λi
j Lφ

(∥∥∥xi −xi
j

∥∥∥)
, (22)

the above Equation (22) can be expressed as a dot product

L ĝ (xi ) =λi ·νi , (23)

where νi is a n-row vector and λi is a n-column vector, entries of the n-column vector νi are
given as

νi =Lφ
(∥∥∥xi −xi

j

∥∥∥)
, xi

j ∈Ωi , (24)
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eliminating the co efficientλi from (21), and (23) we have the following expression

L ĝ (χi ) =νi (Φi )−1 ĝ i =$i ĝ i (25)

where,

$i =νi (Φi )−1, (26)

thus at each node xi the approximation of the operator L via local meshless method is given as

L ĝ ≡ Dĝ , (27)

In Equation (27), D is a sparse differentiation matrix obtained via localized RBF method as an
approximation to L . The matrix D has order N ×N , it has n non-zero elements, and N −n zero
elements, where N is number of centers in global domain, and n is the number of centers local
domain. The boundary operator B can be discretized in similar way.

4. Convergence and Accuracy

For the approximation of linear differential equations with CF derivative using our proposed
method, the localized RBF method and Laplace transformation is used. In our numerical scheme
the time variable is eliminated using Laplace transform, and this process causes no error. Then
the localized RBF method is utilized for approximating time independent equation. The error
estimate for localized RBF method is of order O(η

1
εh ),0 < η < 1, ε is the shape parameter and h

is the fill distance. In the process of approximating the integral (17) convergence is achieved at
different rates depending on the path Γ. In approximating the integral (17) the convergence order
rely upon on the step k of the quadrature rule and the time domain [t0,T ]. The proof for the order
of quadrature error is given in the next Theorem 4.

Theorem 4 ( [15, Theorem 2.1]). Let g (x, t ) be the solution of (6)-(7) with ĝ (x, t ) analytic in Σωφ .
Let Γ⊂Ωr ⊂Σωφ , and define b > 0 by

coshb = 1

θτsin(δ)
where τ= t0

T
, 0 < t0 < T ,0 < θ < 1.0 and let λ= θr M

bT
.

Then for equation (19), with k = b
M ≤ r

l og 2 , we have∣∣g (x, t )− gk (x, t )
∣∣≤CQeωτl

(
ρr M

)
e−µM

(
‖g0‖+

∥∥ρ̂(x, t )
∥∥
Σω
φ

)
,

for µ= r (1−θ)
b , dρr = θrτsin(δ−r1)

b , r = 2πr1, r1 > 0, t0 ≤ τ≤ T, C =Cδ,r1,β and

l (x) = max

(
1, log

(
1

x

))
.

Hence the error estimate for the proposed scheme is

er r orest =
∣∣gk (x, t )− g (x, t )

∣∣=O
(
e−µM )

l
(
ρr M

)
.

5. Stability

To investigate the stability of the systems (11)-(12), we represent the system in discrete form as

Y ĝ = b, (28)

the matrix YN×N is sparse matrix obtained using localized RBF method. For the system (28) the
constant of stability is defined as

C = sup
ĝ 6=0

∥∥ĝ
∥∥∥∥Y ĝ
∥∥ , (29)

C. R. Mathématique, 2020, 358, n 7, 831-842
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Figure 1: In (a) corresponding to circular domain the constant C of stability is shown for the matrix Y . In (b)
the hyperbolic path is shown.

6 Numerical Experiments

In this section we implement our proposed Laplace transform based local RBF method for approximating
solution of time fractional diffusion equation with CF derivative in square, circular and L-shape domains. In
all our experiments we have utilized the Multiquadrics(MQ) kernels. The uncertainty principle [25] is utilized
for optimal shape parameter. The accuracy is measured using the L∞ and RMS errors which are given as

L∞ = ∥g(x, t) − gk(x, t)∥∞ = max
1≤j≤N

(|g(x, t) − gk(x, t)|),

and

RMS =

√∑N
j (g(xj , t) − gk(xj , t))

2

N
,

where g(x, t), and gk(x, t) are the exact and approximate solutions respectively.
To check the efficiency of the method we select the following two dimensional time fractional diffusion equation
with CF derivative

CF
0 Dα+1

t g(x, y, t) = ∇g(x, y, t) + f(x, y, t), (34)

where the forcing term f(x, y, t) can be selected according to the exact solution. The problem is solved with
zero initial conditions and the Dirichlet boundary conditions are generated from the exact solution given by

g(x, y, t) = t2+α sin(πx) sin(πy). (35)

and the Robin boundary conditions

g(x, y, t) + ∇g(x, y, t) · n⃗ = g(x, y, t), x, y ∈ ∂Ω, t ∈ [0, 1]. (36)

6.1 Square Domain

In the first test the square domain [0, 1]2 is selected to approximate solution of the given problem using
the proposed method. In this experiment the problem (34) is solved with Dirichlet boundary conditions
extracted from the exact solution of the problem. The MATLAB’s command ξ = −M : k : M is used to
generate the quadrature points along the path of integration Γ. The parameters used in our computations
are r = 0.1387, δ = 0.1541, θ = 0.1, τ = t0

T , ω = 2, t ∈ [t0, T ] = [0.5, 5]. In our computations we used the
Multiquadrics (MQ) kernel. In the Table 1 the results are obtained for various centers n ∈ Ωi and N ∈ Ω
with various quadrature points and α. The error estimates, L∞ errors, the condition number κ, and the shape
parameter ε are shown in Table 1. In Figure 1 (a), the approximate and in Figure 1(b) exact solutions are

6
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Figure 1. In 1(a) corresponding to circular domain the constant C of stability is shown for
the matrix Y . In 1(b) the hyperbolic path is shown.

for any discrete norm ‖.‖ defined on RN the constant C is finite. From (29) we may write

‖Y ‖−1 ≤
∥∥ĝ

∥∥∥∥Y ĝ
∥∥ ≤C , (30)

Similarly for the pseudoinverse Y † of Y , we can write∥∥∥Y †
∥∥∥= sup

X 6=0

∥∥Y † X
∥∥

‖X ‖ . (31)

Thus we have ∥∥∥Y †
∥∥∥≥ sup

X=Y ĝ 6=0

∥∥Y †Y ĝ
∥∥∥∥Y ĝ

∥∥ = sup
ĝ 6=0

∥∥ĝ
∥∥∥∥Y ĝ
∥∥ =C . (32)

We can see that Equations (30) and (32) confirms the bounds for the stability constant C .
Calculating the pseudoinverse for approximating the system (28) numerically be quite expansive
computationally, but it confirms the stability. The MATLAB’s function condest can be used to
estimate ‖Y −1‖∞ in case of square systems, thus we have

C = condest
(
Y ′)

‖Y ‖∞
(33)

This work well with less number of computations for our sparse differentiation matrix Y .
Figure 1(a) shows the bounds for the constant C of our system (11)-(12) for the given problem
corresponding to circular domain. Selecting N = 500, M = 90, n = 15, and α = 1.75 at t = 1, we
have 1.0003 ≤ C ≤ 1.5053. It is observed that the upper and lower bounds for the stability con-
stant are very small numbers, which guarantees that the proposed localized RBF scheme is stable.

6. Numerical Experiments

In this section we implement our proposed Laplace transform based local RBF method for
approximating solution of time fractional diffusion equation with CF derivative in square, circular
and L-shape domains. In all our experiments we have utilized the Multiquadrics(MQ) kernels.
The uncertainty principle [23] is utilized for optimal shape parameter. The accuracy is measured
using the L∞ and RMS errors which are given as

C. R. Mathématique, 2020, 358, n 7, 831-842
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L∞ = ∥∥g (x, t )− gk (x, t )
∥∥∞ = max

1≤ j ≤N

(∣∣g (x, t )− gk (x, t )
∣∣) ,

and

RMS =

√√√√∑N
j

(
g (x j , t )− gk (x j , t )

)2

N
,

where g (x, t ), and gk (x, t ) are the exact and approximate solutions respectively.
To check the efficiency of the method we select the following two dimensional time fractional
diffusion equation with CF derivative

C F
0 Dα+1

t g (x, y, t ) =∇g (x, y, t )+ f (x, y, t ), (34)

where the forcing term f (x, y, t ) can be selected according to the exact solution. The problem is
solved with zero initial conditions and the Dirichlet boundary conditions are generated from the
exact solution given by

g (x, y, t ) = t 2+α sin(πx) sin(πy). (35)

and the Robin boundary conditions

g (x, y, t )+∇g (x, y, t ) ·~n = q(x, y, t ), x, y ∈ ∂Ω, t ∈ [0,1]. (36)

6.1. Square Domain

In the first test the square domain [0,1]2 is selected to approximate solution of the given prob-
lem using the proposed method. In this experiment the problem (34) is solved with Dirichlet
boundary conditions extracted from the exact solution of the problem. The MATLAB’s command
ξ = −M : k : M is used to generate the quadrature points along the path of integration Γ. The
parameters used in our computations are r = 0.1387,δ = 0.1541,θ = 0.1,τ = t0

T ,ω = 2, t ∈ [t0,T ]
= [0.5,5]. In our computations we used the Multiquadrics (MQ) kernel. In the Table 1 the results
are obtained for various centers n ∈Ωi and N ∈Ωwith various quadrature points andα. The error
estimates, L∞ errors, the condition number κ, and the shape parameter ε are shown in Table 1. In
Figure 1(a), the approximate and in Figure 1(b) exact solutions are shown. The regular nodes dis-
tribution in square domain is shown Figure 2(a), and the absolute error is shown in Figure 2(b).
The results confirms the accuracy and efficiency of the proposed method.

Table 1. The results are obtained for different values of α, andx, y ∈ [0,1]2, at t = 1.

α= 1.50 N n M L∞ error RMS error er r orest ε κ CPU(s)

441 12 40 2.90×10−3 1.40×10−4 1.83×10−1 0.7 3.03×10+12 11.383506

60 2.90×10−3 1.40×10−4 2.12×10−2 0.7 3.03×10+12 25.811449

70 2.90×10−3 1.40×10−4 7.20×10−3 0.7 3.03×10+12 35.178792

90 2.90×10−3 1.40×10−4 8.18×10−4 0.7 3.03×10+12 59.738142

α= 1.95 400 12 50 1.70×10−3 8.48×10−5 6.25×10−2 0.7 2.01×10+12 23.881470

60 1.70×10−3 8.48×10−5 2.12×10−2 0.7 2.01×10+12 21.488349

70 1.70×10−3 8.48×10−5 7.20×10−3 0.7 2.01×10+12 29.542691

80 1.70×10−3 8.51×10−5 2.40×10−3 0.7 2.01×10+12 39.081166
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Figure 3: In (a) the regular nodes distribution in square domain for n = 12, and N = 441 is depicted. In (b)
the diagram of absolute error corresponding to problem 1 is shown for for α = 1.98, N = 441, n = 8.

6.2 Circular Domain

Now we approximate the solution of the given problem in circular domain of radius R = 1 and centered at the
origin. In this experiment we use the same set of parameters. Table 2 shows the results obtained using the
proposed method in circular domain for N = 500, n = 20 different fractional orders α, and quadrature points.
In this experiment also the problem (34) is solved using Dirichlet boundary conditions. From the results it
can be observed that the proposed method produced accurate results. Figure 4(a), and Figure 4(b) present
the approximate and exact solutions respectively. The computational domain with boundary stencil red and
interior stencil green is shown in Figure 5(a), whereas Figure 5(b) depicts the absolute error.
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70 2.46×10−5 2.37×10−5 2.31×10−5 2.21×10−5 2.34×10−5

90 2.46×10−5 2.37×10−5 2.31×10−5 2.22×10−5 2.34×10−5

Table 2: The RMS errors obtained for different values of α, at t = 1.
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Figure 3. In 3(a) the regular nodes distribution in square domain for n = 12, and N = 441 is
depicted. In 3(b) the diagram of absolute error corresponding to problem 1 is shown for for
α= 1.98, N = 441,n = 8.

6.2. Circular Domain

Now we approximate the solution of the given problem in circular domain of radius R = 1 and
centered at the origin. In this experiment we use the same set of parameters. Table 2 shows the
results obtained using the proposed method in circular domain for N = 500, n = 20 different
fractional orders α, and quadrature points. In this experiment also the problem (34) is solved
using Dirichlet boundary conditions. From the results it can be observed that the proposed
method produced accurate results. Figure 4(a), and Figure 4(b) present the approximate and
exact solutions respectively. The computational domain with boundary stencil red and interior
stencil green is shown in Figure 5(a), whereas Figure 5(b) depicts the absolute error.

7. L-Shape Domain

Here we apply the proposed method for approximating the solution of the time fractional
2D diffusion equation in L-shape domain. Here we use the same set of optimal parameters
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Table 2. The RMS errors obtained for different values of α, at t = 1.
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Figure 4: In (a) the approximate solution for N = 500, n = 15, and α = 1.75 is shown. In (b) the exact solution
is shown.
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Figure 5: In (a) the regular nodes distribution in circular domain is shown. In (b) the absolute error for
α = 1.90, N = 500, n = 25 is shown.

7 L-Shape Domain

Here we apply the proposed method for approximating the solution of the time fractional 2D diffusion equation
in L-shape domain. Here we use the same set of optimal parameters which are used for square domain. The
numerical results obtained using Dirichlet boundary conditions are shown in Table 3, where as the results
obtained using Robin conditions defined in eq: (36) are shown in Table (4). The results confirm the efficiency
of the method in irregular domain. The graph of approximate and exact solution is shown in Figure 6(a), and
the computational domain is depicted in Figure 6(b). The graph of RMS error using Dirichlet conditions is
shown in Figure 7(a) and absolute error is shown in Figure 7(b). Figure 8 depicts the RMS error obtained
using Robin conditions.
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Figure 5. In 5(a) the regular nodes distribution in circular domain is shown. In 5(b) the
absolute error for α= 1.90, N = 500,n = 25 is shown.

which are used for square domain. The numerical results obtained using Dirichlet boundary
conditions are shown in Table 3, where as the results obtained using Robin conditions defined
in equation (36) are shown in Table (4). The results confirm the efficiency of the method in
irregular domain. The graph of approximate and exact solution is shown in Figure 6(a), and
the computational domain is depicted in Figure 6(b). The graph of RMS error using Dirichlet
conditions is shown in Figure 7(a) and absolute error is shown in Figure 7(b). Figure 8 depicts the
RMS error obtained using Robin conditions.
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Table 3. The RMS errors obtained for different values of α, at t = 1.

N n M α= 1.20 α= 1.5 α= 1.75 α= 1.85 α= 1.95

833 19 30 3.88×10−5 3.72×10−5 3.61×10−5 3.56×10−5 3.52×10−5

50 3.80×10−5 3.72×10−5 3.62×10−5 3.58×10−5 3.62×10−5

70 3.80×10−5 3.72×10−5 3.62×10−5 3.58×10−5 3.81×10−5

90 3.80×10−5 3.72×10−5 3.62×10−5 3.59×10−5 3.42×10−5

Table 4. The results are obtained for different quadrature nodes and N = 736, n = 19
at t = 1.

α= 1.90 N n M RMS error er r orest ε κ CPU(s)

736 19 40 4.80×10−3 1.83×10−1 2.0 1.13×10+12 42.315359

60 4.80×10−3 2.12×10−2 2.0 1.13×10+12 93.625268

70 4.80×10−3 7.20×10−3 2.0 1.13×10+12 129.241310

90 4.80×10−3 8.18×10−4 2.0 1.13×10+12 214.265233
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Figure 6: In (a) the approximate and exact solution for α = 1.80 are shown. In (b) the computational domain
is shown.
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Figure 6: In (a) the approximate and exact solution for α = 1.80 are shown. In (b) the computational domain
is shown.
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Figure 6. In 6(a) the approximate and exact solution for α = 1.80 are shown. In 6(b) the
computational domain is shown.

8. Conclusion

In the present work, we have successfully combined the LT with local RBFs for the approximation
of the solution of of linear time fractional PDE with CF derivative. The Laplace transform have
been used in combination with the local RBFs to eliminate the time variable and to avoid the
stability restrictions which are commonly encountered in time stepping procedure. The bounds
of stability and convergence of the method have been discussed. In our numerical experiments
the Multiquadrics(MQ) kernel have been utilized. The experiments are carried out in square,
circular, and L-shape domains. The results confirmed the efficiency and accuracy of the method.
The benefit of this method is that it can solve such type of problems with less computation time
with out any time instability. It was observed that the proposed method is capable of solving the
linear fractional partial differential equations with CF derivative efficiently.
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Figure 7: In (a) the RMS error for α = 1.95, N = 736, n = 19 is shown. In (b) the absolute error for
α = 1.80, N = 736, n = 20 is shown.

Figure 8: In (a) the RMS error for α = 1.95, N = 736, n = 19 is shown, when the problem is solved with
Robin boundary conditions.
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problem is solved with Robin boundary conditions.
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